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Abstract
Background: Liquid chromatography coupled to mass spectrometry (LC-MS) has become a
prominent tool for the analysis of complex proteomics and metabolomics samples. In many
applications multiple LC-MS measurements need to be compared, e. g. to improve reliability or to
combine results from different samples in a statistical comparative analysis. As in all physical
experiments, LC-MS data are affected by uncertainties, and variability of retention time is
encountered in all data sets. It is therefore necessary to estimate and correct the underlying
distortions of the retention time axis to search for corresponding compounds in different samples.
To this end, a variety of so-called LC-MS map alignment algorithms have been developed during the
last four years. Most of these approaches are well documented, but they are usually evaluated on
very specific samples only. So far, no publication has been assessing different alignment algorithms
using a standard LC-MS sample along with commonly used quality criteria.

Results: We propose two LC-MS proteomics as well as two LC-MS metabolomics data sets that
represent typical alignment scenarios. Furthermore, we introduce a new quality measure for the
evaluation of LC-MS alignment algorithms. Using the four data sets to compare six freely available
alignment algorithms proposed for the alignment of metabolomics and proteomics LC-MS
measurements, we found significant differences with respect to alignment quality, running time, and
usability in general.

Conclusion: The multitude of available alignment methods necessitates the generation of standard
data sets and quality measures that allow users as well as developers to benchmark and compare
their map alignment tools on a fair basis. Our study represents a first step in this direction.
Currently, the installation and evaluation of the "correct" parameter settings can be quite a time-
consuming task, and the success of a particular method is still highly dependent on the experience
of the user. Therefore, we propose to continue and extend this type of study to a community-wide
competition. All data as well as our evaluation scripts are available at http://msbi.ipb-halle.de/msbi/
caap.
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1 Background
Mass spectrometry (MS) has become the predominant
technology for both proteomics and metabolomics exper-
iments. In shotgun proteomics, proteins are first digested,
then the resulting peptides are separated by liquid chro-
matography. The fractions of the mixture are transferred
to the mass spectrometer. Soft ionization techniques like
matrix-assisted laser desorption ionization (MALDI) or
electrospray ionization (ESI) and high resolving mass
analyzers are used to identify the individual compounds
by peptide mass fingerprinting (PMF) or by tandem mass
spectrometry. The latter uses another step of fragmenta-
tion and MS analysis (MS/MS). Multiple technologies also
exist in metabolomics applications, where mass spec-
trometers are coupled to gas chromatography (GC), liq-
uid chromatography (LC) or capillary electrophoresis
(CE) for separation. For recent reviews see [1,2]. In this
paper our focus is on LC-MS in proteomics and metabo-
lomics applications.

The quantitative information in a proteomics LC-MS map
can be used in numerous applications [3,4] ranging from
additive series in analytical chemistry [5], analysis of time
series in expression experiments [6,7], to applications in
clinical diagnostics [8], where statistically significant
markers detect certain states of diseases. Common appli-
cations in metabolomics are: The verification of substan-
tial equivalence [9], or the profiling of, e.g., biosynthetic
mutants to reveal cross-talk between pathways [10]. What
applications have in common is that the same compo-
nents in different measurements have to be related to each
other. As with every laboratory experiment, chromato-
graphic separation is stable and reproducible only to a cer-
tain extent. The retention time often shows large shifts,
and distortions can be observed when different runs are
compared. Even the m/z dimension might show (typically
smaller) deviations. The overall change in RT and m/z is
called warp. Pressure fluctuations, or changes in column
temperature or mobile phase result in distorted elution
patterns, and can even cause changes in the elution order
of components. Elution order changes are not unlikely if
their retention times are similar [11]. For example, in one
of our data sets the ground truth contained 88 verified
matching peptide signals, but no more than 66 of them
can be aligned without elution order changes (see last fig-
ure in additional File 1 for further information). The cor-
rection of the shift in RT and m/z is called dewarping
according to the time warping problem of Sakoe and
Chiba [12] in speech processing. The advent of high-
throughput quantitative proteomics and metabolomics
makes an efficient solution to this problem an important
task.

In general, the data processing pipeline for label-free LC/
MS data proteomics and metabolomics applications can
be divided into the following steps:

1. Signal preprocessing and centroidization,

2. Detection and extraction of two-dimensional signals,
so-called features, which are caused by chemical entities,

3. Intensity normalization,

4. Compensation of retention time distortions by dewarp-
ing,

5. Computation of a consensus map by assigning corre-
sponding features across multiple maps,

6. Statistical analysis, feature identification, and the bio-
logical interpretation.

A typical label-free quantification protocol might be the
connection of the proposed analysis steps, but it can also
consist of the comparison of LC-MS maps on the raw data
level [13]. The comparison of LC-MS raw maps enables
the search for differentially expressed peptides directly by
using multiway data analysis methods (e.g., PARAFAC
[14]). Hence, a typical analysis pipeline for this approach
avoids the steps 2 and 5, and merely includes the preproc-
essing and intensity normalization of the LC-MS raw
maps, the correction of the retention time distortion, as
well as the statistical analysis, feature identification and
the biological interpretation of the data. We call the
dewarping and thereby superposition of multiple LC-MS
raw maps the LC-MS raw map alignment problem. Several
algorithms have been designed to deal with this problem
[15-19]. They avoid errors introduced by centroidization
and feature finding algorithms, but they tend to have high
runtimes and are liable to time order changes. Moreover,
the algorithms are usually described for pairwise align-
ment and do not easily generalize to a multiple alignment
of N maps. In this paper we will concentrate on the typical
label-free quantification analysis pipeline and focus on
the so-called LC-MS feature map alignment problem, which
comprises the dewarping of multiple feature maps as well
as the grouping of corresponding features in different
maps. Since feature maps have a much smaller data
amount than raw maps, they allow for much faster
dewarping algorithms. On the other hand, signal preproc-
essing, centroidization and feature finding may also intro-
duce errors. Therefore, the quality of the feature maps
strongly depends on the reliability of these processing
steps.

Within the last four years several algorithms for LC-MS
feature map alignment have been developed [20-27].
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These tools are either standalone tools or part of a whole
framework for the analysis of MS based data. In this paper
we concentrate on the comparison of the freely available
feature map alignment algorithms implemented within
the frameworks msInspect [25], MZmine [21], OpenMS
[28] and XCMS [26], as well as the tools SpecArray [22]
and XAlign [23] (see Table 1). Except for the alignment
algorithm of MZmine, all methods estimate a linear
(OpenMS, XAlign) or non-linear shift to correct the distor-
tion of the RT dimension in all feature maps. The assign-
ment of corresponding features and the determination of
the consensus map is either done consecutively by
processing the maps in a star-wise manner (MZmine,
OpenMS, SpecArray, XAlign), or by a clustering approach
(msInspect, XCMS). All algorithms take advantage of the
more precisely measured m/z dimension to group corre-
sponding features and to estimate the underlying warping
function in RT. The general approach of the six different
alignment methods compared by us will be described in
the next section.

