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An efficient approximation for point-set diameter in higher dimensions
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Abstract

In this paper, we study the problem of computing the
diameter of a set of n points in d-dimensional Euclidean
space for a fixed dimension d, and propose a new (1+ε)-
approximation algorithm with O(n+ 1/εd−2) time and
O(n) space, where 0 < ε 6 1. We also show that the
proposed algorithm can be modified to a (1 + O(ε))-

approximation algorithm with O(n+ 1/ε
2d
3 −

1
2 ) running

time. These results provide some improvements in com-
parison with existing algorithms in terms of simplicity,
and data structure.

1 Introduction

Given a finite set S of n points, the diameter of S, de-
noted by D(S) is the maximum distance between two
points of S. Namely, we want to find a diametrical pair
p and q such that D(S) = maxp,q∈S(||p− q||). Comput-
ing the diameter of a set of points has a large history,
and it may be required in various fields such as database,
data mining, and vision. A trivial brute-force algorithm
for this problem takes O(dn2) time, but this is too slow
for large-scale data sets that occur in the fields. Hence,
we need a faster algorithm which may be exact or is an
approximation.

By reducing from the set disjointness problem, it
can be shown that computing the diameter of n points
in Rd requires Ω(n log n) operations in the algebraic
computation-tree model [1]. It is shown by Yao that
it is possible to compute the diameter in sub-quadratic
time in each dimension [2]. There are well-known so-
lutions in two and three dimensions. In the plane, this
problem can be computed in optimal time O(n log n),
but in three dimensions, it is more difficult. Clarkson
and Shor [3] present an O(n log n)-time randomized al-
gorithm. Their algorithm needs to compute the inter-
section of n balls (with the same radius) in R3. It may
be slower than the brute-force algorithm for the most
practical data sets, and it is not an efficient method for
higher dimensions because the intersection of n balls
with the same radius has a large size. Some deter-
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ministic algorithms with running time O(n log3 n) and
O(n log2 n) are found for this problem in three dimen-
sions. Finally, Ramos [4] introduced an optimal deter-
ministic O(n log n)-time algorithm in R3.

In the absence of fast algorithms, many attempts
have been made to approximate the diameter in low
and high dimensions. A 2-approximation algorithm in
O(dn) time can be found easily by selecting a point of
S and then finding the farthest point of it by brute-
force manner for the dimension d. The first non-
trivial approximation algorithm for the diameter is pre-
sented by Egecioglu and Kalantari [5] that approxi-
mates the diameter with factor

√
3 and operations cost

O(dn). They also present an iterative algorithm with
t ≤ n iterations and the cost O(dn) for each itera-

tion that has approximate factor
√

5− 2
√

3. Agar-
wal et al. [6] present a (1 + ε)-approximation algorithm
in Rd with O(n/ε(d−1)/2) running time by projection
to directions. Barequet and Har Peled [7] present a√
d-approximation diameter method with O(dn) time.

They also describe a (1 + ε)-approximation approach
with O(n + 1/ε2d) time. They show that the running
time can be improved to O(n + 1/ε2(d−1)). Similarly,
Har Peled [8] presents an approach which for the most
inputs is able to compute very fast the exact diame-
ter, or an approximation with O((n + 1/ε2d) log 1/ε)
running time. Although, in the worst case, the algo-
rithm running time is still quadratic, and it is sensitive
to the hardness of the input. Chan [9] observes that
a combination of two approaches in [6] and [7] yields
a (1 + ε)-approximation with O(n + 1/ε3(d−1)/2) time

and a (1 + O(ε))-approximation with O(n + 1/εd−
1
2 )

time. He also introduces a core-set theorem, and shows
that using this theorem, a (1 + O(ε))-approximation

in O(n + 1/εd−
3
2 ) time can be found [10]. Recently,

Chan [11] has proposed an approximation algorithm

with O((n/
√
ε + 1/ε

d
2+1)(log 1

ε )O(1)) time by applying
the Chebyshev polynomials in low constant dimensions,
and Arya et al. [12] show that by applying an efficient
decomposition of a convex body using a hierarchy of
Macbeath regions, it is possible to compute an approx-

imation in O(n log 1
ε + 1/ε

(d−1)
2 +α) time, where α is an

arbitrarily small positive constant.

