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Automatic Image Equalization and Contrast

Enhancement Using Gaussian Mixture Modelling

Turgay Celik and Tardi Tjahjadsenior Member, IEEE

Abstract

In this paper, we propose an adaptive image equalizatiooritign which automatically enhances the contrast in antinpu

image. The algorithm uses Gaussian mixture model (GMM) tdehthe image grey-level distribution, and the intersecpoints

of the Gaussian components in the model are used to parthmmynamic range of the image into input grey-level intksva
The contrast equalized image is generated by transforrhi@gitkels’ grey levels in each input interval to the apprat@ioutput
grey-level interval according to the dominant Gaussianmament and cumulative distribution function (CDF) of thpuhinterval.

To take account of human perception the Gaussian compomndthtssmall variances are weighted with smaller values than t
Gaussian components with larger variances, and the gvey-diéstribution is also used to weight the components inrtiagping

of the input interval to the output interval. Experimentasults show that the proposed algorithm produces betteoroparable
enhanced images than several state-of-the-art algoritmige the other algorithms, the proposed algorithm ie foé parameter

setting for a given dynamic range of the enhanced image amdeapplied to a wide range of image types.

Index Terms

Contrast enhancement, histogram equalization, normailiison, Gaussian mixture modelling, histogram paotiti

I. INTRODUCTION

The objective of an image enhancement technique is to bringhimden image details, or to increase the contrast of an
image with low dynamic range [1]. Such a technique producesudput image that subjectively looks better than the oabi
image by increasing the grey level differencée.(the contrast) among objects and background. Numerousneaieent
techniques have been introduced and these can be dividedhrege groups: 1) techniques that decompose an image into
high and low frequency signals for manipulation [2], [3]; 2ansform-based techniques [4]; and 3) histogram modidicat
techniques [5]-[16].

Techniques in the first two groups often use multiscale amlp decompose the image into different frequency bands an
enhance its desired global and local frequencies [2]-[AESE techniques are computationally complex but enableabbnd
local contrast enhancement simultaneously by transfarttie signals in the appropriate bands or scales. Furtherthery
require appropriate parameter settings which might ottsernesult in image degradations. For example, the centrewnd
Retinex [2] algorithm was developed to attain lightness eoldur constancy for machine vision applications. The tamsy
refers to the resilience of perceived colour and lightnesspatial and spectral illumination variations. The besédit the

Retinex algorithm include dynamic range compression arlducandependence from the spatial distribution of the scen
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illumination. However, this algorithm can result in “halafttefacts, especially in boundaries between large unifi@gions.
Also, a “greying out” can occur, in which the scene tends tange to middle grey.

Among the three groups the third group received the mosttiitedue to their straightforward and intuitive implemegindn
qualities. Linear contrast stretching (LCS) and globaldgsam equalization (GHE) are two widely utilized methodsdlobal
image enhancement [1]. The former linearly adjusts the ohyoaange of an image, and the latter uses an input-to-output
mapping obtained from the cumulative distribution funotigdCDF) which is the integral of the image histogram. Since th
contrast gain is proportional to the height of the histogrgney levels with large pixel populations are expanded targdr
range of grey levels while other grey-level ranges with fewixels are compressed to smaller ranges. Although GHE can
efficiently utilize display intensities, it tends to ovemtence the image contrast if there are high peaks in thegnéstg often
resulting in a harsh and noisy appearance of the output inlag8 and GHE are simple transformations but they do not
always produce good results, especially for images withelapatial variation in contrast. In addition, GHE has thdasired
effect of over-emphasizing any noise in an image.

In order to overcome the aforementioned problems, locabgiam equalization (LHE) based enhancement techniques ha
been proposed.g, [5], [6]. The LHE method [6] uses a small window that slidesough every image pixel sequentially and
only pixels within the current position of the window aretbigram equalized, and the grey-level mapping for enhannemse
done only for the centre pixel of the window. Thus, it utiiskocal information. However, LHE sometimes causes over-
enhancement in some portion of the image and enhances asg moithe input image along with the image features.
Furthermore, LHE based methods produce undesirable ctiexke effects.

Histogram Specification (HS) [1] is a method that uses a ddgiistogram to modify the expected output image histogram.
However, specifying the output histogram is not a stramfwtard task as it varies from image to image. The Dynamicddistm
Specification (DHS) [7] generates the specified histogramadhyically from the input image. In order to retain the orain
histogram features, DHS extracts the differential infatiorafrom the input histogram and incorporates extra patamseo
control the enhancement such as the image original and shétant gain control values. However, the degree of enlraané
achievable is not significant.

Some researches have also focused on improving histognaatization based contrast enhancement such as mean pngserv
bi-histogram equalization (BBHE) [8], equal area dualistib-image histogram equalization (DSIHE) [9] and mininmean
brightness error bi-histogram equalization (MMBEBHE) [ IBBHE first divides the image histogram into two parts witfe t
average grey level of the input image pixels as the separattensity. The two histograms are then independently lempch
The method attempts to solve the brightness preservatimirigm. DSIHE uses entropy for histogram separation. MMBEBH
is the extension of BBHE that provides maximal brightnessservation. Although these methods can achieve good sbntra
enhancement, they also generate annoying side effectsidi@geon the variation in the grey-level distribution [7]e&ursive
Mean-Separate Histogram Equalization (RMSHE) [11] is hepimprovement of BBHE. However, it is also not free fromesid
effects. Dynamic histogram equalization (DHE) [12] firstawths the input histogram by using a one dimensional smogthi
filter. The smoothed histogram is partitioned into subdgsams based on the local minima. Prior to equalizing the sub
histograms, each sub-histogram is mapped into a new dynamge. The mapping is a function of the number of pixels in
each sub-histogram, thus a sub-histogram with a larger pumibpixels will occupy a bigger portion of the dynamic range
However, DHE does not place any constraint on maintainiegiiean brightness of the image. Furthermore, several pteene
are used that require appropriate setting for differentgiesa

