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Sto-Stone is NP-Complete

Addison Allen ∗ Aaron Williams †

Abstract

Sto-Stone is a paper-and-pencil puzzle created by
Japanese publisher Nikoli. A puzzle consists of an m-
by-n grid whose squares are partitioned into connected
‘rooms’ each of which may have an associated number.
The solver shades in squares of the grid, which form
maximal ‘stones’ based on orthogonal connectivity. The
goal is to shade squares so that (a) each room contains
one stone, (b) individual stones do not cross between
rooms, (c) numbered rooms contain a stone with exactly
that number of squares, and (d) when the stones are
“dropped” downward they perfectly fill the bottom half
of the grid. We show that Sto-Stone is NP-complete.
This is also true when rule (d) is weakened or omitted.

1 Introduction

This article proves the NP-completeness of a new paper-
and-pencil puzzle by Japanese publisher Nikoli. The
puzzle is Sto-Stone (ストストン) and it was introduced
in Puzzle Communication magazine Volume 156 [1].

When discussing individual grid squares we use adja-
cent and connected to mean orthogonally adjacent and
orthogonally connected, respectively.

1.1 Rules of the Puzzle

Sto-Stone is played on an m-by-n grid where m is
even. The grid’s squares are partitioned into connected
“rooms” and the size of a room is its number of squares.
A room may have a positive number w written in one
of its squares, and in this case its required weight or re-
quirement is w. A grid with these properties is a board.

The solver interacts with the puzzle by shading indi-
vidual squares. The shaded squares partition into stones
based on connectivity. In other words, any two shaded
squares that are adjacent belong to the same stone. The
weight of a stone is its number of shaded squares. The
goal is to create stones subject to the following rules:

(S1) There is exactly one stone in each room. That is,
in each room there are shaded squares and these
squares are connected.
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(S2) Shaded squares in different rooms are not adjacent.
That is, stones can’t be inside more than one room.

(S3) Rooms with requirement w have a weight w stone.
That is, a room labeled w has w shaded squares.

(S4) When all stones are “dropped” downward they fill
the bottom half of the grid with no gaps.

Rule (S4) requires clarification. When stones are
dropped they move down as if influenced by gravity.
Stones do not change shape when they are dropped,
and all room boundaries are ignored during this time.

Figure 1 has a sample puzzle and Figure 2 illustrates
the solving process. Figure 1 (c) visually verifies (S4),
and - denotes a square that cannot be shaded.
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(b) Solution. (c) Drop check.

Figure 1: The corrected version of Sto-Stone Puzzle 4
from Puzzle Communication Volume 162 [2].
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(a) (S3) forces the
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contributes the −.
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(b) (S3) forces
the above stones;
(S2) and (S4)
contribute the −.
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(c) (S3) forces the
bottom-middle
stones; (S4) forces
the bottom-right.

Figure 2: Solving the Sto-Stone puzzle in Figure 1.

1.2 Drop Rules: Stone, Sand, Silt

We refer to (S4) as the stone drop rule. We also define
a weaker sand drop rule as follows.

(s4) There are m
2 shaded squares in every column.
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Notice that (s4) differs from (S4) in that it ignores
the shape of the stones. In other words, the shaded
squares are dropped independently like individual grains
of sand. We refer to the lack of a drop rule as the silt
drop rule. In other words, the shaded squares linger in
the air like fine grains of silt.

The drop rule in Sto-Stone is somewhat unusual
among Nikoli puzzles, and it has led to some initial con-
fusion among puzzle designers, solvers, and academics.
Figure 1 actually contains a corrected version of Sto-
Stone Puzzle 4 from Puzzle Communication Volume 162
[2]. The originally published puzzle shown in Figure 3
can only be solved with the weaker drop rules.
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(b) Solution with
respect to sand
but not stone.

(c) Drop rule (S4)
fails, but (s4)
would pass.

Figure 3: The original version of Sto-Stone Puzzle 4
from Puzzle Communication Volume 162 [2].

