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The Crossing Number of Semi-Pair-Shellable Drawings

of Complete Graphs
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Abstract

The Harary-Hill Conjecture states that for n ≥ 3 every
drawing of Kn has at least

H(n) :=
1
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crossings. In general the problem remains unsolved, ho-
wever there has been some success in proving the conjec-
ture for restricted classes of drawings. The most recent
and most general of these classes is seq-shellability [16].
In this work, we improve these results and introduce the
new class of semi-pair-shellable drawings. We show that
each drawing in this new class has at least H(n) cros-
sings using novel results on k-edges. So far, approaches
for proving the Harary-Hill Conjecture for speci�c clas-
ses rely on a �xed reference face. We successfully apply
new techniques in order to loosen this restriction, which
enables us to select di�erent reference faces when consi-
dering subdrawings. Furthermore, we introduce the no-
tion of k-deviations as the di�erence between an optimal
and the actual number of k-edges. Using k-deviations,
we gain interesting insights into the essence of k-edges,
and we further relax the necessity of �xed reference fa-
ces.

1 Introduction

The crossing number cr(G) of a graph G is the smal-
lest number of edge crossings over all possible drawings
of G. In a drawing D of G = (V,E) every vertex v ∈ V
is represented by a point and every edge uv ∈ E with
u, v ∈ V is represented by a simple curve connecting
the corresponding points of u and v. We call an inter-
section point of the interior of two edges a crossing. The
Harary-Hill Conjecture states the following.

Conjecture 1 (Harary-Hill [10]) Let Kn be the
complete graph with n vertices, then

cr(Kn) = H(n) :=
1
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There are construction methods for drawings ofKn that
lead to exactly H(n) crossings, for example the class of
cylindrical drawings �rst described by Hill [11]. Howe-
ver, there is no proof for the lower bound of the con-
jecture for arbitrary drawings of Kn with n ≥ 13. The
cases for n ≤ 10 have been shown by Guy [10] and
for n = 11 by Pan and Richter [17]. Guy [10] argues
that cr(K2n+1) ≥ H(2n + 1) implies cr(K2(n+1)) ≥
H(2(n + 1)), hence cr(K12) ≥ H(12). McQuillan et
al. [14] showed that cr(K13) ≥ 219. Ábrego et al. [1]
improved the result to cr(K13) ∈ {223, 225}.
Beside these results for arbitrary drawings, there has

been success in proving the Harary-Hill Conjecture for
di�erent classes of drawings. So far, the conjecture
has been veri�ed for 2-page-book [3], cylindrical [5], x-
monotone [8, 4], x-bounded [5], shellable [5], bishella-
ble [2] and recently seq-shellable drawings [16]. Seq-
shellability is the broadest of the beforehand mentioned
classes comprising the others. Here, the proof of the
Harary-Hill Conjecture makes use of the concept of k-
edges. Each edge e ∈ E in a drawing is assigned a
speci�c value between 0 and bn2 c − 1 with respect to a
�xed reference face. The edge e separates the remaining
n − 2 to vertices into two distinct sets, and is assigned
the cardinality k of the smaller of the two sets, i.e. is
a k-edge (see section 2 for details). We can express the
number of crossings in a drawing in terms of the num-
bers of k-edges for each k ∈ {0, . . . , bn2 c−2}. Therefore,
having lower bounds on the (cumulated) number of k-
edges implies a lower bound on the crossing number of
a drawing. After two cumulations, we obtain double
cumulated k-edges. However, the possibilities of their
usage for further improvements to new classes of dra-
wings seem to be limited.

Our contribution and outline In this work, we resolve
the limitations of double cumulated k-edges by applying
two new ideas. Firstly, instead of double cumulated k-
edges we utilize triple cumulated k-edges. Balko et al.
introduced these in [8]. Secondly, so far all classes, in-
cluding seq-shellability, depend on a globally �xed refe-
rence face. We call a reference face globally �xed if we
do not allow to select a di�erent one when considering
subdrawings, which constitutes a strong limitation in
the proofs. In this work, we show that under certain
conditions and/or assumptions, we are able to change
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the reference face locally or even without restrictions.
Changing the reference face locally means, given a ver-
tex v incident to an initial reference face F , we select a
new reference face F ′, such that F ′ is also incident to v.
Using the new results, we introduce a new class of dra-
wings for which we show that each drawing in this class
has at least H(n) crossings; we call drawings belonging
to this class semi-pair-shellable. There are semi-pair-
shellable drawings that are not seq-shellable. But un-
like seq-shellability, semi-pair-shellability does not com-
prise all previously found classes and only contains dra-
wings with an odd number of vertices. However, every
(bn2 c−1)-seq-shellable drawing with n odd is semi-pair-
shellable. Furthermore, we introduce k-deviations of a
drawing D of Kn. They are the di�erence between the
numbers of cumulated k-edges in D and reference values
corresponding to a drawing with exactlyH(n) crossings.
They allow us to further relax the necessity of a globally
�xed reference face.
The outline of this paper is as follows. In Section