Optimisation techniques have also been employed for cetnenahancement. The method brightness preserving histogra



equalisation with maximum entropy (BPHEME) [13] defines tteal histogram to have maximum entropy with brightness
preservation. The target histogram which has the maximufferdntial entropy under the mean brightness constraint is
obtained using variational approach [13]. BPHEME is desthto achieve maximum entropy. Although entropy maximisati
corresponds to contrast stretching to some extent, it isstriaightforward consequence and does not definitely teadrttrast
enhancement [14]. In flattest histogram specification wittuaate brightness preservation (FHSABP) [14], convektipation

is used to transform the image histogram into the flattesvéuiam, subject to a mean brightness constraint. An exatidriam
specification method is used to preserve the image brighttémvever, when the grey levels of the input image are eguall
distributed, FHSABP behaves very similar to GHE. Furthenand is designed to preserve the average brightness whagh m
produce low contrast results when the average brightnesithisr too low or too high. In histogram modification frameiwvo
(HMF) which is based on histogram equalization, contrabb@eaement is treated as an optimization problem that magisna
cost function [15]. Penalty terms are introduced in therosation in order to handle noise and black/white streghiMF

can achieve different levels of contrast enhancementugiirahe use of different adaptive parameters. These pagesrigdve

to be manually tuned according to the image content to aehigh contrast. In order to design a parameter free contrast
enhancement method, genetic algorithm (GA) is employedn & target histogram which maximizes a contrast measure
based on edge information [16]. We call this method conealiancement based on GA (CEBGA). CEBGA suffers from the
drawbacks of GA based methods, namely dependency on izdti@n and convergence to a local optimum. Furthermome, th
mapping to the target histogram is scored by only maximuntrashwhich is measured according to average edge strength
estimated from the gradient information. Thus, CEBGA magdpice results which are not spatially smooth. Finally, the
convergence time is proportional to the number of distimrelydevels of the input image.

The aforementioned techniques may create problems wheaneimy a sequence of images, or when the histogram has
spikes, or when a natural looking enhanced image is requiredhis paper, we propose an adaptive image equalization
algorithm which is effective in terms of improving visualaity of different types of input images. Images with lowatast
are automatically improved in terms of an increase in dygaiage. Images with sufficiently high contrast are also oued
but not as much. The algorithm further enhances the coloalityjwof the input images in terms of colour consistencyheig
contrast between foreground and background objects,rlasgeamic range and more details in image contents. The gezpo
algorithm is free from parameter setting. Instead the pra&ies of an input image are modelled using Gaussian mixbae!
(GMM). The intersection points of the Gaussians in the madlelused in partitioning the dynamic range of the input image
into input grey-level intervals. The grey level of the pxeah each input interval are transformed according to the idamt
Gaussian component and the CDF of the interval to obtain dinérast equalized image.

The paper is organized as follows. Section Il presents thpgsed automatic image equalization algorithm and thessace
background related to the GMM fit of the input image data. iBaclil presents the subjective and quantitative compasso

of the proposed method with several state-of-the-art exdraent techniques. Section IV concludes the paper.

Il. PROPOSEDALGORITHM
Let us consider an input imag¥ = {z (¢,j) |1 <i < H,1 < j < W}, of size H x W pixels, wherezx (i,j) € R. Let
us assume thaX has a dynamic range 0f4, x,,] wherex (i, j) € [zq4,z,]. The main objective of the proposed algorithm is
to generate an enhanced imadé,= {y (i,j) | 1 <i < H,1 < j < W}, which has a better visual quality with respect to
X. The dynamic range o¥ can be stretched or tightened into the interl¢gl, v..], wherey (i,7) € [ya4, yul, va < y. and
Yd; Yu € R.



A. Modelling

The Gaussian mixture model (GMM) can model any data digidhuin terms of a linear mixture of different Gaussian
distributions with different parameters. Each of the Gaussomponents has a different mean, standard deviatioprapadrtion
(or weight) in the mixture model. A Gaussian component witbva standard deviation and a large weight represents campac
data with a dense distribution around the mean value of thegpooment. When the standard deviation becomes larger, tae da
is dispersed about its mean value. The human eye is notigertsitsmall variations around dense data, but is more semsit
to widely scattered fluctuations. Thus, in order to increthee contrast while retaining image details, dense data leith
standard deviation should be dispersed while scatteredwithh high standard deviation should be compacted. Thisatioa
should be done so that the grey-level distribution is retainn order to achieve this, we use GMM to partition the dstion
of the input image into a mixture of different Gaussian comgts.