With the recent advent of LC-MS alignment reviews
[13,29] it became obvious that a comprehensive unbiased
performance study on a common benchmark set is
needed to foster further competition and collaboration
between the developers. In related fields, the Critical
Assessment of Methods for Protein Structure Prediction
(CASP) contests [30] and the Affycomp II Benchmark for
Affymetrix GeneChip Expression Measures [31] have been
quite fruitful in this respect. We have collected benchmark
data sets from both proteomics and metabolomics exper-
iments to compare only the feature map alignment modules
of different software packages. We aim to minimize the
influence of the preceding and subsequent processing

steps. Therefore, we eliminated the influence of the indi-
vidual signal processing modules by importing a common
feature list. We furthermore abandoned the search for fea-
tures in individual files based on features found in other
measurements which is sometimes referred to as filling-in
missing features. For proteomics, we have selected two
data sets from the Open Proteomics Database [32], which
have been used previously for the evaluation of the raw
map alignment algorithm OBI-Warp [17]. For metabo-
lomics data, no such public data repository currently
exists, so we used two of our own data sets from a typical
comparative metabolomics study. We are making these
data sets available at http://msbi.ipb-halle.de/msbi/caap.

The remainder of this paper is structured as follows: In
Sections 2.1 and 2.2 the benchmark data sets and the def-
inition of ground truth are described. Section 2.3 intro-
duces the MS software packages and how they were
configured for the benchmark. The evaluation criteria are
defined in Section 2.4. The results of our comparison are
presented in Section 3, followed by a discussion of the
merits of the underlying algorithms, and a conclusion of
expected future developments in Section 4.

2 Methods
Before we describe the experimental setup and signal
processing for the evaluation data sets we introduce some
definitions that are used throughout the following sec-
tions. In our context, a feature is the two-dimensional (RT
and m/z) signal caused by a single charge variant of a
chemical entity. Feature detection involves identifying the
signal region in the raw data (usually a union of convex
sets) and fitting a theoretical model (e. g. elution profile,
isotope distribution) to the observed data. The map align-

Table 1: Overview of alignment tools

framework
tool name

input format version URL programming 
language

operating 
system

source code 
available

modularity

msInspect
peptideMatch

feature data in own tab- 
separated format

1.0.1 http://
proteomics.fhcrc.
org

Java, R Windows
Linux
MaxOS

✓ ✓

MZmine raw data 0.60 http://
mzmine.sourcefor
ge.net

Java Windows
Linux
MacOS

✓ -

OpenMS
MapAlignment

feature data in 
featureXML or raw or 
peak data in mzData 
format

1.0 http://
www.openms.de

C++ Linux
MacOS 
(Windows)

✓ ✓

SpecArray
PepMatch, 
PepArray

feature data in own 
binary format

2.1 http://
tools.proteomece
nter.org

C Linux ✓ ✓

XAlign feature data in own 
tabular separated format

03.09.2007 request from the 
author

C++ Windows - ✓

XCMS raw data 1.10.7 http://
www.bioconduct
or.org

R, C Windows Linux 
MacOS

✓ ✓
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ment problem has two aspects: (1) finding a suitable
transformation of retention times, so that corresponding
features will be mapped to nearby retention times, and (2)
reporting the actual groups of corresponding features
across multiple LC-MS feature maps. We will refer to these
groups as consensus features, emphasizing that the individ-
ual features constituting a consensus feature should repre-
sent the same charge state of the same ionized compound.
Referring to the consensus feature as a whole, one can
then speak of an average retention time, mass charge ratio,
etc. The collection of all consensus features constitutes a
consensus map, which stores the correspondence informa-
tion of all detected features in multiple LC-MS feature
maps.

Ideally, each feature should be assigned to one consensus
feature and each consensus feature should contain one
feature from each map. However, limited dynamic range
or large variation in the sample will lead to consensus fea-
tures which do not extend across all LC-MS experiments.
Artifacts of the feature detection phase, such as "broken"
elution profiles, may also show up during the map align-
ment, resulting in consensus features which contain more
than one feature from a particular map. As a special case,
a consensus feature may consist of a single feature from a
single map, if no other map contains the same charge state
of the ionized compound. We will refer to these as single-
tons.

We consider the transformation of retention times as an
intermediate step, because the downstream data analysis
will mainly be concerned with groups of features and their
average position, etc. rather than the distortions of reten-
tion times. The ultimate goal of multiple LC-MS feature
map alignment is to derive a consensus map. This fact
should be reflected by our quality metrics. An alignment
method should create a "meaningful" partition of the fea-
ture maps: Corresponding features should be grouped in
only one consensus feature instead of being split in mul-
tiple subsets, but the algorithm must also avoid grouping
together unrelated features.

In Section 2.4 we introduce two measures that reflect the
quality of a determined consensus map with respect to an
optimal consensus map, the so-called ground truth. This is
illustrated in Figure 1. The left part shows an optimal con-
sensus map, representing the correspondence in four dif-
ferent feature maps. The right part shows a consensus map
with various kinds of errors, which can occur in an align-
ment.

The quality of the transformation of retention times might
also be assessed, but only after groups of corresponding
features have been found. The transformation is often
called a warping function, because original retention times
x and transformed retention times y are related through a
monotone increasing function f(x) = y. The difficulty with

Consensus precision and recallFigure 1
Consensus precision and recall. The left figure shows the two consensus features of a ground truth for the alignment of 
five feature maps. The features of the feature maps are distinguished by the five types of marker. Corresponding features in the 
different maps are illustrated by the same colour. The right figure shows three consensus features of a consensus map deter-
mined by an alignment algorithm. Note that the red features were assigned to separate consensus features, and the blue ones 
as well. The consensus feature in the middle even contains features from the same map. Thereby, the alignment results in a low 
recall value of (1/2)·(5/(2·5) + 4/(2·4)) = 0.5. Since most of the determined consensus features are "relevant" the method 
achieved a precision of (1/2)·(5/7 + 4/5)  0.76.
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this approach is that the distance between corresponding
features can be minimized by unrealistic, step-like warp-
ing functions. Hence in order to avoid overfitting, one has
to include regularity (or "smoothing") conditions into the
quality measure, which are hard to formalize.

In the following section we will describe the sample prep-
aration of the complex biological proteomics and metab-
olomics data sets. Furthermore, we establish methods for
the generation of proteomics and metabolomics ground
truth consensus maps.

2.1 Proteomics data
We selected two proteomics data sets from the Open Pro-
teomics Database (OPD) [32] resulting from two different
experiments. The first data set originates from a dilution
series of Escherichia coli and the other data set represents
different cell states of Mycobacterium smegmatis. Both sam-
ples are of high complexity and provide typical alignment
scenarios. They have previously been used for the evalua-
tion of the LC-MS raw map alignment algorithm OBI-
Warp [17].

We will briefly describe the sample preparation and the
LC-LC-MS/MS analysis of the two experiments. Further
information of the E. coli data set can be found on the
OPD website and the M. smegmatis experiment is explic-
itly described in [33].

