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Abstract

Any strict partial order R on a nonempty set X defines a function θR which associates
to each strict partial order S ⊆ R on X the strict partial order θR(S) = R ◦ S on
X. Owing to the strong relationships between Alexandroff TD derivative operators
and strict partial orders, this paper firstly calls forth the links between the Cantor-
Bendixson ranks of Alexandroff TD topological spaces and the greatest fixpoints of
the θ-like functions defined by strict partial orders. It secondly considers a modal
logic with modal operators 2 and 2? respectively interpreted by strict partial orders
and the greatest fixpoints of the θ-like functions they define. It thirdly addresses the
question of the complete axiomatization of this modal logic.
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1 Introduction

The τ -derived set dτ (A) of a set A ⊆ X of points is the set of all limit points
of A with respect to a given topology τ on a nonempty set X. Introduced by
Cantor, the derivative operator dτ possesses interesting properties. In partic-
ular, a set A ⊆ X of points is τ -closed iff dτ (A) ⊆ A. A consequence of the
entire description of τ in terms of derived sets is the possibility to use derivative
operators d as the primitive notion in topology. What happens if we iterate the
derivative operator dτ , considering the sequence dτ , dτ ◦ dτ , . . . of operators?
If τ is TD then each element dατ of this sequence is a derivative operator. Now,
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Carlos, C Tulipán, s/n 28933 Móstoles, SPAIN; uridia@ia.urjc.es.



72 A Modal Logic Interpreted over Iterated Strict Partial Orders

a question arises: what is the link between the topologies τα corresponding
to the elements dατ of the sequence? The answer is simple: the topologies τα
are getting finer when α increases. Since the lattice of all TD topologies on
a given nonempty set X is complete, this iteration process should stop. The
Cantor-Bendixson rank of (X, τ) is then defined as the least ordinal α such that
dτ (dατ (X)) = dατ (X). A consequence of Tarski’s fixpoint theorem [21] is that
there exists an ordinal α? such that α ≤ α? and dτ ◦ dα

?

τ = dα
?

τ , the greatest
fixpoint of dτ .
Owing to the strong relationships between Alexandroff TD derivative operators
and strict partial orders, the notion of rank of a strict partial order can also be
defined. More precisely, any strict partial order R on a given nonempty set X
defines a function θR which associates to each strict partial order S ⊆ R on X
the strict partial order θR(S) = R ◦ S on X. What happens if we iterate the
function θR, considering the sequence R, θR(R), . . . of partial orders? Simply,
the partial orders θαR(R) are getting smaller when α increases. Since the lattice
of all strict partial orders on X is complete, this iteration process should stop.
And again, there exists an ordinal α? — called the rank of R — such that
θR(θα

?

R (R)) = θα
?

R (R), the greatest fixpoint of θR. Moreover, if R is the strict
partial order on X corresponding to a given Alexandroff TD derivative operator
d, then θα

?

R (R) is a strict partial order on X corresponding to the derivative
operator dα

?

τ considered above. Hence, it is natural to consider a modal logic
with modal operators 2 and 2? respectively interpreted by strict partial orders
and the greatest fixpoints of the θ-like functions they define. The goal of this
paper is to address the question of its complete axiomatization.
Sections 2, 3 and 4 consider, on one hand, the strong relationships between
topologies and derivative operators and, on the other hand, the strong rela-
tionships between Alexandroff TD derivative operators and strict partial orders.
Most of the results they contain are well-known. See [8,9,11] for more on these.
Sections 5, 6 and 7 present the above-mentioned modal logic and axiomatize
it. The proof of its completeness is based on the step-by-step method.

2 Topologies and derivative operators

In this section, we present topologies and derivative operators. We also call
forth the fact that topologies and derivative operators are the two sides of the
same medal. See [8,9,11] for more on these.

2.1 Topologies

A topology on X is a set τ of subsets of X such that: (i) ∅ ∈ τ , (ii) X ∈ τ ,
(iii) each union of members of τ is in τ , (iv) each finite intersection of members
of τ is in τ . We shall say that A ⊆ X is τ -closed iff X \A ∈ τ . τ is said to be
TD iff for all x ∈ X, there exists A,B ∈ τ such that A \ B = {x}. We shall
say that τ is Alexandroff iff each intersection of members of τ is in τ . Let ≤
be the binary relation between topologies on X defined by τ ≤ τ ′ iff τ ⊆ τ ′. It
follows immediately from the definition that for all topologies τ, τ ′ on X, if τ
is TD and τ ≤ τ ′ then τ ′ is TD.



Balbiani and Uridia 73

Example 2.1 If X = {x, y} then let τ = {∅, {x}, X}, the Sierpiński space.
Obviously, τ is a topology on X such that the τ -closed subsets of X are ∅, {y}
and X. Moreover, since {x} \ ∅ = {x} and X \ {x} = {y}, τ is TD. Finally,
since X is finite, τ is Alexandroff.

Given a topology τ on X, let Lτ be the set of all topologies τ ′ on X such
that τ ≤ τ ′. Remark that the least element of Lτ is τ and the greatest element
of Lτ is the topology P(X). Moreover, the least upper bound of a family {τ ′i :
i ∈ I} in Lτ is the intersection of all τ ′ ∈ Lτ such that

⋃
{τ ′i : i ∈ I} ⊆ τ ′ (note

that the collection of all such τ ′ is nonempty, seeing that the topology P(X)
belongs to it) and the greatest lower bound of a family {τ ′i : i ∈ I} in Lτ is⋂
{τ ′i : i ∈ I}. Hence, (Lτ ,≤) is a complete lattice.

2.2 Derivative operators

A derivative operator on X is a function d: P(X)→ P(X) such that: (i) d(∅) =
∅, (ii) for all A,B ⊆ X, d(A∪B) = d(A)∪ d(B), (iii) for all A ⊆ X, d(d(A)) ⊆
d(A) ∪ A, (iv) for all x ∈ X, x 6∈ d({x}). A ⊆ X is said to be d-closed iff
d(A) ⊆ A. We shall say that d is TD iff for all A ⊆ X, d(d(A)) ⊆ d(A). d
is said to be Alexandroff iff for all x ∈ X, there exists a greatest A ⊆ X such
that A is d-closed and x 6∈ A. Let ≤ be the binary relation between derivative
operators on X defined by d ≤ d′ iff for all A ⊆ X, d(A) ⊆ d′(A). It follows
immediately from the definition and from the results stated in Section 2.3 that
for all derivative operators d, d′ on X, if d ≤ d′ and d′ is TD then d is TD.

Example 2.2 If X = {x, y} then let d(∅) = ∅, d({x}) = {y}, d({y}) = ∅
and d(X) = {y}. Obviously, d is a derivative operator on X such that the
d-closed subsets of X are ∅, {y} and X. Moreover, since d(d(∅)) ⊆ d(∅),
d(d({x})) ⊆ d({x}), d(d({y})) ⊆ d({y}) and d(d(X)) ⊆ d(X), d is TD. Finally,
since X is finite, d is Alexandroff.