1.1 Our results

In this paper, we propose a new (1 + ε)-approximation
algorithm for computing the diameter of a set S of
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Table 1: A summary on the complexity of some non-
constant approximation algorithm for the diameter of a
point set. Our results are denoted by +.

Ref. Approx. Factor Running Time

[6] 1 + ε O(
n

ε(d−1)/2
)

[7] 1 + ε O(n+ 1/ε2(d−1))
[8] 1 + ε O((n+ 1/ε2d) log 1

ε )

[9] 1 + ε O(n+ 1/ε
3(d−1)

2 )
+ 1 + ε O(n+ 1/εd−2)

[9] 1 +O(ε) O(n+ 1/εd−
1
2 )

[10] 1 +O(ε) O(n+ 1/εd−
3
2 )

[11] 1 +O(ε) O((
n√
ε

+ 1/ε
d
2+1)(log 1

ε )O(1))

[12] 1 +O(ε) O(n log 1
ε + 1/ε

(d−1)
2 +α)

+ 1 +O(ε) O(n+ 1/ε
2d
3 −

1
2 )

n points in Rd with O(n + 1/εd−2) time and O(n)
space, where 0 < ε 6 1. Moreover, we show that the
proposed algorithm can be modified to a (1 + O(ε))-

approximation algorithm with O(n+1/ε
2d
3 −

1
2 ) time and

O(n) space. As stated above, two new results have been
recently presented for this problem in [11] and [12]. It
should be noted that our algorithms are completely dif-
ferent in terms of computational technique. The poly-
nomial technique provided by Chan [11] is based on us-
ing Chebyshev polynomials and discrete upper envelope
subroutine [10], and the method presented by Arya et
al. [12] requires the use of complex data structures to
approximately answer queries for polytope membership,
directional width, and nearest-neighbor. While our al-
gorithms in comparison with these algorithms are sim-
pler in terms of understanding and data structure. We
have provided a summary on the non-constant approx-
imation algorithms for the diameter in Table 1.

2 The proposed algorithm

In this section, we describe our new approximation al-
gorithm to compute the diameter of a point set. In our
algorithm, we first find the extreme points in each co-
ordinate and compute the axis-parallel bounding box of
S, which is denoted by B(S). We use the largest length
side ` of B(S) to impose grids on the point set. In
fact, we first decompose B(S) to a grid of regular hy-
percubes with side length ξ, where ξ = ε`/2

√
d. We call

each hypercube a cell. Then, each point of S is rounded
to its corresponding central cell-point. See Figure 1.
In the following, we impose again an ξ1-grid to B(S)
for ξ1 =

√
ε`/2
√
d. We round each point of the rounded

point set Ŝ to its nearest grid-point in this new grid that

(a)

ξ

ξ

`

(b)

`

Figure 1: (a) A set of points in R2 and an ξ-grid. Initial
points are shown by blue points and their correspond-
ing central cell-points are shown by circle points. (b)
Rounded point set Ŝ.

results in a point set Ŝ1. Let, Bδ(p) be a hypercube with
side length δ and central-point p. We restrict our search
domain for finding diametrical pairs of the first rounded
point set Ŝ into two hypercubes B2ξ1(p̂1) and B2ξ1(q̂1)
corresponding to two diametrical pair points p̂1 and q̂1
in the point set Ŝ1. Let us use two point sets B1 and
B2 for maintaining points of the rounded point set Ŝ,
which are inside two hypercubes B2ξ1(p̂1) and B2ξ1(q̂1),
respectively (see Figure 2). Then, it is sufficient to find
a diameter between points of Ŝ, which are inside two
point sets B1 and B2. We use notation Diam(B1,B2)
for the process of computing the diameter of the point
set B1 ∪ B2. Altogether, we can present the following
algorithm.

Algorithm 1: APPROXIMATE DIAMETER (S, ε)
Input: a set S of n points in Rd and an error parameter ε.

