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abstract. We investigate an alternative presentation of classical and pos-

itive modal logic where the coalgebraic cover modality is taken as primitive.

For each logic, we present a sound and complete Hilbert-style axiomatiza-

tion. Moreover, we give a two-sided sound and complete sequent calculus for

the negation-free language, and for the language with negation we provide

a one-sided sequent calculus which is sound, complete and cut-free.
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1 Introduction

This paper studies some derivation systems for a variant of standard modal
logic which is based on the finitary coalgebraic, or cover modality ∇. This
connective ∇ takes a finite set α of formulas and returns a single formula
∇α. The semantics of the nabla modality can be explicitly formulated as
follows, for an arbitrary Kripke structure S with accessibility relation R:

(1)
S, s 
 ∇α if for all a ∈ α there is a t ∈ R[s] with S, t 
 a, and

for all t ∈ R[s] there is an a ∈ α with S, t 
 a.

In short: ∇α holds at a state s iff the formulas in α and the set R[s] of
successors of s ‘cover’ one another.

Using the standard modal language, ∇ can be seen as a defined operator:

(2) ∇α = 2(
∨
α) ∧

∧
3α,

where 3α denotes the set {3a | a ∈ α}. But is in fact an easy exercise to
prove that with ∇ defined by (1), we have the following semantic equiva-
lences:

(3)
3α ≡ ∇{α,⊤}
2α ≡ ∇∅ ∨∇{α}

In other words, the standard modalities 2 and 3 can be defined in terms of
the nabla operator (together with ∨ and ⊤). When combined, (2) and (3)
show that the language based on the nabla operator is indeed an alternative
formulation of standard modal logic.
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Readers familiar with classical first-order logic will recognize the quan-
tification pattern underlying (1) and (2) from the theory of Ehrenfeucht-
Fräıssé games, Scott sentences, and the like, see [6] for an overview. In
modal logic, related ideas made an early appearance in Fine’s work on nor-
mal forms [3]. As far as we know, however, the first two explicit occurrences
of the cover modality as a (primitive) connective appeared roughly at the
same time, in the work of Barwise & Moss on circularity [1], and that of
Janin & Walukiewicz on automata-theoretic approaches towards the modal
µ-calculus [7].

Broadly speaking, in the literature one may find two kinds of motivation
for a ∇-based approach towards modal logic. To start with, a technical rea-
son is that in some applications, ∇-based modal logic works better because
one may almost eliminate conjunctions from the language. This observation,
which ultimately goes back to automata-theoretic constructions in [7], has
subsequently been used in connection with interpolation and Beth definabil-
ity properties of modal languages [2, 16], and in order to obtain completeness
proofs for modal fixpoint logics [15, 14]

A second and more conceptual reason to prefer the ∇-based perspective
on modal logic is that it allows for coalgebraic generalizations. Coalge-
bra [13] is an emerging mathematical theory of state-based evolving systems.
Kripke structures are key examples of coalgebras, and ideas from modal logic
have been fruitfully exported to other types of coalgebras, see [17] for an
overview. It was Moss’ fundamental observation [11] that (1) expresses the
semantics of ∇ in terms of some kind of the Egli-Milner relation lifting of
the satisfaction relation between states and formulas. This insight led Moss
to the introduction of coalgebraic logic, which is based on a generalization
of the cover modality to a coalgebraic modality ∇T for coalgebras of type
T .

These two ideas can be fruitfully combined. For instance, the coalgebraic
perspective of [9] enables many results on fixed point logics and automata
to be generalized to a much wider level of generality. Similarly, in [12],
an axiomatic approach towards ∇ is combined with a very general lifting
construction on Chu spaces to shed some light on the Vietoris construction
of Stone spaces.

In this paper we consider various derivation systems for ∇-based modal
logic. In earlier work [12], the second and third author developed a sound
and complete Hilbert-style derivation system for the nabla modality. Here
we extend this work in two directions. First, we give an alternative Hilbert-
style axiomatization which, besides being more compact, elegant and intrin-
sic than the previous one, allows for a great generalization to the context
of the coalgebraic modal languages defined by Moss. (Such a generalization
has indeed been supplied: see Kupke, Kurz & Venema [8].) The main con-
tribution of the present paper, however, concerns a number of Gentzen-style
derivation systems. Indeed, we introduce a one-sided Gentzen system (see
Definition 15), for an expansion of the Boolean propositional language with
the nabla operator which corresponds to the basic modal logic K in the
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language with nabla. This system is sound and complete w.r.t. the class of
all Kripke models, and cut-free. Moreover, we present a sound and complete
two-sided Gentzen system (see Definition 23) for the positive fragment of
the same language. Following the same design criteria that inspired our new
Hilbert-style axiomatization, the main feature of both Gentzen systems is
that they are generalizable to the coalgebraic setting where T is an arbitrary
weak pullback-preserving Set-endofunctor.

The organization of the paper goes as follows: Section 2 contains prelim-
inaries on the syntax and semantics of nabla, and introduces the technical
notion of slim redistributions (Definition 5). In Section 3 we present the
new Hilbert-style axiomatization C∇ (Definition 9), recall the previous ax-
iomatization H∇ and prove soundness and completeness of C∇. In Section
4 we present the one-sided Gentzen system G1∇, show its soundness and
completeness and compare it with the alternative and equivalent one-sided
calculus GW∇ introduced by Walukiewicz. In Section 5 we present the
two-sided calculus G2∇, prove soundness, completeness and show that it is
not cut-free. Section 6 presents some concluding remarks and directions for
further research.

2 Preliminaries

Syntax and Semantics Throughout this paper we fix a set Q of propo-
sitional variables. In principle, we want to define our language L as the
smallest superset of Q which is closed under Boolean formula constructions,
and under applying the finitary nabla modality: if α is a finite set of for-
mulas, then ∇α is a formula. (In fact, most of our results in some way go
through for the infinite version of the cover modality as well, but here we
restrict to finitary syntax.)

Before we go into the formal details, we need to discuss two aspects of
our approach that depart from standard treatments and which respectively
involve a slight modification and a subtle distinction. To start with, when we
formulate our axiomatization, it will be convenient to work with arbitrary
finite conjunctions and disjunctions, rather than with the binary ones. That
is, the slight modification consists in taking ¬,

∧
and

∨
as our primitive

Boolean operation symbols. We will use ⊤ (and ⊥) as abbreviations for∧
∅ (and

∨
∅) respectively.

Second, to explain and motivate the subtle but crucial distinction that
we make, recall from the introduction that one of the goals of Moss’ ap-
proach [11] was to generalize the language and semantics of modal logic
from ordinary Kripke structures to coalgebras for an (almost) arbitrary set
functor. In order to facilitate this generalization, we will separate two roles
of the power set operation in our framework, and formalize this by using
distinct notation. Concretely, given a set X, PX will denote the power set
of X in its standard set-theoretic use, and Pω denotes the finitary variant
of P. That is, PX and PωX denote the collections of all and of all finite
subsets of X, respectively. For instance, we will say that

∧
ϕ and

∨
ϕ are

formulas whenever ϕ ∈ PωL. In case we are working with the power set as
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the coalgebraic functor, we will use the notation T , or Tω for its finitary
version. As an example, we will say that ∇α ∈ L whenever α ∈ TωL, and
we may represent the accessibility relation R of a Kripke frame (S,R) as
the function S → T S mapping a state to its set of successors.