Given a derivative operator d on X, let Ld be the set of all derivative
operators d′ on X such that d′ ≤ d. Remark that the least element of Ld is the
derivative operator d∅: P(X)→ P(X) such that for all A ⊆ X, d∅(A) = ∅ and
the greatest element of Ld is d. What about the least upper bound of a family
{d′i: i ∈ I} in Ld and the greatest lower bound of a family {d′i: i ∈ I} in Ld?
We do not know any representation of them using set-theoretic operations of
the complete Boolean algebra of all subsets of X. Nevertheless, by the results
stated in Sections 2.1 and 2.3, (Ld,≤) is a complete lattice.

2.3 Topologies v. derivative operators

Given a topology τ on X, let dτ be the function dτ : P(X)→ P(X) such that
for all A ⊆ X, dτ (A) = {x: x is a τ -limit point of A} where x ∈ X is a τ -limit
point of A ⊆ X iff for all B ∈ τ , if x ∈ B then (B \ {x}) ∩ A 6= ∅. Remark
that dτ is a derivative operator on X such that for all A ⊆ X, A is dτ -closed
iff A is τ -closed. Moreover, (i) dτ is TD iff τ is TD, (ii) dτ is Alexandroff iff τ
is Alexandroff, (iii) dτ ′ ≤ dτ iff τ ≤ τ ′.



74 A Modal Logic Interpreted over Iterated Strict Partial Orders

Example 2.3 If X = {x, y} and τ is the topology on X considered in Exam-
ple 2.1 then dτ is the derivative operator on X considered in Example 2.2.

Given a derivative operator d on X, let τd be the set of subsets of X such
that for all A ⊆ X, A ∈ τd iff X \ A is d-closed. Remark that τd is a topology
on X such that for all A ⊆ X, A is τd-closed iff A is d-closed. Moreover, (i) τd
is TD iff d is TD, (ii) τd is Alexandroff iff d is Alexandroff, (iii) τd′ ≤ τd iff
d ≤ d′.

Example 2.4 If X = {x, y} and d is the derivative operator on X considered
in Example 2.2 then τd is the topology on X considered in Example 2.1.

To continue, let us further remark that τdτ = τ and dτd = d. Given a
topology τ on X, let f be the function f : Lτ → Ldτ such that f(τ ′) = dτ ′ .
By the results stated above, f is an anti-isomorphism between (Ldτ ,≤) and
(Lτ ,≤). Given a derivative operator d on X, let f be the function f : Ld → Lτd
such that f(d′) = τd′ . By the results stated above, f is an anti-isomorphism
between (Lτd ,≤) and (Ld,≤).

3 Alexandroff TD derivative operators and strict partial
orders

In this section, we present Alexandroff TD derivative operators and strict partial
orders. We also call forth the fact that Alexandroff TD derivative operators and
strict partial orders are the two sides of the same medal. See [8,9,11] for more
on these. In the sequel, if R is a binary relation on a nonempty set X then for
all x ∈ X, R(x) and R−1(x) will respectively denote the set of all y ∈ X such
that xRy and the set of all y ∈ X such that yRx. Moreover, for all A ⊆ X,
R(A) and R−1(A) will respectively denote the set

⋃
{R(x): x ∈ A} and the set⋃

{R−1(x): x ∈ A}.

3.1 Alexandroff TD derivative operators

Given an Alexandroff TD derivative operator d on X, let LAd be the set of all
Alexandroff TD derivative operators d′ on X such that d′ ≤ d. Remark that the
least element of LAd is the derivative operator d∅ considered in Section 2.2 and
the greatest element of LAd is d. What about the least upper bound of a family
{d′i: i ∈ I} in LAd and the greatest lower bound of a family {d′i: i ∈ I} in LAd ?
We do not know any representation of them using set-theoretic operations of
the complete Boolean algebra of all subsets of X. Nevertheless, by the results
stated in Sections 3.2 and 3.3, (LAd ,≤) is a complete lattice.

3.2 Strict partial orders

A strict partial order on X is a binary relation R on X such that: (i) for all
x ∈ X, x 6∈ R(x), (ii) for all x ∈ X, R(R(x)) ⊆ R(x). We shall say that
A ⊆ X is R-closed iff R−1(A) ⊆ A. Let ≤ be the binary relation between
strict partial orders on X defined by R ≤ R′ iff R ⊆ R′. Given a strict partial
order R on X, let LR be the set of all strict partial orders R′ on X such that
R′ ≤ R. Remark that the least element of LR is the strict partial order ∅ and
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the greatest element of LR is R. Moreover, the least upper bound of a family
{R′i: i ∈ I} in LR is the transitive closure of

⋃
{R′i: i ∈ I} and the greatest

lower bound of a family {R′i: i ∈ I} in LR is
⋂
{R′i: i ∈ I}. Hence, (LR,≤) is

a complete lattice.

3.3 Alexandroff TD derivative operators v. strict partial orders

Given an Alexandroff TD derivative operator d on X, let Rd be the binary
relation on X such that for all x, y ∈ X, xRdy iff x ∈ d({y}). Remark that
Rd is a strict partial order on X such that for all A ⊆ X, A is Rd-closed iff
A is d-closed. Moreover, Rd ≤ Rd′ iff d ≤ d′. Given a strict partial order R
on X, let dR be the function dR: P(X) → P(X) such that for all A ⊆ X,
dR(A) = R−1(A). Remark that dR is an Alexandroff TD derivative operator
on X such that for all A ⊆ X, A is dR-closed iff A is R-closed. Moreover,
dR ≤ dR′ iff R ≤ R′. To continue, let us further remark that dRd = d and
RdR = R. Given an Alexandroff TD derivative operator d on X, let f be the
function f : LAd → LRd such that f(d′) = Rd′ . By the results stated above, f
is an isomorphism between (LRd ,≤) and (LAd ,≤). Given a strict partial order
R on X, let f : LR → LAdR such that f(R′) = dR′ . By the results stated above,

f is an isomorphism between (LAdR ,≤) and (LR,≤).

4 Cantor-Bendixson ranks

In this section, we present Cantor-Bendixson ranks of Alexandroff TD derivative
operators and strict partial orders.