2.1.1 Experimental setup
Data set P1: LC-LC-ESI-IT-MS/MS

E. coli soluble protein extracts representing cells in expo-
nential growth-phase were diluted in digestion buffer,
denatured, and digested with trypsin. Tryptic peptide mix-
tures were separated by automated LC-LC-MS/MS. The
injection quantity of the analyte was altered between two
different runs: 021016_jp32A_10ul_3 (10 μL, [OPD:
opd00005_ECOLI]) and 021010_jp32A_15ul_1 (15 μL,
[OPD: opd00006 ECOLI]). We refer to these data sets as
P1_1 and P1_2, respectively. Chromatography salt step
fractions were eluted from a strong cation exchange col-
umn (SCX) with a continuous 5% acetonitrile back-
ground and 10-min salt bumps of 0, 20, 40, 60, 80, and
100 mM ammonium chloride. Each salt bump was eluted
directly onto a reverse-phase C18 column and washed free
of salt. Reverse-phase chromatography was run in and
peptides were analyzed online with an ESI ion trap mass
spectrometer (ThermoFinnigan Dexa XP Plus). In each MS
spectrum, the three tallest individual peaks, correspond-
ing to peptides, were fragmented by collision-induced dis-
sociation (CID) with helium gas to produce MS/MS
spectra. Centroided mzXML data and corresponding
SEQUEST identification results of P1_1 and P1_2 were
downloaded from the OPD.

Data set P2: LC-LC-ESI-IT-MS/MS

M. smegmatis soluble protein extracts were diluted in
digestion buffer, denatured, and digested with trypsin.
Tryptic peptide mixtures were separated by automated LC-
LC-MS/MS. The three different runs 6-17-03, 7-17-03, and
6-06-03 represent protein profiles of a M. smegmatis cell in
middle exponential, early exponential and stationary
phase [OPD: opd00009_MYCSM, opd00014_MYCSM,
opd00028_MYCSM]. We refer to these data sets as P2_1,
P2_2, and P2_3, respectively. The remaining setup is the
same as above in P1. Centroided mzXML data and corre-
sponding SEQUEST identification results of P2_1, P2_2,
and P2_3 were downloaded from the OPD.

2.1.2 Data extraction
The raw data had been exported in centroided mode by
the instrument. Preprocessing and data extraction was
performed using TOPP tools [34]. We converted all data
from mzXML to mzData format using FileConverter and
transformed the data into a uniformly spaced matrix by
bilinear resampling using Resampler. The spacing of the
transformed matrix was 1 Th and 1 second. Afterwards we
detected and extracted peptide signals in the resampled
raw data maps using FeatureFinder ignoring the charge
states to provide fair means of comparison for all align-
ment tools. The sizes of the feature maps from the P1 and
the P2 alignment test set are available as additional File 2.

2.1.3 Ground truth
We established ground truth for the P1 and the P2 data
sets by means of MS/MS information that was not availa-
ble to the tested alignment procedures. As a consequence,
our ground truth consist exclusively of features that can be
annotated with a reliable peptide identification. This is
discussed further below.

The reference method uses five steps: (1.) We establish an
initial correspondence between MS/MS identifications
and LC-MS features. (2.) We filter the peptide annotations
based on the retention times of the features they are
assigned to. The first two steps operate on each LC-MS/MS
map individually. (3.) We compute an initial set of con-
sensus features across multiple experiments. (4.) We
reduce the list such that each feature is contained in at
most one consensus feature. (5.) We filter the consensus
features by comparing retention times across maps.

In the first step we scan through all peptide identifica-
tions. We disregard unreliable peptide identifications hav-
ing a SEQUEST XCorr score less than 1.2. We check
whether the RT and the m/z value of the precursor ion lies
within the convex hull of a feature. In this case we assign
the peptide identification to the feature. Each feature can
be annotated with many peptide identifications originat-
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ing from many MS/MS scans within the experiment. The
values in parentheses in additional File 2 are the number
of annotated features.

In the second step we filter the peptide annotations with
respect to the retention times of the features they are
assigned to. If a peptide identification is assigned to two
features with very different RTs in one map, it is likely that
one or both features are falsely annotated. This observa-
tion is used to filter out dubious identifications which
otherwise might give rise to incorrect consensus features
in the ground truth. For each peptide identification, we
compute the mean μ and standard deviation σ of the RT
positions of the features to which it is assigned. If σ > 100
s, then the identification is considered dubious and
removed from all features. Moreover, the identification is
removed from all features, if any, whose RT positions
deviate by more than 2σ from μ. These filters are applied
for each experiment separately.

In the third step we compute an initial list of consensus
features, in which features with identical identifications
are grouped across maps. In the previous steps we have
computed a set of associations between peptide identifica-
tions from MS/MS and LC-MS features. The consensus fea-
tures in our ground truth should have unique peptide
identifications. Therefore we start by compiling a com-
plete list of all peptide identifications over all experi-
ments. Then we step through this list and for each
identification we find the best-scoring features associated
with it, but at most one from each experiment, and add
these features to the corresponding consensus feature. In
this way we maximize the sum of XCorr values for the
peptide identifications in a consensus feature. We discard
dubious consensus feature whose m/z standard deviation
is greater than 1.

Let the total XCorr score of a consensus feature be defined
as the sum of XCorr values of all features contained in it.
After step three, it is possible that a feature is contained in
different consensus features from the initial list. In the
fourth step we reduce the initial list such that each feature
is contained in at most one consensus feature, whose total
score is the largest among all consensus features contain-
ing it. We have developed a simple "greedy" strategy to
achieve this goal. The purified list of candidate consensus
features is sorted in order of decreasing total score. In each
step we extract a consensus feature with maximum total
XCorr score from the list. This consensus feature is added
to the consensus map, and all consensus features having a
non-empty intersection with it are also removed from the
list. The process is iterated until no more consensus fea-
tures can be found, i. e., the list has become empty.

In the fifth step, we apply a final filter for outliers and
dubious identifications by comparing retention times
across maps. We calculate the RT sample variance within
all consensus features in the consensus map and discard
consensus features whose standard deviation is greater
than 2 times the sample standard deviation. Since this fil-
ter relies upon RT information and hence bears the risk of
introducing bias into the ground truth, we confirmed that
the removed consensus features are indeed outliers by vis-
ual inspection.

The numbers of consensus features in the ground truth are
also shown in additional File 2. A ground truth is only
considered if its number of consensus features corre-
sponds to a least 10% of the number of annotated featues
in the aligned feature maps.

As stated above, the assignment used as a ground truth is
restricted to features in different feature maps that were
annotated by a peptide identification. We believe that this
will not introduce a bias toward any of the tools, based on
the assumption that the features, which are selected for
MS/MS fragmentation are chosen randomly and inde-
pendently with the same probability p. For simplicity,
consider the case of pairwise alignment. The extension to
multiple map alignment will be discussed in Section 2.4.
The classical precision value is defined as TP/(TP + FP).
Note that the denominator does not depend on the
ground truth, and the enumerator is expected to be a con-
stant fraction TP = p ·TP* of the "real" true positive
number TP*. Thus, it is still possible to compare the prob-
ability that a computed consensus feature is contained in
the ground truth between the different tools, although the
absolute precision values will be underestimated by a fac-
tor of p using the available ground truth. The recall value
TP/(TP + FN) is not affected by such a bias, since both TP
and FN will be underestimated by a factor of p, which can-
cels out. Hence, the classical recall value can still be used
as an estimator for the probability that an "existing" con-
sensus feature is actually computed by the tool.

2.2 Metabolomics data
We have selected a typical Arabidopsis thaliana metabo-
lomics experiment, with different plant lines and treat-
ments measured at multiple time points in triplicates. The
same samples were measured on two different LC-MS set-
ups as follows.

