
2	 Computing in Science & Engineering	 1521-9615/15/$31.00 © 2015 IEEE	 Copublished by the IEEE CS and the AIP� July/August 2015

High-Performance Computing

Open XDMoD: A Tool for the Comprehensive Management
of High-Performance Computing Resources

Jeffrey T. Palmer, Steven M. Gallo, Thomas R. Furlani, Matthew D. Jones, Robert L. DeLeon,
Joseph P. White, Nikolay Simakov, Abani K. Patra, Jeanette Sperhac, Thomas Yearke, Ryan Rathsam,
Martins Innus, and Cynthia D. Cornelius | State University of New York, Buffalo

James C. Browne, William L. Barth, and Richard T. Evans | University of Texas, Austin

The Open XDMoD portal provides a rich set of analysis and charting tools that lets users quickly display a wide variety
of job accounting metrics over any desired timeframe. Two additional tools, which provide quality-of-service metrics
and job-level performance data, have been developed and integrated with Open XDMoD to extend its functionality.

T
oday’s high-performance computing
(HPC) systems are a complex combina-
tion of hardware and software, and the
personnel running them need to have the

ability both to continuously ensure that the infra-
structure is running with optimal efficiency as well
as to proactively identify underperforming hard-
ware and software. Furthermore, given that most
HPC centers are oversubscribed, it’s important that
center personnel have the ability to monitor all
jobs that run on the cluster to determine their effi-
ciency and resource consumption as well as to plan
for future upgrades and acquisitions. Surprisingly,
no comprehensive open source tools provide all of
these capabilities. Open XDMoD was designed to
fill this void.

The genesis of XDMoD (XD metrics on de-
mand) began with UBMoD (UB metrics on de-
mand) an open source tool developed by the State
University of New York at Buffalo Center for
Computational Research (CCR) to mine resource
manager files and provide basic usage account-
ing information (http://ubmod.sourceforge.net).
Subsequent to UBMoD’s release, the US National
Science Foundation (NSF) awarded CCR with the
Technology Audit Service for Extreme Science and
Engineering Discovery Environment (XSEDE)
grant to develop, among other things, the XDMoD

tool1 for managing XSEDE cyberinfrastructure,
a collection of HPC compute, visualization, and
storage resources that’s one of the most powerful
cyberinfrastructures in the world.2 XDMoD is a
substantial improvement over UBMoD in many ar-
eas, including increased functionality, an improved
interface, and high-level charting and analytical
tools. Because XDMoD has proven to be a valuable
tool for XSEDE, a parallel effort was launched to
adapt it for the general HPC community. This tool,
Open XDMoD, enables local installation in—and
monitoring of—individual HPC centers.

Open XDMoD is an open source project
under the GNU Lesser General Public License
(LGPL) version 3.0. While XDMoD utilizes infor-
mation culled from the XSEDE central database,
Open XDMoD creates a local (to the HPC cen-
ter) data warehouse by parsing the HPC center’s
resource manager files. Open XDMoD has also
been designed to be customizable to meet the HPC
center’s specific needs—for example, its hierarchi-
cal user structure (groups, departments, decanal
units, and so on) can be adjusted to match that of
a specific institution. In addition, Open XDMoD
supports user roles so that the HPC center director
can determine the appropriate data access level for
end users, support personnel, administrators, the
public, and so forth.

www.computer.org/cise			 	� 3

In addition to providing basic job accounting
metrics, two tools have been developed to enhance
Open XDMoD. The first is the Application Ker-
nel Remote Runner (AKRR), which is designed to
provide quality-of-service (QoS) metrics. Typically,
HPC facilities don’t have a mechanism to monitor
the QoS they provide to their end users—instead,
users become the “canaries in the coal mine” who
report problems to center support personnel when
their jobs suddenly run poorly or fail to run alto-
gether. Center support personnel then determine
whether the root cause for these user-reported is-
sues is based in hardware or software problems.
Depending on the problem, substantial resources
in the form of CPU cycles and staff time might be
wasted before the problem is detected, identified,
and subsequently rectified. The key idea behind the
application kernels is to periodically run a series of
computationally lightweight benchmarks and ap-
plications from normal user submission queues to
proactively detect problems with hardware and soft-
ware. The resulting data is ingested into the Open
XDMoD data warehouse, and process control algo-
rithms automatically detect underperforming appli-
cation kernels and notify support staff. The details
of an underperforming metric for a given applica-
tion kernel is a very useful indicator of where to
start the search for the underlying issue. The kernels
are designed to span all aspects of the HPC cluster
operation (compute, storage, and network).