Output: Approximate diameter D̃.
1: Compute the axis-parallel bounding box B(S) for

the point set S.
2: `← Find the length of the largest side in B(S).
3: Set ξ ← ε`/2

√
d and ξ1 ←

√
ε`/2
√
d.

4: Ŝ ← Round each point of S to its central-cell point
in a ξ-grid.

5: Ŝ1 ← Round each point of Ŝ to its nearest grid-point
in a ξ1-grid.

6: D̂1 ← Compute the diameter of the point set Ŝ1 by brute-
force manner, and simultaneously, a list of the diam-
etrical pairs (p̂1, q̂1), such that D̂1 = ||p̂1 − q̂1||.

7: Find points of Ŝ which are in two hypercubes B1 = B2ξ1 (p̂1)
and B2 = B2ξ1 (q̂1), for each diametrical pair (p̂1, q̂1).

8: D̂ ← Compute Diam(B1,B2), corresponding to each diamet-
rical pair (p̂1, q̂1) by brute-force manner and return the
maximum value between them.

9: D̃ ← D̂ + ε`/2.
10: Output D̃.

2.1 Analysis

In this subsection, we analyze the proposed algorithm.

Theorem 1 Algorithm 1 computes an approximate di-
ameter for a set S of n points in Rd in O(n + 1/εd−2)
time and O(n) space, where 0 < ε 6 1.
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Figure 2: Points of the set Ŝ are shown by circle points
and their corresponding nearest grid-points in set Ŝ1 are
shown by blue square points.

Proof. Finding the extreme points in all coordinates
and finding the largest side of B(S) can be done in
O(dn) time. The rounding step takes O(d) time for
each point, and for all of them takes O(dn) time. But
for computing the diameter over the rounded point set
Ŝ1 we need to know the number of points in the set Ŝ1.
We know that the largest side of the bounding box B(S)
has length ` and the side length of each cell in ξ1-grid
is ξ1 =

√
ε`/2
√
d. On the other hand, the volume of

a hypercube of side length L in d-dimensional space is
Ld. Since, corresponding to each point in the point set
Ŝ1, we can take a hypercube of side length ξ1. There-
fore, in order to count the maximum number of points
inside the set Ŝ1, it is sufficient to calculate the number
of hypercubes of length ξ1 in a hypercube (bounding
box) with length `+ ξ1. See Figure 2. This means that
the number of grid-points in an imposed ξ1-grid to the
bounding box B(S) is at most

(`+ ξ1)d

(ξ1)d
=

(
2
√
d√
ε

+ 1

)d
= O

(
(2
√
d)d

ε
d
2

)
. (1)

So, the number of points in Ŝ1 is at most O((2
√
d)d/ε

d
2 ).

Hence, by the brute-force quadratic algorithm, we need
O((2

√
d)d/ε

d
2 )2) = O((2

√
d)2d/εd) time for computing

all distances between grid-points of the set Ŝ1, and
its diametrical pair list. Then, for a diametrical pair
(p̂1, q̂1) in the point set Ŝ1, we compute two sets B1 and
B2. This work takes O(dn) time. In addition, for com-
puting the diameter of point set B1 ∪ B2, we need to
know the number of points in each of them. On the
other hand, the number of points in two sets B1 or B2
is at most

V ol(B2ξ1)

V ol(Bξ)
=

(2
√
ε`/2
√
d)d

(ε`/2
√
d)d

=
(2
√
ε)d

εd
=

(2)d

ε
d
2

. (2)

Hence, for computing Diam(B1,B2), we need

O(((2)d/ε
d
2 )2) = O((2)2d/εd) time by brute-force

manner, but we might have more than one diamet-
rical pair (B1,B2). Since the point set Ŝ1 is a set

of grid-points, so we could have in the worst-case
O(2d) different diametrical pairs (B1,B2) in the point
set Ŝ1. This means that this step takes at most
O(2d · (2)2d/εd) = O((2

√
2)2d/εd) time. Now, we can

present the complexity of our algorithm as follows:

Td(n) = O(dn)+O

(
(2
√
d)2d

εd

)
+O(2ddn)+O

(
(2
√

2)2d

εd

)
,

6 O

(
2ddn+

(2
√
d)2d

εd

)
. (3)

Since d is fixed, we have: Td(n) = O(n+
1

εd
).