2.2.1 Experimental setup
Preparation of Extracts

Freshly ground Arabidopsis thaliana leaf tissue (130 ± 5
mg) was subjected twice to the following extraction proce-
dure: mixing with 200 μL of methanol/water, 4/1 (v/v),
sonication at 22°C for 15 min and centrifugation for 10
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min. Both extracts were combined and evaporated at
reduce pressure in a vacuum centrifuge at ambient tem-
perature. The remaining residue was redissolved in 400 μL
methanol/water, 3/7 (v/v).

Data set M1: Capillary LC-ESI-QTOF-MS

1 μl of the extract was separated using an Ultimate capil-
lary LC system (Dionex) on a modified C18 column
(GROMSIL ODS 4 HE, 0.3 × 150 mm, particle size 3 μm,
Alltech-Grom) applying a binary acetonitrile-water gradi-
ent at a flow rate of 5 μLmin-1. Eluted compounds were
detected from m/z 75 to 1000 by an API QSTAR Pulsar i
(Applied Biosystems/MDS Sciex) equipped with an Ion-
spray electrospray ion source in positive ion mode. Accu-
mulation time was 2 s. Mass resolution for [M + H]+ of a
calibration peptide was RFWHM (resolution full width at
half maximum) = 8500 at 829 m/z.

Data set M2: LC-ESI-QTOF-MS.

10 μl of the A. thaliana extract were separated using a Agi-
lent 1100 Series HPLC system on a modified C18 column
(Atlantis dC18, 2.1 × 150 mm, particle size 3 μm, Waters)
applying the same binary gradient as above at a flow rate
of 200 μLmin -1. Eluted compounds were detected from
m/z 100–1000 by a MicrOTOF-Q (Bruker Daltonics)
equipped with an Apollo II electrospray ion source in pos-
itive ion mode. Accumulation time was 1.5 s. Mass resolu-
tion for [M + H]+ of a calibration peptide was RFWHM =
14000 at 829 m/z.

2.2.2 Data extraction
All data were exported in centroid mode by the converter
software from Applied Biosystems and Bruker, respec-
tively. The feature finding was done using XCMS [26]
using the parameters method = "centWave", peakwidth =
c(20, 50), snthresh = 5, ppm = 120 for the data set M1 and
ppm = 30 for the data set M2, respectively. The number of
features for each file is available as additional File 3.

2.2.3 Ground truth
In contrast to the proteomics data sets, usage of MS/MS
information and SEQUEST annotation are not applicable.
Compound spectra libraries exist for GC/EI-MS, but no
extensive set of reference spectra is available for LC-ESI-
MS. However, a relative annotation of "anonymous" sub-
stances is sufficient for the purpose of our alignment eval-
uation.

For soft ionization methods like LC-ESI-MS, different
adducts (e.g. [M + K]+, [M + Na]+) and fragments (e.g., [M
- C3H9N]+, [M + H - H20]+) occur. Using these known
mass differences and verification techniques such as peak
shape comparison by correlation analysis, features which

originate from the same substance can be grouped
together as annotated feature groups. Even if the sub-
stances are unknown, their spectra can be reconstructed in
this way. Details are described in [35].

We used features that do not only have the same retention
time but also show high correlation (Pearson correlation
coefficient > 0.9) in their chromatographic peak shapes to
create annotated feature groups. The correlation verified
feature annotations were created using the R-Package ESI,
which can be downloaded from http://msbi.ipb-halle.de/
msbi/esi.

Only those highly confident feature groups that were
reproducible over at least four files and show limited devi-
ation across the files (data set M1: ΔRT = 90 s, Δm/z = 0:02
Th, data set M2: ΔRT = 20 s, Δm/z = 0:01 Th) were used to
create a verified alignment of these feature groups. Subse-
quently, the aligned feature groups were split up into their
consensus features, which form the alignment ground
truth. The number of features for each file and the size of
the ground truth for each alignment are available in the
additional File 3.

2.3 Computation of alignments
In the following subsections we will shortly describe the
general approach of the six alignment methods as well as
their most relevant parameters. Furthermore, we present
our procedure to import the input feature lists into the dif-
ferent tools. Each program provides a consensus map in a
proprietary file format which was parsed for the evalua-
tion.

2.3.1 OpenMS
The open source framework OpenMS [36] offers a multi-
ple LC-MS map alignment algorithm [28] for raw as well
as feature maps.

The maps are aligned in a star-wise manner with the most
complete map as the reference map. The correction of the
warp in RT and m/z and the determination of a consensus
map are performed in two steps called superposition phase
and consensus phase. This modularization allows for the
implementation of a general algorithm that either aligns
multiple raw maps using just the superposition phase, or
aligns multiple feature maps applying both phases. In the
superposition phase the parameters of a suitable affine
transformation are determined using a general paradigm
for point pattern matching algorithms called pose cluster-
ing. The optimal transformation, which is defined as the
transformation that maps as many elements of one map
as possible close to elements in the other map, is deter-
mined by a so-called voting schema. The pose-clustering
algorithm considers the different measuring accuracies of
the RT and m/z dimension as well as the intensity infor-
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mation of the LC-MS map elements. After the estimation
of the initial transformation by the pose-clustering
approach, landmarks are searched in the two maps. These
landmarks are used for the refinement of the affine warp
by a linear regression step. The following consensus phase
is based on a nearest neighbors search and determines the
final consensus map given the dewarped feature maps.
The OpenMS multiple feature map alignment algorithm
is implemented in the TOPP tool MapAlignment. The
most important parameter for the user are precisionRT, pre-
cisionm/z and mz_bucket_size. The parameter mz_bucket_size
is a parameter for the superposition phase. It restricts the
computation of all possible transformations by mapping
only features in both maps that have similar m/z posi-
tions. Whereas, precisionRT and precisionm/z are parameters
of the consensus phase that define the maximal distance
of corresponding features for the grouping process. The
metabolomics feature lists were converted into the fea-
tureXML input format by the FileConverter TOPP tool.

2.3.2 msInspect
The multiple feature map alignment algorithm presented
in [25] is part of the open source LC-MS analysis platform
msInspect. The software package is written in the platform
independent language Java and is freely available at http:/
/proteomics.fhcrc.org.

Before a consensus map, the so-called peptide array, is
determined the algorithm corrects the non-linear distor-
tions of the RT dimension of all maps in a star-wise man-
ner with respect to a certain reference map. It is assumed
that the distortion in RT is explained by a global linear
trend plus a remaining non-linear component. In the first
step, the linear trend is estimated using the most intense
features with similar m/z positions. This initial model of
the RT transformation is used to iteratively determine a
non-linear transformation using smoothing-spline regres-
sion methods from the previous model. After dewarping
all maps, a global alignment is performed by applying
divisive clustering, with user-supplied tolerances in RT
and m/z of assigned features. The algorithm optionally
offers the automatic choice of the optimal RT and m/z tol-
erances using the quality of clustering. The quality of the
alignment is defined by the number of clusters that
include at most one feature from each map.

msInspect uses various tsv (tab-separated values) files for
input and output. We implemented utilities for convert-
ing data from our feature map format featureXML into the
msInspect tsv format and to extract the resulting consen-
sus map from the msInspect output files. The alignment
algorithm of msInspect provides the setting of two param-
eters: scanWindow, which is the maximum size of a con-
sensus feature in time space, and massWindow, the
maximum size of a consensus feature in mass space. The

option – optimize is used to determine the best choices
for the two parameters with respect to the number of per-
fect matches, which contain exactly one feature of each
map. We used the parameters suggested by the optimizer
but also different parameters to evaluate msInspect's
alignment algorithm.