4.1 Cantor-Bendixson ranks of Alexandroff TD derivative
operators

Given an Alexandroff TD derivative operator d on X, let θd be the function θd:
Ld → Ld such that for all d′ ∈ Ld, θd(d′) = d ◦ d′, i.e. θd(d

′) is the function
θd(d

′): P(X)→ P(X) such that for all A ⊆ X, θd(d
′)(A) = d(d′(A)). Clearly,

the function θd is monotonic. Since (Ld,≤) is a complete lattice, the function
θd has a least fixpoint lfp(θd) and a greatest fixpoint gfp(θd). Obviously, lfp(θd)
is the derivative operator d∅ considered in Section 2.2. So, let us concentrate
on gfp(θd). A consequence of Tarski’s fixpoint theorem [21] is that gfp(θd) is
the least upper bound of the family {d′: d′ ≤ θd(d′)} in Ld. Next, we give the
well-known characterization of gfp(θd) in terms of ordinal powers of θd. For all
ordinals α, we inductively define θd↓α as follows:

• θd↓0 is d,

• for all successor ordinals α, θd↓α is θd(θd↓(α− 1)),

• for all limit ordinals α, θd↓α is the greatest lower bound of the family {θd↓β:
β ∈ α} in Ld.

The next result follows from the definition of θd↓α as being the greatest lower
bound of the family {θd↓β: β ∈ α} in Ld for each limit ordinal α: (i) for all
x, y ∈ X, x ∈ θd↓α({y}) iff for all ordinals β, if β ∈ α then x ∈ θd↓β({y}),
(ii) for all A ⊆ X, θd↓α(A) =

⋂
{θd↓β(A): β ∈ α}. The next result is,
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again, a consequence of Tarski’s fixpoint theorem [21]: (i) for all ordinals α,
gfp(θd) ≤ θd↓α, (ii) there exists an ordinal α such that gfp(θd) = θd↓α. The
least ordinal α such that θd↓α = gfp(θd) is called the Cantor-Bendixson rank
of d.

Example 4.1 If X = Z then let dZ be the derivative operator on X defined by
dZ(A) = {x: there exists y ∈ X such that x <Z y and y ∈ A} for each A ⊆ X.
Obviously, θdZ(θdZ↓ω) = θdZ↓ω. Moreover, no finite iteration of θdZ gives the
greatest fixpoint. Hence, the Cantor-Bendixson rank of dZ is ω.

Remark that the Cantor-Bendixson rank of d does not always coincide with
the usual Cantor-Bendixson rank of the space X. Actually, it is the supremum
of the Cantor-Bendixson ranks of all subspaces of X.

4.2 Cantor-Bendixson ranks of strict partial orders

Given a strict partial order R on X, let θR be the function θR: LR → LR such
that for all R′ ∈ LR, θR(R′) = R ◦ R′, i.e. θR(R′) is the binary relation on
X such that for all x, y ∈ X, xθR(R′)y iff there exists z ∈ X such that xRz
and zR′y. Clearly, the function θR is monotonic. Since (LR,≤) is a complete
lattice, the function θR has a least fixpoint lfp(θR) and a greatest fixpoint
gfp(θR). Obviously, lfp(θR) is the strict partial order ∅. So, let us concentrate
on gfp(θR). A consequence of Tarski’s fixpoint theorem [21] is that gfp(θR) is
the least upper bound of the family {R′: R′ ≤ θR(R′)} in LR. Next, we give
the well-known characterization of gfp(θR) in terms of ordinal powers of θR.
For all ordinals α, we inductively define θR↓α as follows:

• θR↓0 is R,

• for all successor ordinals α, θR↓α is θR(θR↓(α− 1)),

• for all limit ordinals α, θR↓α is the greatest lower bound of the family {θR↓β:
β ∈ α} in LR.

The next result follows from the definition of θR↓α as being the greatest lower
bound of the family {θR↓β: β ∈ α} in LR for each limit ordinal α: (i) for
all x, y ∈ X, xθR↓αy iff for all ordinals β, if β ∈ α then xθR↓βy, (ii) for all
A ⊆ X, θR↓α−1(A) ⊆

⋂
{θR↓β−1(A): β ∈ α}. The next result is, again, a

consequence of Tarski’s fixpoint theorem [21]: (i) for all ordinals α, gfp(θR) ≤
θR↓α, (ii) there exists an ordinal α such that gfp(θR) = θR↓α. The least ordinal
α such that θR↓α = gfp(θR) is called the Cantor-Bendixson rank of R.

Example 4.2 If X = Q then let RQ be the strict partial order on X defined
by xRQy iff x <Q y for each x, y ∈ X. Obviously, θRQ(θRQ↓0) = θRQ↓0. Hence,
the Cantor-Bendixson rank of RQ is 0.

4.3 Alexandroff TD derivative operators v. strict partial orders

Let d be an Alexandroff TD derivative operator on X and R be a strict partial
order on X such that for all x, y ∈ X, xRy iff x ∈ d({y}) and for all A ⊆ X,
d(A) = R−1(A). By the results stated in Sections 4.1 and 4.2, one can prove by
induction on the ordinal α that (i) for all x, y ∈ X, xθR↓αy iff x ∈ θd↓α({y}),
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Fig. 1. The relational structure (Xk, <k).

(ii) for all A ⊆ X, θd↓α(A) ⊇ θR↓α−1(A). Let αd be the Cantor-Bendixson
rank of d and αR be the Cantor-Bendixson rank of R. The above considerations
prove that (i) for all x, y ∈ X, xθR↓αRy iff x ∈ θd↓αd({y}), (ii) for all A ⊆ X,
θd↓αd(A) ⊇ θR↓αR−1(A). Example 4.3 shows that the last inclusion can be
strict.

Example 4.3 For all k ∈ N, let Xk = {xk, yk} ∪ {zi,jk : i, j ∈ N are such that
0 ≤ i ≤ j} and <k be the least transitive relation on Xk such that: (i) for all
i, j ∈ N such that 0 ≤ i ≤ j, xk <k z

i,j
k , (ii) for all i1, j1, i2, j2 ∈ N such that

0 ≤ i1 ≤ j1 and 0 ≤ i2 ≤ j2, zi1,j1k <k z
i2,j2
k iff i1 < i2 and j1 = j2, (iii) for

all i, j ∈ N such that 0 ≤ i ≤ j, zi,jk <k yk. See Figure 1. Take X =
⋃
{Xk:

k ∈ N}. Let d be the function d: P(X) → P(X) such that for all A ⊆ X,
d(A) = {x: there exists y ∈ X such that x < y and y ∈ A} and R be the least
transitive relation on X such that: (i) for all k ∈ N, <k⊆ R, (ii) for all k, l ∈ N,
if k < l then xkRxl. Obviously, d is a derivative operator on X and R is a
strict partial order on X. Moreover, the Cantor-Bendixson ranks of d and R
are both equal to ω + ω. Finally, θd↓(ω + ω) is not the derivative operator d∅
considered in Section 2.2 and θR↓(ω + ω) is the strict partial order ∅.