We can also reduce the running time of the Algorithm
1 by discarding some internal points which do not have
any potential to be the diametrical pairs in rounded
point set Ŝ1, and similarly, in two point sets B1 and B2.
By considering all the points which are same in their
(d−1) coordinates and keep only highest and lowest [7].
Then, the number of points in Ŝ1, and two point sets
B1 and B2 can be reduced to O(1/ε

d
2−1). So, using the

brute-force quadratic algorithm, we need O((1/ε
d
2−1)2)

time to find the diametrical pairs. Hence, this gives
us the total running time O(n + 1/εd−2). About the
required space, we only need O(n) space for storing re-
quired point sets. So, this completes the proof. �

Now, we explain the details of the approximation factor.

Theorem 2 Algorithm 1 computes an approximate di-
ameter D̃ such that: D 6 D̃ 6 (1 + ε)D, where
0 < ε 6 1.

Proof. In line 7 of the Algorithm 1, we compute two
point sets B1 and B2, for each diametrical pair (p̂1, q̂1)
in the point set Ŝ1. We know that a grid-point p̂1 in
point set Ŝ1 is formed from points of the set Ŝ which
are inside hypercube Bξ1(p̂1). We use a hypercube B1
of side length 2ξ1 to make sure that we do not lose any
candidate diametrical pair of the first rounded point set
Ŝ around a diametrical point p̂1 (see Figure 2). In the
next step, we should find the diametrical pair (p̂, q̂) ∈
Ŝ for points which are inside two point sets B1 and
B2. Hence, it is remained to show that the diameter,
which is computed by two points p̂ and q̂, is a (1 + ε)-
approximation of the true diameter. Let p̂ and q̂ are two
central-cell points of the first rounded point set Ŝ which
are used in line 8 of the Algorithm 1 for computing
the approximate diameter D̂. Then, we have two cases,
either two true points p and q are in far distance from
each other in their corresponding cells (Figure 3 (a)), or
they are in near distance from each other (Figure 3 (b)).
It is obvious that the other cases are between these two
cases.

For first case (Figure 3 (a)), let for two projected
points p̂′ and q̂′, we set d1 = ||p− p̂′|| and d2 = ||q− q̂′||.
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Figure 3: Two cases in proof of the Theorem 2.

We know that the side length of each cell in a grid which
is used for Ŝ is ξ. So, the hypercube (cell) diagonal is
ξ
√
d. From Figure 3 (a) it can be found that d1 < ξ

√
d/2

and d2 < ξ
√
d/2. Therefore, we have

D = D̂ + d1 + d2,

D 6 D̂ + ξ
√
d,

D − ξ
√
d 6 D̂. (4)

Similarly, for the second case (Figure 3 (b)), we know
that c1 = ||p̂−p′|| < ξ

√
d/2 and c2 = ||q̂−q′|| < ξ

√
d/2.

So,
D̂ = D + c1 + c2,

D̂ 6 D + ξ
√
d. (5)

Then, from (4) and (5) we can result:

D − ξ
√
d 6 D̂ 6 D + ξ

√
d. (6)

Since we know that ξ = ε`/2
√
d, we have:

D − ε`/2 6 D̂ 6 D + ε`/2,

D 6 D̂ + ε`/2 6 D + ε`. (7)

We know that ` 6 D. For this reason we can result:

D 6 D̂ + ε`/2 6 (1 + ε)D. (8)

Finally, if we assume that D̃ = D̂ + ε`/2, we have:

D 6 D̃ 6 (1 + ε)D. (9)

Therefore, the theorem is proven. �

2.2 The modified algorithm

In this subsection, we present a modified version of our
proposed algorithm by combining it with a recursive ap-
proach due to Chan [9]. Hence, we first explain Chan’s
recursive approach. As mentioned before, Agarwal et
al. [6] proposed a (1 + ε)-approximation algorithm for

computing the diameter of a set of points in Rd. Their
result is based on the following simple fact that we can
find O(1/ε(d−1)/2) numbers of directions in Rd, for ex-
ample by constructing a uniform grid on a unit sphere,
such that for each vector x ∈ Rd, there is a direction
that the angle between this direction and x be at most√
ε. In fact, they found a small set of directions which

can approximate well all directions. This can be done
by forming unit vectors which start from origin to grid-
points of a uniform grid on a unit sphere [6], or to grid-
points on the boundary of a box [10]. These sets of di-
rections have cardinality O(1/ε(d−1)/2). The following
observation explains how we can find these directions
on the boundary of a box.