This approach, which may seem rather pedantic at first sight, creates
the ability to distinguish incidental properties of our set-up (arising from
the fact that the coalgebraic functor happens to coincide with the power
set functor) from structural/categorical ones (which can be generalized to
arbitrary functors). In this way it does not only pave the way for gener-
alizations [8], it has also been very useful to increase our understanding of
the concrete case at hand, viz., that of the power set functor. In the sequel,
we will as much as possible formulate definitions in terms that either apply
to, or else can be generalized to, an arbitrary set functor T .

DEFINITION 1. L is the smallest set containing all propositional variables
which is closed under taking negations (if a ∈ L then ¬a ∈ L), under taking
finitary conjunctions and disjunctions (if ϕ ∈ PωL then

∨
ϕ,

∧
ϕ ∈ L), and

under applying the finitary nabla modality (if α ∈ TωL then ∇α ∈ L). The
negation-free fragment of L is denoted as L+. Elements of L (L+) are called
formulas (positive formulas, respectively).

CONVENTION 2. In the sequel we will need symbols to refer to formulas
(L), sets of formulas (PωL and TωL), and to elements of the sets TωPωL
and PωTωL. It will be convenient to fix our notation for these objects, and
we will do so as indicated by the table below, where on the right side we
list the generic symbols that we use to denote objects from the sets on the
left side:

L a, b, c, . . .
TωL α, β, γ . . .
PωL ϕ,ψ, θ . . .
TωPωL Φ,Ψ,Θ . . .
PωTωL A,B,C . . .

This language can be interpreted in standard Kripke models S = (S,R,
V ), with R ⊆ S × S and V : S → P(Q). We will often think of R coalge-
braically, as a map R : S → T (S) which maps a state s to the set R[s] of
its (immediate) successors. For the inductive definition of the satisfaction
relation 
, we omit the atomic and Boolean clauses because they are com-
pletely standard. For the semantics of ∇, we need the notion of relation
lifting. There are various ways to lift a relation between two sets to one be-
tween the respective power sets; our definition uses the so-called Egli-Milner
lifting.

DEFINITION 3. Let R ⊆ X × X ′ be a binary relation. Its (power set)
lifting is defined as the relation R ⊆ PX × PX ′ given by

(4) (A,A′) ∈ R iff ∀a ∈ A∃a′ ∈ A′. aRa′ and ∀a′ ∈ A′ ∃a ∈ A. aRa′.
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REMARK 4. Modal logicians will recognize in (4) the quantification pat-
tern from the definition of a bisimulation. Indeed, bisimulations between
two Kripke models S and S′ can be characterized as non-empty relations
Z ⊆ S × S′ such that V (s) = V ′(s′) and (R[s], R′[s′]) ∈ Z whenever sZs′.

Returning to the semantics of L, given a Kripke model S = (S,R, V ), the
clause for ∇ can be very concisely formulated in terms of the lifting 
 of
the satisfaction relation 
 ⊆ S × L:

S, s 
 ∇α iff R[s] 
 α.

In words: S, s 
 ∇α if every t ∈ R[s] satisfies some a ∈ α, and conversely,
every a ∈ α is satisfied at some successor t of s. Thus∇α is indeed equivalent
to the formula 2

∨
α ∧3

∧
α.

Slim redistributions An important role in the paper is played by the no-
tion of slim redistribution. Formulated specifically for the power set functor,
a set Φ ∈ PPX is a slim redistribution of a set A ∈ PPX iff

⋃
A =

⋃
Φ and

ϕ ∩ α 6= ∅ for all ϕ ∈ Φ and α ∈ A. Borrowing some intuition from topol-
ogy, these two conditions tell us that on the one hand every given α ∈ A
is ‘covered’ by Φ (in the sense that α ⊆ ⋃

Φ) in such a way that every
ϕ ∈ Φ has nonempty intersection with α (and again, in this relation be-
tween every α ∈ A and Φ, we meet the familiar quantification pattern from
the definitions of bisimulation and relation lifting). On the other hand,
the requirement that

⋃
Φ ⊆ ⋃

A is clearly a minimality condition on Φ,
that takes care that every such Φ can be effectively constructed from A by
scrambling and suitably reorganizing its ‘ingredients’.

Our formulation below can be extended to arbitrary functors. It uses the
lifted membership relation ∈. In our case, an object α ∈ T X is a lifted
member of Φ ∈ T PX if α ⊆ ⋃

Φ and α ∩ ϕ 6= ∅ for all ϕ ∈ Φ.

DEFINITION 5. Given a set X, we call an element α ∈ T X a lifted member
of an element Φ ∈ T PX if α ∈ Φ, where ∈ ⊆ T X×T PX denotes the lifted
version of the membership relation ∈ ⊆ X × PX.

An object Φ ∈ T PX is a redistribution of a set A ∈ PT X if α ∈ Φ for all
α ∈ A (hence in particular

⋃
A ⊆ ⋃

Φ). We call such a redistribution slim
if moreover

⋃
Φ =

⋃
A. The set of all slim redistributions of A is denoted

by SRD(A).

Since we will usually be looking at redistributions of finite collections of
finite sets of formulas, it is good to note that such redistributions will also
consist of finite collections of finite sets of formulas. That is, if T = P, then
SRD(A) ⊆ TωPωX whenever A ∈ PωTωX. This is not true for an arbitrary
set functor T .

EXAMPLE 6.

1. A key example of a slim redistribution of a set A ∈ PT L arises se-
mantically. Fix a model S and a state s in S. Define, for any successor
t of s, the set ϕt := {a ∈ ⋃

A | S, t 
 a}. Then consider the set
Φs := {ϕt | t ∈ R[s]} ∈ T PL:
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(5) S, s 

∧{∇α | α ∈ A} ⇐⇒ Φs ∈ SRD(A).

‘only if’: to see why Φs is a redistribution, take an arbitrary element
α ∈ A. In order to prove that α is a lifted member of Φs, first observe
that every element a of α is true at some successor t of s. Hence,
a ∈ ϕt ⊆

⋃
Φs. Second, given an arbitrary element ϕ ∈ Φs, there is a

successor t of s such that ϕ = ϕt. But then since s 
 ∇α, some a ∈ α
is true at t, and hence, a ∈ ϕt. In other words, ϕt∩α 6= ∅. This shows
that Φs is a redistribution of A; but then it is easy to see that as such
it is slim: each ϕt only takes elements from

⋃
A, and so

⋃
Φs ⊆

⋃
A.

Conversely, it is easy to show that if Φs is a redistribution of A, then
S, s 
 ∇α for every α ∈ A.