The grey-level distribution (), wherexz € X, of the input imageX can be modelled as a density function composed of

a linear combination ofV functions using the GMM [17]i.e.,

N
p(x) =" P(w,)p(ehw,), (1)
n=1
wherep (z|w,,) is thenth component density, anBl (w,,) is the prior probability of the data points generated frormponent
w, Of the mixture. The component density functions are comsrhto be Gaussian distribution functiong,,

p (aln) = ———— exp (—M> , @

2mo 202

Wy, W,
where ., and o—fUn are respectively the mean and the variance ofsitte component. Each of the Gaussian distribution

functions satisfies the constraint

| plalwdo=1 ®
and the prior probabilities are chosen to satisfy the cairds
N
> P(w,)=1 and 0< P (w,) < 1. (4)
n=1

A GMM is completely specified by its parametérs= {P (W) s pao, , 02 }fj:l. The estimation of the probability distribution

Wn,

function (PDF) of an input image datareduces to finding the appropriate values@ofin order to estimat#, maximum

likelihood estimation (MLE) techniques such as the expemtamaximization (EM) algorithm [18] have been widely used

Assuming the data pointX = {x;,z2,...,2gxw } are independent, the likelihood of the datais computed by
HxW
£(X;0)= [] p(ax:0) (5)
k=1

given the distribution or, more specifically, given the disition parameter®. The goal of the estimation is to finél that
maximizes the likelihoodi.e.,

6 = argmax £ (X;0). (6)
)

W p (21 0) is used because it

Instead of maximizing this function directly, the log-likeod L (X;0) =1In £ (X;0) =
is analytically easier to handle.
The EM algorithm starts from an initial gue®d for the distribution parameters and the log-likelihood isamnteed to

increase on each iteration until it converges. The convergteads to a local or global maximum, but it can also leadhigutar
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Fig. 1. (a) A grey-level image; and (b) its histogram and GMM fi

estimates, which is true particularly for Gaussian mixtdistributions with arbitrary covariance matrices. Thei@lization is
one of the problems of the EM algorithm. The selectior@8f(partly) determines where the algorithm converges or hiés t
boundary of the parameter space to produce singular, ngaesresults. Furthermore, the EM algorithm requires #e to
set the number of components, and the number is fixed dursgdtimation process.

The Figueiredo-Jain (FJ) algorithm [19] which is an imprdwariant of the EM algorithm overcomes major weaknesses of
the basic EM algorithm. The FJ algorithm adjusts the numlberomponents during estimation by annihilating components
that are not supported by the data. It avoids the boundaryttennihilates components that are becoming singulas. dlso
allowed to start with an arbitrarily large number of compwise which addresses the initialization of the EM algorithirhe
initial guesses for component means can be distributedigtavhole space occupied by the training samples, evengettie
component for every single training sample. Due to its ath@es over EM algorithm, in this work we adopt the FJ alganith
for parameter estimation.

Fig. 1(a) and (b) respectively illustrate an input image amdistogram together with its GMM fit. The histogram is mbbele:
using four Gaussian componeni®., N = 4. The close match between the histogram (shown as rectangpiécal bars)
and GMM fit (shown as solid black line) is obtained using FJb&thm. There are three main grey tones in the input image
corresponding to the tank, its shadow and the image backdrothe other grey-level tones are distributed around theeth
main tones. However, FJ algorithm results in four Gauss@nponents § = 4) for the mixture model. This is because the
grey tone with the highest average grey value correspongirige image background has a deviation too large for a single
Gaussian component to represent it. Thus it is represegtéddoGaussian components., w3 andw, as shown in Fig. 1(b).
All intersection points between Gaussian components dilhifithin the dynamic range of the input image are denoted by
yellow circles, and significant intersection points tha¢ ased in dynamic range representation are denoted by bilatésc
There is only one dominant Gaussian component between terséction points, which adequately represents the dakanwi

this grey-level interval. For instance, the range of theuingata within the interval of35,90] is represented by Gaussian



THE NUMERICAL VALUES OF INTERSECTION POINTS DENOTED BY YELL®/ CIRCLES INFIG. 1(B) BETWEEN COMPONENTS OFGMM FIT TO THE

TABLE |

GREY-LEVEL IMAGE SHOWN IN FIG. 1(A).

GMM Components

w2

w3

w4

-718.88, 90.05

115.18, 225.52

129.46, 193.04

w2

-718.88, 90.05

129.75, 172.39

141.31, 168.18

w3

115.18, 225.57

129.75, 172.39

149.82, 163.54

129.46, 193.08

141.31, 168.1§

149.82, 163.54

componentw; (shown as solid blue line). Thus the data within each inles/aepresented by a single Gaussian component
which is dominant with respect to the other components. Tyreanhic range of the input image is represented by the union

of all intervals.

B. Partitioning

The significant intersection points are selected from all plossible intersections between the Gaussian comporigrs.

intersection points between two Gaussian componeptsand w,, are found by solving

P (wm)p (I|wm) =P (wn)p (x|wn) ) (7)
or equivalently
(T — pow )2 (T — pw )2 P (wp) ow
_ m n — 1 m 8
202 + 202 . P(wp) 0w, )’ ®
which results in
az?® + bz + ¢ =0, (9)
where
a= (0, —00) b=2(w.00, = tw.oy,,)
P(wy) o
2 2 2 2 2 2 n W
c= (Mwno-uhn - Mwnzawn) - 2O—wnzawn 1n (P (wm) O.’Lun ) :
The second order parametric equation Eq. (9) has two roets,
2y, = DEV Zdac o) b VB~ dac (10)

2a ’ 2a
In Fig. 1(b) all intersection points between GMM componemts denoted by yellow circles. The numerical values of the
intersection points determined using Eq. (10) are showralnleTl. Table | is symmetrid,e., the intersection points between
the components); andw, are the same as the intersection points between compomerasdw;. The intersection points of
two components are independent of the order of the compsnaltpossible intersection points that are within the dyia
range of the image are detected. The leftmost intersectam petween components; andws; is at —718.88 which is not
within the dynamic range of the input image, thus it could betconsidered. In order to allow combination of intersectio

points to cover only the entire dynamic range of the inputgma further process is needed.



