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Goal

Efficiently perform relational database 
operations using GPUs

Conjunctive selections

Aggregations

Semi-linear queries

Join queries

Essential components
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Motivation: Fast operations

Increasing database sizes

Faster processor speeds but low 
improvement in query execution time

Memory stalls

• 50 – 90% due to cache misses  [Ailamaki02]

Branch mispredictions

Resource stalls 

Ref: [Ailamaki99,01] [Boncz99] [Manegold00,02] 
[Meki00] [Shatdal94] [Rao99] [Zhou02]……
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Fast Database Operations

CPU
(3 GHz)

System Memory
(2 GB)

AGP Memory
(512 MB)

Others

PCI-E Bus
(4 GB/s)

Ours

Video Memory
(512 MB)

GPU (500 MHz)

Video Memory
(512 MB)

GPU (500 MHz)
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Characteristics of Database 
Operations

Database operations require

High memory bandwidth to avoid stalls (35.2 
GBps on GPUs)

Efficient evaluation of comparisons for 
predication (64 comparisons per clock cycle)

High computational power for aggregations and 
join queries (1.8 Tera Flops on Playstation 3 
GPU)
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Exploiting Technology Moving
Faster than Moore’s Law

CPU Growth Rate

GPU Growth Rate
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vertex

setup
rasterizer

pixel

texture

image

per-pixel texture, 
fp16 blending

Graphics Pipeline

programmable vertex
processing (fp32)

programmable per-
pixel math (fp32)

polygon
polygon setup,
culling, rasterization

Z-buf, fp16 blending,
anti-alias (MRT)

memory
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data

setup
rasterizer

data

data

data

data fetch, 
fp16 blending

NON-Graphics Pipeline

programmable MIMD
processing (fp32)

programmable SIMD
processing (fp32)

lists
SIMD
“rasterization”

predicated write, fp16
blend, multiple output

memory

Courtesy: 
David Kirk,
Chief Scientist, 
NVIDIA
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Basic DB Operations

Basic SQL query 
Select   A

From T

Where C

A= attributes or aggregations (SUM, COUNT, 
MAX etc)

T=relational table

C= Boolean Combination of Predicates (using 
operators AND, OR, NOT)
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Database Operations

Predicates 
ai op constant or ai op aj

op: <,>,<=,>=,!=, =, TRUE, FALSE

Boolean combinations 
Conjunctive Normal Form (CNF)

Aggregations
COUNT, SUM, MAX, MEDIAN, AVG

Join queries
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Data Representation

Attribute values ai are stored in 2D 
textures on the GPU

A fragment program is used to copy 
attributes to the depth  buffer
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Copy Time to the Depth 
Buffer 
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Predicate Evaluation

ai op constant (d)
Copy the attribute values ai into depth buffer

Specify the comparison operation used in the 
depth test

Draw a screen filling quad at depth d and 
perform the depth test
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Screen

P
If ( ai op  d )pass fragment

Else 

reject fragment

ai op d

d
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Predicate Evaluation

CPU implementation — Intel compiler 7.1 with SIMD optimizations

GPU is nearly 20 times faster than 2.8 GHz Xeon
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Predicate Evaluation

ai op aj

Equivalent to  (ai – aj) op 0 
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Boolean Combination

CNF: 
(A1 AND A2 AND … AND Ak) where

Ai = (Bi
1 OR Bi

2 OR … OR Bi
mi ) 

Performed using stencil test recursively
C1 = (TRUE AND A1) = A1

Ci = (A1 AND A2 AND … AND Ai) = (Ci-1 AND Ai)

Different stencil values are used to code 
the outcome of Ci

Positive stencil values — pass predicate evaluation 

Zero — fail predicate evaluation
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A1 AND A2

A1

B2
1

B2
2

B2
3

A2 = (B
2
1 OR B

2
2 OR B

2
3 )



23
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

A1 AND A2

A1

Stencil value = 1
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A1 AND A2

A1

Stencil value = 0

Stencil value = 1

TRUE AND A1
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A1 AND A2

A1

Stencil = 0

Stencil = 1

B2
1

Stencil=2

B2
2

Stencil=2

B2
3

Stencil=2
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A1 AND A2

A1

Stencil = 0

Stencil = 1

B2
1

B2
2

B2
3

Stencil=2

Stencil=2

Stencil=2
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A1 AND A2

Stencil = 0

Stencil=2
A1 AND B2

1

Stencil = 2
A1 AND B2

2 Stencil=2

A1 AND B2
3
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Range Query

Compute ai within [low, high]
Evaluated as ( ai >= low ) AND ( ai <= high )

Use NVIDIA depth bounds test to 
evaluate both conditionals in a single 
clock cycle 
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Range Query

GPU is nearly 20 times faster than 2.8 GHz Xeon
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Aggregations

COUNT, MAX, MIN, SUM, AVG
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COUNT

Use occlusion queries to get the number of 
pixels passing the tests

Syntax:
Begin occlusion query

Perform database operation

End occlusion query

Get count of number of attributes that passed database 
operation

Involves no additional overhead!