2. Given a relation R ⊆ ∏
1≤i≤n αi we will write R ∈ ⊲⊳1≤i≤nαi if R

is a subdirect product of the relations αi, that is, if πi[R] = αi for
every i. It is an easy exercise to verify that for each such R, the
set

{
{a1, . . . , an} | (a1, . . . an) ∈ R

}
is a slim redistribution of the

set A = {α1, . . . , αn}. This shows that in a way, slim redistributions
generalize the notion of relation lifting, because in the case that n = 2,
R is binary, and we have

(6) R ∈ α ⊲⊳ β ⇐⇒ (α, β) ∈ R.
3. Any set Φ ∈ T PX is a redistribution of the empty set ∅, but the

latter only has two slim redistributions: SRD(∅) =
{
∅, {∅}}.

4. It is easy to see that ‘being a slim redistribution of’ is a symmetric rela-
tion. It is neither reflexive, nor transitive, however. A counterexample
to reflexivity is the set A =

{{a}, {b}}: indeed, SRD(A) =
{{a, b}}.

By symmetry, this is also a counterexample to transitivity.

5. If A is a set of singletons, say A =
{{c} | c ∈ ϕ}, then ϕ is the only

lifted member of A, and {ϕ} is the unique slim redistribution of A.

REMARK 7. As mentioned, the notions of lifted membership and slim re-
distributions can be generalized to a much wider category-theoretic set-
ting. This generalization is based on a standard way to lift a relation
R ⊆ S × S′ to a relation R ⊆ T S × T S′, and is associated with a dis-
tributive law, that is, a natural transformation λ : T P → PT given by
λX(Φ) := {α ∈ PT X | α ∈ Φ}. We refer to [8] for the details.

3 Hilbert-style axiomatizations

In this section we introduce an equational Hilbert-style presentation for
the ∇-modal logic. Because we want to deal simultaneously with the full
language L and its positive fragment L+, we formulate our systems in terms
of inequalities, i.e. we will introduce a Hilbert-style presentation of a 2-
dimensional deductive system (cf. [4], 4.1), in which pairs of formulas are
the basic objects axioms and rules act on:
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(∇1) From ⊢ α≤β infer ⊢ ∇α ≤ ∇β
(∇2)

∧{∇α | α ∈ A} ≤ ∨ {∇{∧ϕ | ϕ ∈ Φ} | Φ ∈ SRD(A)
}

(∇3) ∇{∨ϕ | ϕ ∈ Φ} ≤ ∨{∇β | β ∈ Φ}

Table 1. Axioms and rules of the system C∇

DEFINITION 8. An inequality is nothing but a pair (a, b) of formulas,
usually denoted as a ≤ b. An inequality a ≤ b is valid in a Kripke model
S, notation: S |= a ≤ b, if for all states s in S, s 
 a implies s 
 b. An
inequality is valid, notation: |= a ≤ b, if it is valid in every Kripke model.

The name of the following axiomatization stems from the fact that it was
first presented at the WoLLiC 2007 conference in Rio de Janeiro.

DEFINITION 9 (Carioca Axiomatization). C∇ is the Hilbert-style deriva-
tion system, operating on inequalities, which is given by the axioms and
rules of Table 1. C+

∇ is the version of C∇ in which the language is restricted
to the set L+ of positive formulas.

Therefore, the only substantial distinction between C∇ and C+
∇ concern-

ing derivability lies in the boolean parts of the axiomatizations. We do not
specify the purely propositional parts - for C∇ take any adequate axiomati-
zation of classical propositional logic in a language that includes negation,
formulated as a set of inequalities and derivation rules, while for C+

∇ take
the corresponding monotone fragment.

DEFINITION 10. A derivation in the system C∇ is a finite tree labelled
with inequalities, such that each leaf is labeled by an axiom of C∇ and every
node that is a parent node is labeled by the conclusion of a derivation rule
each premise of which labels one of its children nodes. An inequality a ≤ b
is a theorem of this system, notation: ⊢H a ≤ b, if it appears as an item
(equivalently, as the last item) of some derivation. Similar definitions apply
to the system C+

∇, with ⊢+
H denoting theoremhood.

While our notions of derivation and theoremhood are standard, the ax-
ioms and rules of the system can do with some explanation. To start with,
the reader may be slightly puzzled by our formulation of the derivation rule
(∇1), since its premise ‘⊢ α≤β’ uses syntax that has not been defined as
part of the object language. The proper way to read this premise is as fol-
lows: ‘the relation Z := {(a, b) ∈ α× β |⊢H a ≤ b} is such that (α, β) ∈ Z’,
that is, ‘for all a ∈ α there is a b ∈ β such that ⊢H a ≤ b, and vice versa’.
We choose the presentation in Table 1 because it is shorter and reveals more
clearly that the rule is in fact the inequality version of a congruence rule.
The axioms (∇2) and (∇3) could in fact both be replaced with identities,
since in both cases, the reverse inequality of the axiom can be derived as
a theorem. What these axioms have in common further is that they can
be seen as distributive laws. This is the clearest in the case of (∇3), which
states that ∇ distributes over some disjunctions. In the case of (∇2) the
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distribution principle is a bit more involved, but basically, the axiom states
that any ‘conjunction of nablas’ can be replaced with a disjunction of ‘nablas
of conjunctions’.

REMARK 11. The following Hilbert-style rule:

(∇4) From ⊢ ⊤ ≤ ∨
ϕ infer ⊢ ⊤ ≤ ∨{∇α | α ∈ Tωϕ}

is derivable from (∇0)-(∇3).

Proof. Consider the following derivation tree. Let

⊤ ≤ ∨
ϕ∇1 ∇{⊤} ≤ ∇{∨ϕ} ∇{∨ϕ} ≤ ∨

B
Π = trans ∇{⊤} ≤ ∨

B∨ ∇{⊤} ≤ ∨
B ∨∇∅

in the derivation

⊤ ≤ ∇∅ ∨∇{⊤}
∇∅ ≤ ∨

B ∨∇∅ Π∨ ∇∅ ∨∇{⊤} ≤ ∨
B ∨∇∅

trans ⊤ ≤ ∨
B ∨∇∅

where B = {∇β | β ∈ {ϕ}}: notice that its leftmost leaf is an instance
of the axiom (∇2) and its rightmost leaf is an instance of the axiom (∇3),
where Φ = {{a} | a ∈ Φ}. Notice also that in the special setting we are
in, i.e. dealing with the power set functor, β ∈ {ϕ} iff β ∈ T ϕ \ ∅. Since
T ϕ = Tωϕ because ϕ is finite, the conclusion of the derivation tree above
can be rewritten as ⊤ ≤ ∨{∇β | β ∈ Tωϕ}. �

Although the formulation of (∇4) does not use the actual symbol, this
rule effectively captures the interaction between the coalgebraic modality
and negation. To see why this is so, observe that the conclusion of (∇4)
implies that ¬∇β ≤ ∨{∇α | β 6= α ∈ T ϕ}.
REMARK 12. The systems C∇ and C+

∇ can be seen as streamlined version
of the axiom system H∇ given by the second and third author [12]. This
axiomatization has the following set of axioms and rules:

(∇1) If α≤β, then ∇α ≤ ∇β
(∇2) If ⊥ ∈ α then ∇α = ⊥
(∇3) ∇α ∧∇β ≤

∨{∇{a ∧ b | (a, b) ∈ Z} | Z ∈ α ⊲⊳ β}
(∇4) ∇{a ∨ b | a ∈ α, b ∈ β} ∪ {⊤} ≤ ∇α ∪ {⊤} ∨ ∇β ∪ {⊤}
(∇5) ⊤ ≤ ∇∅ ∨∇{⊤}
(∇6) ∇α ∪ {a ∨ b} ≤ ∇α ∪ {a} ∨ ∇α ∪ {b} ∨ ∇α ∪ {a, b}
(∇7) ¬∇α = ∇{∧{¬a | a ∈ α},⊤} ∨ ∨

a∈α
∇{¬a} ∨ ∇∅

Our new axiomatization generalizes this system, as follows. The axioms
(∇3) and (∇5) can be seen as instances of our axiom (∇2): take for A the
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sets {α, β} and ∅, respectively. Similarly, the axioms (∇2), (∇4) and (∇6)
are all instances of our axiom (∇3): take for Φ the sets

{{a} | a ∈ α}∪{∅},{{a, b} | a ∈ α∪{⊤}, b ∈ β ∪{⊤}}, and
{{a} | a ∈ α}∪{a, b}, respectively.