5 A modal logic

In this section, we present a modal logic with modal operators 2 and 2?.
Section 5.2 presents the relational semantics where 2 and 2? are respectively
interpreted by strict partial orders and the greatest fixpoints of the θ-like func-
tions they define whereas Section 5.3 presents the topological semantics where
2 and 2? are respectively interpreted by Alexandroff TD derivative operators
and the greatest fixpoints of the θ-like functions they define. Note that by
1944, McKinsey and Tarski [17] had already given an interpretation of 2 in
terms of derivative operators. For more on this, see also [3,11,19]. We assume
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the reader is at home with tools and techniques in modal logic; see [4,6,14] for
more on these.

5.1 Syntax

The language is defined using a countable set BV of Boolean variables (with
typical members denoted by p, q, . . .). We inductively define the set f(BV ) of
formulas (with typical members denoted by φ, ψ, . . .) as follows:

• φ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | 2φ | 2?φ.

The other Boolean constructs are defined as usual. We obtain the formulas
3φ and 3?φ as abbreviations: 3φ ::= ¬2¬φ, 3?φ ::= ¬2?¬φ. The notion
of subformula is standard. We adopt the standard rules for omission of the
parentheses.

5.2 Relational semantics

A relational frame is a structure of the form F = (X,R, S) such that (i) X
is a nonempty set, (ii) R is a strict partial order on X, (iii) S is the greatest
fixpoint of the function θR in LR. The following lemma is basic.

Lemma 5.1 Let F = (X,R, S) be a relational frame. (i) R◦R ≤ R, (ii) S◦S ≤
S, (iii) S ≤ R, (iv) R ◦ S ≤ S, (v) S ◦R ≤ S, (vi) S ≤ R ◦ S.

Proof. (i), (ii) and (iii) follow from the fact that R is a strict partial order on
X, S is a strict partial order on X and S ∈ LR. (iv), (v) and (vi) follow from
the fact that S is the greatest fixpoint of the function θR in LR. 2

A relational model is a structure of the form M = (X,R, S, V ) where
(i) (X,R, S) is a relational frame, (ii) V is a valuation on X, i.e. a func-
tion V : BV → P(X). The satisfiability of φ ∈ f(BV ) in a relational model
M = (X,R, S, V ) at x ∈ X, in symbols M, x |= φ, is inductively defined as
follows:

• M, x |= p iff x ∈ V (p),

• M, x 6|= ⊥,

• M, x |= ¬φ iff M, x 6|= φ,

• M, x |= φ ∨ ψ iff either M, x |= φ or M, x |= ψ,

• M, x |= 2φ iff for all y ∈ X, if xRy then M, y |= φ,

• M, x |= 2?φ iff for all y ∈ X, if xSy then M, y |= φ.

As a result: M, x |= 3φ iff there exists y ∈ X such that xRy and M, y |= φ,
M, x |= 3?φ iff there exists y ∈ X such that xSy and M, y |= φ. φ ∈ f(BV )
is said to be true in a relational model M = (X,R, S, V ), in symbols M |= φ,
iff for all x ∈ X, M, x |= φ. We shall say that φ ∈ f(BV ) is valid in a
relational frame F = (X,R, S), in symbols F |= φ, iff for all valuations V on
X, (X,R, S, V ) |= φ. It is worth noting at this point the following:

Lemma 5.2 Let F = (X,R, S) be a relational frame. The following formulas
are valid in F : 2φ → 22φ, 2?φ → 2?2?φ, 2φ → 2?φ, 2?φ → 22?φ,
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2?φ→ 2?2φ, 22?φ→ 2?φ.

Proof. The above formulas are Sahlqvist formulas. By Sahlqvist Correspon-
dence Theorem [4, Theorem 3.54], they correspond to the first-order conditions
considered in Lemma 5.1. Hence, they are valid in F . 2

Let Λrf be the set of all formulas that are valid in the class of all relational
frames.

5.3 Topological semantics

A topological frame is a structure of the form F = (X, d, e) such that (i) X is
a nonempty set, (ii) d is an Alexandroff TD derivative operator on X, (iii) e is
the greatest fixpoint of the function θd in Ld. The following lemma is basic.

Lemma 5.3 Let F = (X, d, e) be a topological frame. (i) d◦d ≤ d, (ii) e◦e ≤ e,
(iii) e ≤ d, (iv) d ◦ e ≤ e, (v) e ◦ d ≤ e, (vi) e ≤ d ◦ e.

Proof. (i), (ii) and (iii) follow from the fact that d is an Alexandroff TD deriva-
tive operator on X, e is an Alexandroff TD derivative operator on X and e ∈ Ld.
(iv), (v) and (vi) follow from the fact that e is the greatest fixpoint of the func-
tion θd in Ld. 2

A topological model is a structure of the form M = (X, d, e, V ) where
(i) (X, d, e) is a topological frame, (ii) V is a valuation on X, i.e. a func-
tion V : BV → P(X). The interpretation of φ ∈ f(BV ) in a topological model
M = (X, d, e, V ), in symbols ‖ φ ‖M, is inductively defined as follows:

• ‖ p ‖M= V (p),

• ‖ ⊥ ‖M= ∅,
• ‖ ¬φ ‖M= X\ ‖ φ ‖M,

• ‖ φ ∨ ψ ‖M=‖ φ ‖M ∪ ‖ ψ ‖M,

• ‖ 2φ ‖M= X \ d(X\ ‖ φ ‖M),

• ‖ 2?φ ‖M= X \ e(X\ ‖ φ ‖M).

As a result: ‖ 3φ ‖M= d(‖ φ ‖M), ‖ 3?φ ‖M= e(‖ φ ‖M). φ ∈ f(BV ) is
said to be true in a topological model M = (X, d, e, V ), in symbols M |= φ,
iff ‖ φ ‖M= X. We shall say that φ ∈ f(BV ) is valid in a topological frame
F = (X, d, e), in symbols F |= φ, iff for all valuations V on X, (X, d, e, V ) |= φ.
It is worth noting at this point the following:

Lemma 5.4 Let F = (X, d, e) be a topological frame. The following formulas
are valid in F : 2φ → 22φ, 2?φ → 2?2?φ, 2φ → 2?φ, 2?φ → 22?φ,
2?φ→ 2?2φ, 22?φ→ 2?φ.

Proof. The above formulas are Sahlqvist formulas. By Sahlqvist Corre-
spondence Theorem [18], they correspond to the conditions considered in
Lemma 5.3. Hence, they are valid in F . 2

Let Λtf be the set of all formulas that are valid in the class of all topological
frames.
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6 Axiomatization and completeness

In this section, we present a complete axiomatization of Λrf .

6.1 Axiomatization

Let L be the least normal modal logic in our language containing the formulas
considered in Lemmas 5.2 and 5.4:

• 2φ→ 22φ,

• 2?φ→ 2?2?φ,

• 2φ→ 2?φ,

• 2?φ→ 22?φ,

• 2?φ→ 2?2φ,

• 22?φ→ 2?φ.

Since these formulas are valid in the class of all relational frames and in the
class of all topological frames,

Proposition 6.1 Let φ ∈ f(BV ). If φ ∈ L then φ ∈ Λrf and φ ∈ Λtf .