The total number of intersection points calculatedNY N — 1). The significant intersection pointsgd), whered €
{1,...,D}, D < N (N — 1), are selected among all intersection points. For a givesisettion pointrﬁf?n, wherek = {1, 2},
between Gaussian components andw,, it is selected as a significant intersection point if and dhlyis a real number in

the dynamic range of the input images., xﬁfi)n € X, and the Gaussian components, andw,, contain the maximum value

in the mixture for the pointrﬁf?n, ie,

P () (80 = P ) (8 an
P (wm)p (xsylf?n|wm) > P (wg)p (xsylf?ﬂwk) , (12)

whereVwy, # {wpm, wy }.
The significant intersection points are sorted in ascendiaggr of their value and are partitioned into grey-leveéinals
to cover the entire dynamic range Xf, i.e,, z € x5 = [xgl), a:gl)] U [xg”, xﬁ”} U [ng), x@] The leftmost significant

intersection pointrgl) is selected as the value offor which

T T
) _ > h _ h
) =z, F(z)> —=, Flz—-—A)< —=,

where the minimum distance between two consecutive nunibérse.g, A = 1 in the case of 8-bit input imagk considered

(13)

in this work, F' (z) is the CDF ofz, andT}, is the minimum number of pixels which will be excluded frone ttails of the grey-

level distribution ofz. To consider all pixel grey values & we setT}, = 1. Similarly, the rightmost significant intersection

point xy) is selected by considering the tail of the grey-level disttion of 2 for which

Ty Ty

M =z, (1= F@) 2 g5 (1= Flz+4)) < 775 (14)
The significant intersection points that fall outside of theerval {xﬁl),xg’”)} are ignored since they are the intersection points
between two Gaussian components that fall outside the dignamge ofX, andx, is updated as, = [argl),xf), Ceey :z;gK)}

with xgl) < :z:§2) <. < ng), whereK is the maximum number of significant intersection pointsFig. 1 the six significant
intersection points are denoted by black circles, and thgea@fx, covers the entire dynamic range Xf

The CDF ofz is

x x N
Fa@) = [ p@de= [ 3 Pw)pln) ds
- X p=1
N 2
1 (& = P,
= P (w, - nd
; (w )[m Tron exp 207 iy
N (=)
Viow 1
= ) P(wn) / " = exp (—t?) dt. (15)
~ . va

It can be calculated using the closed form expression

N
F(x) =Y P(w,)Fy, (z), (16)

whereF,,, (z) is the CDF of Gaussian componeny,, and using the definition of the error function (ét}) (also called the
Gauss error function) [20] it is computed &5, (z) = 3 (%) whereg (z) is computed in terms of error function [20]

as follows:
(I+erf(x))/2 ,iff x>0

Bx) = (17)
(1 —erf(|z])) /2 , otherwise



[ee]

where the numerical values of éif) are tabulated in [20]. The functiod (z) is invertible,i.e, for a giveng (z) = a,
x = 371 (a) exists.

The consecutive pairs of significant intersection pointswased to partition the dynamic range Xfinto subintervalsj.e.,
[Td, xy] = {xg ), (2 )]U[:cg 2 )}U U{ (K- 2) (K_l)} [ (K=1) xg }.The subinterva[:cg) gk“)} is represented by
a Gaussian component, which is dominant with respect to the other Gaussian compgria the subinterval. The dominant
Gaussian component is found by considering the a postgsiobability of each component in the interv%dgk),xgk“)}
which is equivalent to the area under the Gaussian comppoinent

wk = argmax [Fwi (xgk+1)) — Fy, (:Cgk))} . (18)

C. Mapping

The interval [xs xg’“*”], wherek = 1,2,..., K — 1, in x5 is mapped onto the dynamic range of the output image
Y. In the mapping, each interval covers a certain range wtichroportional to a weighdy;, whereay, € [0, 1], which is
calculated by considering two figure of merits simultanéaus) the rate of the total number of pixels that fall into tinéerval

[:vgk)7x§k“)}; and 2) the standard deviation of the dominant Gaussian coemwy, i.e.,

) ]E[ka)v {F (ng+1)> - F (xé’“)} | 1)
Sl low)” SIS F (a80) - P (a0))]

The first term adjusts the brightness of the equalized imagd;y € [0, 1] is brightness constant (in this paper= 0.5 is

used). The lower the value of, the brighter is the output image. The second term in Eq. {d9¢lated to the grey-level
distribution and is used to retain the overall content ofdhaéa in the interval. Eq. (19) maintains a balance betweerd#ta
distribution and variance of the data in a certain inter@ihce the human eye is more sensitive to sudden changes @ywid
scattered data and less sensitive to smooth changes inlylsnatered data, Eq. (19) gives larger weights to wide8ttsced
data (larger variance), and vice versa.