The second Open XDMoD enhancement is
SUPReMM (integrated HPC systems usage and
performance of resources monitoring and model-
ing), which queries system hardware counters to
collect a range of performance information, includ-
ing memory usage, filesystem usage, interconnect
fabric traffic, and CPU performance.3–7 Typically,
this information is acquired at the job’s start in the
prolog, at the job’s end in the epilog, and synchro-
nously across all nodes in 10-minute intervals via a
cron job. The user can set the data collection inter-
val. SUPReMM provides a large variety of job per-
formance metrics that give the HPC center directors
and support personnel insight into the performance
of all applications running on the cluster, without
the need to recompile end user applications.

Installation and Customization
of Open XDMoD
The most recent version of Open XDMoD is cur-
rently available on SourceForge at http://xdmod.
sourceforge.net. Here, you’ll find prepackaged
versions for RedHat/CentOS systems as well as a

generic source bundle suitable for installation on
all Linux operating systems. Extensive installation
and upgrade instructions are also available, with
details on system and software prerequisites and
software installation procedures, as well as a con-
figuration and troubleshooting guide.

Open XDMoD has been developed as a cus-
tomizable and extensible tool to support the analy-
sis and reporting of HPC job data from multiple
sources, such as resource manager log files and
campus Lightweight Directory Access Protocol
(LDAP) services, as well as auxiliary information
such as user-reporting structure hierarchies (school,
decanal unit, and department and project). As Fig-
ure 1 shows, the XDMoD architecture is made up
of four main components: tools for processing raw
resource manager log files, a local relational data
warehouse, a role-based REST API, and an inter-
active Web-based application for viewing and ana-
lyzing data. The data warehouse and REST API
are built using a traditional open source Linux,
Apache, MySQL, and PHP (LAMP) software
stack. The user-facing portion of Open XDMoD
is a Web-based application and has been designed
as an interactive tool for comparing any number of
data series selected from the data warehouse. It was
developed using enterprise-class user interface (UI)
tools, including HighCharts (www.highcharts.
com) and ExtJS (www.sencha.com/products/extjs),
both of which are used in more than 50 Fortune
500 companies. ExtJS is a comprehensive, flexible,
event-driven cross-browser UI toolkit that provides
the basis of the Open XDMoD UI, whereas High-
Charts is an interactive client-side charting tool
that allows the user to view and interact with mul-
tiple data series directly in the browser.

The data warehouse sits at the core of Open
XDMoD. It’s comprised of both a set of databases
where raw and aggregated data is stored, and also
the RESTful API infrastructure required to query
and present this information to the UI. The API is
used for all interactions with the core infrastructure
components (data warehouse, report generator, and
so on) and provides an abstraction that insulates
UI components from any necessary changes to the
underlying infrastructure, while ensuring that each
request is authenticated and properly authorized
based on the user’s role. The Open XDMoD data
warehouse uses a dimensional starflake model to
store the ingested data. Most data warehouse de-
signs use dimensional models, such as star, snow-
flake, and starflake schemata.8,9 A star schema is
a dimensional model with fully de-normalized

High-Performance Computing

4	 � July/August 2015

hierarchies, whereas a snowflake schema is a dimen-
sional model with fully normalized hierarchies.10 A
starflake schema, a combination of a star schema

and a snowflake schema, provides the best solution
as it allows for a balance between the 2D normal-
ization extremes. Upon ingestion, the transactional

Resource manager data

Open XDMoD data warehouse

Open XDMoD REST service API

Open XDMoD Portal

User base

Public

Public summary
User dashboard

Usage explorer
Report generator

Chart manager Report manager
Scheduler Templates

Jobs

User
Principal

investigator
Center
staff

Center
director

Visualizer

Plots & graphs
Raw data,

spreadsheets

Authentication Request validation Request routing

3rd Party
consumer

Aggregated
data

(modw_aggregares)

Raw ingested
data
(modw)

Dataset

Query
builder

Aggregation &
cross-referencing

Slurm Grid
engine

Request Data

PBS LSF

Raw
shredded

data
(mod_shredder)

Normalized
shredded data

(mod_hpcdb)

Shredding

Ingestion

Figure 1. Open XDMoD architecture. It has four main components: tools for processing raw resource manager log
files, a local relational data warehouse, a role-based REST API, and an interactive Web-based application for viewing
and analyzing data. The data warehouse and REST API are built using a traditional open source Linux, Apache,
MySQL, and PHP (LAMP) software stack.

www.computer.org/cise			 	� 5

data is partitioned into facts and dimensions (di-
mensions are the reference information that gives
context to the facts). For example, an HPC job
transaction can be broken up into facts such as the
job identifier and total CPU time consumed, and
into dimensions such as the cluster name, user’s de-
partment, and project under which the job was run.

