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Multiclass cancer classification based on microarray data is described. A generalized output-coding 
scheme combined with binary classifiers is used. Different coding strategies, decoding functions and 
feature selection methods are combined and validated on two cancer datasets: GCM and ALL. The 
effects of these different methods and their combinations are then discussed. The highest testing 
accuracies achieved are 78% and 100% for the two datasets respectively. The results are considered 
to be very good when compared with the other researchers’ work.  

1   Introduction 

DNA microarrays can contain thousands of gene expression levels in one single 
experiment. Obtaining gene expression levels from tumor tissues can help us to 
understand the activities of genes underlying different cancers. Therefore, these 
expression data may also be used to identify types or subtypes of cancers.  

Applying machine learning techniques to microarray data for cancer classification 
has been intensively researched in recent years. Most of the work is in the field of binary 
classification and very high accuracy can be obtained [1]. However, it is suggested by 
some authors that multiclass classification tasks are more difficult than binary ones [2].  

In this paper, a generalized output-coding scheme has been applied to multiclass 
microarray classification. With this, different coding strategies and decoding functions 
can be put into one single framework. The validity of various combinations has been 
verified. Support Vector Machine (SVM) was chosen as the binary classifier, which has 
been successfully applied to microarray classification. It is one of the state-of-the-art 
machine learning techniques and has strong theoretical foundation.  

Because microarray data has the characteristics that the number of genes is much 
larger than the number of samples, feature selection is also important before 
classification. Three major categories of feature selection methods have been tested: gene 
ranking, recursive feature elimination (RFE) and dimension reduction.  

2   Methods 

2.1   Output-Coding for Multiclass Classification 

Assume we have a set of  microarray samples: ( ), m ,i iyx 1,2,i m= K , where  is 
a vector of length n  representing gene expression levels and 

n
i ∈ℜx

{1,2, , }iy k∈ K  is the class 
label of the i th sample. The multiclass classification algorithm aims to find the mapping 

 using the  training samples. Output-coding methods solve the : {1,2, k, }nΜ ℜ → K m



multiclass problem by decomposing the k -class problem into a set of l  binary 
subproblems, training the resulting l  base classifiers and then combining the l  outputs to 
predict the class label. We have adopted the generalized scheme proposed by [3]. It 
begins with a given coding matrix 

 { 1,0, 1}k l  ×∈ −

k

+M

for which each row  ( ) represents the codeword of the i th class and each 
column 

ir 1,2,i = K

js  ( 1,2,j l= K ) represents the j th base classifier. Each row ir  must be unique 
for its corresponding class. ( , ) 1i j =M  or 1−  means that the th class should be 
considered as positive or negative for the 

i
j th base classifier, respectively. If 

, the i th class is simply ignored by the ( , ) 0i j =M j th base classifier. Any binary 
classifier can be used to solve the induced two-class problem.  

Now let sf  ( 1,2,s l= K ) denote the l  base classification functions. Given a 
microarray sample , let x 1 2( ) ( ( ), ( ), ( ))lf f f=f x ; then its class label  is predicted 
as  

x x xK y

 arg min ( , ( ))i
i

y d= r f x  (1) 

where  is called the decoding function. By adopting this generalization scheme, we can 
combine some of the researchers’ work into one single system.  

d

There are various methods to generate coding matrices. Different coding matrices 
may have substantial effect on classification accuracy. Probably the simplest coding 
approach is to set  as a square matrix of size M k k× . Let all diagonal elements of  be 

 and all the other elements be 
M

1 1− . Therefore, it equals the method that creates one 
binary problem for each of the  classes. This is called one-versus-all (OVA) approach.  k

