
 20

Analysing the Tradeoffs Among Requirements,
Architectures and COTS Components

Carina Alves, João Bosco Pinto Filho, Jaelson Castro
Centro de Informática, Universidade Federal de Pernambuco

E-mail: {cfa, jbapf, jbc}@cin.ufpe.br

Abstract. The development of software systems from already built COTS
components has been motivated by the prospect of reduced cost and
development time. However, developing COTS-based systems introduces new
challenges and risks different from building systems from scratch. In particular,
this new paradigm requires simultaneous tradeoffs among user requirements,
COTS products and system architecture. In this paper, we describe a set of
guidelines for handling risks and uncertainties associated with such tradeoffs.

Keywords: COTS-Based Development, Requirements Engineering and
Software Architecture.

1. Introduction

As the size and complexity of software systems grows, increases the interest in
developing systems based on reusable components, known in literature as COTS
(Commercial-Off-The-Shelf). The potential benefits of this new technology are
reduced costs and shorter development time 0. The nature of COTS suggests that the
model of component-based software development should be different from the
conventional one. As a result, a significant shift has been observed from the
development-centric toward a procurement-centric approach 0. This approach focuses
on building large software systems by integrating previously existing software
components available in the market. In general, the COTS-based development (CBD)
lifecycle consists of the following phases: identification, evaluation, selection,
integration and update of components 0.

According to Wallnau 0, COTS-based systems comprise a spectrum, ranging from
COTS-solution systems at one extreme, to COTS-intensive systems at the other
extreme. A COTS-solution system refers to an off-the-shelf solution that one
substantial product is tailored to provide a solution; examples include data
management, financial management, or manufacturing execution. On the other hand,
COTS-intensive systems are far more complex; this kind of system integrates many
products from different vendors to provide the system functionality. In such systems
an important issue is the way components are interconnected and how they
communicate through the software architecture. Therefore, it is necessary to define an
architecture that allows the integration of the various components.

It looks very promising to use COTS components in order to improve productivity
and quality of software systems development. Although, the use of COTS software
introduces new problems and risks different from building a system from scratch 0.

 21

Many of these problems are introduced because of the black-box nature of COTS
components. In particular, a careful COTS evaluation process is crucial for any
effective COTS-based system. During this stage, components capabilities must be
assessed against the evaluation criteria, which mainly include stakeholders’
requirements, architecture constraints and non-technical aspects (such as vendor
guaranties, legal issues) 0. The adaptation process addresses potential sources of
conflict among components that cannot effectively integrate into system architecture.
We argue that building systems from COTS components might be a compromise
among all these concerns.

This paper is organized as follows. Section 2 introduces the basic concepts of
COTS-based development, requirements engineering and software architecture.
Section 3 discusses some challenges developers have to deal when building COTS-
based systems. Section 4 presents some guidelines to deal with common risks
associated with COTS-based development. Finally, Section 5 presents the conclusions
of this work.

2. Background

Prior to present the proposed approach to systematically deal with critical issues
related to building COTS-based systems, it is necessary to introduce some basic
related concepts. These aspects are presented in the sequel.

1.1 Component-Based Development

Currently there is no general agreement over what constitutes a component or a
COTS. These two concepts are closely related and are used in a range of domains.
Although, we aim to make a distinction between them. Brown 0 defines a component
as:

A non-trivial, independent and replaceable part of a system that fulfils a clear
function in the context of a well-defined architecture;

A run-time, dynamically bindable software of one or more programs managed as
a unit and accessed through documented interfaces that can be discovered at run-time;

Current research in component-based software engineering mainly focuses on
component infrastructure capabilities and middleware solutions for connecting
components. Some technologies have been developed to provide a standardization for
component infrastructure, such as: CORBA (Common Object Request Broker
Architecture)1, Sun’s Java Beans and Enterprise Java Beans2, COM (Common Object
Model)3. Each of these approaches relies on underlying services to provide the
communication and coordination necessary to construct component-based applica-
tions.