Following installation and configuration, the
shredder extracts data from resource manager log
files and brings it into the data warehouse for use by
Open XDMoD. Shredding refers to the process of
parsing raw resource manager log files for informa-
tion such as job owner, wall time, start time, number
of cores, and other information, and then bringing
this information into the data warehouse. During
the shredding process, information is checked for
consistency before being placed into the data ware-
house. Common errors include discrepancies be-
tween reported wall time and start and end times,
missing data, and inconsistent node or core counts.
This process is typically run once per day to capture
new usage data, but it can be run at any installation-
required frequency. Open XDMoD provides shred-
ders for PBS (portable batch system), SGE (sun grid
engine), SLURM (simple Linux utility for resource
management), and LSF (load-sharing facility).
Open XDMoD users are encouraged to develop
their own shredders for additional resource manag-
ers and contribute them back to the community.

Before Open XDMoD can efficiently present
data to users, the ingestion process must prepare
the raw data for use. During this process, relation-
ships between various datasets are established so
that information can be easily cross-referenced. To
start, primary keys are assigned to various entities
(users, principal investigators, resources, and so
on). This flat data is then normalized before being
inserted into the data warehouse.

To optimize UI responsiveness, the system au-
tomatically presents data granularity to the user
based on the dynamic time period being examined,
with data aggregated by day, week, month, quarter,
or year. (For HPC job data, daily aggregation is the
finest granularity.) For example, when viewing total
CPU hours provided over a one-month period, the
displayed data is aggregated daily, with each data
point representing the total CPU hours on a given
day. When viewing a one-year period, data points
are aggregated monthly, with each data point rep-
resenting the total CPU hours for a given month.
The user has the option to override this selection
and choose any aggregation period. To support this
optimization, raw data is summarized into separate

aggregate tables, one for each supported period.
The use of aggregates significantly decreases query
time, improving UI response time and resulting in
an improved user experience, although additional
disk space is required. The space versus time trade-
off is well justified as evidenced by the reduced que-
ry times in Table 1. For a center with 33 million
historical jobs, we’ve found that the aggregation
process adds only roughly 25 percent to the data
warehouse’s space requirements, while providing up
to a 41-fold reduction in query time.

Open XDMoD can be customized in a variety
of ways. A three-level hierarchy could be specified
to group PIs together, allowing users to drill down
from the highest level of the hierarchy to individu-
al PIs and users. The user roles can be customized
to change default dashboard charts or hide dimen-
sions from certain roles. A logo image can also be
added to the Open XDMoD portal’s header.

Open XDMoD Tool Description
A principal function of Open XDMoD is to deliver
job and system utilization data easily and in a rapid
fashion that eliminates the painstaking manual data
collection employed in many HPC centers. Figure
2 shows a screen capture of a typical display page
of the Open XDMoD instance at CCR. The user
interface for Open XDMoD features a tabbed navi-
gation format. When Open XDMoD is launched,
the user initially sees the Summary tab, which con-
tains a collection of charts and data presenting an
overview of HPC center operations. The Summary
tab is customizable and can therefore be tailored by
the user to best meet his or her informational needs.

The Usage tab lets users produce interactive
single-metric plots. For example, Figure 2 shows a
chart constructed in the Usage tab displaying the to-
tal number of CPU hours delivered over a two-year
period at CCR, broken down by job size (number of
cores). The user can adjust the time range displayed

Table 1. Query speedups via aggregation.

Query
Without

aggregation
With

aggregation Speedup

Monthly jobs per six
resources 2005–today

122.46 s 3.48 s 35 ×

Monthly jobs per six
resources 2011–today

80.49 s 1.96 s 41 ×

Daily jobs for one
resource in 2012

8.77 s 0.31 s 28 ×

High-Performance Computing

6	 � July/August 2015

by the chart using the date selector and choose to
display the result as either an aggregated or a time
series chart. A chart in the Usage tab can be cus-
tomized in three basic ways: the user can filter it to
display only a subset of the data, for example, only
certain, queues, users, or resources; the user can click
on a data series in the plot and drill down for a more
detailed analysis of that specific component; or the
user can easily alter the manner in which the data
is charted, choosing from line or bar charts, log or
linear scales, stacking options, and so on.