It follows that L is sound with respect to the class of all relational frames
and with respect to the class of all topological frames. In spite of the connection
between Alexandroff TD derivative operators and strict partial orders studied in
Section 3, the class of all relational frames and the class of all topological frames
do not validate the same formulas. By Proposition 6.1 and Theorem 6.17,
Λrf ⊆ Λtf . Example 6.2 shows that the inclusion is strict (David Gabelaia,
personal communication, Tbilisi (Georgia), March 24, 2012).

Example 6.2 Let φ = 2(p → 3p) → (3p → 3?p), we demonstrate φ 6∈ Λrf
and φ ∈ Λtf . Intuitively, φ says that, in a relational frame F = (X,R, S), if
we have an infinite sequence y0Ry1R . . . then there exists i, j ∈ N such that
0 ≤ i ≤ j and yiSyj . Firstly, let M = (Z, <Z, ∅, V ) be the model defined over
the integers and such that for all q ∈ BV , V (q) = Z and x ∈ Z, we demonstrate
M, x 6|= φ. Obviously, M, x |= 2(p → 3p), M, x |= 3p and M, x 6|= 3?p.
Hence, M, x 6|= φ. Secondly, let M = (X, d, e, V ) be a topological model,
we demonstrate M |= φ. It suffices to demonstrate that ‖ φ ‖M= X, i.e.
d(V (p)) \ d(V (p) \ d(V (p))) ⊆ e(V (p)). Let A = d(V (p)) \ d(V (p) \ d(V (p))).
Obviously, A ⊆ d(V (p)). Moreover, by [9, Section 8.5], A ⊆ d(A). Thus,
d(A) ⊆ d(d(A)). Since d is a TD derivative operator on X, d(d(A)) ⊆ d(A).
Since d(A) ⊆ d(d(A)), d(A) = d(d(A)). Since e is the greatest fixpoint of
the function θd in Ld, e(A) = d(A). Since A ⊆ d(A), A ⊆ e(A). Since
A ⊆ d(V (p)), e(A) ⊆ e(d(V (p))). Since e is the greatest fixpoint of the function
θd in Ld, e(d(V (p)) ⊆ e(V (p)). Since e(A) ⊆ e(d(V (p))), e(A) ⊆ e(V (p)). Since
A ⊆ e(A), A ⊆ e(V (p)).

In the sequel, all frames and all models will be relational. The completeness
of L with respect to the class of all frames is more difficult to establish that its
soundness and we defer proving it till the end of this section. Γ ⊆ f(BV ) is
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said to be anL-theory iff Γ contains L and Γ is closed under the rule of modus
ponens. Let us be clear that the set of all L-theories is a partially ordered set
with respect to set inclusion. The least L-theory is L and the greatest L-theory
is f(BV ). Of course, an L-theory Γ is equal to f(BV ) iff ⊥ ∈ Γ. We shall say
that an L-theory Γ is consistent iff ⊥ 6∈ Γ. φ ∈ f(BV ) is said to be L-consistent
iff there exists a consistent L-theory Γ such that φ ∈ Γ. Of course, φ ∈ f(BV )
is L-consistent iff ¬φ 6∈ L. We shall say that an L-theory Γ is maximal iff for
all φ ∈ f(BV ), either φ ∈ Γ, or ¬φ ∈ Γ. The set of all maximal consistent
L-theories will be denoted MCTL. For all L-theories Γ and for all φ ∈ f(BV ),
let Γ + φ = {ψ: φ→ ψ ∈ Γ}. For all L-theories Γ, let 2Γ = {φ: 2φ ∈ Γ} and
2?Γ = {φ: 2?φ ∈ Γ}. One can easily establish the following results.

Lemma 6.3 Let Γ be an L-theory. (i) For all φ ∈ f(BV ), Γ + φ is the least
L-theory containing Γ and φ, (ii) for all φ ∈ f(BV ), Γ + φ is consistent iff
¬φ 6∈ Γ, (iii) 2Γ is an L-theory, (iv) 2?Γ is an L-theory.

Our next results are variants of Lindenbaum’s Lemma [4, Lemma 4.17] and
the Existence Lemma [4, Lemma 4.20].

Lemma 6.4 Let Γ be a consistent L-theory. There exists ∆ ∈ MCTL such
that Γ ⊆ ∆.

Lemma 6.5 Let Γ ∈ MCTL and φ ∈ f(BV ). (i) If 2φ 6∈ Γ then there exists
∆ ∈ MCTL such that 2Γ ⊆ ∆ and φ 6∈ ∆, (ii) if 2?φ 6∈ Γ then there exists
∆ ∈MCTL such that 2?Γ ⊆ ∆ and φ 6∈ ∆.

Moreover,

Lemma 6.6 Let Γ,∆ ∈ MCTL. If 2?Γ ⊆ ∆ then there exists Λ ∈ MCTL
such that 2Γ ⊆ Λ and 2?Λ ⊆ ∆.

Proof. The proof is very similar to the one considered, for example, in [12,
Theorem 3.6] to derive density conditions. 2

What we have in mind is to demonstrate that if φ ∈ f(BV ) is valid in the
class of all frames then φ ∈ L. In this respect, the concept of subordination
structure will be needed. A subordination structure is a structure of the form
S = (X,R, S, µ) where (i) X is a finite nonempty subset of Z, (ii) R is a
strict partial order on X, (iii) S is a strict partial order on X, (iv) S ⊆ R,
(v) R ◦ S ⊆ S, (vi) S ◦R ⊆ S, (vii) µ is an interpretation on X, i.e. a function
µ: X → MCTL such that (vii-a) for all x, y ∈ X, if xRy then 2µ(x) ⊆ µ(y),
(vii-b) for all x, y ∈ X, if xSy then 2?µ(x) ⊆ µ(y). φ ∈ f(BV ) is said to be
true in a subordination structure S = (X,R, S, µ), in symbols S |= φ, iff for
all x ∈ X, φ ∈ µ(x). Given two subordination structures S = (X,R, S, µ) and
S ′ = (X ′, R′, S′, µ′), we shall say that S ′ contains S, in symbols S � S ′, iff
X ⊆ X ′, R ⊆ R′, S ⊆ S′ and for all x ∈ X, µ(x) = µ′(x). In a subordination
structure S = (X,R, S, µ), for all x, y ∈ X, if xRy then let ΠS(x, y) be the set of
all sequences z0, . . . , zn ∈ X such that xRz0 . . . znRy. Why are subordination
structures so interesting? The following proposition contains a fact which helps
to prove the starting point of our enterprise: L is complete with respect to the
class of all subordination structures of cardinal 1.
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Proposition 6.7 Let φ ∈ f(BV ). If φ is true in the class of all subordination
structures of cardinal 1 then φ ∈ L.