1 http://www.corba.org
2 http://java.sun.com/products/ejb/
3 http://www.microsoft.com/com/

 22

 Requirements

Architecture

Design

Implementation

Traditional Development

Paradigm
Shift Requirements Architecture

COTS Components

COTS-Based Development
(Simultaneous Tradeoffs)

Broadly speaking, the term COTS refers to things that one can buy, ready-made
from some vendors. Vidger 0 considers that a COTS software component is software
that is acquired from a commercial source and is integrated into a working system.
According to Oberndorf 0, “COTS are products that are sold, leased or licensed to the
general public; that is usually available without source code; that is supported and
evolved by the vendor who returns the intellectual property rights”.

Figure 1. Paradigm Shift

On the opposite of traditional software development, that in general follows a pre-
established sequence of activities, the COTS-based paradigm is based on a constant,
simultaneous and iterative tradeoff among user requirements, software architecture
and COTS components, see figure 1. It means that such systems might be a
commitment of these aspects. The notion of lifecycle activities is also affected by the
paradigm shift, since some activities such as product evaluation, wrapping, bridging,
differs from traditional development activities. Yet, they are extremely important for
COTS-based systems.

1.2 Requirements Engineering

According to Zave 0, “requirements engineering is the branch of software
engineering concerned with the real-world goals for, functions of, and constraints on
software systems. It is also concerned with the relationship of these factors to precise
specifications of software, and to their evolution over time and across software.” It
has been argued that requirements engineering is increasingly recognized as a
critically important activity in any systems engineering process 0 0.

In general, requirements engineering encompasses the processes of acquiring,
modeling and managing stakeholders requirements. At the beginning of this process,
it is necessary to gather information about the organization structure, understand the
problem to be solved and interpret stakeholders needs and constraints. Then,
requirements are modeled in order to establish an agreed set of requirements that are
complete and consistent. In most system development, stakeholders have conflicting
requirements since they have different needs and priorities. Requirements negotiation
is the process of discussing the conflicts in requirements and find some compromises

 23

which all of the stakeholders can accept 0. In COTS-based development systems, all
these requirements engineering activities are also performed, especially during the
phases of evaluation and selection of COTS products. Although, there are some
differences between the requirements process for traditional systems and for COTS-
based systems. Basically the differences are because of the following factors:

Requirements instability are more severe because of COTS market volatility;
Requirements specification may be affected by COTS capabilities, i.e. new

requirements can be gathered from products evaluation;
COTS products may change due to the releasing of a new version, so requirements

may also change;
COTS products usually have more functionalities than a particular customer

needs;
COTS impose additional constraints on the system and these requirements are

usually unforeseen;
Some stakeholders requirements cannot be satisfied by any available product in

the market;
We argue that all these issues must be taken into account in order to obtain an

effective COTS-based development. In particular, it can only be achieved by an
iterative process of requirements engineering, COTS selection and architecture design
0. These compromises also requires a careful consideration of non-functional
requirements because they address important issues of quality for software systems.
Non-functional requirements are usually known as “ilities” attributes, such as:
portability, security, maintainability, usability, stability, etc. In general, non-
functional requirements have a global nature, which means that the satisfaction of a
single NFR may affect several design components.

1.3 Software Architecture

Software architecture is the highest abstract description of a software design,
which is defined at the initial stages of the software development. It is commonly
described in terms of three basic abstractions: components, connectors and
configurations. Components represent a wide range of different elements, from a
single client to a database, and have an interface used to communicate with the
external environment. Connectors represent communication elements between
components. The configuration describes how components and connectors are wired.
A traditional view of software architecture is shown in figure 2.

Figure 2. Software Architecture

Configuration

 Connector Component 1 Component 2

 24

Garlan 0 describes software architecture as the level of design which deals with
structural issues such as gross organization and global control structure; protocols for
communication, synchronization, and data access; assignment of functionality to
design elements; physical distribution; composition of design elements; and selection
among design alternatives. The main purposes of software architecture are to define
the major components of a system, how the components interface with each other, and
the interactions between components to provide the system services 0. In general,
COTS-based development do not follow the system’s architectural requirements in
many different ways. For instance, conflicting COTS must be adapted in order to
effectively interconnect with the rest of the system. These issues can be dealt with the
help of software integration elements like the ones described below:

Wrappers are pieces of code custom built in order to isolate the unwanted
functionalities of the COTS component from other components of the system. They
provide the only allowed access method to the wrapped component.