Another approach, proposed by [4], is to use the binary classifier to distinguish one 
pair of classes at a time. Meanwhile, the other classes are simply ignored. So there are 
totally  base classifiers to induce. This is called the all-pairs (AP) approach. 2

kC
Error correcting output codes (ECOC) was proposed by [5]. They argue that if the 

minimum hamming distance between a pair of rows of the coding matrix is c , the output 
codes can have the ability to correct ( 1) 2c −⎢ ⎥⎣ ⎦  errors of the base classifiers. Two major 
coding strategies called random coding and exhaustive coding are given:  
• Random coding. Let 210log ( )l = k⎡ ⎤⎢ ⎥  as suggested by [5]. Each element of the 

coding matrix is then assigned a value from { 1,1}−  uniformly at random. After the 
coding matrix is generated, a hill-climbing procedure given by [6] is followed. The 
hill-climbing method can usually improve the averaged and minimum hamming 
distances between pairs of rows of the coding matrix so that the classification 
accuracy may be improved.  

• Exhaustive coding. Firstly let 12kl −= . The codeword for the first class is all . For 
, , the codeword for the i -th class is constructed by repeating a pattern 

 times, which is a length-

1+
i 2 i k≤ ≤

22i− 2k i−  block of 1+ ’s followed by a length-  block of 
’s. Because the first column is thus assigned 

2k i−

1− 1+  for all of its elements, it is 
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deleted from the coding matrix. This makes 12kl − 1= − . It is easy to see that the 

minimum hamming distance is 
12 1
2

k−⎢ ⎥−
⎢ ⎥
⎣ ⎦

. The disadvantage of exhaustive coding is 

that  increases exponentially with k . If  is a large number, that would make the 
computation intractable.  

l k

Decoding functions determine how the distance between the outputs of base 
classifiers and codeword is calculated. One way of doing this is to count the number of 
positions s  in which the codeword entry differs from the sign of the prediction . 
Formally the distance measure is given as  

( )sf x

 
1=
∑ 1 ( ( ))( , ( ))

2

l
s s

H
s

sign r fd −⎛ ⎞= ⎜ ⎟
⎝ ⎠

xr f x  (2) 

where  if , ( ) 1sign z = + 0z > 1−  if 0z <  and  if 0 0z = . sr  is the entry of codeword r  
at position s . This is called the hamming distance decoding. A disadvantage of this 
decoding function is that it totally ignores the output values of base classifiers.  

A second decoding function takes into account the confidence of the predictions. It 
utilizes a loss function L  which is algorithm-specific. The loss function calculates the 
“loss” of the prediction given the output values and the codeword. The loss function for 
SVM is defined as 

 ( , ) (1 )L y f yf += −  (3) 

where  is an entry of the codeword and y f  is the output of SVM. z  is defined as +

max( ,0)z . The distance measure can now be written as  

  (4) ( )
1

( , ( )) ( , ( ))
l

L s
s

d L r
=

= ∑r f x xsf

sf

This is called the loss based decoding.  
There is another decoding function that takes account of the prediction confidence by 

simply calculating the inner product of the codeword and the vector of classifier outputs. 
This is defined as  

  (5) ( )
1

( , ( )) ( )
l

I s
s

d r
=

= −∑r f x x

thus the name inner product decoding.  
Finally we introduce a decoding function that is based on the probability of the 

prediction. Given the assumption that the base classifiers are independent, the class of 
which the codeword gives the maximum joint probability is the one predicted. Negative 
log-likelihood can be used to define the decoding function as  

 
1 1

1 1( , ( )) log( ( )) log(1 ( ))
2 2

l l
s s
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where 1 2( ) ( ( ), ( ), ( ))lp p p=p x x x xK . sp  is the probabilistic output of the base classifier 
s . A parametric model can be used to estimate the probability of SVM outputs as 
suggested by [7]  

 1( )
1 exp( ( ) )s

s s s

p
A f B

=
+ +

x
x

 (7) 

where  is the output of SVM which is trained as base classifier ( )sf x s . Three-fold cross-
validation (CV) is used in this paper to fit sA  and sB .  

