Density or Discrepancy? A VLSI Designer’s Dilemma in Hot Spot Analysis

Subhashis Majumder*

Abstract

In this era of giga-scale integration, thermal analysis
has become one of the hot topics in VLSI chip design.
Active thermal sources may be abstracted as a set of
weighted points on the chip-floor. The conventional no-
tion of discrepancy that deals with the properties of a
set of scattered points may not be able to capture prop-
erly all real-life instances in this context. In this paper,
we have introduced a new concept, called density of a
region to study some of the properties of the distribution
of these weighted points. We prove several results that
help in identifying the regions with maximum and min-
imum density. We also compare the concept of density
with the existing concept of discrepancy.

1 Introduction

Thermal analysis has become one of the hot topics as
power density in some regions of a VLSI chip is ris-
ing critically with ever-increasing clock-rate and device
density. Proper placement of heat sinks and thermal
vias have become issues of utmost importance. Some re-
searchers have addressed the problem of hot spot identi-
fication [4] and others have proposed alternative place-
ment schemes to cool down a hot chip [5]. Abstract-
ing thermal sources as weighted points on the floor,
the problem reduces to identifying the region with the
highest concentration of points. Also if the region hav-
ing minimum concentration of points is identified some
source points from regions of higher concentration may
be moved there. The motivation for our present research
mainly comes from the above discussion.

Distribution of points on a plane has received consid-
erable attention in the literature. It is quite popular in
the domain of computational geometry and is equally
important for a number of practical applications. For
a set S of scattered points on the plane, a question
frequently arises - whether a cluster C' (C S) is more
concentrated or rarified with respect to S. Discrepancy
measure of a set of points tries to answer the above ques-
tion [6, 7]. However, in the context of thermal analysis
we preferred to introduce a new concept, called den-
sity of the floor. We prove several results that greatly
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reduce the search space for identifying the region with
maximum (minimum) density. We also propose algo-
rithms for solving some of these problems. Some related
work either considers fixed number of points [8] or uses
a fixed-size rectangle for calculating pattern density [9].
In this paper, Section 2 introduces the concept of den-
sity and states the specific problems that we will solve.
Section 3 gives the results that lead to an algorithm for
identifying the region with maximum density. Section 4
presents a similar discussion on minimum density. Sec-
tions 5 compares density with discrepancy and the final
section draws conclusion on this novel discussion.

2 Problem Formulation

Let F be a rectangular floor containing a set S of n
points, such that no two points lie on the same hori-
zontal (vertical) line. Each point p; € S is attached

with a positive real weight w;. We define density of

an axis-parallel region R with area A(R) as %

Note that, the weight of a point represents the rela-
tive strength of the corresponding thermal source. If all
the sources are of uniform strength, the points will be-
come unweighted and the density will reduce to %,
#(R) being the number of points in R. The normal-
ized density for a set of unweighted points in R is
0(R) = %/ﬁt(l’)’ so that §(F) = 1. Unless oth-
erwise mentioned, all rectangles referred below are axis-
parallel. We will consider the following two problems:

Problem P1 : Find the cluster of k(k > 2) points in
S, such that the minimum area rectangle covering them
attains the highest density on the floor R.

Problem P2 : Find the cluster of k(k > 1) points
from S, such that the mazimum area rectangle covering

them attains the lowest density on the bounded floor R.

3 Problem P1

Note that we do not consider the maximum density of
a region covering only one point as it can be made arbi-
trarily high. First, we prove that the maximum density
occurs for a cluster C' C S containing only two points.

Lemma 1 Let each point p; € S be attached with a
positive weight w; and there exist a cluster S' C S of
k > 2 points such that no two of them lie on the same
horizontal (vertical) line. Then there exists a pair of
points p;,p; € S’ such that the density of the smallest



rectangle containing (pi,p;) is greater than the density
of the smallest rectangle containing S'.