Glue is the code used to provide the functionality to integrate different components. It
deals with control flow, component bridge and exception handling.

Component tailoring refers to the ability for system architects to improve the
component’s functionality. The tailoring is done by adding some elements to the
component in order to include functionalities that are not provided by the vendor.

Developers should be aware that many of the problems raised by the use of COTS
software components can be addressed within a more formal and defined process, by
carefully defining the architecture and design of the system. This systematic process
results in a more reliable software that can evolve over time.

3. The challenges of Building Systems from COTS Components

Although building systems from COTS components offers the opportunity to
reduce the development time and cost of software systems, there are still many
problems that need to overcome. The development of systems based on the
integration of COTS possesses a particular set of business, technical and non-
technical challenges. Following we list some challenges that are often experienced:

The black box nature of COTS components. Customers often do not have access
to source code and cannot modify the code to change the properties of the component.
It also means that just black box tests can be performed during COTS assessment.
This type of testing is also seen during acceptance test and is considered to be the
foundation of validation testing which confirms that the software actually performs
the required functionalities.

The selection of COTS components is a non-trivial task. There is a lack of well-
defined selection processes, most organizations are under pressure to develop systems
faster and cheaper and perform COTS selection in an ad-hoc manner. Moreover, the
evaluation criteria are sometimes subjective and ambiguous and do not provide an
effective description of customer needs.

COTS specifications are usually incomplete and superficial. Most products
documentation that is available consists of user manuals and advertising material and

 25

does not provide an effective description about COTS capabilities and constraints. For
example, it does not describe the behavior of the system in response to abnormal
input, which is related to quality aspects of reliability and stability.

Frequent updates of commercial products. The components marketplace changes
rapidly and new COTS versions are released with a lot of different functionalities.
This aspect has a significant influence on the selection process, since a new release of
the product may have a feature that is not available in the product that is currently
being evaluated.

Requirements evolve during development process. Some requirements for COTS-
based systems will only be known after initial evaluation and at the moment the
system is being integrated. In addition, some products impose additional architectural
requirements, such as interoperability and reliability constrains that are usually
unforeseen during early evaluation.

Including a new COTS means incorporating additional constraints. These
constraints can affect the system’s overall architecture, functionality, and non-
functional aspects. For instance, a new component can have a negative contribution to
the system’s overall quality attributes. These conflicts result in tradeoffs that must be
analyzed and solved.

Adaptation of COTS is usually required in order to hide unwanted functionality.
COTS vendors often overload their systems with a large amount of functionality that
take no part on user’s requirements. Since this inconvenience cannot be solved
modifying black box COTS components, system’s architects must provide a way of
masking the unwanted functionality so that it is inaccessible to the end-users and
system programmers.

Set of COTS components may be mismatched. Integration of COTS components
usually brings multiple inconsistent architectures frameworks within a single system.
This problem has been identified as an architectural mismatch; Garlan 0 identified
four categories of mismatches between conflicting components, they are assumptions
about: the nature of the components, the nature of the connectors, the global
architectural structure, and the construction process. These architectural mismatches
have been identified as a fundamental obstacle to component-based development.

Customers have little or no control over the evolution of the product. The COTS
vendors have several customers, so it is almost impossible to attend specific needs of
a single customer. They have minimal influence over how the component evolves and
the capabilities added to futures updates are mainly introduced by market strategies
and technology trends.

Vendor dependency over the maintenance of the system. Usage of COTS means
taking risks that future system extensions might be limited due to dependence on the
support of COTS vendors for the new required capabilities. In addition, there is no
guarantee of long-term support from vendors or compatibility between versions of
newer selected COTS with those originally integrated in the system. If the vendor
stops supporting the product or goes out of business, customers are forced to change
to a different COTS. This results in modifications on the system architecture.

Future COTS replacements influence architecture design and quality aspects.
Replacement of a particular unsuitable COTS product can result in several
inconsistencies and expensive redesign of the system. The following situations are
examples of such inconsistencies: a new component may not be ported to the

 26

platforms the user requires, it may interfere with the operation of some required
functionality, or it may interact in some unexpected way with other components.

