CCCG 2018, Winnipeg, Canada, August 8-10, 2018

On Nonogram and Graph Planarity Puzzle Generation

Marc van Kreveld*

There are many puzzles in the world, both physical and
digital ones. From the computational perspective, a lot
of attention has been given to combinatorial puzzles and
how to (algorithmically) solve them. We will focus on
puzzles with a geometric component where techniques
from discrete and computational geometry can be em-
ployed to generate them. We also present new nonogram
and graph planarity puzzles.

1 Nonogram puzzles

In a basic nonogram, each row and each column has a
clue that gives an abstract description as to which cells
are to be filled. Suppose a row is eight cells long. Then
a clue 1 3 specifies that in the row, one cell should
be filled, and later in that row another three cells in se-
quence. Between the one and the three filled cells, there
is at least one non-filled cell. Also, before the one filled
cell and after the three filled cells, there are zero or more
non-filled cells. In binary, 00101110 and 10011100 are
both valid filling choices for the row of cells correspond-
ing to the clue. A nonogram puzzle originally consists
of a grid with no cells filled, see Fig. 1. A solution (or
filling) is correct if for every row and column, the filled
cells are an option for the given clue.

The scientific study of nonograms usually focuses on
the algorithmic complexity of solving them [1, 2, 11, 13].

5|1 1
113513 1]1]1

N\

v

=

S
=== g = N =] =

N| |1
\

Figure 1: Basic nonogram (right) of the pixel image
shown left.

In this talk we will discuss the problem of convert-
ing a simple polygon, representing some shape, into a
nonogram. In essence, the polygon will become a low-
res pixel image. We analyze how a pixel polygon can
be formed that is simple and has small Hausdorff or

*Department of Information and Computing Sciences, Utrecht
University, m. j.vankreveld@uu.nl

Fréchet distance to the input. It is based on research
by Bouts et al. [4].

We will also introduce new types of nonograms that
generalize the basic type. Puzzles can be constructed
based on any set of lines and even of curves. For these
new types of generalized nonograms we review the de-
sign choices and let these inspire an automated method
to generate a nonogram from a drawing. For nonograms
based on curves, the curves replace the grid lines of basic
nonograms and form an arrangement of cells with vary-
ing shape and size. Since rows and columns no longer
exist, we need a new way to give clues indicating which
cells should be filled by the puzzler. It allows for new
reasoning steps that do not exist in a grid-based nono-
gram. This part is based on research by van de Kerkhof
et al. [7].

2 Graph planarity puzzles

PLANARITY [10] is a popular abstract puzzle game that
is widely available. The idea is that a tangled graph
is given with intersecting edges, and the objective is
to untangle the graph by dragging vertices to other lo-
cations. If the graph is planar, then the objective can
always be realized, and we never need more vertex drags
than there are vertices.

Algorithmically, planarity of a graph can be tested in
linear time, and the algorithm returns an embedding of
the graph in which it is drawn planar. So for an algo-
rithm, an instance of PLANARITY is easily solvable in
linear time. Minimizing the number of moves, however,
is NP-hard [6, 12], see also [3].

In this talk we propose several variations on the game
PLANARITY. These variations essentially limit the free-
dom of the operations that can be done on the drawn
graph. Since the puzzle type is abstract, it is prefer-
able that the interaction and operations themselves be
simple. The puzzle might then become an elegant ab-
stract puzzle of which there are many already (Move,
Lines/Flow, Zengrams, Nintaii, Fling, ...).

Besides interacting with a vertex like in PLANARITY,
it is natural to interact with an edge. Clicking or select-
ing is arguably the easiest interaction. We list a number
of ways in which the drawing can change when an edge
is selected:

e Swap: the two endpoints of the selected edge swap

locations. Intuitively, the edge turns around while
the endpoints drag all incident edges with them.

30" Canadian Conference on Computational Geometry, 2018

N
WG

Figure 2: (a) Puzzle and solution after one swap (the
left edge). (b) Puzzle and solution after two swaps.

e Rotate: like swap, but now the selected edge ro-
tates over 90 degrees around its center. Since a sin-
gle edge can be selected consecutively three times,
it does not matter whether we rotate clockwise or
counter-clockwise.

e Stretch: the selected edge is scaled by a factor 2
from its center, or by a factor 1/2.

e Mid collapse: the endpoints of the selected edge are
united. The united vertex is placed in the middle of
the edge and gets all edges incident to the original
vertices. The selected edge is removed.

e FEnd collapse: Same but the united vertex is placed
at a selected endpoint.

