
Fast Column Scans: Paged Indices for
In-Memory Column Stores

Martin Faust, David Schwalb, Jens Krueger

Hasso Plattner Institute, Potsdam, Germany

Abstract. Commodity hardware is available in configurations with huge
amounts of main memory and it is viable to keep large databases of enter-
prises in the RAM of one or a few machines. Additionally, a reunification
of transactional and analytical systems has been proposed to enable op-
erational reporting on the most recent data. In-memory column stores
appeared in academia and industry as a solution to handle the resulting
mixed workload of transactional and analytical queries. Therein queries
are processed by scanning whole columns to evaluate the predicates on
non-key columns. This leads to a waste of memory bandwidth and re-
duced throughput.

In this work we present the Paged Index, an index tailored towards
dictionary-encoded columns. The indexing concept builds upon the avail-
ability of the indexed data at high speeds, a situation that is unique to
in-memory databases. By reducing the search scope we achieve up to
two orders of magnitude of performance increase for the column scan
operation during query runtime.

1 Introduction

Enterprise systems often process a read-mostly workload [4] and consequently
in-memory columns stores tailored towards this workload hold the majority of
table data in a read-optimized partition [8]. To apply predicates, this partition
is scanned in its compressed form through the intensive use of the SIMD units
of modern CPUs. Although this operation is fast when compared to disk-based
systems, its performance can be increased if we decrease the search scope and
thereby the amount of data that needs to be streamed from main memory to the
CPU. The resulting savings of memory bandwidth lead to a better utilization
of this scarce resource, which allows to process more queries with equally sized
machines.

2 Background and Prior Work

In this section we briefly summarize our prototypical database system, the used
compression technique and refer to prior work.

2.1 Column Stores with a Read-Optimized Partition

Column stores are in the focus of research [9–11], because their performance
characteristics enable superior analytical (OLAP) performance, while keeping
the data in-memory still allows a sufficient transactional performance for many
usecases. Consequently, Plattner [5] proposed, that in-memory column stores
can handle a mixed workload of transactional (OLTP) and analytical queries
and become the single source of truth in future enterprise applications.

Dictionary Compressed Column Our prototypical implementation stores
all table data vertically partitioned in dictionary compressed columns. The val-
ues are represented by bit-packed value-ids, which reference the actual, uncom-
pressed values within a sorted dictionary by their offset. Dictionary compressed
columns can be found in HYRISE [2], SanssouciDB [6] and SAP HANA [8].

Enterprise Data As shown by Krueger et al. [4], enterprise data consists of
many sparse columns. The domain of values is often limited, because there is
a limited number of underlying options in the business processes. For example,
only a relatively small number of customers, appears in the typically large order
table. Additionally, data within some columns often correlates in regard to its
position. Consider a column storing the promised delivery date in the orders
table. Although the dates will not be ordered, because different products will
have different delivery time spans, the data will follow a general trend. In this
work, we want to focus on columns that exhibit such properties.

Related Work Important work on main-memory indices has been done by Rao
and Ross [7], but their indexing method applies to the value-id lookup in sorted
dictionaries rather then the position lookup that we will focus on in this paper.
Since they focus on Decision Support Systems (DSS), they claim that an index
rebuild after every bulk-load is viable. In this paper we assume a mixed-workload
system, where the merge-performance must be kept as high as possible, hence
we reuse the old index to build an updated index.

Idreos et al. [3] present indices for in-memory column stores that are build
during query execution, and adapt to changing workloads, however the inte-
gration of the indexing schemes into the frequent merge process of the write-
optimized and read-only store is missing.

In previous work, we presented the Group-Key Index, which implements an
inverted index on the basis of the bit-packed value-id and showed that this index
allows very fast lookups while introducing acceptable overhead to the partition-
combining process [1].

2.2 Paper Structure and Contribution

In the following section we introduce our dictionary-compressed, bit-packed col-
umn storage scheme and the symbols that are used throughout the paper. In

100000 105000 110000 115000 120000 125000 130000
Position

60

80

100

120

140

160

180

200

D
ay

s
fr

om
01

-0
1-

20
04

Delivery Dates (Positions 100.000 to 130.000, every 50th value)

Range for Day 120

Fig. 1: Example for a strongly clustered column, showing delivery Dates from a pro-
ductive ERP system. The values follow a general trend, but are not strictly ordered.
The range for value 120 is given as an example.