2.3.3 SpecArray
Li et al. [22] developed a multiple feature map alignment
algorithm embedded in the open source software suite
SpecArray http://tools.proteomecenter.org.

The proposed algorithm computes all pairwise align-
ments and combines them to a final consensus map. To
correct the distortion in RT a retention time calibration
curve (RTCC) is iteratively computed for each pairwise
alignment by pairing features with similar m/z values to
construct an original feature pairs set. The RTCC curve is
estimated by minimizing the root mean square distance
of the features' RT positions to the monotonic function.
Pairs with a small pairing score are removed and the
reduced set of feature pairs is again used to estimate a
RTCC. The two steps are repeated until only the pairs with
a high pairing score remain and each feature in one map
is paired with at most one feature in the other map. The
final RTCC curve and the distance of peptides in m/z is
used to select likely and unique feature pairs from the
original set of feature pairs. The combination of all pair-
wise alignments yields the final consensus map, or the so-
called super list. The parameters for the alignment algo-
rithm are hard-coded and cannot be changed by the user.
Calculating all pairwise alignments results in a high runt-
ime and makes the algorithm inapplicable for the com-
parison of a large number of feature maps. SpecArray
provides two tools for the alignment of feature maps.
Whereas, PepMatch performs the actual alignment step,
PepArray can be used for the postprocessing and filtering
of the consensus map. We avoid the filtering step and use
the unprocessed final consensus map for evaluation pur-
poses.

We implemented software to convert our feature map for-
mat featureXML into the SpecArray's binary feature format
pepBof. Furthermore, we forced SpecArray to directly
export our consensus format by the addition of some lines
of code to the sources of PepMatch.

2.3.4 XAlign
Zhang et al. [23] propose a stand-alone tool, called XAlign,
for the alignment of multiple feature maps. The Xalign
software for Windows is available upon request from the
author.

XAlign computes in a first step a so-called gross-align-
ment, where the algorithm corrects a systematic shift in
Page 8 of 19
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RT. In the second step, a final consensus map, the so-
called micro alignment, is determined. The gross-alignment
algorithm aligns multiple maps in a star-wise manner,
where the reference map is chosen as follows: for all pre-
defined RT and m/z windows the most intense features of
each map are determined. If a window contains features
from all maps, the features are called significant and their
intensity weighted average mean RT position is calculated.
The map with the minimal difference of all its significant
features to the averaged RT positions is chosen as the ref-
erence map. Afterwards, all other maps are dewarped with
respect to the reference by estimating a linear function
that minimizes the mean absolute deviation of the RT
positions of significant features. In the micro-alignment
phase features yielding a high correlation coefficient are
successively grouped together and establish the final con-
sensus map. XAlign [23] is designed as a component of a
data analysis pipeline for protein biomarker discovery.
The stand-alone executable runs in the Windows com-
mand line. It reads tab-separated feature lists and gener-
ates several output files including the alignment table and
peak statistics.

2.3.5 XCMS
The XCMS package presented in [26] is part of Bioconduc-
tor [37], a larger open source software project for bioinfor-
matics written in the platform-independent programming
language R. All Bioconductor packages can be obtained
from http://www.bioconductor.org. XCMS is designed for
both LC/MS and GC/MS data. It includes functionality for
visualization, feature detection, non-linear retention time
alignment and statistical methods to discover differen-
tially expressed metabolites. We modified XCMS to skip
the feature detection step and imported the featurelists
directly from feature map format featureXML. XCMS' fea-
ture-matching algorithm makes use of fixed-interval bins
(e.g., 0.1 Th wide) to match features in the mass domain.
After this initial binning of features by mass, groups of fea-
tures with different retention time in each bin are
resolved. Kernel density estimation is used to calculate the
distribution of features in chromatographic time and sub-
sequently boundaries of regions where many features
have similar retention times are identified.

XCMS supports an optional retention time correction step
where "well-behaved" groups of features are used to calcu-
late a nonlinear retention time deviation for each sample.
The resulting deviation profiles are then used to correct
the retention times of the original samples. The matching
and retention time correction procedure can be repeated
for an increasingly precise alignment. However, we
observed that it is hard to predict whether the retention
time correction will actually lead to a better consensus
map and depends on the input. Therefore, we decided to

report results both without and with the optional reten-
tion time correction step.

2.3.6 MZmine
The MZmine toolbox [38] for processing and visualiza-
tion of LC/MS data is used via a graphical user interface.
Due to its implementation in Java it is platform independ-
ent. MZmine is open source and can be downloaded from
http://mzmine.sourceforge.net. We modified MZmine to
skip the feature detection step and import featurelists
instead.

MZmine's alignment approach does not estimate any
dewarping transformations. The toolbox currently imple-
ments a simple alignment method utilizing a so-called
master feature list, where features from each map are
aligned against the master list. A score function is used to
compute the similarity of a feature and a row of the master
list, which represents the current consensus feature. If the
score obtained between the best matching master list row
and a feature is "good enough" (both the m/z and reten-
tion time difference are within tolerances) the feature is
assigned to that row, otherwise it is appended to the mas-
ter list. MZmine offers two alignment algorithms, "slow
aligner" and "fast aligner", which differ in the implemen-
tation of the score function. We found only minimal dif-
ferences in the alignment quality of both algorithms so we
used the "fast aligner" due to the better runtime.

2.3.7 Parameters
We performed extensive test runs to optimize the param-
eters controlling the tolerance in RT and m/z for our test
data. Using the known deviations of the data as a starting
point we varied the parameters of each tool within reason-
able ranges. The parameters which yielded the best results
on the first experiment of each data set were choosen. The
final settings are shown in Table 2.

2.4 Evaluation
The performance of an information retrieval system can
be assessed using the precision and recall values. Our eval-
uation of the map alignment problem will follow these
lines. As stated in the beginning of this section, the correc-
tion of retention times is a very important aspect of the
LC-MS map alignment problem, and there is a trade-off
between the smoothness of the warping function and the
remaining distance among matched features. But at the
end, the purpose of warping the retention times is to find
groups of corresponding features that are reported as con-
sensus features, which is why our analysis focuses on this
aspect of the map alignment problem. That is, we will
evaluate the quality of the consensus map rather than the
warping function, because we consider the latter an inter-
mediate step for the map alignment problem. Given a
"query" feature in one map, the consensus map can serve
Page 9 of 19
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to retrieve related "items" in the other maps. Consensus
features are simply taken as sets of features; assigning an
appropriate average position to these sets etc. is another
problem and not addressed here.

In the frequentist interpretation, precision is the probabil-
ity that a found item is relevant, whereas recall is the prob-
ability that a relevant item is found. In the special case of
pairwise map alignment, the relevant items are matching
features; an item is either found or not. In order to extend
these concepts to the multiple map alignment problem,
we need to deal with consensus features that do not con-
tain features from all maps, as well as consensus features
reported by tools, that overlap but are not identical to the
ground truth.