Proof. Suppose φ 6∈ L. Hence, by Lemma 6.3, L+¬φ is a consistent L-theory.
Thus, by Lemma 6.4, there exists Γ ∈ MCTL such that L + ¬φ ⊆ Γ. Thus,
¬φ ∈ Γ. Since Γ is consistent, φ 6∈ Γ. Let S = (X,R, S, µ) be the structure
such that X = {0}, R = ∅, S = ∅ and µ is the function µ: X → MCTL
such that µ(0) = Γ. Obviously, S is a subordination structure of cardinal 1
such that φ 6∈ µ(0). Therefore, φ is not true in the class of all subordination
structures of cardinal 1. 2

It follows from Proposition 6.7 that we have reduced the task of proving
the completeness of L with respect to the class of all frames to the task of
showing how to transform any subordination structure of cardinal 1 into a
model satisfying the same formulas. One remark is in order here. Given a
subordination structure S = (X,R, S, µ), it may contain imperfections:

• 2-imperfections, i.e. triples of the form (x,2, φ) where x ∈ X and φ ∈ f(BV )
are such that 2φ 6∈ µ(x) and for all y ∈ X, if xRy then φ ∈ µ(y),

• 2?-imperfections, i.e. triples of the form (x,2?, φ) where x ∈ X and φ ∈
f(BV ) are such that 2?φ 6∈ µ(x) and for all y ∈ X, if xSy then φ ∈ µ(y),

• imperfections of density, i.e. pairs of the form (x, y) where x, y ∈ X are such
that xSy and for all z ∈ X, not xRz or not zSy.

Remark that for all subordination structures S = (X,R, S, µ), the imperfec-
tions of S are elements of (Z× {2,2?} × f(BV )) ∪ (Z× Z).

6.2 Repairing imperfections

Lemmas 6.8, 6.10 and 6.12 state that every imperfection can be repaired.

Lemma 6.8 Let S = (X,R, S, µ) be a subordination structure and (x,2, φ)
be a 2-imperfection in S. There exists a subordination structure S ′ =
(X ′, R′, S′, µ′) such that S � S ′ and (x,2, φ) is not a 2-imperfection in S ′.
Proof. Since (x,2, φ) is a 2-imperfection in S, x ∈ X and φ ∈ f(BV ) are
such that 2φ 6∈ µ(x) and for all y ∈ X, if xRy then φ ∈ µ(y). Since 2φ 6∈ µ(x),
by Lemma 6.5, there exists Γ ∈ MCTL such that 2µ(x) ⊆ Γ and φ 6∈ Γ. Let
y ∈ Z \X. We define the structure S ′ = (X ′, R′, S′, µ′) as follows:

• X ′ = X ∪ {y},
• R′ is the binary relation on X ′ such that for all x′, y′ ∈ X ′, x′R′y′ iff one of

the following conditions holds:
· x′, y′ ∈ X and x′Ry′,
· x′ ∈ X, y′ = y and x′Rx,
· x′ ∈ X, y′ = y and x′ = x,

• S′ is the binary relation on X ′ such that for all x′, y′ ∈ X ′, x′S′y′ iff one of
the following conditions holds:
· x′, y′ ∈ X and x′Sy′,
· x′ ∈ X, y′ = y and x′Sx,
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• µ′ is the function µ′: X ′ →MCTL such that for all x′ ∈ X ′,
· if x′ ∈ X then µ′(x′) = µ(x′),
· if x′ = y then µ′(x′) = Γ.

Obviously, R′ is a strict partial order on X ′, S′ is a strict partial order on X ′,
S′ ⊆ R′, R′ ◦ S′ ⊆ S′ and S′ ◦ R′ ⊆ S′. Moreover, for all x′, y′ ∈ X ′, if x′R′y′

then 2µ′(x′) ⊆ µ′(y′) and for all x′, y′ ∈ X ′, if x′S′y′ then 2?µ′(x′) ⊆ µ′(y′).
Hence, S ′ is a subordination structure. In other respect, as the reader can
check, S � S ′ and (x,2, φ) is not a 2-imperfection in S ′. 2

Remark 6.9 Note that for all x′, y′ ∈ X, ΠS′(x′, y′) = ΠS(x′, y′).

Lemma 6.10 Let S = (X,R, S, µ) be a subordination structure and (x,2?, φ)
be a 2?-imperfection in S. There exists a subordination structure S ′ =
(X ′, R′, S′, µ′) such that S � S ′ and (x,2?, φ) is not a 2?-imperfection in
S ′.

Proof. Since (x, φ) is a 2?-imperfection in S, x ∈ X and φ ∈ f(BV ) are such
that 2?φ 6∈ µ(x) and for all y ∈ X, if xSy then φ ∈ µ(y). Since 2?φ 6∈ µ(x),
by Lemma 6.5, there exists Γ ∈ MCTL such that 2?µ(x) ⊆ Γ and φ 6∈ Γ. Let
y ∈ Z \X. We define the structure S ′ = (X ′, R′, S′, µ′) as follows:

• X ′ = X ∪ {y},
• R′ is the binary relation on X ′ such that for all x′, y′ ∈ X ′, x′R′y′ iff one of

the following conditions holds:
· x′, y′ ∈ X and x′Ry′,
· x′ ∈ X, y′ = y and x′Rx,
· x′ ∈ X, y′ = y and x′ = x,

• S′ is the binary relation on X ′ such that for all x′, y′ ∈ X ′, x′S′y′ iff one of
the following conditions holds:
· x′, y′ ∈ X and x′Sy′,
· x′ ∈ X, y′ = y and x′Rx,
· x′ ∈ X, y′ = y and x′ = x,

• µ′ is the function µ′: X ′ →MCTL such that for all x′ ∈ X ′,
· if x′ ∈ X then µ′(x′) = µ(x′),
· if x′ = y then µ′(x′) = Γ.

Obviously, R′ is a strict partial order on X ′, S′ is a strict partial order on X ′,
S′ ⊆ R′, R′ ◦ S′ ⊆ S′ and S′ ◦ R′ ⊆ S′. Moreover, for all x′, y′ ∈ X ′, if x′R′y′

then 2µ′(x′) ⊆ µ′(y′) and for all x′, y′ ∈ X ′, if x′S′y′ then 2?µ′(x′) ⊆ µ′(y′).
Hence, S ′ is a subordination structure. In other respect, as the reader can
check, S � S ′ and (x,2?, φ) is not a 2?-imperfection in S ′. 2

Remark 6.11 Note that for all x′, y′ ∈ X, ΠS′(x′, y′) = ΠS(x′, y′).