(k+1)}

Using o, the input mterval{:cS is mapped onto the output intervgj®), y*+1] according to

vy = yat (yu — v Zau (20)

y* D = B oy (g, — yd) :

The above mapping guarantees that the output dynamic rangevered by the mappinge., [ya,y.] = [yV) = ya,yP] U
In the final mapping of pixel values from the input intervat@the output interval, the CDF of the distribution in the it

interval is preserved. Let Gaussian distributiop with parameters.,,, , ando? represent the Gaussian componentin

Wyt

the range[y*), y**1)]. The parameters,,, ando?, , are found by solving the following equations simultanegusl

’

P () = £ (o). @
Fo, (Igzﬁul)) = F., (y(k-i-l))’ 22)

so that the area under the Gaussian distributzi@metween{:cgk), xg’““)} is equal to the area under the Gaussian distribution



wy in the interval [y*), y(*+D]. Using Eq. (17) together with equations Eq. (21) and Eq.,(@8 can write

(%) (k) _
Ts = — Hwy Y Howys
Wk = Z Tk 23
6 < \/§ka ) ﬁ < \/§ka, ) ( )
(k+1) _ (k+1) _
gl ) = B ) (24)
\/§ka \/§ka,
which is equivalent to
k
\/§ka ﬁawk/
xgkﬂ) ~ Hw, y(kH) — Hw,, . (26)
\/§ka \/io'wk/

Using equations Eq. (25) and Eq. (26), the parameters of Seauslistributionw,, are computed as follows:

(k) _
<W?’(M) N y<k>)

Haw
ka/ = (k)i (27)
T s Hawy, -1
(s 1)
(k) _
N e ) P 298)

k Wk
(7= )
(k+1)

The mapping ofz to y, wherezx € {xgk),xs } andy € [y(k),y(’“”}, is achieved by keeping the CDFs of Gaussian

distributionw;, and Gaussian distributiom,, equal,i.e.,
xr — x(k) —
ﬁ ( /’ka> _ ﬁ S Hawy, —
\/§ka \/ia'wk

Y — f,, y® — p,,
() o (M) )

where using the equality in Eq. (23),

ﬁ<x—uwk)_ﬂ Y b\ L T He Y Py
\/50'111;C \/§ka/ \/io'wk \/io'wk/

results in the following mapping of given to the corresponding according to the Gaussian distributioms and wy,

T — M
y= (7’“> Owyr + Py - (30)

Owy,
The final mapping fromx to y is achieved by considering all Gaussian components in th&Gd/iretain the pixel distributions
in input and output intervals equal. Using the superpasitbdistributions together with Eqg. (30) one can find

N
v=3 (L) o+ s ) P (31)
=1

Ow,

Fig. 2(a), (b) and (c) respectively show the input imagesatiged images using the proposed algorithm where the dynam
range of the output image g4, v.] = [0, 255], and the mappings between input image data pdintsand equalized output
image data pointgy) are according to Eq. (31). Fig. 2(c) shows that a differenppiag is applied to a different input grey-
level interval. Fig. 2(b) shows that the proposed algorithoreases the brightness of the input image while keepiadcibh
contrast between object boundaries. The input image ingbersl row of Fig. 2(a) has only fifteen different grey levétas
it is difficult to observe the image features. The proposearéthm linearly transforms the grey levels as shown in Ri)

so that the image features are easily discernable in Fig. 2(b
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Fig. 2. (a) A grey-level input imag&; (b) The equalized output imag¥ using the proposed algorithm; and (c) The data mapping leetwiee input and
output images.

One approach to extend the grey-scale contrast enhancémeatour images is to apply the method to their luminance
component only and preserve the chrominance componentthdmnis to multiply the chrominance values with the ratio of
their input and output luminance values to preserve the hiue former approach is employed in this paper where an iR@GB
image is transformed to CIE*a*b* colour space [1] and the luminance componghis processed for contrast enhancement.

The inverse transformation is then applied to obtain thereshenhance®GBimage.

I1l. EXPERIMENTAL RESULTS

A dataset comprising standard test images from [21]-[24is=d to evaluate and compare the proposed algorithm with our
implementations of GHE [1], BPHEME [13], FHSABP [14], CEBJA6] and the weighted histogram approximation of HMF
[15]. GHE, BPHEME, FHSABP and CEBGA are free of parameteec@n but HMF requires parameter tuning which is
manually selected according the input test images. It iglwtr note that for FHSABP method exact histogram speciticati
is used [14] to achieve high degree of brightness preservdtetween input and output images. The test images show wide
variations in terms of average image intensity and contrlstis they are suitable for measuring the strength of a asntr
enhancement algorithm under different circumstances.

An output image is considered to have been enhanced overgheimage if it enables the image details to be better pezdei
An assessment of image enhancement is not an easy task apm@venh perception is difficult to quantify. Nevertheless, i

practice it is desirable to have both quantitative and sutibge assessments. It is therefore necessary to estabtiabig which
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defines a good measure of enhancement. We use absolute nggaindss errorAMBE) [10], discrete entropy[E) [25], and
edge based contrast measueBCM) [26] as quantitative measures. For colour images, therasinénhancement is quantified
by computing these measures on their luminance chabheinly.

AMBE is the absolute difference between the mean values of an im@age X and output imagéy, i.e.,
AMBE (X,Y)=|MB(X) - MB(Y)|, (32)

where M B (X) and M B (Y) are the mean brightness valuesXfandY, respectively. The lower the value &MBE, the
better is the brightness preservation.

The discrete entroppE of an imageX measures its content, where a higher value indicates aneiméb richer details.
It is defined as

255

DE(X) ==Y p(xi)log (p(z:)), (33)
=0

wherep (z;) is the probability of pixel intensityc; which is estimated from the normalized histogram.