2 we introduce the preliminaries, and in particular the
necessary background on (cumulated) k-edges and their
usage for verifying the lower bound on the number of
crossings. In the following Section 3, we present our no-
vel results for triple cumulated k-edges, followed by the
introduction of semi-pair-shellable drawings in Section
4. We show that each drawing in this class has at least
H(n) crossings, and discuss the distinctive di�erences
to seq-shellability. In Section 5 we use k-deviations to
formulate conditions under which we are able to furt-
her loosen the need for a globally �xed reference face.
We conjecture these conditions to be true in all good
drawings. Assuming our conjecture holds, we prove a
lower bound of H(n) crossings for another broad class
of drawings. Finally, in Section 6 we draw our conclusi-
ons and give an outlook to further possible work. Note
that due to the space restrictions some proofs had to be
omitted. A full version which contains all proofs and
additional �gures is available [15].

2 Preliminaries

A drawing D of a graph G on the plane is an injection φ
from the vertex set V into the plane, and a mapping of
the edge set E into the set of simple curves, such that the
curve corresponding to the edge e = uv has endpoints
φ(u) and φ(v), and contains no other vertices [19]. We
call an intersection point of the interior of two edges a
crossing; a shared endpoint of two adjacent edges is not
considered a crossing. The crossing number cr(D) of a
drawing D equals the number of crossings in D and the
crossing number cr(G) of a graph G is the minimum
crossing number over all its possible drawings. We re-
strict our discussions to good drawings of Kn, and call
a drawing good if (1) any two of the curves have �nitely

many points in common, (2) no two curves have a point
in common in a tangential way, (3) no three curves cross
each other in the same point, (4) any two edges cross
at most once and (5) no two adjacent edges cross. It
is known that every drawing with a minimum number
of crossings is good [18]. Given a drawing D, we call
the points also vertices and the curves edges, V denotes
the set of vertices (i.e. points), and E denotes the set
of edges (i.e. curves) of D. If we subtract the drawing
D from the plane, a set of open regions remains. We
call F(D) := R2 \D the set of faces of the drawing D.
If we remove a vertex v and all its incident edges from
D, we get the subdrawing D − v. We denote by f(v)
the unique face in D− v that contains all the faces that
are incident to v in D, and call f(v) the superface of v.
We might consider the drawing to be on the surface of
the sphere S2, which is equivalent to the drawing on the
plane due to the homeomorphism between the plane and
the sphere minus one point. Next, we introduce k-edges;
according to [7] the origins of k-edges lie in computatio-
nal geometry and problems over n-point set, especially
problems on halving lines and k-sets. An early de�-
nition in the geometric setting goes back to Erd®s et
al. [9]. Given a set P of n points in general position in
the plane, the authors add a directed edge e = (pi, pj)
between the two distinct points pi and pj , and consider
the continuation as line that separates the plane into a
left and a right half plane. There is a (possibly empty)
point set PL ⊆ P on the left side of e, i.e. in the left
half plane. Erd®s et al. assign k := min(|PL|, |P \ PL|)
to e. Later, the name k-edge emerged for any edge that
is assigned the value k. Lovász et al. [13] used k-edges
for determining a lower bound on the crossing number
of rectilinear graph drawings. Finally, Ábrego et al. [3]
extended the concept of k-edges from rectilinear to to-
pological graph drawings and used the concept to show
that the crossing number of 2-page-book drawings is at
least H(n). Every edge in a good drawing D of Kn is a
k-edge for a speci�c value of k ∈ {0, . . . , bn2 c − 1}. Let
D be on the surface of the sphere S2, and e = uv be an
edge in D and F ∈ F(D) be an arbitrary but �xed face;
we call F the reference face. Together with any vertex
w ∈ V \ {u, v}, the edge e forms a triangle uvw and
hence a closed curve that separates the surface of the
sphere into two parts. For an arbitrary but �xed orien-
tation of e, one can distinguish between the left part
and the right part of the separated surface. If F lies
in the left part of the surface, we say the triangle has
orientation + else it has orientation −. For e there are
n− 2 possible triangles in total, of which 0 ≤ i ≤ n− 2
triangles have orientation + (or −) and n−2− i triang-
les have orientation − (or + respectively). We de�ne
the k-value of e to be the minimum of i and n− 2− i.
We say e is an i-edge with respect to the reference face
F if its k-value equals i. See Figure 1 for an example.
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Ábrego et al. [3] showed that the crossing number of
a drawing is expressible in terms of the number of k-
edges for 0 ≤ k ≤ bn2 c − 1 with respect to the reference
face. The following de�nitions of the cumulated num-
bers of k-edges are used for determining lower bounds
of the crossing number. The double cumulated number
of k-edges has been de�ned by Ábrego et al. [3], and the
triple cumulated number of k-edges has been introduced
by Balko et al. [8] in the context of the crossing number
of x-monotone drawings.