The error was announced by @nikoli official on
twitter [8]. In response, @postpostdoc posted an early
version of this article [9]. However, the authors did not
properly understand rule (S4) at that time, and only es-
tablished the hardness of (S1)-(S3) with (s4). The early
version also allowed ‘empty’ rooms with no stone, and
w = 0 requirements, which we now believe are invalid.

1.3 Decision Problems

We formalize three different puzzles based on the type
of drop rule that is used. Each of these puzzles has an
associated decision problems that takes a board B as
input and answers ’yes’ or ’no’ depending on whether it
can be solved using the rules for that puzzle.

• Nikoli’s Sto-Stone puzzle uses rules (S1)-(S3) and
drop rule (S4). The decision problem is stone(B).
• The Sto-Sand puzzle uses rules (S1)-(S3) and drop

rule (s4). The decision problem is sand(B).
• The Sto-Silt puzzle uses rules (S1)-(S3) and no drop

rule. The decision problem is silt(B).

If stone(B) is ’yes’, then sand(B) is ’yes’. Similarly,
if sand(B) is ’yes’, then silt(B) is ’yes’. Figure 3 gave
an example board B in which stone(B) is ’no’ and both
sand(B) and silt(B) are ’yes’.

All three decision problems are in NP because shading
an m-by-n board can be done with m ·n binary guesses,
and each rule can be checked in O(mn)-time.

Remark 1 The decision problems stone, sand, and
silt are all in NP.

1.4 Popularity

Nikoli is currently promoting three new puzzles includ-
ing Sun or Moon (月か太), Pencils (ペンシルズ),
and Sto-Stone (ストストン). During a November
2017 poll held on twitter by @nikoli official, the Sto-
Stone puzzle ranked behind Sun or Moon in popularity.
However, this has changed in a more recent poll from
May 2018, as seen in Figure 4.

Figure 4: The popularity of three new Nikoli puzzles,
where the bottom option translates to “I do not know”.

Establishing the hardness of Nikoli puzzles has also
been a popular pursuit in academia. An excellent re-
source on this general topic is Games, Puzzles, and
Computation by Hearn and Demaine [6].

1.5 Outline

The article is organized as follows. Section 2 defines
the NP-complete problem that we will use as a source
problem. Section 3 introduces our gadgets and other
preliminaries. Sections 4, 5, and 6 proves that silt,
sand, and stone are NP-complete, respectively. Sec-
tion 7 concludes with final remarks and open problems.

2 Source Problem

This section defines the satisfiability problem used in
our reduction. We also describe a slight variation to its
standard representation.

2.1 Planar Monotone Rectilinear 3SAT

A (Boolean) variable is a variable that can be assigned
True or False. If xi is a variable, then its positive
literal is xi, and its negative literal is ¬xi. A Boolean
formula φ is in 3 conjunctive normal form (3CNF) if it
equals C1 ∧C2 ∧ . . .∧Cm where each clause Ci has the
form (`i,1 ∨ `i,2 ∨ `i,3) and each `i,j is a literal.

A clause is positive or negative if it has only positive
or negative literals, respectively. The 3CNF formula φ
is monotone if each clause is either positive or negative.
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A 3CNF formula is planar if the bipartite incidence
graph of variables and clauses is planar. A rectilinear
embedding of a planar monotone 3CNF formula is a
drawing on a grid with the following properties:

• Variables and clauses are horizontal line segments.
• Vertical line segments connect variables to clauses.
• Variable line segments are on the same horizontal

line called the variable line.
• Positive clauses are above the variable line, and

negative clauses are below.

Rectilinear embeddings are drawn with their horizontal
line segments vertically extended as in Figure 5.