The edge based contrast meadeBM is based on the observation that the human perception misohsare very sensitive
to contours (or edges) [26]. The grey level correspondingliiect frontiers is obtained by computing the average vafube
pixel grey levels weighted by their edge values. The cohtrés j) for a pixel of an imageéX located af(i, j) is thus defined

as

where the mean edge grey level is
i)=Y gkbakd/ S gk,
(k1) EN (4,5) (k,1)EN (4,5)

N (i,7) is the set of all neighbouring pixels of pixél, ), and g (k,1) is the edge value at pixdlk, ). Without loss of
generality we employ x 3 neighbourhood, and (k,!) is computed using the magnitude of the gradient which isreggd
from horizontal and vertical Sobel operators [EBCM for imageX is thus computed as the average contrast value, i.e.,

H W

EBCM (X) = ZZc(i,j)/H X W. (34)
i=1 j=1

It is expected that for an output imadé of an input imageX, the contrast is improved wheliBCM (Y) > EBCM (X).

A. Qualitative Assessment

1) Grey-Scale ImagesSome contrast enhancement results on grey-scale imageshamn in Fig. 3, Fig. 4, Fig. 5 and
Fig. 6. The mapping functions used are shown in Fig. 7 (a)f@&bpectively.

The input image in Fig. 3 shows a firework display [21], and padses very bright and dark objects. GHE has increased
the overall brightness of the image, but the increase inrashis not significant and the washout effect is apparenth Bo
the darker and brighter regions become even brighter. Bhigiiified by the mapping function in Fig. 7(a) which maps inpu
grey-level 0 to output grey-level 105. BPHEME and FHSABPspree the input image average brightness value of 18. This
results in the output image with very low brightness, andte contrast enhancement is not noticeable. The mappittjda
verifies this observation where the low output brightness mon-linear mapping from input to output are apparent. HlgD
clear from the mapping function that BPHEME performs alnms to one mapping when it is compared with the mapping

function of FHSABP. This is due to the fact that BPHEME is desid to achieve brightness preservation as well as maximum
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(e) ® @

Fig. 3. Contrast enhancement results for imkgeworks (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HM§) CEBGA; and (g) proposed.

e

(e) ® (@)
Fig. 4. Contrast enhancement results for imégland (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HME) CEBGA; and (g) proposed.

entropy. Thus, the mapping function of BPHEME achieves alnome-to-one mapping between input and output to guarantee
the maximum entropy. The result of HMF is visually pleasipgoviding high contrast as well as a high dynamic range.
However, there are two different spark clusters due to thevéirks and the smoke between sparks. HMF over enhances the
brighter pixels of the sparks and the surrounding smokehabthe smoke pixels are also identified as spark pixels. dVés
enhancement is represented as a sharp change in the mappatigp. Furthermore, due to over enhancement of the tmight
pixels, the sparks due to the fireworks cannot be clearleudfitiated. The over enhancement is due to forming a hetogr
from pixels with significant grey-level differences witheih neighbours. The smoke around the sparks has similaroluer|
grey-level values. Thus, most of the smoke pixels cannotifferentiated from the spark pixels which results in magpin
them to the same output grey-levels as that of the sparkiiele to the not sharp image details caused by the smoke from

fireworks, CEBGA can only improve the overall brightness o image. This is verified by the mapping function which
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(e) ® @
Fig. 5. Contrast enhancement results for im&gs: (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HME) CEBGA; and (g) proposed.

@ (b) (© (d)

(e) ® @
Fig. 6. Contrast enhancement results for im&jd: (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HM§ CEBGA; and (g) proposed.
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Fig. 7. Mapping functions of enhanced images: (a) Fig. 3fi) 4; (c) Fig. 5; and (d) Fig. 6. Key: Green solid line - ncaoge mapping; black dash-dotted
line - GHE; red solid line - BPHEME; red dash-dotted line - FES; blue solid line - HMF; blue dash-dotted line - CEBGA, anldck solid line - proposed
algorithm.
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Fig. 8. Histograms of original and enhanced images shown@i¢g) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (eM#; (f) CEBGA; and (g)
proposed.

is almost parallel to the no-change mapping. However, inpgitoposed algorithm, the dynamic range of the input image is
modelled with GMM, which makes it possible to model the isignvalues of sparks and smoke differently. Input greyelev
values are assigned to output grey-level values accorditigeir representative Gaussian components. The non:liimapping

is designed to utilise the full dynamic range of the outpuagm. Thus, the proposed algorithm improves the overallrasnt
while preserving the details of the image.

The input image of an island in Fig. 4 [22] has average brigégnvalue of 125. The results obtained by the different
algorithms are similar as verified by the similar mappingctions in Fig. 7(b). BPHEME and FHSABP behaves exactly the
same way as GHE when the average brightness value is 127.5[143 Since the average brightness value of the input
image is very close to 127.5, BPHEME and FHSABP algorithmtsiak the similar target histograms. The slight difference
of FHSABP from BPHEME is due to exact histogram specificatised in FHSABP. The results of HMF and CEBGA are
also a match because both algorithms employ similar edgenration. Where the sky and sea converge, GHE, BPHEME and
FHSABP provide a higher contrast than HMF and CEBGA. The psep algorithm provides a contrast which is neither too
high nor too low.
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@ (b) (© (d)

(e) ® (@)
Fig. 9. Contrast enhancement results for im&j@ne (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HME) CEBGA; and (g) proposed.

The input image in Fig. 5 shows an aerial view of a junction icitg [23] with an average brightness value of 181 which
is too high for recognizing the different objects. GHE irases the overall contrast of the image significantly, butirthege
looks darker as is verified by its mapping function in Fig.)7(Ehe contrast improvements obtained by using BPHEME,
FHSABP, HMF and CEBGA are very slight. HMF fails to provide anprovement due to weak edge information. The
proposed algorithm, on the other hand, does not darken thgarand produces sufficient contrast for the different abjer
be recognized.