Section 4 the Paged Index is presented. We explain its structure, give the mem-
ory traffic for a single lookup, and show the index rebuild algorithm. A size
overview for exemplary configurations and the lookup algorithm is given as well.
Afterwards, in Section 5, the column merge algorithm is shown, and extended
in Section 6 to enable the index maintenance during the column merge process.
In Section 7, we present the performance results for two index configurations.
Findings and contributions are summed up in Section 9.

3 Bit-packed Column Scan

We define the attribute vector Vj
M to be a list of value-ids, referencing offsets in

the sorted dictionary Uj
M for column j. Values within Vj

M are bit-packed with

the minimal amount of bits necessary to reference the entries in Uj
M, we refer

to the amount of bits with Ej= dlog2(NM)e bits.
Consequently, to apply a predicate on a single column, the predicate condi-

tions have to be translated into value-ids by performing a binary search on the
main dictionary Uj

M and a scan of the main attribute vector Vj
M. Of importance

Description Unit Symbol

Number of columns in the table - NC

Number of tuples in the main/delta partition - NM ,ND

Number of tuples in the updated table - N′M
For a given column j; j ∈ [1 . . .NC]:

Main/delta partition of the jth column - Mj ,Dj

Merged column - M′j

Attribute vector of the jth column. - Vj
M,Vj

D

Updated main attribute vector - V′jM
Sorted dictionary of Mj/Dj - Uj

M,Uj
D

Updated main dictionary - U′jM
CSB+ Tree Index on Dj - Tj

Uncompressed Value-Length bytes Ej

Compressed Value-Length bits Ej
C

New Compressed Value-Length bits E′jC
Length of Address in Main Partition bits Aj

Fraction of unique values in Mj/Dj - λj
M,λj

D

Auxiliary structure for Mj / Dj - Xj
M,Xj

D

Paged Index - IjM
Paged Index Pagesize - Pj

Cache Line size bytes L
Memory Traffic bytes MT

Table 1: Symbol Definition. Entities annotated with ′ represent the merged (updated)
entry.

is here the scanning of Vj
M, which involves the read of MTCS bytes from main

memory, as defined in Equation 1.

MTCS = NM · E
′j
C

8
(1)

Inserts and updates to the compressed column are handled by a delta par-
tition, thereby avoiding to re-encode the column for each insert [4]. The delta
partition is stored uncompressed and extended by a CSB+ tree index to allow
for fast lookups. If the delta partition reaches a certain threshold it is merged
with the main partition. This process and the extension to update the Paged
Index will be explained in detail in Section 5.

4 Paged Index

While indices in classic databases are well studied and researched, the increase
of access speed to data for in memory databases allows to rethink indexing
techniques. Now, that the data in columnar in-memory stores can be accessed at

hotel
delta
frank
delta

2
0
1
0

delta0
delta0
delta0
delta0
delta0
delta0
hotel0

0

1

2

3

1111 1000 1001

hoteldelta frank

Page IDs

Pagesize 3
0
1
2

delta
frank
hotel

12 Chapter 2. Index Types

Description Unit Symbol

Number of columns in the table - NC

Number of tuples in the main/delta partition - NM ,ND

Number of tuples in the updated table - NÕ
M

For a given column j; j œ [1 . . .NC]:

Main/delta partition of the jth column - Mj ,Dj

Merged column - MÕj

Main/delta attribute vector of thejth column. - Vj
M,Vj

D

Updated main attribute vector - VÕj
M

Sorted dictionary of the main/delta partition - Uj
M,Uj

D

Updated main dictionary - UÕj
M

Uncompressed Value-Length bytes Ej

Compressed Value-Length bits Ej
C

Compressed Value-Length after merge bits EÕj
C

Length of Address in Main Partition bits Aj

Fraction of unique values in main/delta - ⁄jM,⁄jD
Auxiliary structure for the main/delta - Xj

M,Xj
D

Extended auxiliary structure for delta - Yj
D

Index O�sets / Postings - Ij ,Pj

Bucket Pointer List / Buckets - BPj ,Bj

Cache Line size bytes L

Memory Tra�c bytes MT
Table 2.1. Symbol Definition. Entities annotated with Õ represent the merged (up-
dated) entry.