Let us denote the consensus features in the ground truth
by gti, where the index i runs from 1 to N. Likewise, the

consensus features from the tool will be denoted by toolj,

for index j = 1,...,M. We consider the set of consensus fea-
tures from the tool that contain at least two features (so
that they can be used to retrieve items) and intersect with
a given consensus feature from the ground truth. Thus, for
each index i let us denote by Mi the set of all indices j such

that |toolj| ≥ 2 and |gti ∩ toolj| > 0. Now we can look at the

cardinality of this index set, |Mi|. In some way, this is the

number of "parts" into which consensus feature gti from

the ground truth has been "split up" by the tool. But we
can also look at the union of these consensus features,

. Then  is the set of all items that

can be retrieved if the query belongs to gti.

Therefore, following the classical definition of precision
and recall, we define the alignment precision:

and the alignment recall:

The factor |Mi| in the denominator serves as a penalty for
breaking up a consensus feature from the ground truth.
Note that in the case of pairwise alignments, the sum-
mands in these definitions are either zero or one, and our
definitions become equivalent to the classic precision and
recall. Thus, their names are justified as generalizations. A
perfect alignment will have both measures equal to one.
False positives (erroneously grouped features) lower the
alignment precision; false negatives (erroneously una-
ligned features) lower the alignment recall.

An example is shown and calculated in Figure 1.

An R script was written for the automated computation of
the recall and precision values. The runtimes were meas-
ured as wall-clock time including all file input/output
while no other programs were running. All measurements
were done on an AMD Athlon 64 X2 Dual Core Processor
4800+ with 2 GB RAM running Linux (Ubuntu 6.06).
Since XAlign does not run under Linux, we evaluated it
under Windows XP running in a virtual machine using
VMWare Workstation 5.5.3 on the same computer (native
Windows XP should typically be 10–20% faster). The
reported wall-clock runtimes are cumulative over all runs
per data set.

tool toolj ∪i jj Mi
:=

∈
toolj i

Precision
gt tool

toolAlign =
=
∑1

1
N

i i
ii

N
| |

| |
∩ j
j

Recall
gt tool

gtAlign =
⋅

=
∑1

1
N

i i
Mi ii

N
| |

| || |
.

∩ j

Table 2: Alignment parameters

Tool Parameter Metabolomics Data Metabolomics Data
Data Set P1 Data Set P2 Data Set M1 Data Set M2

msInspect massWindow 1.5 1.5 0.1 0.05
scanWindow 250 300 250 300

MZmine m/z tolerance size 1.5 1.5 0.03 0.025
RT tolerance size (absolute) 150 300 50 30

OpenMS m/z bucket 0.5 0.5 0.1 0.01
precision m/z 2 2 0.1 0.1
precision RT 150 300 100 100

SpecArray (hard coded parameters) - - - -
XAlign m/z variation 2 2 0.04 0.03

retention time variation 3 3 0.5 0.5
XCMS mzwid 2.5 2.5 0.15 0.05

bw 40 80 30 30
retcor method loess linear loess loess
span 0.75 - 0.75 0.75
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3 Results
The proteomics (P1, P2) and metabolomics (M1, M2)
data sets pose different challenges for the alignment tools.
Each tool has to correct the global trend of the retention
time variation resulting from the flow rate variability from
experiment to experiment. Furthermore, it has to over-
come local distortions resulting from e. g. gradient noise
or temperature changes and assign corresponding features
across the different maps.

To illustrate the ground truth established for these data
sets, we plot the retention time deviation versus the reten-
tion time. Figure 2 shows a significant shift between cor-
responding features in fraction 100 of P1_1 and P1_2, but
almost no difference in scale. Figure 3 shows that fractions
20 of P2_2 and P2_3 are slightly scaled with respect to
P2_1, but apart from that the retention times are in fact
better correlated. While an average absolute retention
time deviation of 57 s can be observed in the ground truth
maps of P1, the average absolute retention time deviation
for P2 is 131 s (before retention time correction). The
retention time deviation plots for each single fraction of
the data sets P1 and P2 are available as additional File 1.

The metabolomics data sets M1 and M2 contain a larger
number of experiments (24 resp. 44). Therefore, we use
box-whiskers plots for visualization. Figures 4 and 6 show
that variation is higher in M1 than in M2, but still much

smaller than in P1 or P2. The average absolute retention
time deviation for the ground truth of the metabolomics
data sets M1 and M2 is 5.4 s and 2.7 s respectively. Pre-
sumably, "large" deviations are the reason for most of the
alignment errors. Loess regression curves for three ran-
domly chosen files show that the global trends are not as
pronounced as the local variation, see Figures 5 and 7.

Both proteomics data sets challenge the ability of the
alignment tools to correct strong retention time varia-
tions. Especially the data of P2, which were measured dur-
ing several weeks and show huge retention time
deviations of around 13 minutes, confront the dewarping
step of the tools with a serious problem. However, the
highly complex metabolomics data sets reveal the capabil-
ity of the alignment tools to assign the correct features
across multiple maps. The maximum retention time devi-
ations of feature maps in M1 and M2 are only 90 s and 20
s respectively, without an obvious global trend. The warps
are mainly affected by local non-linear distortions of
retention times similar to uncorrelated statistical noise. In
M1 the high density of the feature maps complicates the
determination of the correct consensus features. However,
M2 challenges the grouping step of the tools by its large
number of input maps.

Our evaluation of the tools' performance is based on
alignment recall and alignment precision as defined in

Retention time deviations of data set P1Figure 2
Retention time deviations of data set P1. Exemplary plot of retention time deviations in the ground truth of data set P1. 
Retention time deviation of File P1_2 is plotted against retention time of File P1_1 (fraction 100).
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Retention time deviations of data set P2Figure 3
Retention time deviations of data set P2. Exemplary plot of retention time deviations in the ground truth of data set P2. 
Retention time deviations of File P2_2 and P2_3 are plotted against retention time of File P2_1 (fraction 20).
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Retention time deviations of data set M1Figure 4
Retention time deviations of data set M1. Box-whiskers-plot showing the retention time deviations in the ground truth 
of data set M1.
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Section 2.4, as well as their running times. Memory con-
sumption was not a critical resource. Since the chromato-
graphic separation steps for the metabolomics and the
proteomics data sets resemble each other, we decided to
test all tools on all data sets, even though most of them
were originally designed for either metabolomics or pro-
teomics data. Figure 8 shows a summary of the results on
the different data sets.

The results for the proteomics data sets P1 and P2 are
shown in Tables 3, 4, and 5. We found that OpenMS per-
forms best on P1, closely followed by XAlign, XCMS and
MZmine. All four tools achieved high recall as well as high
precision values on this data set. However, SpecArray and
msInspect result in slightly worse recall and precision val-
ues. The evaluation on the second proteomics data set

shows a similar trend, despite the overall recall and preci-
sion of all tools is reduced on this more demanding data
set. OpenMS again performs best on most fractions of P2
and is closely followed by XAlign, XCMS and MZmine.
SpecArray and msInspect are closely ranked after these
four tools. All programs completed within two minutes
on the relatively small data sets of P1 and P2.