The decision problem planar monotone rectilin-
ear 3sat (pmr3sat) takes a rectilinear embedding of
a planar monotone 3CNF formula φ as input. A ‘yes’
instance occurs when the variables can be assigned so
that φ evaluates to True. In this case, φ is satisfiable.
Otherwise, φ is a ‘no’ instance and is unsatisfiable. For
brevity, we often refer to the input of pmr3sat as the
Boolean formula φ as opposed to a rectilinear embed-
ding of it. Theorem 1 is by de Berg and Khosravi [4].

x1 x2 x3 x4

x2 ∨ x3 ∨ x4

¬x1 ∨ ¬x2 ∨ ¬x4

¬x2 ∨ ¬x3 ∨ ¬x4

x1 ∨ x4 ∨ x5

x5 x6

¬x4 ∨ ¬x5 ∨ ¬x6

Figure 5: A ‘yes’ instance of pmr3sat with φ = (x1 ∨
x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨
¬x2 ∨ ¬x4) ∧ (¬x4 ∨ ¬x5 ∨ ¬x6).

Theorem 1 ([4]) pmr3sat is NP-complete.

When working with pmr3sat we assume that the
variables are ordered from left-to-right as x1, x2, . . . , xn
in the embedding. We also arrange each clause C as
(xi ∨ xj ∨ xk) or (¬xi ∨¬xj ∨¬xk) with the distinct in-
dices satisfying i < j < k, and we refer to xi, xj , and xj
as the left, middle, and right literals in C, respectively.

2.2 Bent Representation

We will find it helpful to make the following cosmetic
adjustments to the input to the pmr3sat problem:

• Shrink each clause line by moving its left end and
right end closer together by any small amount;
• Connections from clauses to positive left literals are

redrawn as p lines. Similarly, negative left literals,

positive right literals, and negative right literals are
redrawn with x, q, and y lines, respectively.

We refer to this modified embedding as bent rectilinear
representation since two-thirds of the connecting lines
have a 90o bend. Figure 6 shows the result of adjusting
Figure 5 in this way.

x1 x2 x3 x4 x5 x6

x1 ∨ x4 ∨ x5

x2 ∨ x3 ∨ x4

¬x2 ∨ ¬x3 ∨ ¬x4

¬x1 ∨ ¬x2 ∨ ¬x4 ¬x4 ∨ ¬x5 ∨ ¬x6

Figure 6: A bent embedding of Figure 5.

3 Gadgets and Preliminaries

In this section we introduce some conventions and ter-
minology, and then present gadgets for Sto-Silt.

3.1 Grid Parity

A square in location (x,y) of the grid is even or odd
based on the sum x+ y, where the top-left square is in
location (1, 1). In other words, the grid has an under-
lying even/odd checkerboard pattern.

Each room we create will have size at least two, so
it will contain at least one even and one odd square.
Therefore, we can use the following convention to make
our figures more readable: If a room has required weight
w, then w is written in a square whose parity is the same
as w. In other words, odd requirements are written in
odd locations, and even requirements are written in even
locations. This convention extends back to Figure 1.

3.2 Rooms

In a partially shaded board B a room with a require-
ment w is satisfied if it has a stone of weight w, and
otherwise it is unsatisfied. Furthermore, a room is un-
satisfiable if it is impossible to satisfy the room by shad-
ing in additional squares while respecting the rules.

Rooms with size s and requirement w have type s.w.
Our reductions will be primarily restricted to the fol-
lowing special room types.

• A room of type 2.1 is a binary room. A binary room
can be satisfied in two ways.
• A room of type 3.2 is a trinary room. A trinary

room can be satisfied in two ways.
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• A room of type 3.1 is a ternary room. A ternary
room can be satisfied in three ways.
• A room with no requirement is a wild-card room.

These rooms do require at least one shaded square.

In the following subsections we will create gadgets
that propagate decisions made at certain binary rooms
to other binary rooms. When discussing these gadgets
we use the following terminology and conventions.

• An input room is a horizontal binary room with
an ‘on’ square to the right of an ‘off’ square. A
positive or negative input room has its ‘on’ square
in an even or odd position, respectively.
• An output room is a horizontal or vertical binary

room with specified ‘on’ and ‘off’ squares.