De�nition 1 [3, 8] Let D be a good drawing and Ek(D)
be the number of k-edges in D with respect to a reference
face F ∈ F(D) and for each k ∈ {0, . . . , bn2 c − 1}. We
denote

Ēk(D) :=

k∑
j=0

j∑
i=0

Ei(D) =

k∑
i=0

(k + 1− i)Ei(D)

the double cumulated number of k-edges, and

Êk(D) :=

k∑
i=0

Ēi(D) =

k∑
i=0

(
k + 2− i

2

)
Ei(D)

the triple cumulated number of k-edges.

We also write double (triple) cumulated k-edges or dou-
ble (triple) cumulated k-value instead of double (triple)
cumulated number of k-edges. We express the crossing
number of a drawing using the triple cumulated k-edges.

Theorem 2 [8] Let D be a good drawing of Kn and
m = bn2 c−2. With respect to a reference face F ∈ F(D)
we have for n odd

cr(D) = 2 · Êm(D)− 1

8
n(n− 1)(n− 3)

and for n even

cr(D) =Êm(D) + Êm−1(D)− 1

8
n(n− 1)(n− 2).

It is an important observation, that for n odd the value
Êm(D) and n even Êm(D) + Êm−1(D) are identical for
all faces of D. Note that this does not apply to the dou-
ble cumulated case, i.e. Ēm(D) or Ēm(D) + Ēm−1(D),
respectively. Using the following lower bounds, we are
able to verify the Harary-Hill Conjecture.

Corollary 3 [8] Let D be a good drawing of Kn. If n
is odd and

Ên−1
2 −2

(D) ≥ 3

(n−1
2 + 2

4

)
or n is even and with respect to a face F ∈ F(D)

Ên
2−2(D) ≥ 3

(n
2 + 2

4

)
and Ên

2−3(D) ≥ 3

(n
2 + 1

4

)
,

then cr(D) ≥ H(n).
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Figure 1: Example (a) shows a crossing optimal drawing
D of K6 with the k-values at the edges. (b) shows the
subdrawing D−v2 and its k-values. The fat highlighted
edges v0v1, v0v4 and v1v3 are invariant and keep their
k-values. The reference face is the outer face F .

If a vertex touches the reference face, it is incident to a
certain set of k-edges.

Lemma 4 [3] Let D be a good drawing of Kn, F ∈
F(D) and v ∈ V be a vertex incident to F . With respect
to F , vertex v is incident to two i-edges for 0 ≤ i ≤
bn2 c − 2. Furthermore, if we label the edges incident to
v counter clockwise with e0, . . . , en−2 such that e0 and
en−2 are incident to the face F , then ei is a k-edge with
k = min(i, n− 2− i) for 0 ≤ i ≤ n− 2.

The de�nition of semi-pair-shellability uses seq-
shellability, which itself is based on simple sequences.

De�nition 5 (Simple sequence) [16] Let D be a
good drawing of Kn, F ∈ F(D) and v ∈ V with v in-
cident to F . Furthermore, let Sv = (u0, . . . , uk) with
ui ∈ V \ {v} be a sequence of distinct vertices. If u0 is
incident to F and vertex ui is incident to a face con-
taining F in the subdrawing D − {u0, . . . , ui−1} for all
1 ≤ i ≤ k, then we call Sv a simple sequence of v.