Proof. Without loss of generality, we name the points
in S’ in increasing order of their z-coordinates and let
the area of a rectangle R be represented by A(R). Con-
sider the smallest rectangle R' containing the point-
set S’. Split R’ into k — 1 vertical strips by draw-
ing vertical lines through each point. The rectangular
strip whose vertical sides passes through p; and p;; is

named as R;. Now, the density of the entire floor is
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(by Fact 1). Again the smallest rectangle containing
the concerned pair may have a higher density, as it may
not span the entire strip. Hence the result. a

Fact 1 If a quantity Q)

= Z"fla: a;,b; > 0, then
Min?_ # < Q < Mazl, 3.

b

Proof. Let “’ attain the minimum and maximum value
for i = % and i = # respectively. For 1 <17 <mn,

ge <02 o Boh; <a; < FED (as b > 0)
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2 < Zis &i=t2t < 2% Hence the result. O
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Note that, by the above lemma in the unweighted
case, P1 gets reduced to the problem of finding the pair
of points such that the area of the rectangle having those
two points at its diagonally opposite corners is mini-
mum. This can be efficiently solved in polynomial time.

3.1 Algorithm

We now discuss on an algorithm for finding out the
smallest area rectangle covering exactly two points from
the set S. The simplest way is to consider each pair of
points, and compute the density of the rectangle whose
diagonal is defined by these two points in O(n?) time. It
works for weighted case also. We show below that the
time complexity can be improved for the unweighted
case. Note that, a rectangle achieving the maximum
density is a corner rectangle [2]. Thus, the problem re-
duces to identifying a corner rectangle having minimum
area. An O(nlog’n) time and O(n) space algorithm
finds out the largest corner rectangle using the tech-
nique of monotone matrix searching [2], and we show
that it works for our problem also. This algorithm uses
a two-level divide and conquer strategy. It first splits
the point set into two almost equal halves using a hor-
izontal line H and then by a vertical line V. They in-
tersect at O and split the plane into four quadrants.
In each quadrant i, we identify an axis-parallel stair-
case S; around the point O (Fig. 1(a)). The convex
corners of this staircase contains a member in S and

the interior of the axis-parallel polygon bounded by S;,
z-axis and y-axis is empty. Consider the staircases in
second and fourth quadrants. A rectangle with top-left
and bottom-right corner at the convex corner of these
two staircases respectively does not contain any point
of second and fourth quadrant. If we consider a matrix
M whose rows and columns correspond to the points in
second and fourth quadrants respectively, and its each
entry correspond to the area of a rectangle defined by
one point from each of these staircases at the end of its
diagonal, it will be a monotone matrix. This algorithm
uses a monotone matrix w.r.t. > sign [3], whereas for
our case we need a monotone matrix w.r.t. < sign.

Definition 1 A matriz A is said to be monotone (with
respect to < sign) if for every j,k,j', k" with j < j',
k <k, if Alj,k] < A[j, k'] then A[j', K] < A[j’, k'].

The maximum-valued element in an n X n monotone
matrix can be found in O(n) time [3] and hence in our
case we can find the minimum element also in O(n)
time. Note that, some of these rectangles may con-
tain point(s) of first and/or third quadrant, needing an
O(n) time clean-up procedure [1]. This is followed by
two recursive steps one in the vertical direction and the
other in the horizontal direction, each contributing a
logn factor to the final complexity of O(nlog®n), and
it is applicable identically to our problem. In order to
search the smallest corner rectangle, we arrange the ele-
ments of the matrix such that its rows (U;s) are ordered
as in the earlier problem, but columns (V;s) are ordered
in the reverse direction as shown in Fig. 1(a). Facts 2
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Figure 1: Rectangles with corners in opp. quadrants

and 3 below establish that it is a monotone matrix with
respect to < sign. Consider Fig. 1(b). Here, a rectan-
gle defined by a pair of points (p,q) as its diagonal, is
denoted by R(p,q).

Fact 2 R(B,D) > R(A,D) = R(B,C) > R(A,C).

Proof. R(B,D) > R(A,D)=>a+b+c>b+c+d+e
=>a+b>b+d+e=>a+b+f+g>b+c+d+e+f+g
=a+b+f+g9g>b+d+g= R(B,C)> R(AC). O

Fact 3 R(B,D) > R(B,C) = R(A,D) > R(A,C).