In order to effectively address the potential problems identified above, a
systematic and detailed approach is needed to assist the development process of
COTS-based systems. Next section provides a discussion about the management of
risks that may occur during the development of such systems.

4. Guidelines for Managing Risks of COTS-Based Systems
Development

In this section, we propose a set of guidelines that properly deals with the risks
associated with COTS-based development. In particular, some shortfalls in
requirements and architecture are identified. The groundwork for this paper was our
previous experience when developing and using the CRE (COTS-Based
Requirements Engineering) method, which is detailed presented in 00. The CRE
Method was developed to facilitate a systematic, repeatable and requirements-driven
COTS software selection process.

The method has four iterative phases: Identification, Description, Evaluation, and
Acceptance. In particular, this sequence is not rigid, since the CRE is based on the
iterative process of requirements elicitation/specification and COTS selection. The
main contribution of the CRE method over other selection methods 000 is a novel
approach that effectively treats non-functional requirements during the selection of
COTS products. In addition, we performed some real case studies in order to validate
the method. Some studied domains were: selection of IDE (Integrated Development
Environment) Java and selection of medical packages. These case studies have
provided some key insights into the situations that can bring risks when building
COTS-based systems. We argue that these risks must be analysed and managed to
fully exploit the advantages of COTS-based development. According to Charette 0,
risk analysis process encompasses the following activities:

The identification of risks;

The estimation of risks (often in terms of severity);

The evaluation of risks.

In addition, risk management is concerned with making decisions in which risks
are continuously identified and analyzed for relative importance. Moreover, during
this process risks must be mitigated, tracked, and controlled. Following we present
some guidelines to deal with risks identified during the COTS-based development
lifecycle.

 27

Situation Risks Guideline
� (1) A poorly scoped
domain, in which the domain
analysis process can be
susceptible to a loss of focus.

� (1) Acquire information about
system domain from specialists and
key stakeholders, using interviews
and questionnaires techniques.

� (2) Lessons from
previous experiences are not
learnt.

� (2) Define a systematic
selection process, using strategic
planning and appropriate selection
tools and methods, like the CRE
method 0 .

� (3) Organizations are
under pressure to perform
evaluation process faster and
without allocating qualified
individuals. This situation
can result in a ineffective
COTS selection.

� (3) Designate an evaluation
team with specialists in selection
processes, domain experts,
requirements engineers.

Lack of well
defined

selection
process

� (4) Individuals within
the organization are opposed
to COTS-based development
(CBD).

� (4) Conduct educational
sessions, explaining the benefits of
CBD and describing successful
industrial cases using this
development approach.

� (5) The lack of
consideration of non-
functional requirements
increases the risks of COTS
failure and the costs of the
final system.

� (5) Use approaches that specify
non-functional requirements, such
as the NFR framework 0. The
analysis of non-functional
requirements helps the
discrimination between competing
products and improves the decision
making process to choose a suitable
set of COTS that will be integrated
to build the final system.

Ineffective
evaluation

criteria

� (6) If requirements are
too specific and inflexible it
might be impossible to find
an appropriate solution that
meet the simultaneous
tradeoffs among
requirements, architecture
and available COTS
components.

� (6) Initially, describe
requirements broadly in order to
find potential COTS candidates in
the market; then refine
requirements statements, specially
the non-functional ones. Use
techniques, like WSM and AHP 0
to assist the decision making
process that must take a careful
balancing of requirements and
architecture constraints.

 28

Situation Risks Guideline
 � (7) Developers might

have the misconception that
the cost of COTS-based
systems are just related to
acquisition cost.

� (7) There are a range of
associated costs when developing
COTS-based systems such as
training, adaptation and
maintenance. Use COCOTS model
0 to perform cost estimation.

� (8) COTS are developed
to satisfy an entire market
instead of meet requirements
of particular customers. In
this way, COTS products
usually provides more
functionalities than a
customer needs.

� (8) The evaluation process
must be context-driven, i.e. COTS
assessments are conducted within
the scope of the system to be built
and the organization domain.
� (9) Perform techniques to mask
out currently unneeded capabilities,
such as wrapping and scripting.