Finally, axiom (∇7) can be derived using the derived rule (∇4). (We’ll get
back to this in the completeness proof for C∇.)

Advantages of the Carioca Axiomatization are not only that it shows
some of the old axioms to be instances of a more general principle. The main
point is that, since in C∇ the two roles of the powerset as a set-theoretic
construction and the powerset as a functor are kept clearly distinct, C∇ can
directly be generalized to an arbitrary set functor, see [8]. As a good way
to understand this difference, it can be useful to compare the axiom (∇7)
and the Carioca-style derived rule (∇4): whereas (∇7) clearly uses the fact
that α ∈ TωL is a set of formulas, and thus belongs to PωL, (∇4) involves
no such confusion.

THEOREM 13 (SOUNDNESS AND COMPLETENESS). The Carioca ax-
ioms are sound and complete. That is, for any pair a, b of formulas:

(7) ⊢H a ≤ b iff |= a ≤ b.
Similarly, for any pair a, b of positive formulas:

(8) ⊢+
H a ≤ b iff |= a ≤ b.

Proof. In order to prove soundness, that is, the direction from left to right
in (7) and (8), we first establish the validity of the axioms, and then show
that the rules preserve validity.

Omitting a trivial discussion of the boolean part, we first consider the
axiom (∇2). Consider a model S and a state s such that S, s 


∧{∇α | α ∈
A}. We already saw that the set Φs := {ϕt | t ∈ R[s]}, with ϕt := {a ∈⋃
A | S, t 
 a} is a slim redistribution of A. Thus it suffices to show that

S, s 
 ∇{∧ϕ | ϕ ∈ Φs}. But this is virtually immediate by the definitions:
At an arbitrary successor t of s, the formula

∧
ϕt holds, and any element of

Φs is of the form ϕt for some t ∈ R[s], and so every formula
∧
ϕt is satisfied

at some successor of s.
For axiom (∇3), suppose that S, s 
 ∇{∨ϕ | ϕ ∈ Φ}. For each t ∈ R[s],

define βt := {b ∈ ⋃
Φ | t 
 b} and take β :=

⋃{βt | t ∈ R[s]}. We claim that
β∈Φ and S, s 
 ∇β. For the latter claim, it follows from the assumption
that each t ∈ R[s] satisfies the formula

∨
ϕ for some ϕ ∈ Φ. Hence for each

such t there is some formula bt ∈ ϕ with t 
 bt. Clearly then, bt ∈ βt ⊆ β,
and so indeed every successor of s satisfies some formula in β. Conversely,
for each b ∈ β, by definition of β there is a t ∈ R[s] satisfying b.

To see that β ∈ Φ, take b ∈ β. By definition b belongs to
⋃

Φ, so there
is some ϕ ∈ Φ such that b ∈ ϕ. Conversely, take an arbitrary ϕ ∈ Φ. By
the assumption s 
 ∇{∨ϕ | ϕ ∈ Φ}, there is some t ∈ R[s] such that
t 


∨
ϕ. That is, some b ∈ ϕ is satisfied in t. But then this b belongs to β,

as an immediate consequence of the definition of β.
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Now we show that the derivation rules preserve validity. First we consider
the rule (∇1). Suppose that Z ⊆ L×L is some relation such that S 
 a ≤ b
for each (a, b) ∈ Z, and assume that (α, β) ∈ Z. In order to show that
S 
 ∇α ≤ ∇β, consider a state s such that s 
 ∇α, then it suffices to show
that S, s 
 ∇β. First take an arbitrary successor t of s. Then from s 
 ∇α
we may infer that t 
 a for some a ∈ A. Since (α, β) ∈ Z there is some
b ∈ β with (a, b) ∈ Z, and so from S 
 a ≤ b we infer that t 
 b. For the
converse, take an arbitrary element b ∈ β. From (α, β) ∈ Z we may infer
the existence of an a ∈ α such that (a, b) ∈ Z. But if a ∈ α, there must be
a successor t of s where a holds, because s 
 ∇α. Then from S 
 a ≤ b we
may conclude that b holds at this t too. This shows that, indeed, s 
 ∇β.

Turning to completeness, we first consider the negation-free system C+
∇.

It was shown in [12] that the (negation-free version of the) system of Re-
mark 12, without the axiom (∇7) is a complete axiomatization for the valid
positive inequalities. But as we mentioned in the same Remark, all the ax-
ioms and rules of this system are instances of rules and axioms of C+

∇, From
this completeness (the direction from right to left in (8)) is immediate.

In order to prove completeness of the system C∇ with respect to the full
language, we follow the same approach. Given the earlier observations it
suffices to show the derivability of the axiom (∇7) in our system, since it is
the only axiom or rule that is not an instance of an axiom or rule of C∇.

Fix a set of formulas α ∈ TωL. We will show that

(9) ⊢H ⊤ ≤ ∇α ∨∇
{ ∧
{¬a | a ∈ α},⊤} ∨ ∨

a∈α
∇{¬a} ∨ ∇∅

We close α under applications of the Boolean connectives, obtaining a set
of formulas which is a finite Boolean algebra modulo provable equivalence.
Let ϕ be a set of formulas which contains exactly one representing element
for each atom of this Boolean algebra. Then every element a ∈ α is provable
equivalent to a disjunction of formulas in ϕ, and for all b ∈ ϕ and a ∈ α we
either have ⊢H b ≤ a or ⊢H b ≤ ¬a.

It follows from ⊢H ⊤ ≤
∨
ϕ, as has been show in derivation of (∇4),

that ⊢H ⊤ ≤
∨{∇β | β ⊆ ϕ}. So in order to prove that the axiom (∇7) is

derivable in C∇, it suffices to show that for each β ⊆ ϕ there is an disjunct
d of the formula on the right hand side of (9) such that ⊢H ∇β ≤ d. We
make a case distinction:

• If β = ∅, simply take d := ∇β.

• If ∃a ∈ α ∀b ∈ β ⊢H b ≤ ¬a, take d := ∇{¬a}.
• If ∃b ∈ β ∀a ∈ α ⊢H b ≤ ¬a, take d := ∇{ ∧{¬a | a ∈ α},⊤}

.