[Pj
s...Pj

e) with s = Ijvalueid , e = Ijvalueid+1

The logical itemcount of Ij is determined by the size of the dictionary Uj
M,

with one additional value to mark the end. In the current implementation the
first value is always 0, which allows for easier query code, since no edge cases
for the first or last value have to be considered. The values in Ijare strictly
increasing, all positive, and less or equal than |Mj |.

12 Chapter 2. Index Types

Description Unit Symbol

Number of columns in the table - NC

Number of tuples in the main/delta partition - NM ,ND

Number of tuples in the updated table - NÕ
M

For a given column j; j œ [1 . . .NC]:

Main/delta partition of the jth column - Mj ,Dj

Merged column - MÕj

Main/delta attribute vector of thejth column. - Vj
M,Vj

D

Updated main attribute vector - VÕj
M

Sorted dictionary of the main/delta partition - Uj
M,Uj

D

Updated main dictionary - UÕj
M

Uncompressed Value-Length bytes Ej

Compressed Value-Length bits Ej
C

Compressed Value-Length after merge bits EÕj
C

Length of Address in Main Partition bits Aj

Fraction of unique values in main/delta - ⁄jM,⁄jD
Auxiliary structure for the main/delta - Xj

M,Xj
D

Extended auxiliary structure for delta - Yj
D

Index O�sets / Postings - Ij ,Pj

Bucket Pointer List / Buckets - BPj ,Bj

Cache Line size bytes L

Memory Tra�c bytes MT
Table 2.1. Symbol Definition. Entities annotated with Õ represent the merged (up-
dated) entry.

[Pj
s...Pj

e) with s = Ijvalueid , e = Ijvalueid+1

The logical itemcount of Ij is determined by the size of the dictionary Uj
M,

with one additional value to mark the end. In the current implementation the
first value is always 0, which allows for easier query code, since no edge cases
for the first or last value have to be considered. The values in Ijare strictly
increasing, all positive, and less or equal than |Mj |.

1.2 Paper Structure and Contribution

Description Unit Symbol
Number of columns in the table - NC

Number of tuples in the
main/delta partition

- NM ,ND

Number of tuples in the up-
dated table

- N0
M

For a given column j; j 2
[1 . . .NC]:
Main/delta partition of the jth

column
- Mj ,Dj

Merged column - M0j

Attribute vector of the jth col-
umn.

- Vj
M,Vj

D

Updated main attribute vector - V0j
M

Sorted dictionary of Mj /Dj - Uj
M,Uj

D

Updated main dictionary - U0j
M

CSB+ Tree Index on Dj - Tj

Uncompressed Value-Length bytes Ej

Compressed Value-Length bits Ej
C

New Compressed Value-
Length

bits E0j
C

Length of Address in Main Par-
tition

bits Aj

Fraction of unique values in
Mj /Dj

- �j
M,�j

D

Auxiliary structure for Mj / Dj - Xj
M,Xj

D

Paged Index - Ij
M

Cache Line size bytes L
Memory Traffic bytes MT

Table 1: Symbol Definition. Entities annotated with 0
represent the merged (updated) entry.

2 Compressed Column

We define the attribute vector Vj
M to be a list of

value-ids, referencing offsets in the sorted dictionary
Uj

M for column j. Values within Vj
M are bit-packed

with the minimal amount of bits necessary to refer-

ence the entries in Uj
M, we refer to the amount of

bits with Ej= | log2(NM)| bits.
Consequently, to apply a predicate on a single col-

umn, the predicate conditions have to be translated
into value-ids by performing a binary search on Uj

M

and a scan of M. Of importance is here the scan-
ning of Vj

M, which involves the read of MTCS bytes
from main memory, as defined in Equation 1.