Observation 1 ([10]) Consider a box B which includes
origin o such that the boundary of this box (∂B) be in
the distance at least 1 from the origin. For a

√
ε/2-grid

on ∂B and for each vector ~x, there is a grid point a on
∂B such that the angle between two vectors ~a and ~x is
at most arccos(1− ε/8) 6

√
ε.

This observation explains that grid-points on the
boundary of a box (∂B) form a set Vd of O(1/ε(d−1)/2)
numbers of unit vectors in Rd such that for each x ∈ Rd,
there is a vector a ∈ Vd from the origin o to a grid-point
a on ∂B, where the angle between two vectors x and a
is at most

√
ε. On the other hand, according to observa-

tion 1, there is a vector a ∈ Vd such that if α be the angle
between two vectors x and a, then, α 6 arccos(1−ε/8),
and so cosα > (1 − ε/8). If x′ is the projection of the
vector x on the vector a, then:

||x|| = ||x
′||

cosα
6 ||x′|| 1

(1− ε
8 )

6 ||x′||(1 +
ε

8
+
ε2

82
+
ε3

83
+ · · · )

6 ||x′||(1 + ε). (10)

So, we have:

||x′|| 6 ||x|| 6 (1 + ε)||x′||. (11)

This means that if pair (p, q) be the diametrical pair of
a point set, then there is a vector a ∈ Vd such that the
angle between two vectors pq and a is at most

√
ε. See

Figure 4. Then, pair (p′, q′) which is the projection of
the pair (p, q) on the vector a, is a (1+ε)-approximation
of the true diametrical pair (p, q), and we have:

||p′ − q′|| 6 ||p− q|| 6 (1 + ε)||p′ − q′||. (12)

In other words, we can project point set S on
O(1/ε(d−1)/2) directions for all a ∈ Vd, and compute a
(1 + ε)-approximation of the diameter by finding max-
imum diameter between all directions. We project n
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Figure 4: Projecting a point set on a direction a.

points on |Vd| = O(1/ε(d−1)/2) directions. Since, com-
puting the extreme points on each direction a ∈ Vd
takes O(n) time. Consequently, Agarwal et al. [6] al-
gorithm computes a (1 + ε)-approximation of the diam-
eter in O(n/ε(d−1)/2) time. Chan [9] proposes that if
we reduce the number of points from n to O(1/εd−1)
by rounding to a grid and then apply Agarwal et
al. [6] method on this rounded point set, we need
O((1/εd−1)/ε(d−1)/2) = O(1/ε3(d−1)/2) time to com-
pute the maximum diameter over all O(1/ε(d−1)/2) di-
rections. Taking into account O(n) time for rounding
to a grid, this new approach takes O(n + 1/ε3(d−1)/2)
time. Moreover, Chan [9] observed that the bottleneck
of this approach is the large number of projection opera-
tions. Hence, he proposes that we can project points on
a set of O(1/

√
ε) 2-dimensional unit vectors instead of

O(1/ε(d−1)/2) d-dimensional unit vectors to reduce the
problem toO(1/

√
ε) numbers of (d−1)-dimensional sub-

problems which can be solved recursively. In fact, ac-
cording to the relation (11), for a vector x ∈ R2, there
is a vector a such that:

||x′|| 6 ||x|| 6 (1 + ε)||x′||, x ∈ R2. (13)

where x′ is the projection of the vector x on vector a.
Since a is a unit vector (||a|| = 1), therefore, ||x′|| =
(a · x)/||a|| = a · x. Hence, we can rewrite the previous
relation as follows:

