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Approximation Schemes for Covering and Packing in the Streaming Model
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Abstract

The shifting strategy, introduced by Hochbaum and
Maass [10], and independently by Baker [1], is a uni-
fied framework for devising polynomial approximation
schemes to NP-Hard problems. This strategy has been
used to great success within the computational geom-
etry community in a plethora of different applications;
most notably covering, packing, and clustering prob-
lems [2, 5, 7, 8, 9]. In this paper, we revisit the shift-
ing strategy in the context of the streaming model and
develop a streaming-friendly shifting strategy. When
combined with the shifting coreset method introduced
by Fonseca et al. [6], we obtain streaming algorithms
for various graph properties of unit disc graphs. As a
further application, we present the first approximation
algorithms and lower bounds for the unit disc cover
(UDC) problem in the streaming model.

1 Introduction

The shifting strategy is a unified framework for devising
polynomial-time approximation schemes (PTASes) to
NP-Hard problems. Originally used by Baker [1] for
maximum independent set in planar graphs, the shifting
strategy was modified to solve several geometric covering
problems in the widely-cited paper of Hochbaum and
Maass [10]. Since then, this strategy has found applica-
tions in an incredibly diverse set of domains; including
facility location, motion planning, image processing, and
VLSI design.

For geometric problems, the shifting strategy is based
on partitioning the possible input space into disjoint
regions (or windows), solving each disjoint region (either
exactly or approximately), and then joining the par-
tial solutions from each window into a candidate global
solution. By choosing several partitions, and minimiz-
ing over the candidate solutions from each one, a good
approximation to the problem is formed. The main ob-
servation of the shifting strategy is that the analysis of
the approximation factor can be done in two independent
portions; the error accumulated from dividing the space
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into windows, and the error from the within-window
algorithm. The within-window algorithm is typically
easier to design; in many problems the optimal solution
size within a window is bounded by a small constant.
Thus by specifying good within-window algorithms, the
algorithm designer can get a global solution with only a
small overhead in complexity. One of the original prob-
lems addressed by Hochbaum and Maass is the unit disc
cover (UDC) problem: given a point set P in the plane,
the problem asks for the size of the smallest set of radius
7 (or equivalently, unit) discs that cover P completely.!
In this case, the partition of the input space is a tiling of
the plane by identical ¢ x ¢ squares. Within each square,
the optimal UDC is found by brute force, as the solu-
tion size is at most O(¢2). By iterating over translates
(or shifts) of this tiling, Hochbaum and Maass obtain
a (1 =+ %)2—appr0ximation with running time nO (%) for
UDC in 2D.

Recently, there has been renewed interest in making
shifting strategy algorithms practical, as the PTASes ob-
tained by the shifting strategy are too slow to be applied
in practice. In recent work by Fonseca et al. [6], the
technique of shifting coresets is introduced, giving linear
time approximations for various problems on unit disc
graphs. They observe that within-window algorithms
used in the shifting technique often iterate over mP°y(®)
candidate solutions, where m is the number of points
inside the window and £ is the size of the window. By us-
ing coresets to approximate and sparsify point set inside
the window, they mitigate the high memory and com-
putational cost of the within-window algorithm. Their
algorithms are no longer PTASes, but run in linear time
and produce constant factor approximations.

Although the shifting strategy is widely used, scarce
attention has been given to it in the streaming model.
In the streaming model, the complexity of an algorithm
is measured mainly by the number of passes it makes
over the input data, and the amount of memory used
over the duration of the algorithm. In common settings,
the requirements are that the algorithm makes only one
pass over the input data and uses sublinear (usually
polylogarithmic) memory in the size of the input. This
is difficult in the context of the shifting strategy as
partitioning the input often requires the practitioner to

1 Actually, Hochbaum and Maass consider the problem of finding
the smallest of discs that cover a set of points. Our problem is
slightly different in that we only care about the size of such a
cover.
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keep a mapping of input points to windows within the
partition, necessitating at least linear space.

In this paper, we revisit the shifting strategy in the
context of the streaming model, and develop a streaming-
friendly variant. Our streaming shifting strategy only re-
lies on the algorithm designer to design a within-window
streaming algorithm 4. Provided that the optimal so-
lution within each window is bounded, the streaming
shifting strategy then gives a global algorithm that only
introduces a polylogarithmic overhead to the memory
use of A, with the same number of passes over the
input data. The analysis is inspired by a recent algo-
rithm of Cabello and Pérez-Lantero [4], who presents
a (3/2 + ¢) approximation for cardinality estimation of
maximum independent sets (MIS) of interval graphs in
O (poly(1/¢) logn) memory with only one pass over the
input data.