We will investigate the first of the new variations
closely: SwApP PLANARITY. Examples are shown in
Fig. 2. We show that quadratically many swaps are
sometimes necessary (even if the input has just one edge
crossing) and always sufficient; the latter follows from
[14]. The decision (solvability) question is NP-complete
for general graphs; this follows from [5]. Simple graphs
like trees can always be made planar by swaps, but min-
imizing the number of swaps needed is NP-hard.

We discuss the automated generation of good puzzle
instances for SWAP PLANARITY by describing a five-step
process which yields such a puzzle instance. Some of the
considerations of a good instance are puzzle (complex-
ity) based and some are geometry based. This part is
based on research by Kraaijer et al. [8].

Acknowledgements. Research is supported by the
Netherlands Organisation for Scientific Research
(NWO) on grant no. 612.001.651

References

[1] Kees Joost Batenburg and Walter A. Kosters. Solving
Nonograms by combining relaxations. Pattern Recogni-
tion 42(8):1672-1683, 2009.

[2] Daniel Berend, Dolev Pomeranz, Ronen Rabani, and
Ben Raziel. Nonograms: Combinatorial questions and
algorithms. Discrete Applied Mathematics 169:30-42,
2014.

[3] Prosenjit Bose, Vida Dujmovic, Ferran Hurtado, Stefan
Langerman, Pat Morin, and David R. Wood. A poly-
nomial bound for untangling geometric planar graphs.
Discrete & Computational Geometry 42(4):570-585,
2009.

[4] Quirijn W. Bouts, Irina Kostitsyna, Marc van Kreveld,
Wouter Meulemans, Willem Sonke, and Kevin Verbeek.
Mapping polygons to the grid with small Hausdorff and
Fréchet distance. In 24th Annual European Symposium
on Algorithms, ESA. LIPIcs, 22:1-22:16, 2016.

[5] Sergio Cabello. Planar embeddability of the vertices
of a graph using a fixed point set is NP-hard. Journal
of Graph Algorithms and Applications 10(2):353-363,
2006.

[6] Xavier Goaoc, Jan Kratochvil, Yoshio Okamoto, Chan-
Su Shin, and Alexander Wolff. Moving vertices to make
drawings plane. In Graph Drawing, 15th International
Symposium, GD 2007, volume 4875 of Lecture Notes in
Computer Science, pages 101-112. Springer, 2008.

[7] Mees van de Kerkhof, Tim de Jong, Marc van Kreveld,
Maarten LofHler, Raphael Parment, and Amir Vaxman.
Design and automated generation of Japanese picture
puzzles. Manuscript, 2018.

[8] Rutger Kraaijer, Marc van Kreveld, Wouter Meule-
mans, and André van Renssen. Geometry and gener-
ation of a new graph planarity game. In Proceedings
of the IEEE Conference on Computational Intelligence
and Games. To appear, 2018.

[9] Emilio G. Ortiz-Garcia, Sancho Salcedo-Sanz, José M.
Leiva-Murillo, Angel M. Pérez-Bellido, and José Anto-
nio Portilla-Figueras. Automated generation and visu-
alization of picture-logic puzzles. Computers & Graph-
ics 31(5):750-760, 2007.

[10] John Tantalo. Planarity. http://planarity.net/, 2007.
Accessed: 2018-05-25.

[11] Jinn-Tsong Tsai. Solving Japanese nonograms by
Taguchi-based genetic algorithm. Applied Intelligence
37(3):405-419, 2012.

[12] Oleg Verbitsky. On the obfuscation complexity of pla-
nar graphs. Theoretical Compututer Science, 396(1-
3):294-300, 2008.

[13] I-Chen Wu, Der-Johng Sun, Lung-Ping Chen, Kan-
Yueh Chen, Ching-Hua Kuo, Hao-Hua Kang, and
Hung-Hsuan Lin. An Efficient Approach to Solving
Nonograms. IEEE Transactions on Computational In-
telligence and AI in Games 5(3):251-264, 2013.

[14] Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito,
Jun Kawahara, Masashi Kiyomi, Yoshio Okamoto,
Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and
Takeaki Uno. Swapping labeled tokens on graphs. The-
oretical Computer Science 586:81-94, 2015.