(a · x)2 6 ||x||2 6 (1 + ε)2(a · x)2, x ∈ R2, a ∈ V2, (14)

or

(a1x1+a2x2)2 6 (x21+x22) 6 (1+ε)2(a1x1+a2x2)2, a ∈ V2.
(15)

where xi be the ith coordinate for a point x ∈ Rd.
We can expand (15) to:

(a1x1 + a2x2)2 + · · ·+ x2d 6 (x21 + x22 + · · ·+ x2d) 6

(1 + ε)2((a1x1 + a2x2)2 + · · ·+ x2d). (16)

Now, define the projection πa : Rd → Rd−1 : πa(x) =
(a1x1 + a2x2, x3, · · · , xd) ∈ Rd−1. Then, we can rewrite
relation (16) for each vector x ∈ Rd as follows:

||πa(x)||2 6 ||x||2 6 (1 + ε)2||πa(x)||2, a ∈ V2. (17)

So, since ||πa(p− q)|| = ||πa(p)|| − ||πa(q)|| we have for
diametrical pair (p, q):

||πa(p− q)|| 6 ||p− q|| 6 (1 + ε)||πa(p− q)||, a ∈ V2.
(18)

Therefore, for finding a (1 + O(ε))-approximation for
the diameter of point set P ⊆ Rd, it is sufficient that
we approximate recursively the diameter of a projected
point set πa(P ) ⊂ Rd−1 over each of the vectors a ∈ V2.
Then, the maximum diametrical pair computed in the
recursive calls is a (1 + O(ε))-approximation to the
diametrical pair. Now, let us reduce the number of
points from n to m = O(1/εd−1) by rounding to a
grid, and we denote the required time for computing
the diameter of m points in d-dimensional space with
td(m). Then, for m = O(1/εd−1) grid points, this ap-
proach breaks the problem into O(1/

√
ε) subproblems

in a (d − 1) dimension. Hence, we have a recurrence
td(m) = O(m + 1/

√
εtd−1(O(1/εd−1))). By assuming

E = 1/ε, we can rewrite the recurrence as:

td(m) = O(m+ E
1
2 td−1(O(Ed−1))). (19)

This can be solved to: td(m) = O(m + Ed−
1
2 ). In this

case, m = O(1/εd−1), so, this recursive takes O(1/εd−
1
2 )

time. Taking into account O(n) time, we spent for
rounding to a grid at the first, Chan’s recursive ap-
proach computes a (1 + O(ε))-approximation for the

diameter of a set of n points in O(n+ 1/εd−
1
2 ) time [9].

In the following, we use Chan’s recursive approach in
a phase of our proposed algorithm.

Algorithm 2: APPROXIMATE DIAMETER 2 (S, ε)
Input: a set S of n points in Rd and an error parameter ε.

Output: Approximate diameter D̃.
1: Compute the axis-parallel bounding box B(S) for

the point set S.
2: `← Find the length of the largest side in B(S).
3: Set ξ ← ε`/2

√
d and ξ2 ← ε

1
3 `/2

√
d.

4: Ŝ ← Round each point of S to its central-cell point
in a ξ-grid.

5: Ŝ1 ← Round each point of Ŝ to its nearest grid-point
in a ξ2-grid.

6: D̂1 ← Compute the diameter of the point set Ŝ1 by
brute-force, and simultaneously, a list of the diam-
etrical pairs (p̂1, q̂1), such that D̂1 = ||p̂1 − q̂1||.

7: Find points of Ŝ which are in two hypercubes B1 = B2ξ2 (p̂1)
and B2 = B2ξ2 (q̂1) for each diametrical pair (p̂1, q̂1).

8: D̃ ← Compute Diam(B1,B2), corresponding to each diame-
trical pair (p̂1, q̂1) using Chan’s [9] recursive approach
and return the maximum value ||p′−q′|| over all of them.

9: Output D̃.

Now, we will analyze the Algorithm 2.