• Otherwise, we have that ∀b ∈ β ∃a ∈ α. ⊢H b ≤ a and ∀a ∈ α ∃b ∈
β. ⊢H b ≤ a. In this case, simply apply rule (∇1) and obtain ⊢H
∇β ≤ ∇α, so take d := ∇α.

This finishes the proof of the direction from right to left of (7). �
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REMARK 14. Kupke, Kurz and the third author [8] have generalized Theo-
rem 13 to a much wider setting of set functors that preserve weak pullbacks.

4 One-sided Gentzen calculi

In this section we will introduce the cut free, one-sided sequent proof sys-
tem G1∇ for the ∇-presentation of the basic normal modal logic K. G1∇
arises from the classical propositional left-sided calculus adding one modal
rule. We will compare G1∇ with the alternative one-sided sequent proof
system GW∇ introduced by Janin and Walukiewicz [7], show that they are
equivalent, in the sense that the rules of one system are admissible in the
other system, and argue that G1∇ has the advantage of being more suit-
able for generalizations. The language for this calculus is the restriction
L∗ of L where negations can only be applied to proposition letters: every
formula in L is semantically equivalent to some formula of L∗. To see this,
recall that the nabla operator, axiomatized as in the previous section, is
interdefinable with normal modal operations 2 and 3, and every formula
of the basic modal logic K is equivalent to a formula in which negations can
only be applied to proposition letters. Sequents for this calculus are of form
ϕ⇒ ∅, where ϕ is a finite set of formulas in L∗. We often write a instead
of the {a} in case of singletons, and ϕ,ψ instead of ϕ ∪ ψ.

DEFINITION 15. The sequent calculus G1∇ consists of the axiom scheme
p,¬p⇒ ∅ (for p propositional variable) and the following rules:

ϕ,ψ ⇒ ∅V
-l

ϕ,
V
ψ ⇒ ∅

{ϕ, a⇒ ∅|a ∈ ψ}W
-l

ϕ,
W
ψ ⇒ ∅

ϕ⇒ ∅
weak-l ϕ, a⇒ ∅

{ϕΦ ⇒ ∅|Φ ∈ SRD(A)}∇-1 ϕΦ ∈ Φ{∇α|α ∈ A} ⇒ ∅

The nabla rule is to be read as follows: Given A, if for every Φ ∈ SRD(A)
there exists some ϕΦ ∈ Φ such that ϕΦ ⇒ ∅, then {∇α|α ∈ A} ⇒ ∅.

A derivation of ϕ ⇒ ∅ in the system G1∇ is a finite tree, such that
each node is labeled by a sequent: the root is labeled by ϕ⇒ ∅, leaves are
labeled by axioms and every node that is a parent node is labeled by the
conclusion of a rule each premise of which labels exactly one of its children
nodes.

A sequent ϕ ⇒ ∅ is provable in G1∇, notation: ⊢G1∇ ϕ ⇒ ∅, if there
exists a derivation of ϕ⇒ ∅ in G1∇.

A sequent ϕ ⇒ ∅ is valid in the class K of Kripke structures (notation:
|=K ϕ⇒ ∅) if ϕ is not satisfiable in K, i.e. for every model S ∈ K and every
state s in S, there exists some a ∈ ϕ such that S, s 6
 a. Then the next
lemma provides the soundness and the semantic invertibility of the nabla
rule of G1∇:

LEMMA 16. The following are equivalent for every A ∈ PωTωL and every
collection ξ of literals:
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1. {∇α | α ∈ A} ∪ ξ is satisfiable.

2. ξ is satisfiable and for some Φ ∈ SRD(A), ϕ is satisfiable for every
ϕ ∈ Φ.

Proof. Let us show that (1) implies (2): By assumption, ξ is satisfiable
and there exists a model S and a state s in S such that S, s 
 ∇α for
every α ∈ A. For every t ∈ R[s], let ϕt = {a ∈ ⋃

A | S, s 
 a}, and let
Φs = {ϕt | t ∈ R[s]}. By definition, ϕ is satisfiable for all ϕ ∈ Φs, and we
have already checked that Φs ∈ SRD(A) (see Example 6.1). Conversely, let
us assume that ξ is satisfiable and there exists some Φ ∈ SRD(A) such that
for every ϕ ∈ Φ, ϕ is satisfiable at some state sϕ in some model Sϕ. Then
consider the model S which consists of the disjoint union of the models Sϕ
plus one extra point s such that R[s] = {sϕ | ϕ ∈ Φ} and p ∈ V (s) iff p ∈ ξ.
It is routine to verify that S, s satisfies {∇α | α ∈ A} ∪ ξ. �

The following theorem states the soundness and completeness of G1∇
with respect to K. Since G1∇ is formulated without the cut rule, once
completeness has been established, it immediately follows that the cut rule
is redundant.

THEOREM 17 (SOUNDNESS AND COMPLETENESS). For every L∗-
sequent ϕ⇒ ∅,

⊢G1∇ ϕ⇒ ∅ iff |=K ϕ⇒ ∅.

Proof. The proof of soundness is standard, by induction on the depth
of the derivation of ϕ ⇒ ∅. The only case of interest is when the nabla
rule is the last rule applied. In this case it follows from the direction (1
⇒ 2) of Lemma 16. As for completeness, it is shown by induction on the
number n(ϕ) of connectives in {∧,∨,∇} that occur in the elements of ϕ: if
n(ϕ) = 0 then ϕ is a finite collection of literals, and its being non satisfiable
implies that p,¬p ∈ ϕ for some propositional variable. Then a derivation
for ϕ⇒ ∅ has the axiom p,¬p⇒ ∅ at its only leaf followed by applications
of the weakening rule to add literals in ϕ. As for the inductive steps, the
only case of interest is when ϕ = {∇α | α ∈ A}∪ ξ for some finite collection
of literals ξ. From the assumptions and direction (2 ⇒ 1) of Lemma 16, we
get that either ξ is not satisfiable, in which case again we proceed as in the
base case, or ξ is satisfiable and for every Φ ∈ SRD(A) there exists some
ϕΦ such that |=K ϕΦ ⇒ ∅. Since n(ϕΦ) < n(ϕ), by induction hypothesis
⊢G1∇ ϕΦ ⇒ ∅ for every Φ ∈ SRD(A). Then a derivation for our sequent
consists of prolonging all these derivations with an application of the nabla
rule, so as to obtain a proof of {∇α | α ∈ A} ⇒ ∅, followed by applications
of weakening to add up the elements in ξ. �
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4.1 Janin and Walukiewicz’s tableau

Janin and Walukiewicz [7] introduced a tableau system for the modal µ-
calculus based on a language with a family of ∇ modalities. We present
here the propositional fragment of their system, with a single ∇ modality
as a one-sided sequent proof system GW∇ for the same language L∗ of
G1∇, prove that it is complete, and relate it to our one sided system G1∇.
Before introducing GW∇, and as a way of showing its semantic rationale,
let us state the following lemma, whose routine proof is omitted:

LEMMA 18. The following are equivalent for every A ∈ PωTωL, every
model S and every state s of S:

1. S, s 
 {∇α | α ∈ A}.
2. S, s 
 {∇{∧ϕa | a ∈ α} | α ∈ A}, where for every a ∈ ⋃

A,

(10) ϕa = {a} ∪ {
∨
α′ | α′ ∈ A and a /∈ α′}.