Input and output rooms are coloured red and blue, re-
spectively. These rooms are ‘on’ if a stone is in their ‘on’
square, and are ‘off’ if a stone is in their ‘off’ square.

To simplify our figures we assume that empty regions
on a board are wild-card rooms which are not drawn.

3.3 Variable Gadget

A variable gadget is designed to be satisfiable in one of
two ways. Furthermore, this choice must be duplicat-
able so that it can be passed to any number of clause
gadgets. To accomplish these goals we create a cycle of
binary rooms. Our variable gadget of width w consists
of a positive row with w positive input rooms, and be-
low it is a negative row with w negative input rooms,
as shown in Figure 7 (a). The top-left square is always
placed on an even grid location.

1 1 ... 1 1

1 1 ... 1 1

off on off on off on off on

off on off on off on off on

(a) Variable gadget.

1 1 ... 1 1

1 1 ... 1 1

off on off on off on off on

off on off on off on off on

(b) Positive state.

1 1 ... 1 1

1 1 ... 1 1

off on off on off on off on

off on off on off on off on

(c) Negative state.

Figure 7: The variable gadget in (a) can be satisfied in
exactly two ways (b)–(c).

Shading a single square anywhere in the gadget forces
the entire gadget to be satisfied in a particular manner.
The precise behavior and state of the gadget is defined
Remark 2 and illustrated in Figure 7 (b)–(c).

Remark 2 In a solved Sto-Silt board, a variable gadget
must be satisfied in one of two ways:

• Its positive state has positive input rooms ‘on’ and
negative input rooms ‘off’.
• Its negative state has positive input rooms ‘off’ and

negative input rooms ‘on’.

3.4 Wire Gadget

A wire gadget propagates the choice made in one binary
room to another binary room. More specifically, the
wire ensures a relationship between two specific squares
on the board. Remark 3 outlines the main property of
the wire gadget that we will construct.

Remark 3 Binary input and output rooms that are
connected by a wire in a solved Stone-Silt board have
the following properties. If the input room is ‘off’, then
the output room is also ‘off’. If the input room is ‘on’,
then the output room can be ‘on’ or ‘off’.

output room output room

1 ... 1 1 output room 1 1 ... 1

1 on off 1 off off on 1

⠇ on ⠇
1

1 1

⠇
1

2 2

1  input room 1  input room input room 1

off on off on off on

(a) Three types of positive wires.
off on off on off on

1  input room 1  input room input room 1

1
2 2

⠇

1

1 1

⠇ 1 on ⠇
output room off output room

1 1 ... 1 1 output room 1 1 ... 1 1

on off off on

(b) Three types of negative wires.

Figure 8: Wire gadgets connect an input room to an
output room, and are paths of binary rooms and at
most one trinary room. Shading the ‘off’ square of an
input room forces the shading of the ‘off’ square in the
connected output room.

Remark 3 is ‘weak’ since it only guarantees one direc-
tion, but this will be sufficient for our reduction. Now
we define our wires with Figure 8 providing illustrations.

• A positive/negative wire is a path of binary and
trinary rooms starting from the ‘off’ square of a
positive/negative input room and ending at the ‘on’
square of a positive/negative output room.

A wire is straight if it travels vertically from an input
room to a vertical output room. The other wires pro-
ceed vertically from an input room, then make a sin-
gle right-turn or left-turn, and travel horizontally to a
horizontal output room. The straight wires only use bi-
nary rooms, whereas the turning wires leave their out-
put room with a single trinary room and then consist
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of binary rooms. As a result, the straight and turn-
ing wires reach their respective input rooms on opposite
parity squares. All wire types are illustrated in Figure
8 and in each case it is easy to verify Remark 3.