De�nition 6 (Seq-Shellability) [16] Let D be a good
drawing of Kn. We call D k-seq-shellable for k ≥ 0 if
there exists a face F ∈ F(D) and a sequence of distinct
vertices a0, . . . , ak such that a0 is incident to F , and
(1.) for each i ∈ {1, . . . , k}, vertex ai is incident to
the face containing F in drawing D − {a0, . . . , ai−1},
and (2.) for each i ∈ {0, . . . , k}, vertex ai has a simple
sequence Si = (u0, . . . , uk−i) with uj ∈ V \ {a0, . . . , ai}
for 0 ≤ j ≤ k − i in drawing D − {a0, . . . , ai−1}.

If a drawing D of Kn is (bn2 c−2)-seq-shellable, we omit
the (bn2 c − 2) part and say that D is seq-shellable. The
class of seq-shellable drawings contains all drawings that
are (bn2 c − 2)-seq-shellable.

3 Properties of Triple Cumulated k-Edges

In this section, we present new results for triple cumu-
lated k-edges. First, we introduce the triple cumulated
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value of edges incident to v. Having a vertex v incident
to the reference face F , we know from Lemma 4 that v is
incident to two k-edges for each k ∈ {0, . . . , bn2 c−2} and
it follows that the triple cumulated number of k-edges
incident to v is Êk(D, v) =

∑k
i=0

(
k+2−i

2

)
· 2 = 2

(
k+3
3

)
.

Next, we introduce the double cumulated invariant
edges. Consider removing a vertex v ∈ V from a good
drawing D of Kn, resulting in the subdrawing D−v. By
deleting v and its incident edges every remaining edge
loses one triangle, i.e. for an edge uw ∈ E there are only
(n− 3) triangles uwx with x ∈ V \ {u, v, w} (instead of
the (n− 2) triangles in drawing D). The k-value of any
edge e ∈ E is de�ned as the minimum number of + or
− oriented triangles that contain e. If the lost triangle
had the same orientation as the minority of triangles,
the k-value of e is reduced by one else it stays the same.
Therefore, every k-edge in D with respect to F ∈ F(D)
is either a k-edge or a (k − 1)-edge in the subdrawing
D − v with respect to F ′ ∈ F(D − v) and F ⊆ F ′. We
call an edge e invariant if e has the same k-value with
respect to F in D as for F ′ in D′. See Figure 1 for an
example.
For 0 ≤ k ≤ bn2 c−1 we denote the number of invariant

k-edges between D and D′ (with respect to F and F ′

respectively) by Ik(D,D′). Furthermore, we de�ne the
double cumulated invariant k-value as

Īk(D,D′) :=

k∑
j=0

j∑
i=0

Ii(D,D
′) =

k∑
i=0

(k − i+ 1)Ii(D,D
′).

We de�ne Ê−1(D) := 0, and introduce the recursive
representation for the triple cumulated k-edges.

Lemma 7 Let D be a good drawing of Kn, v ∈ V and
F ∈ F(D). With respect to the reference face F and for
all k ∈ {0, . . . , bn2 c − 2}, we have

Êk(D) = Êk−1(D − v) + Êk(D, v) + Īk(D,D − v).

Using the triple cumulated value, we only have to ensure
that Êk(D) ≥ 3

(
k+4
4

)
for k = n−1

2 − 2 if n is odd, or for
each k ∈ {n2 −2, n2 −3} if n is even in order to prove that
cr(D) ≥ H(n) (Theorem 2). Mutzel and Oettershagen
[16] showed that any seq-shellable drawing D of Kn has
Ēi(D) ≥ 3

(
i+3
3

)
for all i ∈ {0, . . . , k} with respect to the

reference face F . This implies the following corollary.

Corollary 8 Let D be a drawing of Kn that is seq-
shellable for a reference face F ∈ F(D), then Êk(D) ≥
3
(
k+4
4

)
for all k ∈ {0, . . . , bn2 c − 2} with respect to F .

The following lemma gives a lower bound on double cu-
mulated invariant edges incident to a vertex that tou-
ches the reference face.