When the memory use of a within-window algorithm
for a problem is small (i.e. polylogarithmic), our stream-
ing shifting strategy gives a streaming algorithm for
solving the problem globally. Due to this, our results
are complementary to those given by Fonseca et al. [6],
where O(1) memory within-window algorithms are de-
veloped for various problems on unit disc graphs. In
particular, when their results are combined with our
shifting strategy, we obtain streaming algorithms with
polylogarithmic memory for independent set, dominating
set, and minimum vertex cover on unit disc graphs.

In Section 3, we describe and analyze our stream-
ing shifting strategy. As an application, we present in
Section 4 novel approximation algorithms for the UDC
problem in the streaming model. Our UDC algorithms
use O (poly(1/¢)logn) memory, and operate in only one
pass over the input data. We remark that the results of
Cabello and Pérez-Lantero imply a (3/2 + €) approxima-
tion for the 1D UDC problem. This is due to the fact
that for unit disc (i.e. unit interval) graphs in 1D, the
cardinality of a maximum independent set is equal to
the cardinality of a minimum disc cover. However, to
the best of our knowledge, UDC has not been considered
in the streaming model for 2D and above. In Section 5,
we show that any one pass streaming algorithm for 2D
UDC in Ly must have approximation factor at least 2.

2 Preliminaries

We use the standard notation [r] = {1,...,r} where
r € N. For positive numbers y, £, J, we use the notation
z=y(lte)tdtomean z € [y(l1—¢)—d,y(l +¢)+4].
For simplicity, we make the minor assumption that the
coordinates of the input points are bounded above by
poly(n) and can be represented using O(log n) bits where
n is the number of points.

2.1 e-min-wise hashing

One of the key primitives in our algorithms is the ability
to (approximately) sample an element from a set. To do
this, we will use e-min-wise hash functions which were
introduced by Broder et al. [3]. We remark that a similar
idea was also used in [4].

Let U =V ={0,1,...,k—1} and H be a collection of
functions h: U — V. We will assume that k is a prime
power.

Definition 1 A family of hash functions H is said to
be r-wise independent if for any distinct x1,...,z, € U

and any yi,- ..,y € V we have
1
Pr [h =y A...\Nh(z,) =y = —.
Prh(r1) = () =] =

Here, we use Prpcy to denote the probability measure
where each h is drawn uniformly at random from H. It
is well-known that an r-wise independent hash family
can be constructed as follows (see [14]). Let F be a finite
field of size k (such a field exists because k is assumed
to be a prime power). Let H = {hay,a1,....a,_, : @i € F}
where Nag a1, a1 (T) = ar12" 1+ ... 4 ag. Then H
is an f-wise independent hash family. Moreover, any
element in H can be represented using O(rlog k) bits.

Definition 2 A family of hash functions H is said to
be (g, s)-min-wise independent if for any X C [k] with
|X| < s and z € X we have

1+e
Pr |h(z) < in _h =5
s M) < B )] = T
There is a simple way to obtain (e, s)-min-wise indepen-
dent hash functions due to Indyk [11].

Theorem 1 There are fived constants ¢,¢ > 1 such
that the following holds. Let € > 0 and s < ek/c. Then
any ¢’ log(1/¢)-wise independent hash family H is (s, ¢e)-
min-wise independent.

For our applications, we will have s = mn and
k = max(n/e,poly(n)?). In particular, the hash
functions can be represented using O(log*(1/¢) +
dlog(1/¢)log(n)) bits. If e=! < n then this quantity
is O(dlog(1/e)log(n)).

3 Shifting lemma

We begin by reviewing the shifting strategy of Hochbaum
and Maass [10] using the UDC problem in R? as an ex-
ample. For simplicity, we describe the shifting strategy
in the planar case d = 2. In the shifting strategy, we
partition the plane into windows of size 2¢ x 2¢ where
¢ is the “shifting parameter”.? The windows are closed

2Hochbaum and Maass [10] actually partition the plane into
strip of width ¢ but small variants, such as replacing strips with
windows, also work for identical reasons.
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on the top and left while open on the right and bottom.
We further impose that the coordinates of the top left
boundary point are even integers. Due to these restric-
tions, there are exactly ¢2 different ways to partition R2.
Let Si,...,Sp the be the ¢? different partitions of the
plane.