Theorem 3 A (1 +O(ε))-approximation for the diam-
eter of a set of n points in d-dimensional Euclidean
space can be computed in O(n+1/ε

2d
3 −

1
2 ) time and O(n)

space, where 0 < ε 6 1.

Proof. As it can be seen, lines 1 to 6 of the Algorithm
2 are the same as the Algorithm 1. In this case, the
number of points in rounded points set Ŝ1 is at most:

(`+ ξ2)d

(ξ2)d
=

(
2
√
d

ε
1
3

+ 1

)d
= O

(
(2
√
d)d

ε
d
3

)
. (20)
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This can be reduced to O((2
√
d)d/ε

d
3−1), by keeping

only highest and lowest points which are the same in
their (d− 1) coordinates. So, for finding all diametrical

pairs of the point set Ŝ1, we need O((2
√
d)d/ε

d
3−1)2) =

O((2
√
d)2d/ε

2d
3 −2) time. Moreover, the number of

points in two sets B1 or B2 is at most

V ol(B2ξ2)

V ol(Bξ)
=

(2ε
1
3 `/2
√
d)d

(ε`/2
√
d)d

=
(2ε

1
3 )d

εd
=

(2)d

ε
2d
3

. (21)

This can be reduced to O((2)d/ε
2d
3 −1). Now, for com-

puting Diam(B1,B2), we use Chan’s [9] recursive ap-
proach instead of using the quadratic brute-force algo-
rithm on the point set B1 ∪ B2. On the other hand,
computing the diameter on a set of O(1/ε

2d
3 −1) points

using Chan’s recursive approach takes the following re-
currence based on the relation (19): td(m) = O(m +

1/
√
εtd−1(O(1/ε

2d
3 −1))). By assuming E = 1/ε, we can

rewrite the recurrence as:

td(m) = O(m+ E
1
2 td−1(O(E

2d
3 −1))). (22)

This can be solved to: td(m) = O(m + E
2d
3 −

1
2 ). In

this case, m = O(E
2d
3 −1), so, this recursive takes

O(E
2d
3 −

1
2 ) = O(1/ε

2d
3 −

1
2 ) time. Moreover, if we have

more than one diametrical pair (p̂1, q̂1) in point set

Ŝ1, then this step takes at most O((2d)(2)d/ε
2d
3 −

1
2 ) =

O(22d/ε
2d
3 −

1
2 ) time. So, we have total time:

Td(n) = O(dn)+O

(
(2
√
d)2d

ε
2d
3 −2

)
+O(2ddn)+O

(
22d

ε
2d
3 −

1
2

)
,

6 O

(
2ddn+

(2
√
d)2d

ε
2d
3 −

1
2

)
. (23)

Since d is fixed, we have: Td(n) = O(n+
1

ε
2d
3 −

1
2

).

In addition, Chan’s recursive approach in line 8 of
the Algorithm 2 returns a diametrical pair (p′, q′) which
is a (1 + O(ε))-approximation for the diametrical pair
(p̂, q̂) ∈ Ŝ. So, according to relation (12), we have:

||p′ − q′|| 6 ||p̂− q̂|| 6 (1 +O(ε))||p′ − q′||. (24)

Moreover, the diametrical pair (p̂, q̂) is an approxima-
tion of the true diametrical pair (p, q) ∈ S, and accord-
ing to the relation (8), we have:

||p− q|| 6 ||p̂− q̂||+ ε`/2 6 (1 + ε)||p− q||. (25)

Hence, from (24) and (25) we can result:

||p− q|| 6 ||p̂− q̂||+ ε`/2,

6 ||p̂− q̂||+ ε||p̂− q̂||,
6 (1 + ε)||p̂− q̂||,
6 (1 + ε)((1 +O(ε))||p′ − q′||),
6 (1 +O(ε))||p′ − q′||. (26)

So, Algorithm 2 finds a (1 + O(ε))-approximation in

O(n+ 1/ε
2d
3 −

1
2 ) time and O(n) space. �

3 Conclusion

We have presented two new non-constant approxima-
tion algorithms to compute the diameter of a point set
S of n points in Rd for a fixed dimension d, which pro-
vide some improvements in terms of simplicity, and data
structure.
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