Lemma 9 Let D be a good drawing of Kn with two ver-
tices v and w incident to the reference face F ∈ F(D).

If v is removed, the double cumulated value of invariant
k-edges incident to w with respect to F is at least

(
k+2
2

)
for all k ∈ {0, . . . , bn2 c − 2}.

The following lemma is the gist that allows us to locally
change the reference face if we have an odd number of
vertices.

Lemma 10 Let D be a good drawing of Kn and v ∈ V .
For n odd, the number of double cumulated invariant
edges Ībn2 c−2(D,D − v) is the same with respect to any
face incident to v in D and the superface f(v) in D−v.

Proof. Let m = bn2 c − 2. Lemma 7 implies that with
respect to a face incident to v

Īm(D,D − v) =Êm(D)− Êm−1(D − v)− Êm(D, v).

Êm(D) is the same for all faces of D, the value
Êm−1(D − v) with respect to face f(v) is �xed and for
each face incident to v we have Êm(D, v) = 2

(
m+3
3

)
.

Therefore, it follows that also the value of Īm(D,D−v)
has to be the same for every face incident to v. �

4 Semi-Pair-Shellability

Basis for the new class of semi-pair-shellable drawings
are pair-sequences.

De�nition 11 (Pair-sequence) Let D be a good dra-
wing of Kn, v ∈ V and Pv = (u0, . . . , ubn2 c−2)
be a sequence of distinct vertices ui ∈ V \ {v} for
0 ≤ i ≤ bn2 c − 2.
We call Pv a pair-sequence of v if for

j ∈ {1, . . . , bn2 c − 3} and (n − j) odd, the vertex
uj in the drawing D − {u0, . . . , uj−1} is incident to
a face F ′ ∈ F(D − {u0, . . . , uj−1}), where F ′ is also
incident to v, and in the drawing D − {u0, . . . , uj}
vertex uj+1 is incident to face f(uj), and vertex u0 is
incident to F ∈ F(D), where F is also incident to v.

For example, in Figure 2 vertex v in the drawing of K11

has the pair-sequence (u0, u1, u2, u3). The pair-sequence
of vertex v ensures that if we remove v from D, there are
enough double cumulated invariant k-edges. Therefore,
we are able to guarantee a lower bound on Êbn2 c−2(D)
using Lemma 7.

Lemma 12 Let D be a good drawing of Kn, v ∈ V
and (u0, . . . , ubn2 c−2) a pair-sequence of v, then

Ībn2 c−2(D,D − v) ≥
(bn2 c+1

3

)
.

Proof. Without loss of generality let n be odd and let
m = n−1

2 − 2 (for n even we can proceed similarly and
start with m = n

2 − 2). Lemma 9 states that the double
cumulated value of invariant edges incident to u0 equals(
k+2
2

)
for 0 ≤ k ≤ m with respect to a face F incident

to v and u0, and the removal of v from D. Likewise,
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u3

u1
u0

u2

v

F

Figure 2: Single-pair-seq-shellable drawing of K11. The
initial reference face is F , vertex v has the pair-sequence
(u0, u1, u2, u3).

the double cumulated value of invariant edges incident
to u1 is at least

(
k+2
2

)
for 0 ≤ k ≤ m− 1 if we remove v

from D − u0 with respect to F . The edge u0u1 may be
invariant or non-invariant inD with respect to removing
v. Now consider the drawing D − {u0, u1} with n − 2
vertices and n−3

2 −2 = n−1
2 −3 = m−1. Because n−2 is

odd, we know that for all faces incident to v the value of
Īm−1(D−{u0, u1}, D−{v, u0, u1}) is the same (Lemma
10). We may select a new reference face F ′, such that
v and u3 are incident to F ′, and we can argue again,
using Lemma 9, that removing v leads to at least

(
k+2
2

)
for 0 ≤ k ≤ m − 2 double cumulated value of invariant
edges incident to u2, since u2 is incident to F ′. The
double cumulated value of invariant edges incident to
u3 is at least

(
k+2
2

)
for 0 ≤ k ≤ m−3 with respect to F ′

if we remove v from D − {u0, u1, u2}. Again, the edge
u2u3 may be invariant or non-invariant in D− {u0, u1}
with respect to removing v.
In general, we are able to change the reference face in-

cident to v if a subdrawing Kr of Kn with 0 < r ≤ n has
an odd number of vertices because the number of dou-
ble cumulated invariant (b r2c−2)-edges does not change
(see Lemma 10). Furthermore, since vertex ui for 0 ≤
i ≤ bn2 c−2 is incident to the (current) reference face, ui
contributes at least