Suppose that A is a within-window algorithm, i.e. it
(approximately) solves the covering problem within a
window of size 2¢ x 2¢. Hochbaum and Maass [10] pro-
posed the following algorithm to extend A to a “global
algorithm” Ag. For each partition S;, we use A on each
of windows to compute a disc cover. Then we take the
union of the disc cover on each window to produce a
global solution D;. Having computed ¢ disc covers, we
output the smallest cardinality disc cover of the D;. The
following lemma states that the approximation ratio of
this scheme is not much worse than the approximation
ratio of the within-window algorithm. Hence, to design
a global algorithm, one only needs to design a “local
algorithm”.

Lemma 2 (Shifting lemma [10])

1 2
TAg < <1+£> TA-

where r 4,7 A, are the approzimation ratios of A, Ag,
respectively.

In general, let A be an algorithm that approximately
solves the disc cover problem in R¢ but restricted to
“windows” of size 2¢ x ... x 2¢. Define Ag to be the algo-
d times

rithm that partitions R? into these windows, uses A on
each window to find a cover, then takes the smallest cover
over all partitions. Then we have r4, < (1 + %)drA.
This is particularly elegant since one can focus on ob-
taining an approximation algorithm assuming bounded
input. Once such an algorithm is developed, it can then
be extended to an algorithm on the whole space.

To improve the space complexity of some of our stream-
ing algorithms, we can use the following randomized ver-
sion of the shifting lemma which we prove in Appendix A.
Let Ag be the algorithm which randomly picks one of
the ¢¢ partitions of the R? as defined above, say S;, uses
A to compute a disc cover on each window, then outputs
the union as a global disc cover.

Lemma 3 Suppose ¢ > 2d. Then with probability at

least 1/2
4d 4\
TAs < 1+7 T4 S 1+Z rA

where T 4,744 are the approzimation ratios of A, As,
respectively.

3.1 The shifting lemma in the streaming setting

In this section, we describe the streaming shifting strat-
egy. For concreteness, we focus on giving a streaming
variant of Lemma 3. Let A be a streaming algorithm
which approximately solves UDC restricted to a window
of size 2¢ x 2/.

We begin with a high level description of how to
use the shifting strategy in the streaming setting. For
now, let us fix a partition of R? into windows of size
20 x 2¢. The first issue that arrives is that one is no
longer allowed to run A on all windows as the space
would be prohibitive. To get around this, we use the
following trick from [4]. Set T = 4¢%. Let ; be the
number of windows for which A4 outputs a disc cover of
size at least t. Since there is a trivial cover of size T,
we can assume that 4 = 0 for ¢ > T. Then the cover
obtained by running A on all windows is exactly Zle Yt
The first key observation is that «; can be interpreted as
the number of windows that contain at least one point.
In the language of streaming algorithm, this is exactly
the distinct elements problem and can be approximated
in very little space.? The second key observation is that,
if we are able to get a random sample of the windows
that contain at least one point then we can get a very
good estimate of the quantity n; == v:/71. We can do
this approximately using min-wise hashing.

We now commence with a more formal treatment
of the above ideas. Again, let us fix a partitioning of
R? into windows of size 2¢ x 2¢. First, we can use an
algorithm due to Kane, Nelson, and Woodruff [12] for
distinct elements to obtain the following result.

Lemma 4 Using O(c~2 + log(n)) bits of space, we can
obtain an estimate v1 = (1+e)y1 with probability at least
0.99.

Next, we use min-wise hashing to estimate 7; for 2 <
t < T. This is formalized in the next lemma, whose
proof is given in Appendix B.

Lemma 5 Let A be a streaming algorithm for the disc
cover problem restricted to a window of size 20 x 2¢.
Suppose that A uses s bits of space and let s, =
O(log(1/e)log(n)). Then using O(e=20*log(€)(s + s4))
bits of space, we can obtain an estimate iy = (1 &) +
e/T for allt € {2,...,T} with probability at least 0.99.

We now prove our main theorem in this section.

Theorem 6 (Streaming shifting lemma) Let A be
a streaming algorithm for the disc cover problem re-
stricted to a window of size 20 x 2¢ with approximation
ratio r 4. Suppose that A uses s bits of space and let
sp, = O(log(1/e)log(n)). Then there is a streaming al-
gorithm for the disc cover problem with approxzimation

3Given a stream ay, ..., am € [n], the distinct elements problem
is to estimate [{a1,...,am}|.
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ratio (1+¢)(1+4/0)%r 4 that uses O(e=20*log(¢)(s+sp))
bits of space and has success probability at least 0.99.