COTS
components are

developed as
generic

products
� (9) There is no guaranty
that a COTS product can
meet all stated requirements.

� (10) Perform prioritization of
stakeholders requirements and try
to ensure that at least critical
requirement are met.
� (11) Additional components
need to be developed to meet the
shortfalls, but may be specific to a
particular domain.

� (10) Selecting unsuited
COTS components that
present integration problems
due to low conformance with
quality requirements.

� (12) Conduct demonstration
sessions to explore products
capabilities in a more realistic
environment. During these sessions,
it is important to evaluate product’s
compatibility, integrability and
interoperability with system
architecture.

Lack of detailed
COTS

components
descriptions

� (11) COTS are described
using different vocabulary
leading to difficulties to
make comparisons between
them.

� (13) Use documenting
standards to describe COTS
capabilities. In 0, a proposal is
made to describing COTS using
XML schemas templates.

 29

Situation Risks Guideline
� (12) The specified
architecture is inflexible and
difficult to adapt for
particular circumstances.

� (14) Avoid early commitment
to an architecture. Architectural
decisions should be made
concurrently with COTS
evaluation, in such a way that it can
be changed as far as requirements
statements are refined. It is worth
noting that requirements may also
be changed in order to meet
architectural constraints.

� (13) Inappropriate
properties are presented in
the integrated system and are
being preserved during
maintenance.

� (15) Perform verification tests
to determine the level of
conformance of the COTS
integrated with the architectural
description.

Architecture
can

significantly
affect the whole

COTS-based
system

� (14) COTS components
interact directly in a way that
updates on one of them may
affect the others as well as
the global system.

� (16) COTS should not interact
directly to each other. Wrappers
and glues should evolve with
component’s updates.

� (15) Customers have no
control over COTS product's
evolution.

� (17) Use flexible architectures
facilitating modification and update
of COTS.
� (18) Carefully evaluate COTS
vendors' track records with respect
to predictability of product
evolution and establish a pro-active
system release strategy,
synchronizing COTS upgrades with
system releases.

COTS
components

evolve rapidly

� (16) Uncritically
accepting COTS vendors'
statements about product
capabilities and support.

� (20) Establish strategic
partnerships or other incentives for
COTS vendors to provide support
and negotiate critical vendor
support agreements.

Table 1. Guidelines to handle risks of COTS-based development

We believe the presented categorization covers a wide range of critical situations
when developing COTS-based systems. Moreover, it provides a practical strategy to
manage and minimize some potential risks associated with these identified situations.

To illustrate how the guidelines presented above can be used in a real case,
consider the selection of medical package for a clinic management. In this case, the
guidelines supported the processes of COTS assessment and integration into the

 30

organization domain. In order to avoid risk 1, we identified stakeholders’ main goals
using interviews sessions. During this initial process we had found core requirements
to be considered during the localization of COTS products available in the market.

According to guideline 3, the evaluation of packages candidates was conducted by
a team with domain experts and requirements engineers. In particular, guideline 4 was
not considered because the clinic staff agreed with the use of COTS. As can be
observed, the guidelines are helpful to conduct the process of COTS-based
development. It is worth noting that developers must decide which guidelines are
suitable to use in each situation.

5. Conclusions

Developing systems using COTS products has a number of potential benefits to
organizations. However, underestimating the technical risks associated with selecting
and integrating these components can result in poor systems that don’t meet
stakeholders requirements.

This paper has discussed some critical issues related to the continuous tradeoffs
among user requirements, architectural descriptions and COTS components. Main
contributions of this paper include the proposal of a set guidelines that deals with
some potential risks that might occur during COTS-based development. Finally, we
believe that the presented strategy improves the chances of success of COTS-based
systems.

References

[1] Oberndorf, P. and Brownsworld, L. “Are You Ready for COTS?” Software Institute
Engineering. August 1997.

[2] Tran, V and Liu, D. “A Procurement-centric Model for Engineering Component-based
Software Systems”. Proceedings of the Fifth International Symposium on Assessment of
Software Tool. June 1997.0

[3] Oberndorf, P. “Facilitating Component-Based Software Engineering: COTS and Open
Systems”. Proceedings of the Fifth International Symposium on Assessment of Software
Tools - SAST’97. June 1997.