3.5 Clause Gadget

We base our clause gadgets on a ternary clause room
and three binary output rooms. Each clause room is
horizontal with output rooms adjacent to its left and
right squares. In the positive clause gadget another out-
put room is adjacent to the bottom of its middle square,
whereas in the negative clause gadget it is adjacent to
the top of its middle. The behavior of the gadget is
given in Remark 4 and shown in Figures 9 and 10.

1 1 1

on off 1 off off on

on

xi

xj

xk( xi ∨ xj ∨ xk )

(a) Positive clause.

1 1 1

1

(b) Unsatisfiable if all ‘off’.

1 1 1

1

(c) Satisfiable if xj is ‘on’.

1 1 1

1

(d) Satisfiable if xi is ‘on’.

Figure 9: The positive clause gadget is satisfiable if and
only if at least one input room is ‘on’.

1 on

on off off off on

1 1 1

¬xi

¬xj

¬xk( ¬xi∨¬xj∨¬xk )

(a) Negative clause.

1

1 1 1

(b) Unsatisfiable if all ‘off’.

1

1 1 1

(c) Satisfiable if xj is ‘on’.

1

1 1 1

(d) Satisfiable if xi is ‘on’.

Figure 10: The negative clause gadget is satisfiable if
and only if at least one input room is ‘on’.

Remark 4 In a solved Sto-Silt board, a clause gadget
is satisfiable if and only if at least one of its adjacent
output rooms is ‘on’.

Note: In Theorem 2’s proof we always satisfy clauses by
shading their middle square if their middle wire is ‘on’.

4 NP-Completeness of Sto-Silt

In this section we reduce pmr3sat to silt. An example
of the reduction based on Figure 6 appears in Figure 11.

1 1 1 1 1 1 1 1 1 1

1 1 1

1 1 1 1

1 1

2 2 2 2

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1

2 2 2 2 2 2

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

(a) The board S(φ) where wild-card rooms fill the area.

1 1 1 1 1 1 1 1 1 1

1 1 1

1 1 1 1

* 1 * 1

2 2 2 * * 2

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

* 1 * * 1 * 1 *

2 2 2 2 2 2

1 1 1 1 1

* *

1 1 1 1 1 1 1 1 1 1 1 1 1 1

(b) A solution to S(φ) via x4 = x5 = False and x1 = x2 =
x3 = x6 = True. The marked square * can be shaded in the
outer wild-card room without violating (S2). Similarly, *’s
and *’s mark all suitable squares along the straight wires.

Figure 11: The reduction of the pmr3sat instance φ
from Figure 6 to silt(φ).

Suppose φ is an instance of pmr3sat with p positive
clauses and z negative clauses. Our reduction creates a
board B = S(φ) whose rows are organized as follows:

• Row 1 is empty.
• Rows 2, 4, . . . , 2p contain positive clause gadgets.
• Rows 2p+ 3 and 2p+ 4 contain variable gadgets.
• Rows 2p+7, 2p+9, . . . , 2p+2z+5 contain negative

clause gadgets.
• Row 2p+ 2z + 6 is empty.

Now suppose that φ has pi clauses with positive literal
xi, and zi clauses with negative literal ¬xi for all i. The
variable gadgets are sized and positioned as follows:

• Column 1 is empty.
• The variable gadgets are placed side-by-side start-

ing from column 2 with two columns between them.
Each xi gadget is max(pi, ni) input rooms wide.

The width of the variable gadgets allow us to connect
wires to distinct input rooms for each literal. In partic-
ular, the wire connected to the middle literal of a clause
travels straight vertically to the middle of the corre-
sponding clause gadget. Similarly, left and right literals
enter the left and right sides of their clause gadgets.

Theorem 2 silt is NP-complete.

Proof. Let φ be an instance of pmr3sat. Remarks 3
and 4 imply that the variable, wire, and clause gadgets
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(a) A 7-by-24 board B is extended to 16-by-24 board B′

with 2-by-24 and 9-by-24 wild-card rooms.

(b) If silt(B) is ‘yes’, then fill the added wild-card rooms to
satisfy (S4), so sand(B′) and stone(B′) are ‘yes’.