Efficient selectivity computation
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MAX, MIN, MEDIAN

Kth-largest number

Traditional algorithms require data 
rearrangements

We perform 
no data rearrangements 

no frame buffer readbacks



33
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

K-th Largest Number

Given a set S of values
c(m) —number of values � m

vk — the k-th largest number

We have
If c(m) > k-1, then m � vk

If c(m) � k-1, then m > vk

Evaluate one bit at a time
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 0000
v2 = 1011

2nd Largest in 9 Values
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1000
v2 = 1011

Draw a Quad at Depth 8 
Compute c(1000)
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1000
v2 = 1011

c(m) = 3 

1st bit = 1
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1100
v2 = 1011

Draw a Quad at Depth 12 
Compute c(1100)
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1100
v2 = 1011

c(m) = 1 

2nd bit = 0
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1010
v2 = 1011

Draw a Quad at Depth 10 
Compute c(1010)
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1010
v2 = 1011

c(m) = 3 

3rd bit = 1
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1011
v2 = 1011

Draw a Quad at Depth 11 
Compute c(1011)
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0011 1011 1101

0111 0101 0001

0111 1010 0010

m = 1011
v2 = 1011

c(m) = 2 

4th bit = 1
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Our algorithm

Initialize m to 0

Start with the MSB and scan all bits 
till LSB

At each bit, put 1 in the 
corresponding bit-position of m

If c(m) < k, make that bit 0

Proceed to the next bit
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Median

GPU is nearly 6 times faster than 2.8 GHz Xeon!
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Join Queries

Accelerated using sorting operations 
on the join key

The join keys of the relations are 
sorted

A bit vector representing active 
records are computed using binary 
search on the sorted keys

Sorting is computationally intensive!
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Sorting

Quicksort on CPUs
Incoherent data accesses lead to performance 
loss

Instruction dependencies due to conditionals

Periodic Balanced Sorting Network on 
GPUs [Govindaraju et al. 2005]

Implemented using blending and texture mapping 
functionality

Exploits the high parallelism and memory 
bandwidth
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Sorting on GPUs
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Sorting on GPUs

Talk at SIGMOD 2005, June 16, 10:00 am – 11:30 
am

“Fast and Approximate Stream Mining of Quantiles
and Frequencies Using Graphics Processors “

Research Session 18, Harborview II
Software announcement
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Join Performance
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Advantages

Algorithms progress at GPU growth 
rate

Offload CPU work
Streaming processor parallel to CPU

Fast 
Massive parallelism on GPUs

High memory bandwidth

No branch mispredictions

Commodity hardware!
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Conclusions

Novel algorithms to perform database 
operations on GPUs

Evaluation of predicates, boolean combinations 
of predicates, aggregations and join queries

Algorithms take into account GPU 
limitations

No data rearrangements

No frame buffer readbacks
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Conclusions

Preliminary comparisons with 
optimized CPU implementations is 
promising

GPU as a useful co-processor
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Further Details

Fast Database Operations using 
Graphics Processors

N. Govindaraju, B. Lloyd, W. Wang, 
M. Lin, D. Manocha

Proc. of ACM SIGMOD 2004 
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Ongoing Work: Caching

Performance evaluation of GPU-based 
algorithms

GPU-based sorting algorithms suffer 
from cache misses [Govindaraju et al. 
05b]

Design cache-efficient algorithms 
based on GPU memory access model
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Ongoing Work: Caching

Cache studies on GPUs are very 
important

Pentium IV EE has 178 million transistors and 
80% is cache! 
(http://www.lostcircuits.com/cpu/intel_p4ee/)

GeForce 6800 Ultra has 220 million transistors 
and majority is logic transistors – efficient 
cache usage is crucial for performance
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Ongoing Work: Caching

Caching optimizations on GPUs are  
different than CPU-based algorithms 

No information on GPU cache sizes

Memory access model is different from CPUs

Due to SIMD nature, computational model is also 
different

Cache-efficient algorithms can improve 
performance by more than 30% 
[Govindaraju et al. 05b]
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Sorting on GPUs
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Ongoing Work: Classification

More data mining operations such as 
classification and clustering

Queries on spatial and temporal 
databases

k nearest neighbor computations

R-trees for spatial and temporal intersections
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Thank You

Questions or Comments?

naga@cs.unc.edu

http://gamma.cs.unc.edu/DB

http://gamma.cs.unc.edu/STREAMING