The results for the metabolomics data sets M1 and M2 are
shown in Tables 6 and 7. Here, XCMS performs best on
both data sets, and MZmine does equally well on M2,
with OpenMS and XAlign not far behind. Alignment recall
is much more discriminative than alignment precision,
due to the penalty for breaking up a consensus feature
from the ground truth. The running times were signifi-
cantly different on these relatively large data sets, which

Retention time deviations in the ground truth of three randomly chosen files from data set M1Figure 5
Retention time deviations in the ground truth of three randomly chosen files from data set M1. Loess regression 
curves were superimposed for better visualization.
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contain more than 200 000 features in 24 (M1) respec-
tively 44 (M2) feature maps. The alignments using Spe-
cArray were canceled after 24 hours with an estimated
remaining runtime of more than two weeks. SpecArray
performs all pairwise map alignments and seems inappli-
cable to this kind of metabolomics data. In contrast,
XCMS computes the alignment of the M1 and M2 in less
than seven minutes. OpenMS requires 13 minutes for the
determination of the metabolomics consensus maps.
MZmine and XAlign both result in a high runtime of more
than one hour for the quite complex metabolomics data
sets.

msInspect has a runtime of only half an hour, but with
very low recall and precision values. We were unable to
obtain good results on the data sets M1 and M2 using
msInspect with parameters suggested by the optimizer as
well as different values chosen manually. In most cases
the automatic choice of "optimized" parameters did not
lead to better alignment results than manually chosen
"good" values. Furthermore, we observed that a different
order of the input files leads to different results with msIn-
spect. Placing the feature list with the highest number of
features on top of the list seems to give the best results.

Another outcome of our evaluation is that it is hard to pre-
dict whether XCMS map alignment should be used with

or without retention time correction, and that the charac-
teristics of the correction need to be checked.

4 Discussion and conclusion
The automatic alignment of LC-MS data sets is an impor-
tant step in most analysis pipelines for metabolomics and
proteomics high-throughput experiments. Algorithms
that perform this task efficiently and accurately have a
large impact not only on basic research in biology, but
also on more applied questions such as biomarker discov-
ery and drug research in general. Due to the importance of
this step and the multitude of different approaches a
meaningful standard data set and a sophisticated scoring
method are needed. We offer both proteomics (P1, P2)
and metabolomics (M1, M2) benchmark data sets, as well
as proper quality measures (PrecisionAlign, RecallAlign) and
an evaluation procedure. On the basis of these data sets
we have assessed the performance of six freely available
alignment tools.

Perhaps surprisingly, we observed that in many cases the
largest part of the systematic deviation of retention time in
our data sets could have been corrected by a simple shift
without any further scaling or non-linear warping at all.
The remaining error is very similar to statistical noise, not
correlated among neighboring consensus features, and
further scan-wise corrections of retention time will face
the risk of overfitting. This suggests that the choice of the

Retention time deviations of data set M2Figure 6
Retention time deviations of data set M2. Box-whiskers-plot showing the retention time deviations in the ground truth 
of data set M2.

°°°°°°°°

°°°
°°°°°
°°°
°°
°
°°°°°°°°°
°°°
°°

°
°°
°
°
°

°°

°

°

°

°

°

°°

°°

°°°
°

°°
°
°°°°°°°°°°°°°°°°°°°°°°°°
°°°°°°°°°
°
°°°°°°°°°°°
°
°°°°
°
°°°°
°°°°°°°°
°

°°°°°
°°°
°
°°
°°°°°°

°

°°

°
°

°

° °°°°°°
°°°°°
°°°°°°°°
°°°°°°°°°°

°°

°

°°°°°

°

°
°°
°
°
°°
°°
°
°
°
°
°°°°°°°

°°°°°°

°°

°°

°°

°

°
°°

°°°°°°°

°

°

°°

°
°

°°

°°°
°

°°

°

°

°°°°°°
°°°

°°°°°°°

°°

°°°°°

°
°
°°°°°

°°°°°°
°°°°°°°°°°°°°°°°°

°°°°°°°°

°

°°°°°°

°

°°

°°

°°°°°

°

°°°°°°

°
°
°°
°
°°°°
°
°°

°°°

°

°

°°

°°°

°

°°

°°°

°

°°°°°°°°

°°°°

°

°

°

°°°°
°

°°
°°

°°°°°°°
°
°°°°°°

°

°

°

°

°°

°

°

°°°

°

°

°

°

°°°°°°°°°°°°°°°
°
°
°°°°°°°

°

°°°

°°°°°

°°°

°

°

°

°

°°

°°°
°

°

°

°°°°

°°°°°°

°°°°°°°°

°
°

°
°°°°°°

°
°

°°°°

°°°°°°°°

°°°

°°

°°°°°°°°°°°°°°°°°°°°

°°°°°°°°°°°°°°

°°

°°°

°

°

°

°°°

°°°°°°

°

°°°°°°
°
°°°°°

°°°°

°°

°°°°°

°

°°

°

°

°°°

°°°°

°
°°°°
°°
°

°

°°°°

°°°

°°°°°°°°

°

°

°°°°°°
°
°
°

°°
°
°°°°
°

°
°

°
°°
°°
°°°°°°°°
°°°
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

°
°
°

°

°

°
°°

°°°°

°
°°
°
°°°°

°°

°

°°°°°°°°°°
°°

°°°°

°

°°°
°°

°
°°°

°

°

°°°°°

°

°

°°
°°°°°°

°°

°
°
°

°

°°°°°
°°°°°°
°°
°°°

°

°°

°

°°

°°°°°

°°

°°°°°°°°°

°

°°

°°°°°°°°°°°°°°

°

°°°°

°°

°°°°°°°°°°°°°°°°
°°°°

°

°

°° °

°°

°°

°°°

°

°°

°°°°°°°

°°°°°°°°°°°°°°°°

°°°

°°°°°

°°°°°°

°
°°°

°°
°
°°°°°°

°

°

°°

°

°°°
°°°°°°°

°°°
°
°°
°°°°°°°
°

°°

°

°

°°

°

°°

°

°°

°

°°

°
°°°

°°

°°°°°°°°

°
°°
°°
°

°

°°°°°°°°°°°

°°

°°°°°°

°°°°

°°°°°°°°°°°°°

°

°°°°°

°°°
°

°

°°°

°°°°°°°°
°°°°
°
°

°

°°°°°
°
°

°°°°°°°°°°°°°°°°°°°°°°°

°°

°

°
°°
°

°°°°°°°°°°°°°°°°°°

°°°
°°°°

°°°°

°°°°°°°°
°°°°°°°°
°°°°

°

°

°°°°°°°

°
°°

°°

°

°

°°°

°

°°

°°°°°

°°°°

° °°°°°°°°°°°°°°°°°°°°°°°°°

°°
°

°°°°°°°°°°°°°°°°°°°°°°°°

°

°

°°

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

°

°°°°°°°°°°°°°°°°°°°°°°
°
°°
°°°°°

°

°°°°°°°
°°°°°°°°

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

°°° °°°°°°°°°°°°°°°°°°°°°°°°°°°°

°°

°°°°°°°°°°°°°°°°

°

°°°°°

°
°°°°

°°

°°°°°°°
°
°°°
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

°°°°°°°°
°°°°°°°°

°°°°°°°°

°°

°°°°°°°
°°°°°°°°
°°

°°°

°°°

°

°°

°

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
°
°
°
°
°

°°°°°

°°°°
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
°°°°°°°°°°°°°°°°
°°

°

°

°

°°
°°
°°°°°

°
°
°°°

°°°°°°°°°

°°°°°°°°°

°°

°°°°

°

°
°
°°°°
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

°°

° °°°

°°
°°

°°°°°°°°°
°°°°

°

°°°°

°

°°°°°°°°°°°°°°
°°°°°°

°

°°°

°°°°
°°°°

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

°

°

°°

°
°°°

°
°
°°
°°°

°

°

°

°°°°°

°°°°°°°

°

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

°°°°°

°°°°°°°°°°

°°°°°°

°°° °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
°°°°°°
°°°°
°

°

°

°°

°

°°°°°°°°°°°°°°°°°°°°°
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
°
°°
°°°°°°°
°°°°°
°°°°°°°°°°°°°°
°
°°