(
m−i+2

2

)
to the value of the double

cumulated invariantm-value with respect to removing v
from D. Thus, Īm(D,D− v) ≥

∑m+2
i=1

(
i
2

)
=
(
m+3
3

)
. �

In Figure 2, both vertices u0 and u1 are incident to the
initial reference face F . Figure 3 shows the drawing
after removing the �rst pair (i.e. u0 and u1). The face
F is not incident to any vertex except v. Changing the
reference face to F ′ allows to proceed with u2 and u3.
Notice that in a drawing D of Kn with n odd, only the

u3

u2

v

F ′

F

Figure 3: SubdrawingD−{u0, u1} of the drawing shown
in Figure 2. The reference face is now F ′, which is
incident to v and u2.

value of Ībn2 c−2(D,D − v) is invariant with respect to
changing the reference face. The values Īk(D,D − v)
for k ∈ {0, . . . , bn2 c − 3} may change when selecting a
di�erent reference face.

Lemma 13 Let D be a good drawing of Kn with n odd
and v ∈ V . If v has a pair-sequence and for the sub-
drawing D− v we have Êbn2 c−3(D− v) ≥ 3

(bn2 c+1
4

)
with

respect to f(v), then cr(D) ≥ H(n).

Proof. We have Êbn2 c−2(D, v) ≥ 2
(bn2 c+1

3

)
for any

face that is incident to v in D, and because v has a
pair-sequence and due to Lemma 12, it follows that
Ībn2 c−2(D,D − v) ≥

(bn2 c+1
3

)
. Using Lemma 7, it fol-

lows for every face incident to v Êbn2 c−2(D) ≥ 3
(bn2 c+2

4

)
.

Since n is odd, the result follows with Corollary 3. �

Next, we de�ne semi-pair-shellability.

De�nition 14 Let D be a good drawing of Kn with n
odd. If there exists a vertex v ∈ V that has a pair-
sequence and the subdrawing D − v is seq-shellable for
f(v), then we call D semi-pair-shellable.

Using Lemma 13, we show that semi-pair-shellable dra-
wings have at least H(n) crossings. By de�nition the
subdrawing D − v is seq-shellable, hence Êbn2 c−3(D −
v) ≥ 3

(bn2 c+1
4

)
for f(v) (see Corollary 8). Consequently,

Theorem 15 follows.

Theorem 15 If D is a semi-pair-shellable drawing of
Kn, then cr(D) ≥ H(n).

The drawingD in Figure 2 is semi-pair-shellable but not
seq-shellable. It is impossible to �nd a vertex sequence
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and corresponding simple sequences to apply the de�ni-
tion of seq-shellability. However, the subdrawing D− v
is seq-shellable for face f(v) and v has a pair-sequence.
Consequently, D is semi-pair-shellable.
We are not aware of a crossing optimal semi-pair-

shellable drawing that is not seq-shellable. Every (bn2 c−
1)-seq-shellable drawing D with n odd is also semi-
pair-shellable: By de�nition, D has a vertex sequence
a0, . . . , abn2 c−1, and each ai has a simple sequence Si

with i ∈ {0, . . . , bn2 c − 1}. The �rst bn2 c − 2 vertices of
S0 are a pair-sequence for a0. Moreover, the drawing
D − a0 is (bn2 c − 2)-seq-shellable with the vertex se-
quence a1, . . . , abn2 c−1 and its corresponding simple se-
quences. However, there exist (bn2 c − 2)-seq-shellable
drawings that are not semi-pair-shellable. Thus, semi-
pair-shellability is a new distinct class that intersects
but does not contain the class of seq-shellable drawings.

5 k-Deviations

In the following, we introduce k-deviations, which we
use to represent the di�erence between (cumulated) k-
edges and optimal values; k-deviations allow us to for-
mulate conditions under which we are able to change
the reference face even more freely. Note that if for a
drawing D of Kn it holds that Ek(D) = 3(k + 1) for
all 0 ≤ k ≤ bn2 c − 2, then cr(D) = H(n). We de�ne k-
deviations as the di�erence between this value and the
number of k-edges in a drawing.