Proof. R(B,D) > R(B,C) =>a+b+c>a+b+f+yg
=>b+c>b+f+g=>bt+c+d+e>b+f+g+d+e
=>b+c+d+e>b+d+g = R(A D)>R(AC). O



Hence the complexity of finding the smallest corner rect-
angle is also O(nlog®n).

3.2 Density in General Case

In the isothetic domain, thin rectangles pose problems
as their densities become unnecessarily high, which may
not properly reflect the real situation. However, similar
results are possible beyond the isothetic domain also.
For general case, we revise the definition of density for
a set of unweighted points as follows:

Definition 2 Let S" C S be a subset of points. The
density of S' is defined as §(S') = W, where
|S!| indicates the cardinality of S', and CONV(S') in-
dicates the convex hull of the point set S'.

Assuming that no three points in S are colinear, Fact 4
says that the maximum density under this definition
occurs for a triple of points.

Fact 4 Let there be a set S of n > 2 points on a rectan-
gular floor R such that no three of those points are co-
linear. There ezists a cluster C C S of three points such
that the triangle having those three points as its vertices
and covering no other point from the set S achieves the
highest density on the floor.

Proof. Consider a triangulation of any subset S’ C S
(Fig. 2(a)). We show that there exists a triangle with
higher density (by Def. 2) than that of S'. Let |S’| = k.

# points (n) = 10

a) # triangles =11 >n—-2 b) # triangles=8=n-2
Figure 2: Density in a non-isothetic scenario

The number of triangles in any triangulation of S’ is
> k — 2, minimum occurs when all the k points lie on
the convex hull (Fig. 2(b)). Let the area of the convex
hull be A. As average value lies between minimum and
maximum, there exists a triangle 7 with area A(1) <
A/(k —2). Now, 6(S') = £ and é(r) > m. As
3(k —2) >k, for k > 3, the result follows. O

4 Problem P2

We now consider the problem of identifying a rectangle
on the floor having minimum non-zero density. Given a
bounded floor containing a set S of points, the follow-
ing lemma says that the minimum density occurs for a
rectangle containing a single point in S.

Lemma 2 Let each point p; € S be attached with a
weight w; > 0, and there exist a cluster S' C S of k >1
point(s). Then there exists a point p; € S’ such that
the density of the largest rectangle that contains only
point p; is less than the density of the largest rectangle
R' containing S' and no other points from S.

Proof. Without loss of generality, consider the points
in S’ in increasing order of their z-coordinates and let
A(R) be the area of rectangle R. The rectangle shown
in Fig. 3 represents R' covering k points of S’. It is
bounded by points that belong to S but not to S’. Split
R' into k + 1 vertical strips by drawing vertical lines
through each point. The vertical sides of strip R; passes
through p; and p;+1. Now, §(R') =
k
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Figure 3: Largest rectangle containing k points

witwot...fwp >
(A(Ro)+A(R1))+(A(R1)+A(R2))+...+(A(Re-1)+A(Rr)) =
M mlem (by Fact 1). Again the density
of the largest rectangle containing the concerned point
may be less, as it may be possible to extend the shaded
portion in Fig. 3 along the vertical direction. |

If R(p) denotes the largest rectangle containing only
p € S and no other point in S, then by the above lemma,
for the unweighted case we just need to identify p; € S
such that R(p;) is largest among all the points.

5 Density versus Discrepancy

Assuming that the area containing a point set S is a unit
square, the discrepancy measure of S may be defined as

r . .
A= maz |area(r) — —|, where r is an arbitrary rectan-
re n

gular area and #r indicates the number of points of S ly-
ing inside r. For any rectangle r, we introduce a concept
of local discrepancy A;(r) = |area(r) — %| In Fig. 4,
Ay(r) = (0.5 % 0.25) — (3/10)] = 0.175. Let us try to
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Figure 4: Local discrepancy of a set of points
interpret the main result of Section 3 from the definition
of Discrepancy. We choose any three points on the rect-
angular floor R whose coordinates do not match along



either axis. Let R3 be the skin-tight rectangle covering
only those three points from S. So A;(A3) = |A3—3/n|,
where A3 = Area(R3) and density D3 = 3/A;. From
Section 3, we can say that there must exist a pair of
points out of these 3 points covered by the skin-tight
isothetic rectangle Ry such that their density Dy > Ds.
Now, Dy > D3 = 2/A2 > 3/A3 = A3z > 3/2A2 =
(A3 —3/n) > (3/242 — 3/n).