2.2   Feature Selection 

There are three major categories of feature selection methods:  
• Gene Ranking. Intuitively one would select those genes that are correlated with a 

class but are uncorrelated with the other classes. We choose a gene ranking method 
that is based on the ratio of their between-group to within-group sums of squares. For 
a gene j , this ratio is  
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where . jx  and kjx  denote the average expression level of gene j  across all classes 
and across samples belonging to class  only. k ( )I ⋅  is the indicator function. The 
base classifiers are built using the genes with the largest  values.  BW

• Recursive Feature Elimination. RFE was first proposed by [8] to do feature selection 
in binary classification. The genes with the smallest corresponding weights are 
dropped and the process can be executed recursively. In multiclass context, the RFE 
is executed on each base classifier independently so that the best performance and 
the smallest gene subset can be obtained concurrently. Three fold CV is used to 
evaluate the goodness of gene subset.  

• Partial Least Squares (PLS) and Principal Components Analysis (PCA). Dimension 
reduction methods have been proposed to tackle the “curse of dimensionality” 
problem. It is prohibitive to use some of the statistical methods when  because 
of excessive computation time. Dimension reduction is also used as the 
preprocessing step to make these methods feasible. PLS [9] and PCA [10] have been 
proven to be effective for microarray classification [11-12] and have been used in 
this paper.  

m n<

3   Results 

3.1   Datasets and Experimental Setup 

We chose two multiclass microarray datasets for our experiments. The first is the GCM 
dataset published by [13]. It consists of 144 training samples and 54 testing samples of 15 
common cancer classes. Each sample has 16063 gene expression levels. For simplicity, 
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we dropped the 8 metastatic samples from the testing dataset because they are not present 
in the training dataset. Therefore, 46 testing samples and 14 cancer classes are considered 
in this paper. The distribution of training and testing samples among the 14 classes is 
listed in Table 1. The second is the ALL dataset published by [14]. It consists of 163 
training samples and 85 testing samples of 6 subtypes of acute lymphoblastic leukemia. 
Each sample has 12558 gene expression levels. The distribution of training and testing 
samples among the 6 subtypes is listed in Table 2. All data are log-transformed. All genes 
are normalized to have zero mean and unit standard deviation. No other preprocessing 
steps are applied. For GCM data, three coding strategies are used: AP, OVA, and 
random. We did not use exhaustive coding because l  would be equal to and 
this will make the computation intractable. For ALL data, AP, OVA and exhaustive 
coding strategies are used.  

132 1 8191− =

 
Table 1. GCM: number of samples per cancer class. BR=Breast, PR=Prostate, LU=Lung, CO=Colorectal, 
LY=Lymphoma, BL=Bladder, Melanoma=ME, UT=Uterus, LE=Leukemia, RE=Renal, PA=Pancreas, 
OV=Ovary, ML=Mesothelioma, CNS=Brain. 

Cancer Class BR PR LU CO LY BL ME UT LE RE PA OV ML CNS 
Training 8 8 8 8 16 8 8 8 24 8 8 8 8 16 
Testing 3 2 3 3 6 3 2 2 6 3 3 3 3 4 

 
Table 2. ALL: number of samples per subtype. 

Subtype BCR-ABL E2A-PBX1 Hyperdiploid>50 MLL T-ALL TEL-AML1 
Training 9 18 42 14 28 52 
Testing 6 9 22 6 15 27 

 
According to the suggestion of [2], 250 top genes are selected from BW ratio 

ranking. We also tested the data without feature selection, which is denoted as NO in the 
following. For RFE, the gene subset for each base classifier is determined by three fold 
CV. For PLS and PCA, all components that can be extracted are used. All programs are 
written in MATLAB codes. The software package written by Steve Gunn is used for the 
SVM algorithm. It is available at: http://www.kernel-machines.org/. The regularization 
parameter for SVM is set to 1 for all the experiments.  