MTCS = NM · E0j
C

8
(1)

Inserts and updates to the compressed column
are handled by a delta partition, thereby avoinding to
re-encode the column for each insert. The delta par-
tition is stored uncompressed and extended by an
CSB+ Tree index to allow for fast lookups. If the delta
partition reaches a certain threshold it is merged with
the main partition. This process will be explained in
detail in Section 5.

3 Paged Index

While indices in classic databases are well studied
and researched, the increase of the access speed
to the data for in memory databases allows us to
rethink indexing techniques. Now, that the data in
the columnar in-memory store can be accessed at
the speed of RAM, it becomes possible to scan the
complete column to answer queries - an operation
that is prohibitively slow on disk for huge datasets.

The Paged Index is an example how indices can
be designed with these shifted balances: Our focus
is on reducing the memory traffic for the scan oper-
ation, while adding as little overhead as possible to
the merge process.

3.1 Index Structure

To use the Paged Index, the column is logically split
into multiple equally sized pages. The last page is
allowed to be of smaller size. Let the pagesize be
Pj , then Mj contains g = NM+Pj�1

Pj pages. For
each of the encoded values in the dictionary Uj

Mnow

2

Fig. 2: An example of the Paged Index for Pj = 3

the speed of RAM, it becomes possible to scan the complete column to evaluate
queries - an operation that is prohibitively slow on disk for huge datasets.

We propose the Paged Index, which benefits from clustered value distribu-
tions and focusses on reducing the memory traffic for the scan operation, while
adding as little overhead as possible to the merge process for index maintenance.
Additionally the index uses only minimal index storage space and is built for a
mixed workload. Figure 1 shows an example of real ERP customer data, outlin-
ing delivery dates from a productive system. Clearly, the data follows a strong
trend and consecutive values are only from a small value domain with a high
spatial locality. Consequently, the idea behind a Paged Index is to partition a
column into pages and to store bitmap indices for each value, reflecting in which
pages the respective value occurs in. Therefore, scan operators only have to con-
sider pages that are actually containing the value, which can drastically reduce
the search space.

4.1 Index Structure

To use the Paged Index, the column is logically split into multiple equally sized
pages. The last page is allowed to be of smaller size. Let the pagesize be Pj ,

then Mj contains g = NM+Pj−1
Pj pages. For each of the encoded values in the

dictionary Uj
M now a bitvector Bj

v is created, with v being the value-id of the

encoded value, equal to its offset in Uj
M. The bitvector contains excacly one bit

for each page.

Bj
v = (b0, b1...bg) (2)

NM |Uj
M| Pj s(IjM) s(Vj

M)

100,000 10 4096 32b 49K
100,000 10 65536 3b 49K
100,000 100,000 4096 310K 208K
100,000 100,000 65536 31K 208K

1,000,000,000 10 4096 298K 477M
1,000,000,000 10 65536 19K 477M
1,000,000,000 100,000 4096 3G 2G
1,000,000,000 100,000 65536 182M 2G

Table 2: Example Sizes of the Paged Index

Each bit in Bj
v marks whether value-id v can be found within the subrange

represented by that page. To determine the actual tuple-id of the matching
values, the according subrange has to be scanned. If bx is set, one or more
occurrences of the value-id can be found in the attribute vector between offset
x ∗Pj (inclusive) and (x+ 1) ∗Pj (exclusive) as represented by Equation 3. The
Paged Index is the set of bitvectors for all value-ids, as defined in Equation 4.

bx ∈ Bj
v : bx = 1→ v ∈ Vj

M[x ·Pj ...((x+ 1) ·Pj − 1)] (3)

IM =
[
Bj

0,B
j
1, ...,B

j

|Uj
M|−1

]
(4)

4.2 Index Size Estimate

The Paged Index is stored in one consecutive bitvector. For each distinct value
and each page a bit is stored. The size in bits is given by Equation 5. In Table
2 we show the resulting index sizes for some exemplary configurations.

s(IjM) = |Uj
M| ∗

NM + Pj − 1

Pj
bits (5)

4.3 Index Enabled Lookups

If no index is present to determine all tuple-ids for a single value-id, the attribute
vector Vj

M is scanned from the beginning to the end and each compressed value-
id is compared against the requested value-id. The resulting tuple-ids, which
equal to the position in Vj

M, are written to a dynamically allocated results
vector. With the help of the Paged Index the scan costs can be minimized by
evaluating only relevant parts of Vj

M.