Proof. Fix a partition of R? into 2¢ x 2¢ windows. By
Lemma 4, with probability at least 0.99 we obtain an
estimate 3 = (1 & €)y;. By Lemma 5, with probability
at least 0.99 we obtain an estimate 7; = (1 +¢e)n /7.
Hence,

NV
(L&) £e/T](1+£e)m
= (1£3e)y £ 2ey/T.

Ve

So

T

T T
S G=(1£3)> k2 =(1£5)> .
t=1 t=1

t=1

If e < 1/10 then 327 7, < (1—5e) ' 0 4 < (1 +
20¢) Zthl ~:. Replacing € with /20, we have a (1 + ¢)-
approximation to the disc cover computed by running
A on all windows in the partition.

Finally, by Lemma 3, using algorithm A on all win-
dows gives a (1+4/¢)?r g-approximation algorithm with
success probability 0.48. This can be amplified to 0.99
by running O(1) copies of the algorithm in parallel and
taking the median.

The space complexity comes from Lemma 4 and
Lemma 5. U

We remark that our strategy is very general. In fact,
a straightforward extension of our strategy yields the
following general theorem for unit disc covers in R<.

Theorem 7 Let A be a streaming algorithm for the
disc cover problem restricted to a window of size 20 x
... X 20 with approximation ratio r 4. Suppose that A
uses s bits of space and let sp, = O(dlog(1/e)log(n)).
Then there is a streaming algorithm for the disc cover
problem with approzimation ratio (1 +¢)(1 + 4/0)% 4
that uses O(e~2d*+202d1og(¢d)(s + s1,)) bits of space
and has success probability at least 0.99.

In addition, we do not need to restrict ourselves to
single-pass streaming algorithms. Theorem 6 holds
whether we consider single-pass streaming algorithms or
multi-pass streaming algorithms; one simply needs to
use the correct streaming algorithm for A restricted to
each window.

Using a bit more space will allow us to improve slightly
on the approximation ratio in Theorem 7. This is useful
when £ is a small constant.

Theorem 8 Let A be a streaming algorithm for the
disc cover problem restricted to a window of size 20 x
... X 20 with approximation ratio r 4. Suppose that A
uses s bits of space and let sp, = O(dlog(1/e)log(n)).

Then there is a streaming algorithm for the disc cover
problem with approzimation ratio (14 ¢)(1 + 1/£)%r 4
that uses O(e~2d?2¢31og(¢d)(s + sp,)) bits of space
and has success probability at least 0.99.

The proof of Theorem 8 is nearly identical to the proof
of Theorem 7. The only difference is that instead of
sampling a random partition, we maintain all partitions.
Thus, the space increases by a factor of O(¢¢) but for
the approximation ratio, we can apply Lemma 2 instead
of Lemma 3.

4 Applications of the streaming shifting lemma

In this section, we present within-window algorithms for
unit disc cover and various problems on unit disc graphs.
When combined with the streaming shifting strategy,
these within-window algorithms give global streaming
algorithms.

4.1 Unit disc cover in 2D with L, balls

It suffices to give an approximation algorithm for the
UDC in 2D restricted to a 2¢ x 2¢ window and then apply

Theorem 6. Let 6 < W% be a fixed positive constant
and partition the window into a uniform grid of side
length 6 x §. For each square in the grid, we keep the
first point in the stream that lies in the square. Thus,
we only require storing O(£?) points and O(¢?1og(n))
bits of space for the window. We then solve the UDC
problem optimally given only the points we maintain,
giving us a candidate disc cover C.Although C may not
cover all the input points, any uncovered point is at most
distance §v/2 from a disc in C. Hence by increasing the
radius of each disc in C by 6v/2, we fully cover all the
points in the window. By our choice of 4, each disc of
radius 1+ 6v/2 can be completely covered by 3 unit discs
(see Figure 1), giving a 3-approximation to the within-
window UDC problem. Choosing ¢ = O(1/¢) gives the
following theorem.

Theorem 9 There is a streaming algorithm that uses
O(e78log(1/¢)log(n)) bits of space and gives a (3 + €)-
approzimation to the Ly UDC problem in 2D.

We note that the algorithm above can be trivially
extended to higher dimensions, though we do not have
a good bound on the approximation factor.