COROLLARY 19. The following are equivalent for every A ∈ PωTωL and
every collection ξ of literals:

1. {∇α | α ∈ A} ∪ ξ is satisfiable.

2. ξ is satisfiable and
∧
ϕa is satisfiable for every a ∈ ⋃

A.

Proof. (1 ⇒ 2) follows from Lemma 18. Conversely, assume that for every
a ∈ ⋃

A,
∧
ϕa is satisfiable at some state sa in some model Sa. Then

consider the model S which consists of the disjoint union of the models Sa
plus one extra point s such that R[s] = {sa | a ∈

⋃
A} and s ∈ V (p) iff

p ∈ ξ. It is routine to verify that S, s satisfies {∇α | α ∈ A} ∪ ξ. �

Notice that, given A and a ∈ ⋃
A, S, s 


∧
ϕa iff there exists a choice

function fa : A→ ⋃
A such that a ∈ fa[A] ⊆ {a | S, s 
 a}. Therefore, the

corollary above can be seen as a reformulation of the satisfiability of a set of
nabla formulas (with parameters ranging in A) in terms of the existence of
such choice functions for every a ∈ ⋃

A. This corollary semantically moti-
vates the definition of the rule for ∇ in the system GW∇ that we are about
to introduce: indeed it provides its soundness and semantic invertibility.

DEFINITION 20. The propositional fragment of Janin and Walukiewicz’s
tableaux GW∇ consists of the axioms, the rules for boolean connectives
and the weakening rule that appear in G1∇, plus the following nabla-rule:

ϕa ⇒ ∅
W∇ a ∈ ⋃

A{∇α|α ∈ A} ⇒ ∅

where ϕa is defined as in (10). W∇ is to be read as follows: Given A, if
ϕa ⇒ ∅ for some a ∈ ⋃

A, then {∇α|α ∈ A} ⇒ ∅.
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Provability of sequents in GW∇ (notation: ⊢GW∇ ϕ⇒ ∅) is defined anal-
ogously to provability in G1∇. The following theorem states the soundness
and completeness of GW∇ with respect to K. Since GW∇ is formulated
without the cut rule, once completeness has been established, it immediately
follows that the cut rule is redundant.

THEOREM 21 (SOUNDNESS AND COMPLETENESS). For every L∗-
sequent ϕ⇒ ∅,

⊢GW∇ ϕ⇒ ∅ iff |=K ϕ⇒ ∅.

Proof. It follows the same proof pattern of Proposition 17: The proof of
soundness is by induction on the depth of the derivation of ϕ⇒ ∅. The only
case of interest is when theW∇ is the last rule applied. In this case it follows
from direction (1 ⇒ 2) of Corollary 19. As for completeness, it is shown
by induction on the number n(ϕ) of connectives in {∧,∨,∇} that occur in
the elements of ϕ: if n(ϕ) = 0 we proceed as in Proposition 17. As for the
inductive steps, the only case of interest is when ϕ = {∇α | α ∈ A} ∪ ξ for
some finite collection of literals ξ. From the assumptions and the direction
(2 ⇒ 1) of Corollary 19, we get that either ξ is not satisfiable, in which
case again we proceed as in the base case, or ξ is satisfiable and

∧
ϕa

is not satisfiable for some a ∈ ⋃
A. Since n(ϕa) < n(ϕ), by induction

hypothesis ⊢GW∇ ϕa ⇒ ∅. Then a derivation for our sequent consists of
prolonging this derivation with an application of W∇, so as to obtain a
proof of {∇α | α ∈ A} ⇒ ∅, followed by applications of weakening to add
up the elements in ξ. �

Now we turn to showing that G1∇ and GW∇ are equivalent. From
Theorems 17 and 21 it immediately follows that they derive exactly the same
sequents. Therefore the rules of one system, being sound, are admissible in
the other system, which means that if the premises of the application of one
rule are provable in one system, then its conclusion is also provable in that
system. However what we are going to show is a slightly stronger result,
namely that G1∇ simulates GW∇, i.e. that we can effectively transform a
proof of the premises of an application of W∇ in G1∇ into a proof of its
conclusions. The converse direction is non constructive. We will return to
this point in the conclusions. However, we show admissibility of the rule
∇-1 in GW∇ to clarify how the two rules relate.

LEMMA 22. G1∇ and GW∇ are equivalent.

Proof. As for showing that G1∇ simulates GW∇, assume that ϕa ⇒ ∅ is
provable in G1∇ for some a ∈ ⋃

A and fix Φ ∈ SRD(A). We need to show
that there exists some ϕ ∈ Φ such that ϕ ⇒ ∅ is provable in G1∇. Since
a ∈ ⋃

A, then a ∈ α for some α ∈ A. Since α ∈ Φ, then a ∈ ϕ for some
ϕ ∈ Φ. To finish the proof, let us show that ϕ ⇒ ∅ is provable in G1∇:
Since α′ ∈ Φ for every α′ ∈ A such that a /∈ α′, then for every such α′ there
exists some aα′ ∈ α′ such that aα′ ∈ ϕ. Let ϕ′ = {a} ∪ {aα′ | α′ ∈ A and
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a /∈ α′}. By construction, ϕ′ ⊆ ϕ. Moreover, ϕ′ is not satisfiable, for if it
was, then so would be

∧
ϕa, against our assumption and the soundness of

G1∇. Hence, by the completeness of G1∇, ϕ′ ⇒ ∅ is provable in G1∇ and
by applying weakening we obtain a proof of ϕ⇒ ∅.

As for showing that∇-1 is admissible in GW∇, assume that for every Φ ∈
SRD(A), ϕ⇒ ∅ is provable in GW∇ for some ϕ ∈ Φ and let us show that
ϕa ⇒ ∅ is provable in GW∇ for some a ∈ ⋃

A. Suppose for contradiction
that

∧
ϕa is satisfiable for every a ∈ ⋃

A. Then by Corollary 19,
∧
α∈A∇α

is satisfiable. Then by Lemma 16, there exists some Φ ∈ SRD(A) such
that

∧
ϕ is satisfiable for every ϕ ∈ Φ, against the assumptions and the

soundness of GW∇. �

Let us finish this section with some comparing remarks on GW∇ and
G1∇: we saw that the definition of the rule W∇ in GW∇ is grounded in
the notion of satisfiability of a set of ∇ formulas, so it more directly reflects
its semantics; moreover it has only one premise, so it could be easier to work
with in practical situations, e.g. automated reasoning.

On the other hand, the definition of the set ϕa relies on taking disjunc-
tions of sets of type α ∈ TωL. This move is certainly legal in the special
setting we have adopted in this paper, where T coincides with the powerset
functor, but is no more an option in the general context of a coalgebraic ∇
language based on (almost arbitrary) T . This problem does not occur in
the nabla rule of G1∇, and indeed the system G1∇ can be imported in a
general coalgebraic context.