De�nition 16 Let D be a good drawing of Kn, F ∈
F(D) and Ek(D) the number of k-edges for 0 ≤ k ≤
bn2 c − 2 with respect to F . We denote by ∆k(D) :=
Ek(D)− 3(k + 1) the k-deviation of the drawing D for
0 ≤ k ≤ bn2 c− 2 with respect to F . Moreover, we de�ne
the cumulated versions of the k-deviation for F as

∆̄k(D) :=

k∑
i=0

i∑
j=0

∆j(D) =

k∑
i=0

(k + 1− i)∆i(D) and

∆̂k(D) :=

k∑
i=0

∆̄i(D) =

k∑
i=0

(
k + 2− i

2

)
∆i(D).

Finally, we de�ne the deviation of the crossing number
of D from the Harary-Hill optimal number of crossings
as ∆cr(D) := cr(D)−H(n).

We can express k-deviations in the following ways.

Lemma 17 Let D be a good drawing of Kn. For a
reference face F ∈ F(D) and 0 ≤ k ≤ bn2 c − 2, we have

∆̂k(D) = ∆̂k−1(D) + ∆̄k(D).

Corollary 18 Let D be a good drawing of Kn. For n
odd we have ∆cr(D) = 2∆̂n−1

2 −2
(D), and for a refe-

rence face F ∈ F(D) and n even ∆cr(D) = ∆̂n
2−2(D)+

∆̂n
2−3(D).

Notice, that Corollary 18 implies Kleitman's parity the-
orem for complete graphs [12]. The following lemma
gives a lower bound on ∆̂bn2 c−3(D).

Lemma 19 Let D be a good drawing of Kn with
cr(D) ≥ H(n). For each F ∈ F(D) with ∆̂bn2 c−2(D) ≥
∆̄bn2 c−2(D), it holds that ∆̂bn2 c−3(D) ≥ 0.

With the following proposition, we are able to select a
new reference face for the subdrawing D − v.

Proposition 20 Let D be a good drawing of Kn with
n odd and v ∈ V , such that the subdrawing D − v is
seq-shellable for any face F ∈ F(D−v). If v has a pair-
sequence and in subdrawing D− v for f(v) it holds that
∆̂n−1

2 −2
(D− v) ≥ ∆̄n−1

2 −2
(D− v), then cr(D) ≥ H(n).

So far, for all drawings and all faces we inspected, the
condition of Lemma 19 has been ful�lled. We conjecture
it to be true for all good drawings of Kn.

Conjecture 2 Let D be a good drawing of Kn. With
respect to any face F ∈ F(D), we have

∆̂bn2 c−2(D) ≥ ∆̄bn2 c−2(D).

Under the assumption that Conjecture 2 holds, we are
able to prove the Harary-Hill Conjecture for another
new class of drawings. Here, we can select a di�erent
reference face for each vertex.

Theorem 21 Let D be a good drawing of Kn and
v1, . . . , vn a sequence of the vertices, such that every
vertex vi with i ∈ {1, . . . , n} and i odd has a pair-
sequence, and every vertex vi with i ∈ {1, . . . , n} and
i even has a simple sequence. If Conjecture 2 holds,
then cr(D) ≥ H(n).

6 Conclusions and Outlook

We introduced semi-pair-shellable drawings of complete
graphs and veri�ed that each drawing in this class has
at least H(n) crossings. For the �rst time, we used
more than a single globally �xed reference face in or-
der to show lower bounds on the triple cumulated k-
edges. Semi-pair-shellability is only de�ned for dra-
wings of Kn with n odd so far. Extending semi-pair-
shellability to drawings of Kn with an even number
of vertices is an open problem. Here, it would suf-
�ce to show that ∆̂bn2 c−2(D) + ∆̂bn2 c−3(D) ≥ 0 implies

∆̂bn2 c−3(D) ≥ 0 in order to generalize our results from
semi-pair-shellability to pair-shellability, i.e. a version
of seq-shellability with pair-sequences instead of simple
sequences. Moreover, we introduced k-deviations to for-
mulate conditions under which we are able to select a
new reference face in each subdrawing. Proving Con-
jecture 2 would settle the Harary-Hill Conjecture for a
very broad class of drawings, comprising seq- and semi-
pair-shellability. Still, there are optimal drawings where
each face touches a single vertex only [6], thus no vertex
has a simple or pair-sequence.
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