4.2 Unit disc cover in 2D with L. balls

Consider as before a 2¢ x 2¢ window. Recall that an
L, ball of unit radius corresponds to a 2 X 2 square in
R2. Consider a partition of the window into ¢ horizontal
strips of unit height. Then this reduces to ¢ copies of
the standard 1D UDC problem. We can now use the
(3/2 + e)-approximation for UDC in 1D (due to [4]),
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Figure 1: A covering of a radius 2/v/3 disc by 3 discs of
radius 1.

using O(e721og(1/¢) log(n)) bits of space for each strip.
Noting that any square in the optimal covering of a
2¢ x 2¢ window touches at most 2 strips, this gives a
(3 + e)-approximation to the UDC. Choosing ¢ = O(1/¢)
gives a space complexity of O(e~3log(1/¢)log(n)) bits
as we require ¢ runs of the 1D UDC approximation.
Applying Theorem 6 gives the following theorem.

Theorem 10 There is a streaming algorithm that uses
O(e=2log?(1/¢) log(n)) bits of space and gives a (3+¢)-
approzrimation to the Lo, UDC problem in 2D.

4.3 Streaming algorithms for unit disc graphs

Using the shifting coresets developed in Fonseca et al. [6],
we obtain several streaming algorithms for unit disc
graphs. In their work, they develop various O(1) memory
within-window algorithms by computing a coreset for
each window. Their coresets are similar to our within-
window algorithm for UDC, in that they partition the
window into squares of size § x § where ¢ is a fixed
constant. A constant number of points is then stored
in each square, and the problem is solved on the stored
points. In the offline model, this gives rise to constant
factor approximations for maximum weight independent
set, dominating set, and minimum vertex cover on unit
disc graphs.

Using the streaming shifting lemma, we obtain stream-
ing algorithms for dominating set, minimum vertex cover,
and unweighted maximum independent set. This is sim-
ply from using their within-window algorithms as a black
box. The restriction to unweighted problems is due to
our technique of subsampling windows, as subsampling
may miss a small number of windows that contain large
weights of the optimal solution.

5 Lower bounds

In this section, we prove lower bounds on the UDC
problem via a reduction to the INDEX problem in com-

Figure 2: The lower bound construction for UDC in
2D. Alice streams in the points on the unit circle on the
right. Bob streams in the point on the left to determine
whether or not the rightmost point is present.

munication complexity which is defined as follows. Let
n € N. Alice has a vector € {0,1}" and Bob has an
index ¢ € [n]. In the one-way communication model,
Alice is allowed to send a single message to Bob and
Bob must then compute the answer. Note that there is
a trivial protocol that communicates n bits; Alice could
send the whole vector x to Bob. The following theorem
asserts that, up to constant factors, there is no better
protocol even if it is randomized.

Theorem 11 ([13]) Any one-way randomized commu-
nication protocol which solves INDEX with probability at
least 0.51 requires Q(n) bits of communication.

Using this theorem [4] was able to show that
any streaming algorithm that computes a (1.5 — ¢)-
approximation to the maximum independent intervals
problem in one dimension requires Q(n) space. This
essentially implies the same lower bound for UDC in any
dimension.

Theorem 12 ([4]) Fize € (0,0.5). In all dimensions
and for any Ly, norm, if a streaming algorithm computes
a (1.5—¢)-approzimation to UDC with success probability
at least 0.51 then it uses Q(n) space.

5.1 A (2-—¢) lower bound for L, UDC in 2D

Theorem 13 Fiz ¢ € (0,1). In dimensions two and
higher, if a streaming algorithm computes a (2 — ¢€)-
approzimation to UDC using Lo balls with success prob-
ability at least 0.51 then it uses Q(n) space.

Proof. We will reduce from INDEX. Let A be a stream-
ing algorithm, using .S bits, which computes a (2 — ¢)-
approximation to UDC in 2D with Lo balls of radius
2. Let z € {0,1}™ be Alice’s input and i € [n] be
Bob’s input. For simplicity, we assume that Bob’s
input is ¢ = n; it will be apparent how to general-
ize to any 9. If z; = 1 then Alice streams the point
(cos(2jm/n),sin(2jm/n)) into A. When she is done she
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sends the memory contents of A to Bob. Bob now

1+cos(27/n)
COS2 n _4’ 0)

streams the point ( and queries A.