The Metric Explorer tab lets users make more
complex plots that compare multiple data series.
For example, Figure 3 shows a plot created us-
ing the Metric Explorer that shows CPU hours,
number of jobs, and average wait time per job as
a function of job size (number of cores) on CCR’s
production cluster during 2013. Because a sub-
stantial cost of a typical HPC cluster is in the
high-speed interconnect, it’s important to moni-
tor cluster usage to ensure that large parallel jobs
represent a substantial fraction of the CPU cycles
consumed, as is demonstrated in Figure 3. Also in-
cluded in the plot is the average time that a user’s
job sits in the wait queue before running. Based on
this information, system personnel can adjust the
job scheduler to ensure that jobs in a desired size
range are running without inordinate delays.

Exporting plots and data from the Usage and
Metric Explorer tabs is straightforward. Open XD-
MoD gives the user several data export options,
including PNG, SVG, comma-separated value
(CSV), or XML formats.

The Report Generator tab gives users access to
the custom report builder and allows them to cre-
ate and save multiple customizable reports. When
the user creates a chart and selects the “Available for
Report” checkbox on the Usage or Metric Explorer
tabs, that chart is placed into the chart pool and can
be incorporated into a future report. For example,
users might want to receive specific plots and data
summarized in a concise report that they can down-
load for offline viewing. They can also choose to
schedule the generation of custom reports at a spec-
ified interval (daily, weekly, quarterly, and so forth)
and automatically receive them via email as a Word
or PDF file at the specified time interval, without
the need to subsequently log in to Open XDMoD.
This is particularly useful for center directors, help-
ing them easily monitor HPC system operation.

The About tab provides general information
about XDMoD and Open XDMoD. The Help
button gives users access to the Open XDMoD
user manual, which provides details on Open
XDMoD, its architecture, and how to download,
install, configure, and use it. A YouTube video

Figure 2. An Open XDMoD-generated chart showing the CPU hours delivered over a two-year period on CCR’s cluster
broken down by job size (number of cores). The tabs along the top of the portal allow the user to navigate to different
functionalities. The Export button lets users export the chart, or the data itself, in a variety of formats. The chart can
also be sent to the custom report generator for incorporation into a report.

www.computer.org/cise			 	� 7

providing a tutorial on the use of XDMoD is also
available (https://www.youtube.com/watch?
v=Nghi0M7LIns).

Application Kernels for Quality of Service
Application kernels were added to Open XDMoD
as a quality assurance tool. Most HPC centers use
initial benchmarking to measure overall system per-
formance at the time the HPC system is brought
online and occasionally with major upgrades.
Benchmarking is generally performed when the sys-
tem has few or no other users. But after this initial
period, little if any system-wide performance test-
ing is performed (other than regression testing), and
as a result, underperforming infrastructure com-
ponents are primarily detected via failed or poorly
performing user jobs. This is obviously far from an
ideal way to assure QoS or identify problems. Be-
cause HPC resources are oversubscribed, a proactive
QoS system is critical to avoid wasted CPU cycles.

Application kernels are comprised of computa-
tionally lightweight benchmarks and applications
submitted to normal user queues in the same man-
ner that an ordinary user would run a job. They
run on user-adjustable regular schedules (typi-
cally, daily), the trade-off being between running
them often and maximizing the problem detection
speed or reducing the run frequency and lower-
ing their computational overhead. At CCR, the

computational burden imposed by running the
application kernel suite is less than half of 1 per-
cent of the total available CPU cycles. The suite of
application kernels is designed to be diagnostic for
a variety of HPC system components (compute,
memory, storage, network, and applications) and
have performance characteristics common to many
user applications. A key to their ability to measure
QoS and identify underperforming hardware and
software is that each application kernel is run in
the same way with the same input file on a periodic
basis so that deviations from the normal operation
can be readily identified. The suite of application
kernels used at CCR and on XSEDE resources is
available through the Open XDMoD release.

Figure 4 shows an example of a problem that
the IOR (InterleavedOrRandom) application ker-
nel run at CCR detected (http://sourceforge.net/
projects/ior-sio). Here, the IOR application kernel
clearly shows a dramatic and sudden drop in write
performance on 8 January 2014. Because the ap-
plication kernels run frequently, CCR support staff
could associate the drop in performance with a
routine firmware upgrade of CCR’s core network
switch. The problem occurred in a production en-
vironment, requiring several scheduled monthly
downtimes to properly diagnose the reason for the
failure. However, as Figure 4 shows, file system
performance eventually was restored to normal.