°°°
°
°
°

°°
°
°
°
°
°°°

°°

°°°°°°°

°

°°°°°° °°

°°

°°°°°°°°°°°°°

°

°°°°°°°°
°°°°°

°

°°

°

°
°

°°°°°°°°°
°

°°
°°°°
°°

°°°°°°°°°°°°°°°° °°°°°°°

°°

°

°

°°

°
°
°°
°
°

°

°

°°°

°°
°
°

°

100 300 500 700 900 1100 1400 1700 2000 2300 2600 2900 3200 3500

−
50

0
50

Retention time (seconds)

R
et

en
tio

n 
tim

e 
de

vi
at

io
n 

(s
ec

on
ds

)

Page 14 of 19
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:375 http://www.biomedcentral.com/1471-2105/9/375
warping function is less important than the following
clustering step (i. e., the correction of the retention times
of the individual features), as this will establish the actual
consensus features.

The implemented methods are based on a variety of algo-
rithmic principles with complementary strengths and
weaknesses [13]. Combining them into "hybrid"
approaches seems to be a promising direction for future
research. However, such a project requires a long-term
commitment and, if possible, several software developers
are necessary. We expect to see a consolidation in the area
in the future with a tendency toward open source frame-
works such as Bioconductor or OpenMS.

Recently, the Association of Biomolecular Resource Facil-
ities (ABRF) has organized a collaborative study focusing

on evaluating the ability of proteomics laboratories to
determine the identities of a complex mixture of proteins
present in a single mass spectral data set, as a follow-up to
an earlier study in which the actual samples were distrib-
uted [39]. This indicates the growing attention paid to
data processing versus "wet-lab" techniques in the pro-
teomics field. Similar competitions should be organized
for all the other aspects of a typical LC-MS data processing
pipeline, including the LC-MS map alignment problem.
The experience from the plasma proteome project [40]
has shown that it is difficult to assess the performance if
many aspects change simultaneously.

We would like to encourage other MS software developers
(including commercial vendors) to use our benchmark
data for evaluation. Further benchmarks are also highly
welcome, e. g. identical samples run at different laborato-

Retention time deviations in the ground truth of three randomly chosen files from data set M2Figure 7
Retention time deviations in the ground truth of three randomly chosen files from data set M2. Loess regression 
curves were superimposed for better visualization.
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Result OverviewFigure 8
Result Overview. Average alignment recall values for the results on the four data sets P1, P2, M1 and M2. XCMS was evalu-
ated without(1) and with(2) application of retention time correction. The detailed results are shown in Tables 3, 4 and 6.
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Table 3: Alignment recall and precision results for the proteomics data set P1.

msInspect MZmine OpenMS SpecArray XAlign XCMS
without retention time with correction

fraction 00
RecallAlign 0.52 0.75 0.86 0.61 0.82 0.72 0.62

PrecisionAlign 0.38 0.81 0.86 0.61 0.82 0.54 0.58
fraction 20

RecallAlign 0.56 0.87 0.92 0.62 0.85 0.88 0.81
PrecisionAlign 0.45 0.88 0.92 0.62 0.85 0.84 0.80
fraction 40

RecallAlign 0.63 0.87 0.94 0.75 0.87 0.92 0.81
PrecisionAlign 0.48 0.90 0.94 0.75 0.87 0.85 0.80
fraction 60

RecallAlign 0.73 0.79 0.96 0.71 0.87 0.91 0.78
PrecisionAlign 0.54 0.84 0.96 0.71 0.87 0.80 0.75
fraction 80

RecallAlign 0.70 0.92 0.96 0.74 0.90 0.94 0.89
PrecisionAlign 0.57 0.94 0.96 0.74 0.90 0.88 0.88

fraction 100
RecallAlign 0.82 0.92 0.94 0.77 0.96 0.95 0.96

PrecisionAlign 0.56 0.94 0.94 0.77 0.96 0.89 0.96
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Table 4: Alignment recall and precision results for the proteomics data set P2.

msInspect MZmine OpenMS SpecArray XAlign XCMS
without retention time with correction

fraction 00
RecallAlign 0.23 0.77 0.77 0.07 0.65 0.70 0.58

PrecisionAlign 0.07 0.6 0.65 0.05 0.49 0.31 0.44
fraction 20

RecallAlign 0.67 0.87 0.92 0.57 0.84 0.89 0.86
PrecisionAlign 0.24 0.71 0.77 0.42 0.70 0.55 0.66
fraction 40

RecallAlign 0.44 0.79 0.76 0.60 0.71 0.72 0.72
PrecisionAlign 0.26 0.76 0.74 0.41 0.69 0.56 0.69
fraction 80

RecallAlign 0.73 0.61 0.80 0.65 0.58 0.64 0.49
PrecisionAlign 0.34 0.56 0.70 0.44 0.56 0.50 0.45

fraction 100
RecallAlign 0.82 0.80 0.90 0.63 0.85 0.95 0.85

PrecisionAlign 0.39 0.65 0.75 0.44 0.69 0.65 0.69

Table 5: Wall-clock runtime for the proteomics data sets P1 and P2 in minutes.

Data set msInspect MZmine OpenMS SpecArray XAlign XCMS
without retention time with correction

P1 1 0.67 1.6 1.85 1.15 0.53 0.90
P2 0.75 1.22 0.36 5.19 0.29 0.33 0.49

Total 1.75 1.89 1.96 7.04 1.44 0.86 1.39

Table 6: Alignment recall and precision results for the metabolomics data sets M1 and M2

Data set msInspect MZmine OpenMS SpecArray XAlign XCMS
without retention time with correction

M1
RecallAlign 0.27 0.89 0.87 - 0.88 0.98 0.94

PrecisionAlign 0.46 0.74 0.69 - 0.70 0.60 0.70
M2

RecallAlign 0.23 0.98 0.93 - 0.93 0.97 0.98
PrecisionAlign 0.47 0.84 0.79 - 0.79 0.58 0.78

Table 7: Wall-clock runtime for the metabolomics data sets M1 and M2 in minutes

Data set msInspect MZmine OpenMS SpecArray XAlign XCMS
without retention time with correction

M1 12 20 4.4 - 51 0.9 1.4
M2 24 44 8.7 - 35 5.5 5.8

Total 36 64 13.1 - 86 6.4 7.2



BMC Bioinformatics 2008, 9:375 http://www.biomedcentral.com/1471-2105/9/375
ries under "identical" conditions, or even on MS equip-
ment from different vendors. We will collect future results
and contributions upon request on http://msbi.ipb-
halle.de/msbi/caap.
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