Lemma 6.12 Let S = (X,R, S, µ) be a subordination structure and (x, y) be
an imperfection of density in S. There exists a subordination structure S ′ =
(X ′, R′, S′, µ′) such that S � S ′ and (x, y) is not an imperfection of density in
S ′.
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Proof. Since (x, y) is an imperfection of density in S, x, y ∈ X are such that
xSy and for all z ∈ X, not xRz or not zSy. Since xSy, 2?µ(x) ⊆ µ(y). Hence,
by Lemma 6.6, there exists Γ ∈MCTL such that 2µ(x) ⊆ Γ and 2?Γ ⊆ µ(y).
Let z ∈ Z \X. We define the structure S ′ = (X ′, R′, S′, µ′) as follows:

• X ′ = X ∪ {z},
• R′ is the binary relation on X ′ such that for all x′, y′ ∈ X ′, x′R′y′ iff one of

the following conditions holds:
· x′, y′ ∈ X and x′Ry′,
· x′ ∈ X, y′ = z and x′Rx,
· x′ ∈ X, y′ = z and x′ = x,
· x′ = z, y′ ∈ X and yRy′,
· x′ = z, y′ ∈ X and y′ = y,

• S′ is the binary relation on X ′ such that for all x′, y′ ∈ X ′, x′S′y′ iff one of
the following conditions holds:
· x′, y′ ∈ X and x′Sy′,
· x′ ∈ X, y′ = z and x′Sx,
· x′ = z, y′ ∈ X and yRy′,
· x′ = z, y′ ∈ X and y′ = y,

• µ′ is the function µ′: X ′ →MCTL such that for all x′ ∈ X ′,
· if x′ ∈ X then µ′(x′) = µ(x′),
· if x′ = z then µ′(x′) = Γ.

Obviously, R′ is a strict partial order on X ′, S′ is a strict partial order on X ′,
S′ ⊆ R′, R′ ◦ S′ ⊆ S′ and S′ ◦ R′ ⊆ S′. Moreover, for all x′, y′ ∈ X ′, if x′R′y′

then 2µ′(x′) ⊆ µ′(y′) and for all x′, y′ ∈ X ′, if x′S′y′ then 2?µ′(x′) ⊆ µ′(y′).
Thus, S ′ is a subordination structure. In other respect, as the reader can check,
S � S ′ and (x, y) is not an imperfection of density in S ′. 2

Remark 6.13 Note that for all x′, y′ ∈ X, x′S′y′ or ΠS′(x′, y′) = ΠS(x′, y′).

Let the structures defined in the proofs of Lemmas 6.8, 6.10 and 6.12 be
respectively called completion of S with respect to (x,2, φ), completion of S
with respect to (x,2?, φ) and completion of S with respect to (x, y).

6.3 Completeness

The following proposition constitutes the heart of our method.

Proposition 6.14 Let φ ∈ f(BV ). If φ is valid in the class of all frames then
φ is true in the class of all subordination structures of cardinal 1.

Proof. Suppose φ is not true in the class of all subordination structures of
cardinal 1. Hence, there exists a subordination structure S = (X,R, S, µ)
of cardinal 1 such that S 6|= φ. Let i0, i1, . . . be an enumeration of (Z ×
{2,2?} × f(BV )) ∪ (Z × Z) where each item is repeated infinitely often. We
inductively define the sequence S0 = (X0, R0, S0, µ0), S1 = (X1, R1, S1, µ1), . . .
of subordination structures as follows:

• let S0 be S,
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• for all nonnegative integers n, if in is an imperfection in Sn then let Sn+1 be
the completion of Sn with respect to in else let Sn+1 be Sn.

LetM′ = (X ′, R′, S′, V ′) be the structure defined as follows: X ′ =
⋃
{Xn: n is

a nonnegative integer}, R′ =
⋃
{Rn: n is a nonnegative integer}, S′ =

⋃
{Sn:

n is a nonnegative integer} and V ′ is the function V ′: BV → P(X) such that
for all p ∈ BV , V ′(p) = {x′: there exists a nonnegative integer n such that
x′ ∈ Xn and p ∈ µn(x′)}. Obviously, R′ is a strict partial order on X ′, S′ is
a strict partial order on X ′, S′ ⊆ R′, R′ ◦ S′ = S′ and S′ ◦ R′ ⊆ S′. Hence,
S′ is a fixpoint of the θ-like function defined by R′. Now, let S′′ be a fixpoint
of the θ-like function defined by R′, we demonstrate S′′ ≤ S′. Let x′, y′ ∈ X ′
be such that s′S′′y′, we demonstrate x′S′y′. Since S′′ is a fixpoint of the θ-
like function defined by R′, R′ ◦ S′′ = S′′. Since x′S′′y′, we can inductively
construct an infinite sequence z′0, z

′
1, . . . ∈ X ′ such that x′R′z′0R

′z′1 . . . and for
all nonnegative integers n, z′nS

′′y′. By Remarks 6.9, 6.11 and 6.13, there exists
a nonnegative integer n such that x′, y′ ∈ Xn and x′Sny

′. Thus, x′S′y′. In
conclusion, we have proved that

Claim 6.15 S′ is the greatest fixpoint of the θ-like function defined by R′.

Moreover, for all x′, y′ ∈ X ′, if x′R′y′ then 2µ′(x′) ⊆ µ′(y′) and for all x′, y′ ∈
X ′, if x′S′y′ then 2?µ′(x′) ⊆ µ′(y′). Now, let ψ ∈ f(BV ), we prove for all
x′ ∈ X ′, M′, x′ |= ψ iff there exists a nonnegative integer n such that x′ ∈ Xn

and ψ ∈ µn(x′). The proof is done by induction on ψ.
Induction hypothesis. Let ψ ∈ f(BV ) be such that for all χ ∈ f(BV ),
if χ is a subformula of ψ then for all x′ ∈ X ′, M′, x′ |= χ iff there exists a
nonnegative integer n such that x′ ∈ Xn and χ ∈ µn(x′).
Induction step. We have to consider the six following cases.
Case ψ = p. By definition of V ′.
Cases ψ = ⊥, ψ = ¬χ, ψ = χ′ ∨ χ′′. By the induction hypothesis.
Cases ψ = 2χ, ψ = 2?χ. By the induction hypothesis, by the fact that for all
x′, y′ ∈ X ′, if x′R′y′ then 2µ′(x′) ⊆ µ′(y′), by the fact that for all x′, y′ ∈ X ′,
if x′S′y′ then 2?µ′(x′) ⊆ µ′(y′), by the fact that for all x′ ∈ X ′ if 2χ 6∈ µ′(x′)
then there exists y′ ∈ X ′ such that x′R′y′ and χ 6∈ µ′(y′) and by the fact that
for all x′ ∈ X ′ if 2?χ 6∈ µ′(x′) then there exists y′ ∈ X ′ such that x′S′y′ and
χ 6∈ µ′(y′).
In conclusion, we have proved that

Claim 6.16 Let ψ ∈ f(BV ). For all x′ ∈ X ′, M′, x′ |= ψ iff there exists a
nonnegative integer n such that x′ ∈ Xn and ψ ∈ µn(x′).