Figure 3. Chart created using the Metric Explorer tab, showing CPU hours consumed (blue column), average wait
time per job (red column), and number of jobs (black line) as a function of job size (number of cores). In terms of
CPU hours, the largest usage falls in the 129- to 256-core range. Jobs that use a single core represent the largest
number, but their total impact on core hours consumed is very modest, with the large parallel jobs dominating the
total machine throughput.

700k

600k

500k

400k

300k

200k

100k

ok 0M

1 2

3
 -

 4

5
 -

 8

9
 -

 1
6

1
7

 -
 3

2
Job size

3
3

 -
 6

4

6
5

 -
 1

2
8

1
2

9
 -

 2
5

6

2
5

7
 -

 5
1

2

H
our

2.5M

5M

7.5M

10M

N
um

be
r

of
 jo

bs

C
P

U
 h

ou
r

12.5M

15M

17.5M

20M 30

25

20

15

10

5

0

CPU hours: Total Wait hours: Per Job Number of jobs ended

High-Performance Computing

8	 � July/August 2015

Because numerous application kernels (eight
enabled by default) run frequently on several dif-
ferent numbers of nodes, the data the suite of ap-
plication kernels generates is substantial, making it
difficult to easily detect anomalies by inspection.
Accordingly, an automatic detection system based
on a process control algorithm notifies system sup-
port personnel when there’s an obvious degrada-
tion in an application kernel’s performance.

SUPReMM Performance Data
The job accounting and application kernel data
available through Open XDMoD is valuable
but doesn’t provide center personnel with all the

information needed to effectively run their facility;
in fact, detailed job-level data, provided through
SUPReMM, is necessary. The SUPReMM project
comprises a set of open source tools to obtain, ana-
lyze, and present this detailed job-level data. Open
XDMoD provides data warehousing, data analysis,
and presentation components. Multiple data col-
lection packages are supported, such as TACC_
Stats,3–5 Performance CoPilot (www.pcp.io) and
resource utilization reporting11 (to record OS and
hardware counters), and XALT12 and Lariat (to re-
cord the running application).

CCR uses the TACC_Stats and XALT pack-
ages as data sources. The TACC_Stats software
collects OS and hardware performance counter
data at the beginning, periodically during, and at
the end of every job. Examples of the types of data
recorded are memory usage, file system usage, in-
terconnect fabric traffic, and CPU performance.
XALT records application data such as executable
and dynamic library names. Analysis of this kind
of data in Open XDMoD lets center personnel
measure individual job or application performance
and diagnose job failure or poor performance.
Metrics can be analyzed by job or across nodes.
The accumulation of job-level performance statis-
tics lets the center director build up a very detailed
history of who’s running what applications on cen-
ter systems and the level to which system resources
are being used for these applications.

Figure 5 shows a simple example of the type of
information that SUPReMM can supply—specifi-
cally, it examines memory usage per core on CCR’s

Figure 4. Application kernel success. The IOR (InterleavedOrRandom) application kernel uncovered a performance
issue with Center for Computational Research’s Panasas parallel file system. The timing coincided with a recent core
network switch software upgrade.

500.00

400.00

300.00

200.00

M
B

yt
e

pe
r

se
co

nd

100.00

0
Jan '14 Mar '14

1 node 2 node 4 node 8 node

May '14 Jul '14

Figure 5. Memory usage per core on CCR’s compute facility. The Rush
cluster’s nodes have 2 to 2.5 Gbytes of memory, with much less than half
the available per-core memory being used.

1,000M

750M

A
vg

:
M

em
or

y:
 P

er
 c

or
e

(b
yt

es
)

500M

250M

0M

2
0

1
4

-0
2

-0
1

2
0

1
4

-0
3

-0
1

2
0

1
4

-0
4

-0
1

2
0

1
4

-0
5

-0
1

2
0

1
4

-0
6

-0
1

Rush taccstats

www.computer.org/cise			 	� 9

Rush cluster. Rush is a heterogeneous cluster, where
most of the nodes have 2 to 2.5 Gbytes of memory.
From Figure 5, we can see that on average much less
than half the available per-core memory is being
used. This is actually fairly typical: the XSEDE facili-
ties monitored by XDMoD and SUPReMM also use
on average substantially less than 1 Gbyte per core of
memory (closer to 500 Mbytes). Information of this
nature can be valuable to make truly data-driven de-
cisions for HPC system upgrades and replacements.