Algorithm 1 Scanning the Column with a Paged Index

1: procedure PagedIndexScan (valueid)

2: bitsPerRun =
|Ij

M
|

|Uj
M
|

3: for page = 0; page ≤ bitsPerRun; + + page do
4: results = vector < uint >
5: if IjM [bitsPerRun ∗ valueid+ page] == 1 then
6: startOffset = page ∗Pj

7: endOffset = (page+ 1) ∗Pj

8: for position = startOffset; position < endOffset; + + position do
9: if Vj

M[position] == valueid then results.pushback(position)
10: end if
11: end for
12: end if
13: end for
14: return results
15: end procedure

Our evaluated implementation additionally decompresses multiple bit-packed
values at once for maximum performance. The simplified algorithm is given in
Listing 1. The memory traffic of an index-assisted partial scan of the attribute
vector for a single value-id is given by Equation 7.

pagesPerDistinctV alue =

⌈
Pj ∗ 8

(NM + Pj − 1) ∗ |Uj
M|

⌉
(6)

MTPagedIndex =
NM + Pj − 1

Pj ∗ 8
+ pagesPerDistinctV alue ∗Pj ∗ E

j
C

8
(7)

4.4 Rebuild of the Index

To extent an existing compressed column with an index, the index has to be
built. Additionally, a straightforward approach to enable index maintenance for
the merge of the main and delta partition is to rebuild the index after a new,
merged main partition has been created. Since all operations are in-memory,
Rao et al. [7] claim that for bulk-operations an index rebuild is a viable choice.
We take the rebuild as a baseline for further improvements.

5 Column Merge

Our in-memory column store maintains two partitions for each column: a read-
optimized, compressed main partition and a writable delta partition. To allow
for fast queries on the delta partition, it has to be kept small. To achieve this,
the delta partition is merged with the main partition after its size has increased
beyond a certain threshold. As explained in [4], the performance of this merge
process is paramount to the overall sustainable insert performance. The inputs to

Algorithm 2 Rebuild of Paged Index

1: procedure Rebuild Paged Index

2: bitsPerRun = NM+Pj−1

Pj

3: IjM [0...(bitsPerRun ∗ |Uj
M|)] = 0

4: for pos = 0; pos ≤ NM ; + + pos do
5: valueid = Vj

M[pos]
6: run = valueid ∗ bitsPerRun
7: page = pos

Pj

8: IjM [run+ page] = 1
9: end for

10: end procedure

the algorithm consists of the compressed main partition and the uncompressed
delta partition with an CSB+ tree index [7]. The output is a new dictionary
encoded main partition.

The algorithm is the basis for our index-aware merge process that will be
presented in the next section.
We perform the merge using the following two steps:

1. Merge Main Dictionary and Delta Index, Create value-ids for Dj.
We simultaneously iterate over Uj

M and the leafs of Tj and create the new

sorted dictionary U′jM and the auxiliary structure Xj
M. Because Tj contains

a list of all positions for each distinct value in the delta partition of the
column, we can set all positions in the value-id vector Vj

D. This leads to

non-continuous access to Vj
D. Note that the value-ids in Vj

D refer to the

new dictionary U′jM.
2. Create New Attribute Vector. This step consists of creating the new

main attribute vector V′jM by concatenating the main and delta partition’s

attribute vectors Vj
M and Vj

D. The compressed values in Vj
M are updated

by a lookup in the auxiliary structure Xj
M as shown in Equation 8. Values

from Vj
D are copied without translation to V′jM. The new attribute vector

V′jM will contain the correct offsets for the corresponding values in U′jM, by

using E′jC bits-per-value, calculated as shown in Equation 9.