The imageGirl shown in Fig. 6 consists of challenging conditions for anardement algorithm: very bright and dark
objects, and average brightness value of 139 as can be #drifiem the histogram of th&irl image shown in Fig. 8(a). The
histogram reveals that most of the grey levels of the inpwtgenare accumulated around grey level 144. Meanwhile, there
are uniform grey level distributions on the left and righdes of the sharp peak in the middle. Because average brgghtne
value of the input image is near to 127.5, GHE, BPHEME, and ABIS performs very similar. This can be verified from
the visual results, mapping functions shown Fig. 7(d), arsiograms demonstrated in Fig. 8(b)-(d). As can be seen from
the histograms, the output histograms fail to achieve smdditribution between high and low values of grey levelsugh
the enhancement results of GHE, BPHEME, and FHSABP are ysuapleasing. Meanwhile, the output histogram of HMF
achieves smoother distribution in between low and high gedyes, thus HMF achieves more natural looking output asisho
in Fig. 8(e) when it is compared with that of GHE, BPHEME, andSABP. CEBGA produces natural looking output image,
however the overall enhancement is not significant. As casdas from mapping function and histogram in Fig. 7(d) and
Fig. 8(f), CEBGA produces minor alterations on the input@aaThe result of the proposed algorithm is shown Fig. 6(ge T
proposed algorithm preserves the overall distributiorpghaneanwhile it achieves to redistribute the grey levelthefinput
image within the dynamic range without destroying natuoakl of the enhanced image. Although it slightly darkens the h
of woman, still the overall natural look is not destroyed Mtthe perceived contrast is improved significantly.

2) Colour Images:In Fig. 9, the over enhancement provided by GHE, BPHEME an&ABP whitens some areas of the
concrete ground. HMF and CEBGA provide similar results whibre slight contrast enhancement with respect to the input
image is apparent, whereas the proposed algorithm enhéimeentrast and the average brightness to improve the lbvera

image quality. In Fig. 10, GHE, BPHEME, FHSABP and HMF causet pf the sky to be too bright. CEBGA and the
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Fig. 11. Contrast enhancement results for imiiges (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HM{) CEBGA, and (g) proposed.

proposed algorithm improve the overall contrast consialgrand maintain high visual quality. In Fig. 11, GHE, BPHEMEd
FHSABP result in loss of details in the clouds and on the tothefyellow hat, whereas HMF and CEBGA retain the details
while increasing the contrast. However, the contrast betwtbe right side of the wall and the sky is not sufficientlythighe
proposed algorithm keeps the details while improving theral contrast. Finally, in Fig. 12, GHE makes the stonesiadahe
window and the pink flower very bright; hence, the enhanceafjenhas an unnatural look. Although BPHEME and FHSABP
performs better than GHE, it still does not remove this éffemmpletely. This effect is reduced by HMF, CEBGA and the

proposed algorithm. Also, the colours of window and wall begter differentiated in the result of the proposed algonmit

Turgay: Please skip this paragraph as it needs new evaluation scores. In order to assign a visual assessment score to each
algorithm for each enhanced image, subjective perceivedityutests are performed by a group of ten subjects on theltes
of the five algorithms for the eight test images. For each ¢@sh test image, a subject is shown two images: the test image

and the image processed by one of the five algorithms. Thedubjthen asked to score the quality of the processed image



(e) ® )

Fig. 12. Contrast enhancement results for im&fedow (a) original image; (b) GHE; (c) BPHEME; (d) FHSABP; (e) HMf) CEBGA,; and (g) proposed.

TABLE I
AVERAGE OF SUBJECTIVEQUALITY TESTSCORES

Image | GHE | FHSABP | HMF | CEBGA | Prop. |
Fireworks | “Bad” “Bad” “Good” | “Good” | “Good”
Island “Bad” “Bad” “Good” | “Good” | “Good”
City “Good” “Bad” “Bad” “Bad” “Good”
Wolf “Bad” “Bad” “Bad” “Good” | “Good”
Plane “Bad” “Bad” “Good” | “Good” | “Good”
Ruins “Bad” “Bad” “Bad” “Good” | “Good”
Hats “Good” “Good” “Bad” “Good” | “Good”
Window “Good” | “Good” “Bad” “Bad” “Good”

by assigning a fuzzy score of “Bad” for weak enhancement, ‘@uabd” for visually pleasing enhancement. The test on the
same input image is repeated for the processed images geddy the other four algorithms. For each processed image of
an algorithm, we average the scores from the ten subjecthdraveraging operation, when the number of “Good” scores ar
higher than “Bad” scores, then the processed image is deeasetizood”, and vice versa. The visual assessment scores as

shown in Table Il validate our subjective evaluations tha proposed algorithm provides good visual quality enhames.

B. Quantitative Assessment

The quantitative measureSMBE, DE, and EBCM may fail to provide enhancement measures which are panaltél
perceived image quality. For instance fairl image, GHE, BPHEME, FHSABP, HMF, CEBGA, and proposed mefiroduces
AMBE values of 5.60, 5.50, 5.50, 10.30, 1.60, and 12.90, resaietiCEBGA achieves the best in terms of brightness
preservation where the proposed method performs the widreGirl image ha®E value of 3.87, meanwhile GHE, BPHEME,
FHSABP, HMF, CEBGA, and proposed method produbés values of 3.65, 3.65, 3.65, 3.70, 3.45, and 3.81, respédgtive
The proposed method achieves the h@itvalue. TheGirl image has very low contrast meas&BCM value of 0.08. GHE,
BPHEME, FHSABP, HMF, CEBGA, and proposed method resulEBCM values of 0.23, 0.22, 0.22, 0.17, 0.11, and 0.12. All
methods achieve to produce higher value&€BICM with respect to th&BCM value of originalGirl image. GHE, BPHEME,

and FHSABP produces the highest valuess®CM, however perceived visual quality is not natural. Althoulere is a
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Fig. 13. Quantitative performance results on 300 images fBerkeley dataset [24]: (a) results fMB; (b) results forDE; and (c) results foEBCM The
reference measurements from the original image is showmdncolour, meanwhile the measurements from the processagesnresulted from different

algorithms are shown in black colour.

correlation between betwedfBCM and perceived contrast enhancement, it does not always thaanhe higher value of
EBCM means better perceived contrast enhancement.