Figure 6 is a somewhat more complex Open
XDMoD plot showing all applications running on
CCR’s Rush cluster, directly demonstrating the ca-
pability that SUPReMM provides for HPC center
support personnel. It simultaneously shows the to-
tal number of CPU hours consumed, the average
cycles per instruction (CPI), and the average per-
centage of time spent in CPU idle mode for each
application. Information such as this, which can
be used to provide a measure of the relative perfor-
mance among codes designed to model the same
physical systems (for example, molecular dynamics
simulations), can steer users toward the most ef-
ficient code in a particular simulation space. This
has the advantage of providing more “bang for the
buck” for the end user, as well as helping free up
CPU cycles on oversubscribed resources.

Perhaps the most important aspect of mea-
suring job-level performance data as implement-
ed in XDMoD is the ability to automatically flag
poorly performing jobs and subsequently display
a series of metrics that can be used to help di-
agnose the job. Figure 7 shows an example of a
poorly performing job at CCR that was flagged
through our XDMoD/SUPReMM implemen-
tation. Here, the user was achieving less than
35 percent CPU utilization across all of the
12-core nodes on which his job was running.
Unfortunately, poorly performing jobs such as
this aren’t uncommon, but most centers lack
the ability to easily identify them among the
hundreds to thousands of jobs that run daily in
the typical HPC production environment. As
a result, substantial CPU cycles are wasted on
systems that are oversubscribed. Figure 7 also
shows the dramatic increase in efficiency realized
when a CCR support specialist worked with the
end user—efficiencies near 100 percent on all
nodes were realized. We’ve observed numerous
similar results since deploying this technology at
CCR. Clearly, the SUPReMM-based technology
can be used both to support end users as well as
to improve the HPC system’s overall efficiency,
which also benefits end users.

Figure 6. CCR SUPReMM performance data in Open XDMoD. The plot shows all applications running on CCR’s
Rush cluster over a one-month time period in 2014, with the blue bars indicating the number of CPU hours for
each application. The red bars are the cycles per instruction (CPI). The black bars are the percentage of time
the CPU spent in idle mode. Both CPU idle and CPI are measures of efficiency—in both cases, smaller is better.
“Uncategorized” indicates that the particular application isn’t identifiable as a community application (for example,
it might be a user-written code). “Proprietary” indicates that the application name won’t be displayed due to
restrictions in the software license. “N/A” indicates that the job-level information isn’t available, most likely because
of the manner in which the job was launched.

60 3M
1

0.75

0.5

0.25

0

2M

1M

0M

un
ca

te
go

ri
ze

d

q-
es

pr
es

so

P
ro

pr
ie

ta
ry

na
m

d

la
m

m
ps

gr
om

ac
s

be
rk

el
ey

gw N
A

Application
ga

m
es

s

pa
ra

te
c

nw
ch

em

nw
ch

em
+
+

ch
ar

m
m

en
zo io

r

40

20

0

C
P

U
 % C

P
I

C
P

U
 h

ou
r

CPU hours: Total
Avg CPU %: Idle: weighted by core-hour

Avg: CPI: Per core weighted by core-hour

High-Performance Computing

10	 � July/August 2015

Open XDMoD is a comprehensive resource
management system for HPC systems that

provides the HPC facility manger with system op-
erational data not obtainable from any other single
open source tool. In addition to helping ensure a
given QoS, Open XDMoD, through SUPReMM,
provides HPC support personnel with detailed job-
level performance data for all jobs running on the
cluster without a significant impact on overall sys-
tem performance.

Future enhancements under development in-
clude a single job viewer, available through the
XDMoD interface, to give users and HPC support
personnel detailed performance-level informa-
tion on any job simply by entering the job ID or
by selecting from a set of specifically flagged jobs;
we’re also looking to add the ability to gather per-
formance-level information on accelerator-based
codes.

Open XDMoD is easy to download and in-
stall, customizable, and fully supported by staff
at the Center for Computational Research at the
State University of New York, Buffalo. We hope
you’ll give it a try and let us know what you
think. Suggestions for improvements are always
welcome.

Acknowledgments
This work is supported by the National Science Founda-
tion under grant number OCI 1203560 for SUPReMM
and grant number OCI 1025159 for the technology au-
dit service for XSEDE.

References
1.	 T.R. Furlani et al., “Performance Metrics and Au-

diting Framework Using Applications Kernels for
High Performance Computer Systems,” Concur-
rency and Computation: Practice and Experience, vol.
25, no. 7, 2013, pp. 918–931.