[4] Wallnau, K.C. Carney, D. e Pollak, B. “How COTS Software Affects the Design of COTS-
Intensive Systems”. Software Engineering Institute, Carnegie Mellon University, USA.
Jun. 1998.

[5] Vidger, M. R and Gentleman, W. M. “COTS Software Integration State of the Art”.
National Research Council of Canada, Institute for Information Technology technical
report, January 1996.

[6] Kontio, J. Caldiera, G. and Basili, V. “Defining Factors, Goals and Criteria for Reusable
Component Evaluation”. CASCON’96. November 1996.

[7] Brown, A. W. and Wallnau, K. C. “Engineering of Component-Based Systems,
Component-Based Software Engineering”. Software Engineering Institute, IEEE
Computer Society Press, 1996.

[8] Zave, P. “Classification of Research Efforts in Requirements Engineering”. ACM Surveys,
29(4), 1997.

[9] Kotonya, G. and Sommerville, I. Requirements Engineering – Processes and Techniques.
John Willy & Sons, 1997.

 31

[10] Nuseibeh, B. e Easterbrook, S. “Requirements Engineering: A Roadmap”. Proceedings of
the 22nd International Conference on Software Engineering. Limerick, Ireland. Jun. 2000

[11] Ncube, C. Maiden, N. ”COTS Software Selection: The Need to make Tradeoffs between
System Requirements, Architectures and COTS/Components”. Workshop Ensuring
Successful COTS Development. Los Angels, May 2000.

[12] Shaw, M. and Garlan, D. An Introduction to Software Architecture. Carnegie Mellon
University, 1994

[13] Vigder, M and Dean, J. An Architectural Approach to Building Systems from COTS
Software Components.NRC40221FALTA

[14] Garlan, D. Allen, R. and Ockerbloom, J. “Architectural Mismatch (Why it is hard to build
systems out of existing parts)”, Proceedings of the 17th International Conference on
Software Engineering, April, 1995.

[15] Alves, C. Castro, J. “Um Método Baseado em Requisitos para Seleção de COTS”. Fourth
Workshop Iberoamerican on Software Engineering and Software Environment (IDEAS'01)
San Jose, Costa Rica, April 2001.

[16] Alves, C. Seleção de produtos de Software “Utilizando uma Abordagem Baseada em
Engenharia de Requisitos”. MSc. Thesis, Universidade Federal de Pernambuco, Centro de
Informática. March 2001.

[17] Kontio, J. “A COTS Selection Method and Experiences of Its Use”. Proceedings of the
20th Annual Software Engineering Workshop, Maryland, November 1995.

[18] Kunda, D. and Brooks, L. “Applying Social-Technical Approach for COTS Selection”.
Proceedings of the 4th UKAIS Conference, University of York, April 1999.

[19] Ncube, C and Maiden, N. “PORE: Procurement-Oriented Requirements Engineering
Method for the Component-Based Systems Engineering Development Paradigm”.
International Workshop on Component-Based Software Engineering, May 1999.

[20] Charette, R. N. Software Engineering Risk Analysis and Management, McGraw-Hill, New
York, 1989.

[21] Chung, L. Nixon, B. Yu, E. and Mylopoulos, J. “Non-Functional Requirements in
Software Engineering”. Kluwer Academic Publisher, 2000.

Saaty, T. The Analytic Hierarchy Process. New York: McGraw-Hill, 1990.
[22] Boehm, B. Abts, C. Bailey, E. “COCOTS Software Integration Cost Model: an

Overview”. Proceedings of the California Software Symposium. October 1998.
[23] Iribarne, L. Troya, M. and Vallecillo, A. “Trading for COTS Components in Open

Environments”. Proceedings of 27th Euromicro. Workshop on Component Based Software
Engineering. Warsaw, Poland. September, 2001.

	Abstract. The development of software systems from already built COTS components has been motivated by the prospect of reduced cost and development time. However, developing COTS-based systems introduces new challenges and risks different from buildi
	Keywords: COTS-Based Development, Requirements Engineering and Software Architecture.