Hence (A3 —3/n) > 3/2(A2 —2/n). This result leads to
three possible cases.

Case 1: Ay —2/n is +ve = Az — 3/n is +ve.

Case 2: A3 —3/nis -ve = Ay —2/nis -ve.

Case 3: Az — 3/n is +ve but Ay —2/n is -ve.

Note that out of the three cases only in Case 1 it is
guaranteed that |(As — 3/n)| > [(A2 — 2/n)|, for the
other two cases any of those quantities may be greater
or smaller. Hence nothing can be concluded by compar-
ing the values of the local discrepancy of three points
and that of any pair chosen from those 3 points.

Note that, two set of points having the same den-
sity may have their local discrepancy different and con-
versely. However the main problem is not caused by
them. The fact that the rise or fall of density function
does not map monotonically to the rise or fall of dis-
crepancy function is the main deterrent in interpreting
the results of one domain from the other.

Let us take a look at the expression for discrepancy.
Considering an isothetic rectangular region r within R,
if we substitute « for area(r)/area(R) and 3 for #r/n,
Ay(r) = |a — B|, where 0 < o, < 1. The normalized
density d(r) = (#r/area(r))/(n/area(R))

— (#r/n)/(area(r) [area(R)) = B/a.

Now we can look at the differences between density and
discrepancy. Consider a case where n = 10 points are
scattered on a 1x1 rectangular floor such that two dif-
ferent subsets of those points S; and Ss respectively has
a1 = 0.3, ,81 =04 and ap = 0.5, /82 = 0.6. So for S1,
4 out of the 10 points are scattered in a skin-tight rect-
angle whose area is 30% of the whole floor and for Ss,
6 out of 10 points are scattered in an area of 0.5 units.
The discrepancies of both these sets is same |0.3—0.4| =
|0.5—0.6] = 0.1. However S; has a density of 4/3 and S
has a density of 6/5, which are different. Next consider
a case with similar set-up where a; = 0.8, #1 = 0.6 and
as = 0.4, f2 = 0.3. Here density of both the sets is 3/4
but the discrepancies are respectively 0.2 and 0.1.

Finally we cite here two examples, where in the first
one, increase in density causes discrepancy to rise, and
in the second one, decrease in density causes discrepancy
to rise. Consider again two set of points S; and S with
a; = 0.5, 81 = 0.6 and ay = 0.4, B, = 0.6. For S,
density = 6/5 and discrepancy is 0.1, whereas for Ss,
density = 6/4 (i.e. density increases) and discrepancy =
0.2 (i.e. discrepancy also increases). Now consider two
set of points S3 and Sy with ag = 0.5, 83 = 0.4 and aq =

0.6, B4 = 0.4. For Ss, density = 4/5 and discrepancy is
0.1, whereas for Sy ensity = 4/6 (i.e. density decreases)
but discrepancy = 0.2 (i.e. discrepancy increases). So
by tracking the change in density it is difficult to predict
the change in discrepancy and vice versa.

6 Conclusion

We have introduced a new concept for calculating den-
sity of points scattered in a plane. We also made some
simple but novel observations that considerably reduces
the search space for the problems of finding out the
zones having maximum or minimum density. Then we
have proposed some algorithms based on existing geo-
metric techniques to solve these problems. The whole
technique may be applied for facilitating thermal anal-
ysis of ULSI chips. We have compared it with an ex-
isting concept of discrepancy and found that the results
regarding density cannot be easily translated to the do-
main of discrepancy. Hence the concept of density may
have some contribution on its own to interpret the prop-
erties of the relative distribution of a set of points scat-
tered on a rectangular floor.
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