Since S 6|= φ, φ 6∈ µ0(0). By the above claim, M′, 0 6|= φ. Therefore, φ is not
valid in the class of all frames. 2

The result that emerges from the above discussion is the following theorem.

Theorem 6.17 Let φ ∈ f(BV ). The following conditions are equivalent:
(i) φ ∈ L, (ii) φ is valid in the class of all frames, (iii) φ is true in the
class of all subordination structures of cardinal 1.
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Proof. (i)→(ii): By Proposition 6.1.
(ii)→(iii): By Proposition 6.14.
(iii)→(i): By Proposition 6.7. 2

7 Definability

In this section, we show that 2? is not definable in the ordinary language of
modal logic and that the class of all frames is not first-order definable.

7.1 Modal definability

Suppose there exists a 2?-free formula φ such that 2?p ↔ φ ∈ L. Let
M = (Z, <Z, ∅, V ) be the model defined over the integers and such that for
all q ∈ BV , V (q) = ∅ andM′ = (Q, <Q, <Q, V

′) be the model defined over the
rationals and such that for all q ∈ BV , V ′(q) = ∅. Obviously, for all 2?-free
formulas ψ, for all x ∈ Z and for all x′ ∈ Q, M, x |= ψ iff M′, x′ |= ψ. Hence,
M, 0 |= φ iff M′, 0 |= φ Since SM = ∅, M, 0 |= 2?p. Since 2?p ↔ φ ∈ L, by
Proposition 6.1,M, 0 |= φ. Since SM′ =<Q,M′, 0 6|= 2?p. Since 2?p↔ φ ∈ L,
by Proposition 6.1, M′, 0 6|= φ: a contradiction. These considerations prove

Proposition 7.1 There exists no 2?-free formula φ such that 2?p↔ φ ∈ L.

That is to say, 2? is not definable in the ordinary language of modal logic.

7.2 First-order definability

Suppose there exists a first-order sentence φ in R̃, S̃ and ≡ (interpreted in
a relational structure F = (X,R, S) by R, S and equality) such that for all
relational structures F = (X,R, S), F is a frame iff F |= φ. For all n ∈ N,
let Fn = (Xn, Rn, Sn) be the relational structure defined as follows: Xn =
{0, . . . , n}, Rn = {(i, j): 0 ≤ i < j ≤ n} and Sn = ∅, Obviously, for all
n ∈ N, Fn |= φ ∧ ∃y∀x(xR̃y ∨ x ≡ y) ∧ ∀x∀y¬xS̃y. Let U be an ultrafilter
over N and FU = (XU , RU , SU ) be the ultraproduct of the family {Fn: n ∈ N}
modulo U . Since for all n ∈ N, Fn |= φ ∧ ∃y∀x(xR̃y ∨ x ≡ y) ∧ ∀x∀y¬xS̃y,
by the Fundamental Theorem of Ultraproducts [7, Theorem 4.1.9], FU |= φ ∧
∃y∀x(xR̃y ∨ x ≡ y) ∧ ∀x∀y¬xS̃y. Since FU |= φ, FU is a frame. For all i ∈ N,
let [i] be the class of (i, i, . . .) modulo U . Remark that for all i, j ∈ N, [i]RU [j]
iff i < j. Since FU |= ∃y∀x(xR̃y ∨ x ≡ y), there exists MU ∈ XU such that
for all i ∈ N, [i]RUMU or [i] = MU . Since for all i, j ∈ N, [i]RU [j] iff i < j,
for all i ∈ N, [i]RUMU . Let R′U be the binary relation on XU such that for
all x, y ∈ XU , xR′Uy iff there exists i ∈ N such that x = [i] and y = MU , we
demonstrate R′U ≤ θRU (R′U ), i.e. R′U ≤ RU ◦ R′U . Remark that R′U is a strict
partial order on XU and R′U ⊆ RU . Moreover, R′U 6= ∅. Let x, y ∈ XU be such
that xR′Uy, we demonstrate there exists z ∈ XU such that xRUz and zR′Uy.
Since xR′Uy, there exists i ∈ N such that x = [i] and y = MU . Hence, it suffices
to take z = [i+1] and we have xRUz and zR′Uy. In conclusion, we have proved
that

Claim 7.2 R′U ≤ θRU (R′U ).
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By the results stated in Section 4.2, R′U ≤ gfp(θRU ). Since FU |= ∀x∀y¬xS̃y,
gfp(θRU ) = ∅. Since R′U ≤ gfp(θRU ), R′U = ∅: a contradiction. The conclusion
can be summarized as follows.

Proposition 7.3 There exists no first-order sentence φ in R̃, S̃ and ≡ (inter-
preted in a relational structure F = (X,R, S) by R, S and equality) such that
for all relational structures F = (X,R, S), F is a frame iff F |= φ.

That is to say, the class of all frames is not first-order definable.

8 Conclusion

In this article, we considered a modal logic with modal operators 2 and 2?

respectively interpreted by strict partial orders and the greatest fixpoints of
the θ-like functions they define. Much remains to be done. Firstly, there is
the issue of the complete axiomatization of the set of all formulas in the 2-free
fragment of our language that are valid in the class of all frames. Are the axioms
of the form 2?φ → 2?2?φ sufficient in this respect? Secondly, there is the
question of the computability and complexity of the membership problem in L.
Obviously, L is a conservative extension of K4. Hence, by Ladner’s Theorem [4,
Theorem 6.50], the membership problem in L is PSPACE-hard. Is it possible
to demonstrate that it is in PSPACE? Thirdly, there is the issue of the finite
model property (fmp) of L. There are possibly two ways to ask whether L
has the fmp, depending on the class of relational structures one considers. One
possibility is to consider the fmp with respect to the class of all frames. Another
possibility is to consider the fmp with respect to the class of all relational
structures satisfying the conditions considered in Lemma 5.1. Fourthly, there is
the question of the modal definability of the class of all frames. More precisely,
is there Γ ⊆ f(BV ) such that for all relational structures F = (X,R, S), F is
a frame iff for all φ ∈ f(BV ), if φ ∈ Γ then F |= φ? If such Γ ⊂ f(BV ) exists,
can it be finite? Fifthly, there is the issue of the addition to our language of
the global operator [U ] and the difference operator [6=] respectively interpreted
by the universal relation and the inequality relation. As is well-known, see [4,
Chapter 7] or [15], these modal operators greatly increase the expressive power
of a modal language whether it is interpreted in relational structures as in
Section 5.2 or in topological structures as in Section 5.3. Sixthly, there is the
issue of the complete axiomatization of the set of all formulas that are valid in
the class of all topological frames. Are the axioms of L together with the axioms
of the form 2(p → 3p) → (3p → 3?p) sufficient in this respect? Seventhly,
there is the question of the possible readings of 2? in terms of knowledge and
belief. See [2,22] for more details.
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