Figure 12: Reduction from silt to sand to stone.

of B = S(φ) can be satisfied if and only if φ is satisfi-
able. The remaining detail is to show that the wild-card
rooms of S(φ) can also be satisfied when φ is satisfiable.
Since these rooms have no requirement we can satisfy
them by shading any single square subject to (S2). See
Figure 11 (b) for examples of the arguments below.

By the empty rows and column in B there is a wild-
card room surrounding the gadgets. In this outer room
we shade the rightmost column in row 2p+ 2 or 2p+ 5.

All other wild-card rooms border a straight wire.

• If this wire is on, then without loss of generality
we can assume that its clause gadget is satisfied by
shading its middle cell. Therefore, we can shade a
square next to this clause gadget.
• If this wire is off, then we can shade a square next

to its variable gadget.

Therefore, B is solvable if and only if φ is satisfiable.
Theorem 1 and Remark 1 complete the proof. �

5 NP-Completeness of Sto-Sand

Now we prove that sand is NP-complete by a reduction
from silt. Our strategy is to add rows to a given board
so that the sand drop rule (s4) can be satisfied regardless
of how the other squares are shaded. See Figure 12.

Theorem 3 sand is NP-complete.

Proof. Suppose B is an m-by-n board that is an input
to stone. We create board B′ of size (2m+ 2)-by-n by
adding m+ 2 rows to the bottom of B. The additional
rows are organized into two wild-card rooms as follows:

• A room of size 2-by-n is added below B.
• A room of size (m+ 2)-by-n is then added below.

Suppose that silt(B) is a ‘yes’ instance. We now
show that sand(B′) is ‘yes’. We shade the top m rows
of B′ in any way that proves that silt(B) is ‘yes’. Then
we shade the additional wild-card rooms as follows:

• The 2-by-n room has a single shaded square in its
bottom-right corner.
• The bottom row of the larger room is fully shaded.

If there are s shaded squares in kth column of B,
then m− s+ 1 additional squares are shaded in its
kth column from the bottom up. The only excep-
tion is the rightmost column which has one fewer
square shaded.

This satisfies (S1)-(S3) and (s4), so sand(B′) is ‘yes’.
Suppose that silt(B) is a ‘no’ instance. In this case

there is no way to satisfy rules (S1) – (S3) in the top m
rows of B′, hence, sand(B′) is ‘no’.

Theorem 2 and Remark 1 complete the proof. �

6 NP-Completeness of Sto-Stone

Now we prove that stone is NP-complete. We do this
by analyzing the previous two reductions and showing
that they create boards that can be solved using stones
of width 1. In this context (s4) and (S4) are equivalent.

Theorem 4 stone is NP-complete.

Proof. Let φ be an instance of pmr3sat. Let B =
S(φ) and B′ be created as in Sections 4–5. We claim
that φ is satisfiable if and only if stone(B′) is ‘yes’.

Suppose that φ is satisfiable. By the proof of Theo-
rem 2, silt(B) is solvable using stones of width 1. By
the proof of Theorem 3, this is also true for sand(B′),
except for the bottom stone which is already “bottom
justified”. Therefore, stone(B′) is also ‘yes’.

Conversely, if φ is unsatisfiable, then silt(B) is ‘no’
by Theorem 2, and so stone(B′) is also ‘no’. �

7 Final Remarks

A numberless Sto-Stone puzzle is a Sto-Stone puzzle
with no requirements. In other words, (S3) is ignored.
What is the complexity of numberless Sto-Stone?

Jack Lance Puzzles [7] has several numberless exam-
ples. Numberless versions of other Nikoli puzzles have
also been considered. For example, Shakashaka [5] and
its numberless version [3] are both NP-complete. We
note that numberless Sto-Silt is in P since (S1) and (S2)
are satisfied by an empty board.

We thank the referees, one whom suggested parame-
terized Sto-Stone where the bottom k rows must fill.
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