5 Two-sided Gentzen calculus

One-sided Gentzen calculi are not available for negation-free languages. In
this section we focus again on the negation-free fragment of the basic modal
logic and introduce a two-sided Gentzen calculus G2∇ for it. Sequents for
this calculus are of form ϕ ⇒ ψ, ϕ,ψ being finite sets of L+ formulas. We
will show that G2∇ is sound, complete but not cut-free.

DEFINITION 23. The sequent calculus G2∇ consists of the axiom scheme
a⇒ a and the following rules:

ϕ, θ ⇒ ψV
-l

ϕ,
V
θ ⇒ ψ

ϕ⇒ θ, ψW
-r

ϕ⇒ W
θ, ψ

{ϕ⇒ a, ψ | a ∈ θ}V
-r

ϕ⇒ V
θ, ψ

{ϕ, a⇒ ψ | a ∈ θ}W
-l

ϕ,
W
θ ⇒ ψ

ϕ⇒ ψ
weak-r

ϕ⇒ ψ, a

ϕ⇒ ψ
weak-l

ϕ, a⇒ ψ

ϕ⇒ ψ, a ϕ′, a⇒ ψ′
cut

ϕ,ϕ′ ⇒ ψ,ψ′
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{ϕ⇒ θ|(ϕ, θ) ∈ S
Φ∈SRD(A)

YΦ}
∇ YΦ ∈ Φ ⊲⊳ ΘΦ for all Φ ∈ SRD(A){∇α|α ∈ A} ⇒ S

Φ∈SRD(A)

{∇β|β ∈ ΘΦ}

The nabla rule is to be read as follows: Given A, if for every Φ ∈ SRD(A)
there exists some ΘΦ ∈ TωPωL and some YΦ ∈ Φ ⊲⊳ ΘΦ such that ϕ ⇒ θ
for every (ϕ, θ) ∈ YΦ, then the conclusion follows. (For the definition of ⊲⊳,
see Example 6(2).)

Provability in G2∇ (notation: ⊢G2∇ ϕ⇒ ψ) is defined in the usual way.
ϕ⇒ ψ is valid in the class K of Kripke structures (notation: |=K ϕ⇒ ψ) if
for every model S ∈ K and every state s in S, S, s 


∧
ϕ implies S, s 


∨
ψ.

Then the next proposition provides the soundness of G2∇ w.r.t. the class
K of Kripke models:

THEOREM 24 (SOUNDNESS). For every L+-sequent ϕ⇒ ψ,

if ⊢G2∇ ϕ⇒ ψ then |=K ϕ⇒ ψ.

Proof. We will focus on showing that the ∇ rule is sound: the proof is then
analogous to the previous ones. Let us assume that for every Φ ∈ SRD(A)
there exists some Θ = ΘΦ ∈ TωPωL and some Y = YΦ ∈ Φ ⊲⊳ Θ such that,
for every (ϕ, θ) ∈ Y and every model T and state t in T, if T, t 


∧
ϕ then

T, t 

∨
θ; moreover assume that S, s 


∧
α∈A∇α for some model S and

some state s of S. We need to show that there exists some β such that
β ∈ Θ and S, s 
 ∇β.

In particular, let ϕs′ = {a ∈ ⋃
A | s′ 
 a} for every s′ ∈ R[s] and let

Φs = {ϕ′s | s′ ∈ R[s]}. Then S, s′ 

∧
ϕs′ and, as it was shown in Example

6, Φ ∈ SRD(A). Therefore, by assumptions, there exist Θ and Y as above.
Let us take β =

⋃
Θ ∩⋃

s′∈R[s] Th(s
′): by definition, for every b ∈ β there

is some θ ∈ Θ such that b ∈ θ. Conversely, fix θ ∈ Θ; since Y ∈ Φ ⊲⊳ Θ,
(ϕs′ , θ) ∈ Y for some s′ ∈ R[s]; hence S, s′ 
 b for some b ∈ θ. So by
definition, b ∈ β. This completes the proof that β ∈ Θ. As for showing
that S, s 
 ∇β: by definition, for every b ∈ β there is some s′ ∈ R[s] such
that s′ 
 b. Conversely, fix s′ ∈ R[s]; since Y ∈ Φ ⊲⊳ Θ, then (ϕs′ , θ) ∈ Y
for some θ ∈ Θ such that for every every model T and state t in T, if
T, t 


∧
ϕs′ then T, t 


∨
θ. Since S, s′ 


∧
ϕs′ , then there is some b ∈ θ

such that S, s′ 
 b. �

EXAMPLE 25. The following deductions are instances of applications of
the nabla rule:

(i)
a, b⇒ a a, b⇒ b

∇{a},∇{b} ⇒ ∇{a, b}

Here A = {{a}, {b}} and Φ = {{a, b}} is the only slim redistribution
of A. ΘΦ = {{a}, {b}}, and β = {a, b} is the only β ∈ ΘΦ.
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(ii) ∅⇒ ⊤ ∅
∅⇒ ∇∅,∇{⊤}

where A = ∅, Φ1 = {∅} and Φ2 = ∅ are the only slim redistributions
of A, ΘΦ1 = {{⊤}} and ΘΦ2 = ∅, and β1 = {⊤} and β2 = ∅. We
have proved axiom (∇5).

(iii)
∅⇒ ϕ ∅

∅⇒ {∇β|β ⊆ ϕ}
where A = ∅, Φ1 = {∅} and Φ2 = ∅ are the only slim redistributions
of A, ΘΦ1 = {ϕ} and ΘΦ2 = ∅, and {β|β ∈ {ϕ}} = {β|β ⊆ ϕ} \ {∅}
and {β|β ∈ ∅} = {∅}. We have simulated the (∇4) rule.

(iv) ⊥ ⇒ ∅
∇{⊥} ⇒ ∅

where A = {{⊥}}, Φ = {{⊥}} is the only slim redistribution of A,
and ΘΦ = {∅}. Then there is no β ∈ ΘΦ. We have proved an instance
of axiom (∇2).

THEOREM 26 (COMPLETENESS). G2∇ is complete w.r.t. the class K
of Kripke models.

Proof. It is enough to show that the Carioca axioms are provable in G2∇
and that the Carioca rule (∇1) can be simulated in G2∇. The completeness
of G2∇ then follows from the completeness result for the Carioca axioma-
tization. Since the rule (∇4) is derivable from the rest of Carioca axiom-
atization, we do not need to simulate it directly. However, as shown by
Example 25(iii), it can be simulated by the ∇ rule which can be useful in
further generalizations.

As for (∇1), assume that α and β are such that for every a ∈ α there
exists some b ∈ β such that a ⇒ b is provable in G2∇ and that for every
b ∈ β there exists some a ∈ α such that a ⇒ b is provable in G2∇. We
need to show that ∇α ⇒ ∇β is provable in G2∇. Let A = {α} and fix
Φ ∈ SRD(A). Then it is enough to find some Θ for which there exists some
Y ∈ Φ ⊲⊳ Θ such that ϕ⇒ θ is provable in G2∇ for every (ϕ, θ) ∈ Y . Take
Θ = {{b} | b ∈ β}. Clearly, if β′∈Θ, then β′ = β. The proof is complete
if we show that (a) for every ϕ ∈ Φ there is some θ ∈ Θ such that ϕ ⇒ θ
is provable in G2∇ and (b) for every θ ∈ Θ there is some ϕ ∈ Φ such that
ϕ⇒ θ is provable in G2∇. (a): Fix ϕ ∈ Φ; since α∈Φ then a ∈ ϕ for some
a ∈ α. By assumption, a ⇒ b is provable in G2∇ for some b ∈ β. Take
θ = {b}: by applying weakening, we get the proof of ϕ ⇒ θ we need. (b):
Fix θ = {b} ∈ Θ. By assumption, a⇒ b is provable in G2∇ for some a ∈ α.
Since α∈Φ then a ∈ ϕ for some ϕ ∈ Φ. By applying weakening, we get the
proof of ϕ⇒ θ we need.