2.	 J. Towns et al., “XSEDE: Accelerating Scientific
Discovery,” Computing in Science & Eng., vol. 16,
no. 5, 2014, pp. 62–74.

3.	 J.C. Browne et al., “Enabling Comprehensive
Data-Driven System Management for Large Com-
putational Facilities,” Proc. Int’ l Conf. High Per-
formance Computing, Networking, Storage and
Analysis, 2013, article no. 86; http://doi.acm.
org/10.1145/2503210.2503230.

4.	 C.D. Lu et al., “Comprehensive Job Level Resource
Usage Measurement and Analysis for XSEDE
HPC Systems,” Proc. Conf. Extreme Science and
Engineering Discovery Environment: Gateway to
Discovery, 2013, article no. 50; http://doi.acm.
org/10.1145/2484762.2484781.

5.	 J.C. Browne et al., “Enabling Comprehensive Data-
Driven System Management for Large Computational
Facilities,” Proc. Int’l Conf. High Performance Comput-
ing, Networking, Storage and Analysis, 2013, pp. 1–11.

6.	 T.R. Furlani et al., “Using XDMoD to Facilitate
XSEDE Operations, Planning and Analysis,” Proc.
Conf. Extreme Science and Engineering Discovery En-
vironment: Gateway to Discovery, 2013, article no.
46; http://doi.acm.org/10.1145/2484762.2484763.

7.	 J.C. Browne et al., “Comprehensive, Open Source
Resource Usage Measurement and Analysis for

Figure 7. A poorly performing job. Inefficient CPU usage by all the cores (only 0 to 35 percent in CPU user mode) is displayed, but other
metrics such as flops and memory usage are similarly indicative of an inefficient job that wasn’t run properly. After consultation with CCR
user support, a similar job by the same user was rerun with the result shown on the right. The job is vastly improved, as indicated by the
nearly 100 percent CPU user mode for all nodes.

40

30

20

C
P

U
 %

C
P

U
 %

10

0

125

100

75

50

25

016:00 16:30 17:00 17:30 18:00

Time Time

18:30 19:00 19:30 20:00
6.Aug 04:00 08:00 12:00 16:00 20:00 7.Aug

d09n33s02 d09n34s02 d09n35s01 d09n34s01d07n05s02 d07n15s01 d07n09s02 d07n15s02 d07n08s01

d07n13s01 d07n10s01 d07n07s02 d07n04s02 d07n14s01

(a) (b)

www.computer.org/cise			 	� 11

HPC Systems,” Concurrency and Computation: Prac-
tice and Experience, 2013, pp. 2191–2209.

8.	 M. Levene and G. Loizou, “Why Is the Snowflake
Schema a Good Data Warehouse Design?,” Infor-
mation Systems, vol. 28, no. 3, 2003, pp. 225–240;
http://dx.doi.org/10.1016/S0306-4379(02)00021-2.

9.	 D.L. Moody and M.A.R. Kortink, “ER Models to
Dimensional Models: Bridging the Gap between
OLTP and OLAP Design,” J. Business Intelligence,
vol. 8, no. 3, 2003, pp. 7–24.

10.	 L. Beixin, H. Yu, and L. Zu-Hsu, “Data Ware-
house Performance,” Encyclopedia of Data Ware-
housing and Mining, 2nd ed., Wang John, 2009,
pp. 318–322.

11.	 A.P. Barry, “Resource Utilization Reporting. Gath-
ering and Evaluating HPC System Usage,” Proc.
Cray Users Group, 2013; https://cug.org/proceed-
ings/cug2013_proceedings/includes/files/pap103.
pdf.

12.	K. Agrawal et al., “User Environment Tracking
and Problem Detection with XALT,” Proc. 1st Int’ l
Workshop HPC User Support Tools (HUST-14),
2014, pp. 32–40.

Jeffrey T. Palmer is a scientific programmer at SUNY
Buffalo’s Center for Computational Research. His re-
search interests include high-performance computing
and enterprise application development. Palmer has a
BS in computer engineering from SUNY Buffalo. He’s a
member of ACM and the IEEE Computer Society. Con-
tact him at jtpalmer@buffalo.edu.

Steven M. Gallo is the lead software engineer at SUNY
Buffalo’s Center for Computational Research. His re-
search interests include software engineering, data ware-
housing, and high-performance computing. Gallo has
an MS in computer science from SUNY Buffalo. He’s a
member of ACM. Contact him at smgallo@buffalo.edu.