3.2   Experimental Results 

Figs. 1-3 show the results of the GCM dataset and Figs. 4-6 show the results of the ALL 
dataset. We have the following observations:  

 

http://www.kernel-machines.org/


    
 Fig. 1 GCM data, all-pairs coding.                        Fig. 2 GCM data, one-versus-all coding. 

    
 Fig. 3 GCM data, random coding.                               Fig. 4 ALL data, all-pairs coding. 

   
 Fig. 5 ALL data, one-versus-all coding.                  Fig. 6 ALL data, exhaustive coding. 
 
• The ECOC coding strategies generally outperform the other coding strategies. The 

highest accuracy on the GCM data is achieved by random coding. Combining with 
loss based and inner product decoding functions and RFE, a 78% testing accuracy 
has been obtained. On the ALL data, exhaustive coding has achieved almost perfect 
accuracy for most decoding functions and feature selection methods. There are some 
exceptions on probabilistic decoding function. This can be attributed to the ability of 
ECOC to correct errors for weak base classifiers.  

• The AP coding strategy works quite well with the ALL data, but it is the worst 
coding strategy with the GCM data. All testing accuracies on GCM data are below 
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70%. Learning from Table 1 we know that some classes of the GCM data are very 
small. It is hard for base classifiers to perform well on these pairs of small cancer 
classes. A lot of errors may occur for base classifiers, thus the multiclass 
classification accuracy is degenerated.  

• The probabilistic decoding function is very sensitive to coding strategies and feature 
selections. It fails to work with PCA. It also fails when OVA, exhaustive coding 
strategies and BW, and RFE feature selections are used on the ALL data. 
Meanwhile, it achieves 100% accuracy on the ALL data when AP and BW are used, 
etc. It is known that fitting sigmoid parameters by solving (7) is sensitive to the 
distribution of samples of two classes. So the unequal distribution of classes of 
microarray data may lead to the failure of probabilistic decoding function.  

• The hamming distance decoding function is not suitable with OVA. It is because 
many ties will happen when the base classifiers do not give enough high prediction 
confidence and they are just solved by random assignment. It is better to integrate 
prediction confidence when OVA is used. However, hamming distance decoding 
works well with AP and ECOC. This is because the base classifiers of AP usually 
have high prediction confidence and ECOC has the ability to correct errors if base 
classifiers are weak. It is noticed that loss based and inner product decoding give 
very similar results.  

• Feature selection by BW ratios performs poorly with GCM data but rather well with 
ALL data. This is consistent with the results by [2]. BW does not tell information 
about the class labels so it may select genes that only contain information of several 
classes without regards to the rest. It is also noticed that results are usually good 
when no feature selection is used.  

• PCA outperforms PLS on the GCM data except using the probabilistic decoding 
function. However, it has been validated that PLS is usually a better dimension 
reduction method than PCA [11-12]. It is known from the experiments that the PLS 
components extracted from GCM data is only 19 while the number of PCA 
components is 143. We then deduce that the small sizes of some classes in GCM 
data prevent the PLS to extract enough components so that some information is lost. 
On ALL data, PLS performs better than PCA. 

4   Conclusions 

The output coding scheme from machine learning has been successfully applied to 
multiclass microarray classification in this paper. Usages of different coding matrices, 
decoding functions and feature selection methods have been discussed. It has been shown 
that a good coding matrix can lead to high accuracy of multiclass microarray 
classification. Better coding strategies are required to further improve the performance of 
the output coding scheme.  

Though gene ranking and dimension reduction methods have been shown to be 
effective for multiclass classification, it is seen that sometimes without feature selection, 
the results are even better. RFE is good for binary classification but for output coding 
based multiclass classification, it can only be used to enhance base classifiers. Data over-
fitting can easily happen and the variances of outputs would be large especially when 
class sizes are small. This can degrade the multiclass accuracy in the end. It is better to 

 



use the CV errors of multiclass classification as feedback to select genes. Some 
algorithms like genetic algorithm could be considered.  
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