As for (∇2), we need to find a proof of the sequent {∇α|α ∈ A} ⇒
{∇{∧ϕ|ϕ ∈ Φ}|Φ ∈ SRD(A)}. For every Φ ∈ SRD(A) take ΘΦ =
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{{∧ϕ}|ϕ ∈ Φ} and YΦ = {(ϕ, {∧ϕ})|ϕ ∈ Φ}. Clearly, YΦ ∈ Φ ⊲⊳ ΘΦ.
Then the following is a correct instance of the ∇ rule, whose premises are
all provable:

{ϕ⇒ ∧
ϕ|(ϕ, {∧ϕ}) ∈ ⋃

Φ∈SRD(A)

YΦ}

{∇α|α ∈ A} ⇒ {∇{∧ϕ|ϕ ∈ Φ}|Φ ∈ SRD(A)}
indeed for every Φ, if β∈ΘΦ then β = {∧ϕ|ϕ ∈ Φ}.

As for (∇3), we need to find a proof of the sequent ∇{∨ψ|ψ ∈ Ψ} ⇒
{∇β|β∈Ψ}. Here A = {{∨ψ|ψ ∈ Ψ}}. For every Φ ∈ SRD(A), let Θ = Ψ
and Y = {({∨ψ}, ψ)|ψ ∈ Ψ}. Then Y ∈ Φ ⊲⊳ Θ, and the following is
a correct instance of the ∇ rule whose premises are all provable:

{∨ψ ⇒ ψ|({∨ψ}, ψ) ∈ ⋃
Φ∈SRD(A)

YΦ}

∇{∨ψ|ψ ∈ Ψ} ⇒ ∨{∇β|β∈Ψ}
�

REMARK 27. G2∇ is not cut-free.
We will show that our definition of ∇ rule doesn’t yield a cut-free system,
in particular we show that the following sequent

∇{p ∨ q} ⇒ ∇{p,⊤},∇{q}
is provable in G2∇ but not in the system obtained from G2∇ by removing
the cut rule.

∇{p ∨ q} ⇒ ∇{p,⊤},∇{q} is provable in G2∇: Let

p, q ⇒ p,⊤ p⇒ p q ⇒ ⊤
Π1 = ∇ ∇{p, q} ⇒ ∇{p,⊤}

p⇒ p p⇒ ⊤
Π2 = ∇ ∇{p} ⇒ ∇{p,⊤}

in the proof

p ∨ q ⇒ p, q∇ ∇{p ∨ q} ⇒ ∇{p, q},∇{p},∇{q} Π1
cut ∇{p ∨ q} ⇒ ∇{p,⊤},∇{p},∇{q} Π2

cut ∇{p ∨ q} ⇒ ∇{p,⊤},∇{q}

∇{p∨q} ⇒ ∇{p,⊤},∇{q} is not provable in the system obtained by remov-
ing the cut rule from G2∇:

Suppose there was such a proof. Then its last step must be either an
application of the weakening, or of the ∇ rule. None of ∇{p ∨ q} ⇒ ∅,
∇{p ∨ q} ⇒ ∇{q}, ∇{p ∨ q} ⇒ ∇{p,⊤} is a valid, and hence a provable
sequent, thus the last step must be a ∇ inference. Then A = {{p∨ q}} and
the only Φ ∈ SRD(A) is again {{p ∨ q}}. In that case for some ΘΦ
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(11) {{p,⊤}, {q}} = {β|β ∈ ΘΦ}
Notice that (11) means that

⋃{{p,⊤}, {q}} =
⋃

ΘΦ. Let us show that
there is no ΘΦ satisfying (11). Let us check all the possibilities for θ ∈ ΘΦ,
i.e. all nonempty subsets of {p, q,⊤}:

Singletons {p}, {q}, and {⊤} are excluded since there is no element both
in {p,⊤} and in {q}. {p,⊤} is also excluded since it does not contain
q. From the remaining three {p, q}, {⊤, q}, and {p, q,⊤}, no combination
would work as ΘΦ. Singletons {{p, q}}, {{⊤, q}} wouldn’t suffice. For
all pairs, the singleton {{p, q,⊤}}, and whole {{p, q}, {⊤, q}, {p, q,⊤}}, we
always have {p, q}∈ΘΦ which is not allowed by (11).

This sequent is a key counterexample which shows that in the ∇ rule,
the right part of the conclusion is in a sense too robust. Notice, that⋃
Φ∈SRD(A)

{∇β|β ∈ ΘΦ} is in fact given by a union of maximal slim redistri-

butions of ΘΦ. However, this choice was motivated by semantical soundness
of the rule and within our framework it is the rule one comes up with. It
seems that to obtain a cut-free rule we would need to go much deeper in
our structural analysis.

6 Conclusions and further directions

Coalgebraic generalization As we remarked early on, both the new
Hilbert-style axiomatization presented here and the Gentzen systems G1∇
and G2∇ are designed to keep the roles of T and P separated. This paves
the way to further generalizations and applications of these proof systems to
the context of coalgebraic modal languages associated with arbitrary weak-
pullback preserving Set-endofunctors, defined in Moss’ style [11]. As a first
step in this direction, Kupke, Kurz and the third author [8] showed that
the obvious generalization of our system C∇ to such a general setting is
indeed sound and complete in the general case. It would be of interest to
see whether such generalizations can be extended to a setting of coalgebraic
fixpoint logics (note that the system GW∇ is part of a tableaux system for
the modal µ-calculus.
Complexity In the special setting of this paper, where A ∈ PT L is finite,
both G1∇ and GW∇ produce a PSPACE decision procedure. Indeed, when
read backwards, all the rules strip their conclusions of one connective or
modal operator. This implies that the length of each branch in a proof search
tree is linear in the size of the input sequent and the whole computation can
be performed by alternating machines working in linear time. Therefore this
procedure is in PSPACE. For a reference to standard decision and proof-
search procedures for modal logics see [10, 5].
Refinements The results presented in this paper can be improved further:
in particular, we intend to investigate more on a cut-free version of G2∇,
and on a constructive simulation of G1∇ in GW∇.
Expanding with the semantic dual of nabla It could be of interest to
undertake an analogous independent proof-theoretic study of the coalgebraic
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operator ∆ semantically defined as ∆α ≡ ¬∇¬α, where ¬α := {¬a | a ∈ α}.
Using the standard modal language, ∆ can be seen as a defined operator:

(12) ∆α = 3(
∧
α) ∨

∨
2α,

where 2α denotes the set {2a | a ∈ α}.
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