V′jM[i] = Vj
M[i] + Xj

M[Vj
M[i]] ∀i ∈ [0...NM − 1] (8)

Note that the optimal amount of bits-per-value for the bit-packed V′jM can

only be evaluated after the cardinality of Uj
M∪Dj is determined. If we accept a

non-optimal compression, we can set the compressed value length to the sum of
the cardinalities of the dictionary Uj

M and the delta CSB+ tree index Tj . Since
the delta partition is expected to be much smaller than the main partition, the
difference from the optimal compression is low.

E′jC = dlog2(|Uj
M ∪Dj |)e ≤ dlog2(|Uj

M|+ |Tj |)e (9)

Step 1’s complexity is determined by the size of the union of the dictionaries
and the size of the delta partition. Its complexity is O(|Uj

M∪U
j
D|+ |Dj |) . Step

2 is dependent on the length of the new attribute vector, O(NM + ND).

6 Index-Aware Column Merge

We now integrate the index rebuild into the column merge process. This allows
us to reduce the memory traffic and create a more efficient algorithm to merge
columns with a Paged Index.

We extend Step 1 of the column merge process from Section 5 to maintain
the Paged Index. During the dictionary merge we perform additional steps for
each processed dictionary entry. The substeps are extended as follows:

1. For Dictionary Entries from the Main Partition Calculate the begin
and end offset in IjM and the starting offset in Ij′M . Copy the range from IjM
to Ij′M . The additional bits in the run are left zero, because the value is not
present in the delta partition.

2. For CSB+ Index Entries from the Delta Partition Calculate the
position of the run in Ij′M , read all positions from Tj , increase them by NM ,

and set the according bits in Ij′M .
3. Entries found in both Partitions Perform both steps sequentially.

Listing 3 shows a modified dictionary merge algorithm to maintain the paged
index during the column merge.

7 Evaluation

We evaluate our Paged Index on a clustered column. In a clustered column equal
data entries are grouped together, but the column is not necessarily sorted by
the value. Our index does perform best, if each value’s occurrences form exactly
one group, however it is not required. Outliers or multiple groups are supported
by the Paged Index.

With the help of the index the column scan is accelerated by scanning only
the pages which are known to have at least one occurrence of the desired value.

In Figure 3 the CPU cycles for the column scan and two configurations of
the Paged Index are shown. We choose pagesizes of 4096 and 16384 entries as
an example. The Paged Index enables an performance increase of two orders of
magnitude for columns with a medium to high amount of distinct values through
a drastic reduction of of the search scope. For smaller dictionaries, the benefit is
lower. However an order of magnitude is already reached with λj = 10−5, which
corresponds to 30 distinct values in our example. For very small dictionaries
with less than 5 values, the overhead of reading the Paged Index leads to a
performance decrease. In these cases the Paged Index should not be applied
to a column. In Table 3 the index and attribute vector sizes for some of the
measured configurations are given. The Paged Index can deliver its performance

Algorithm 3 Extended Dictionary Merge

1: procedure ExtendedDictionaryMerge
2: d,m, n = 0
3: while d != |Tj | or m != |Uj

M| do
4: processM = (Uj

M[m] <= Tj [d] or d == |Tj |)
5: processD = (Tj [d] <= Uj

M[m] or m == |Uj
M|)

6: if processM then
7: U′jM[n]← Uj

M[m]
8: Xj

M[m]← n−m
9: I ′M [n ∗ g · · ·n ∗ (1 + g)] = IM [m ∗ g · · ·m(1 + g)]

10: m← m+ 1
11: end if
12: if processD then
13: U′jM[n]← Tj [d]
14: for dpos in Tj [d].positions do
15: V′jD[dpos] = n

16: Ij′M [n ∗ (|Vj
M
|+|Vj

D
|)

Pj +
|Vj

M
|+dpos

Pj] = 1
17: end for
18: d← d+ 1
19: end if
20: n← n+ 1
21: end while
22: end procedure

NM |Uj
M| Pj s(IjM) s(Vj

M)

30,000,000 10 4096 9K 14M
30,000,000 10 65536 573b 14M
30,000,000 100,000 4096 87M 61M
30,000,000 100,000 65536 5M 61M
30,000,000 1,000,000 4096 873M 72M
30,000,000 1,000,000 65536 55M 72M
30,000,000 30,000,000 4096 26G 89M
30,000,000 30,000,000 65536 2G 89M

Table 3: Example Sizes of the evaluated Paged Index

increase for columns with a medium amount of distinct values for only little
storage overhead. For the columns with a very high distinct value count the
Paged Index grows prohibitively large. Note, that the storage footprint halves
by each doubling of the pagesize. For the aforementioned delivery dates column
the Paged Index decreases the scan time by a factor 20.