In order to test algorithms’ performance quantitativelyténms of brightness and entropy preservation as well agasint
improvement, they are applied on 300 test images of Berkelage dataset [24MB, DE, andEBCM values are computed
from original and processed images. In reported resukksytbasurement values from the original images are sortestanding
order and the images are indexed accordingly. The quawndtegsults forMB, DE, and EBCM are shown in Fig. 13(a), (b),
and (c), respectively.

The MB values in Fig. 13(a) show that except GHE all algorithmsoiwllgeneral trend in the mean brightness value,
i.ewhen the mean brightness value of the original image is lovd@dhe output image, and vice versa. GHE consistently
maps the mean brightness value of the output image very to¥27.5 which is the mid value of the 8-bit grey-level dynami
range. The average #&fMBE resulted from GHE over dataset is 21.09. Meanwhile, BPHEM#& BHSABP achieves the best
brightness preservation as can be seen from the plots. Rpthitams produces very similar results for the whole detashis
is mainly due to the target histograms of BPHEME and FHSAB® samilar to each other. The averagesAdIBE resulted
from BPHEME and FHSABP over dataset are 1.30 and 1.28, régelyc On the average, the proposed method performs
better than HMF and HMF performs better than CEBGA in termbrajhtness preservation. The average#®\MBE resulted
from HMF, CEBGA, and the proposed method are 10.07, 12.23,8a80, respectively.

GHE, BPHEME, and FHSABP performs very similar results imterof DE on Berkeley dataset as shown Fig. 13(b). The
average absolute discrete entropy difference betweemfha and out images over dataset for GHE, BPHEME, and FHSABP
are 0.12, 0.12, and 0.11, respectively. Fig. 13(b) also shbat CEBGA performs the worst with the average absoluteretis
entropy difference of 0.38. Meanwhile, HMF and the proposedthod achieves good performance in terms of entropy. The
average absolute discrete entropy difference betweemha and out images over dataset for HMF and the proposedotheth
are 0.05, and 0.04, respectively. Since the entropy ise@latith the overall image content, one can say that for Beykel
dataset the proposed method can preserve the overall taitdre image while improving its contrast.

The EBCM measures are shown in Fig. 13(c). Although higBCM does not always mean a good and natural image
enhancement, however it is, at least, expected that theipimage’sEBCM value is higher than that of the input image. Out

of 300 images in the dataset, GHE, BPHEME, FHSABP, HMF, CEB@#Ad proposed method produces 294, 300, 296, 293,
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Fig. 14. High dynamic range compression results. (a) Qaigimage. Processed image obtained using: (b) [27]; andr@pgsed algorithm.

286, and 300 output images, respectively, which have higfean or equal tcEBCM values with that of the input images.
Meanwhile, the average absollEBCM difference between the input and out images over datas&tiar, BPHEME, FHSABP,
HMF, CEBGA, and proposed method are 0.0652, 0.0603, 0.05©0361, 0.0278, and 0.0366, respectively. As expected, GHE
provides the highest contrast improvement in term&BCM Meanwhile, BPHEME and FHSABP performs very similar and
slightly worse than GHE. BPHEME performs better than FHSAB&ause of lowpass filtering employed in exact histogram
specification used in FHSABP. Meanwhile, the proposed ntetial HMF performs similar and CEBGA provides the worst
performance. It is worth to note that only two algorithms,HEEME and the proposed method, achieves to mBBEM

improvement with respect to the input image.

C. Application to High Dynamic Range Compression

The proposed algorithm can be applied for rendering highadyio range (HDR) images on conventional displays. Thus,
we compare some of our results with those of the state-ekthenethod proposed by Fattal et al. [27]. In the Fattal et al
method, the gradient field of the luminance image is mantpdldy attenuating the magnitudes of large gradients. A low
dynamic range image is then obtained by solving a Poissoatiequon the modified gradient field. The results in [27], a few
of which are in Fig. 14, show that the method is capable ofta@raynamic range compression, while preserving fine detail
and avoiding common artefacts such as halos, gradientsagenr loss of local contrast. Fig. 14 also shows that tbegsed

algorithm produces comparable results. It is worth nothmat bur results are obtained without any parameter tuning.

IV. CONCLUSIONS

In this paper, we proposed an automatic image enhancenganitam which employs Gaussian mixture modelling of an
input image to perform non-linear data mapping for genegatiisually pleasing enhancement on different types of &sag
Performance comparisons with state-of-the-art techsici®w that the proposed algorithm can achieve good enouapeim

equalization even under diverse illumination conditiohlse proposed algorithm can be applied to both grey-levelaiaur
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images without any parameter tuning. It can also be usedniderehigh dynamic range images. It does not distract theativer

content of an input image with high enough contrast. It fertimproves the colour content, brightness and contrasinof a

image automatically.
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