Thomas R. Furlani is director of SUNY Buffalo’s Center
for Computational Research. His research interests in-
clude high-performance computing and computational
chemistry. Furlani has a PhD in chemistry from SUNY
Buffalo. He’s a member of the American Chemical Soci-
ety. Contact him at furlani@buffalo.edu.

Matthew D. Jones is associate director of SUNY Buf-
falo’s Center for Computational Research His research
interests include computational science and condensed
matter physics. Jones has a PhD in physics from the
University of Illinois at Urbana-Champaign. He’s a
member of the American Physical Society and IEEE.
Contact him at jonesm@buffalo.edu.

Robert L. DeLeon is the project manager on the NSF
Technology Audit Service program at SUNY Buffalo.
His research interests include high-performance com-
puting data analysis and experimental physical chemis-
try. DeLeon has a PhD in chemistry from the University
of Rochester. He’s a member of the American Chemical
Society. Contact him at: rldeleon@buffalo.edu.

Joseph P. White is a computational scientist at SUNY
Buffalo’s Center for Computational Research. His
research interests include data analytics and high-
performance computing. White has a PhD in applied
mathematics from the University of Manchester. He’s
a member of the Institute of Physics. Contact him at
jpwhite4@buffalo.edu.

Nikolay Simakov is computational scientist at SUNY
Buffalo’s Center for Computational Research. His re-
search interests include high-performance computing,
computational biochemistry, and biophysics. Simakov
has a PhD in chemistry from Carnegie Mellon Univer-
sity. Contact him at nikolays@buffalo.edu.

Abani K. Patra is a professor of mechanical and aero-
space engineering at SUNY Buffalo. His research in-
terests include adaptive meshing, high-performance
computing, and large data-driven methodologies. Patra
has a PhD in computational and applied mathematics
from the University of Texas–Austin. Contact him at
abani@buffalo.edu.

Jeanette Sperhac is a scientific programmer at SUNY
Buffalo’s Center for Computational Research. Her re-
search interests include software engineering, data
warehousing, and high-performance computing. Sper-
hac has an MS in chemistry from University of Colora-
do and an MS in computer science from SUNY Buffalo.
She’s a member of ACM. Contact her at jsperhac@
buffalo.edu.

Thomas Yearke is a senior software developer at SUNY
Buffalo’s Center for Computational Research. His re-
search interests include creating analysis tools for high-
performance computing resources. Yearke has a BS in
software engineering from Rochester Institute of Tech-
nology. Contact him at tyearke@buffalo.edu.

Ryan Rathsam is a scientific programmer at SUNY
Buffalo’s Center for Computational Research. His re-
search interests include parallel processing and UI/UX
design. Rathsam has a BS in information technology
from Rochester Institute of Technology. Contact him at
ryanrath@buffalo.edu.

High-Performance Computing

12	 � July/August 2015

Martins Innus is lead scientific and urban visualization
specialist at SUNY Buffalo’s Center for Computational
Research. His research interests include system perfor-
mance monitoring and graphics programming. Innus
has an MS in computer science from SUNY Buffalo.
Contact him at minnus@buffalo.edu.

Cynthia D. Cornelius is the HPC systems analyst for
SUNY Buffalo’s Center for Computational Research.
Her research interests include high-performance com-
puting. Cornelius has a BA in computer science/math-
ematics/statistics from SUNY Buffalo. Contact her at
cdc@buffalo.edu.

James C. Browne is professor emeritus of computer
science and a research professor at the Texas Advanced
Computing Center at the University of Texas, Austin.
His research interests include high-performance com-
puting. Browne has a PhD from the University of Texas.
He’s a fellow of ACM, APS, and AAAS and a member of
IEEE. Contact him at browne@cs.utexas.edu.

William L. Barth is the director of high-performance
computing at the Texas Advanced Computing Center at
the University of Texas, Austin. His research interests
include HPC analytics, computational fluid dynamics,
and finite element methods. Barth has a PhD in aero-
space engineering from UT Austin. Contact him at
bbarth@tacc.utexas.edu.

Richard T. Evans is an HPC research associate at the
Texas Advanced Computing Center and a research sci-
entist lecturer in the Department of Statistics & Data
Science at the University of Texas, Austin. His research
interests include monitoring and performance analysis
of HPC systems. Evans has a PhD in physics from the
University of Illinois at Urbana-Champaign. Contact
him at rtevans@tacc.utexas.edu.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