8 Future Work

The current design of a bit-packed attribute vector does not allow a fixed map-
ping of the resulting sub-ranges to memory pages. In future work we want to

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

λj (Distinct Value Fraction)

104

105

106

107

108

C
P

U
C

yc
le

s

Y-Axis
Column Scan
Index-assisted Scan Pj = 16384

Index-assisted Scan Pj = 4096

101

102

103

104

105

106

107

B
yt

es

Index-assisted Scan vs. Column Scan (NM = 3000000)

Y2-Axis
size(Vj

M)

size(IjM) , Pj = 16384

size(IjM) , Pj = 4096

Fig. 3: Scan Performance and Index Sizes in Comparision

compare the performance benefits if a attribute vector is designed, so that the
reading of a sub-range leads to at most one transaction lookaside buffer (TLB)
miss.

9 Conclusion

Shifted access speeds in main memory databases and special domain knowledge
in enterprise systems allow for a reevaluation of indexing concepts. With the
original data available at the speed of main memory, indices do not need to
narrow down the search scope as far as in disk based databases, since scan
speeds increased dramatically. Therefore, relatively small indices can have huge
impacts, especially if they are designed towards a specific data distribution.

In this paper, we proposed the Paged Index, which is tailored towards columns
with clustered data. As our analyses of real customer data showed, such data
distributions are especially common in enterprise systems. By indexing the oc-
currence of values on a block level, the search scope for scan operations can be
reduced drastically with the use of a Paged Index. In our experimental evalua-
tion, we report speed improvements up to two orders of magnitude, while only
adding little overhead for the index maintenance and storage. Finally, we pro-
posed an integration of the index maintenance into the merge process, further
reducing index maintenance costs.

References

1. M. Faust, D. Schwalb, J. Krueger, and H. Plattner. Fast Lookups for In-Memory
Column Stores: Group-Key Indices, Lookup and Maintenance. ADMS’2012, 2012.

2. M. Grund, J. Krueger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and S. Madden.
HYRISE—A Main Memory Hybrid Storage Engine. VLDB ’10, 2010.

3. S. Idreos, S. Manegold, H. Kuno, and G. Graefe. Merging what’s cracked, cracking
what’s merged: adaptive indexing in main-memory column-stores. Proceedings of
the VLDB Endowment, 4(9):586–597, June 2011.

4. J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani, H. Plattner,
P. Dubey, and A. Zeier. Fast updates on read-optimized databases using multi-core
CPUs. Proceedings of the VLDB Endowment, 5(1):61–72, Sept. 2011.

5. H. Plattner. A Common Database Approach for OLTP and OLAP Using an In-
Memory Column Database. ACM Sigmod Records, pages 1–8, June 2009.

6. H. Plattner and A. Zeier. In-Memory Data Management: An Inflection Point for
Enterprise Applications. 2011.

7. J. Rao and K. Ross. Cache conscious indexing for decision-support in main memory.
Proceedings of the International Conference on Very Large Data Bases (VLDB).

8. SAP-AG. The SAP HANA Database–An Architecture Overview. Data Engineer-
ing, 2012.

9. M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, and E. O’Neil. C-store: a column-oriented DBMS. Proceedings
of the 31st international conference on Very large data bases, pages 553–564, 2005.

10. T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner.
SIMD-scan: ultra fast in-memory table scan using on-chip vector processing units.
Proceedings of the VLDB Endowment, 2(1):385–394, 2009.

11. M. Zukowski, P. Boncz, N. Nes, and S. Heman. MonetDB/X100—A DBMS in the
CPU cache. IEEE Data Engineering Bulletin, 28(2):17–22, 2005.