(See also Figure 2.)
Suppose first that z; = 0. Then we claim that placing

1+4cos(27/n)
2

a radius 2 ball with center at ( -2, 0) covers

all the points. Indeed, it clearly covers Bob’s point. To
show that the ball covers all of Alice’s points, it suffices
to show that the radiug 2 ball intersects the unit ball for
some coordinate in ((308(27r/n)7 w> Indeed,

at © = cos(2m/n), the y-coordinates of the radius 2

3—cos(2 2
ball is at +4/4 — (M) . It can be verified that
the absolute value of this quantity is at least sin(27/n).

Indeed, for any 6 € R

4 — (‘9’_;()8(9))2 — sin’(6)
3

3
_ 2 2 _ 2
= —cos“(x) 5 cos(f) + 3/4

., (cos(92) - 1)2

= 3sin*(0/2) > 0,

where in the last equality we used the identity
sin?(#/2) = (1 — cos(#))/2. Hence, the radius 2 ball
covers all of Alice’s points so A4 will report a quantity
<2-—=¢.

On the other hand, if z; = 1 then at least two points
are required just to cover (1,0) and (%2"/") —4, O)
so A will report > 2. O

6 Practical algorithms for UDC

Although the algorithms of the previous section have low
approximation ratios, they involve high constant factors
in their running times or memory that may make them
unsuitable for practical use. In this section, we develop
several streaming algorithms for unit disc cover that we
believe are suitable in practice. To achieve good per-
formance in practice, we either relax the approximation
factor, or use multiple passes.

Our first algorithm for UDC is also the simplest. We
cover R? with an appropriate lattice of unit balls, and
then apply the distinct elements algorithm of Kane,
Woodruff, and Nelson [12] to count the number of balls
of the lattice containing at least one input point. In the
case of Lo, in 2D, this lattice is simply a uniform grid
where each square has width 2. In the case of Lo in 2D,
the lattice takes the uniform grid of L., and places a
unit circle on each grid point, as well as a unit circle in
the center of each grid square. When a point is streamed,
we compute the unit ball it belongs to and add that ball
to the distinct elements data structure. If the point
belongs to multiple balls (as in the Ly case), choose any

of the balls it belongs to and add it to the data structure.
By choosing randomly from a family of shifted versions
of such lattices, we obtain the result below whose proof
is deferred to Appendix C.

Theorem 14 There is a one pass streaming algorithm
for Ly UDC in 2D that uses O(e=2 +log(n)) space with
approzimation factor 2w(1 + €) and succeeds with proba-
bility at least 0.99.

Theorem 15 There is a one pass streaming algorithm
for Lo and Ly UDC in 2D that uses O(e~2 + log(n))
space with approzimation factor 4 and succeeds with
probability at least 0.99.

Proof. The proof of this is exactly analogous to the
proof of Theorem 14 but in this case it is not necessary
to randomly shift the lattice. In L., and L;, we use
squares instead of Lo discs. O

6.1 Using multiple passes

By using multiple passes over the input data, we can
give alternate algorithms that both improve the approx-
imation factor and the memory of Theorems 14 and 15.
One example is the following theorem, whose proof can
be found in Appendix D.

Theorem 16 There is a two pass streaming algorithm
for Loy and Ly UDC in 2D that uses O(¢~2logn) space
with approximation factor 8 and succeeds with probability
at least 0.99.

Finally, we give one additional algorithm for L; and
L. UDC in R2. Observe that for the 1-dimensional
UDC problem, if we allow around 1/e passes through
the data then O(e~!logn) memory suffices to solve the
problem with approximation factor 1+ . Within each
1D window, we simply cover the leftmost uncovered
point with an interval that begins at that point. By the
end of a pass over the input data, we should be able
to determine another leftmost uncovered point in the
window or if we have covered all of the points. Since all
the intervals used are disjoint, we use at most ¢ passes for
a window size of £. This effectively simulates the greedy
offline interval covering algorithm using multiple passes.
Combining this with our streaming strategy gives the
following result for L., UDC.

Theorem 17 There is a 1/e pass streaming al-
gorithm for Lo, and Ly UDC in 2D that wuses
O(e7"log(1/¢)log(n)) space with approzimation factor
2+e.

Proof. We simply divide each 2¢ x 2¢ window into ¢
horizontal strips, and use the 1D UDC algorithm with
approximation factor 1+ 1/¢ on each strip for the within-
window algorithm. Since each disc of the optimal solu-
tion can touch at most two strips, we get approximation
factor 2 + € by choosing ¢ = O(1/¢). O
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Appendix
A Proof of Lemma 3

Proof. Let S be a random partition of R? into windows
of size 20 x ... x 2¢. Consider an optimal disc cover and
construct a new disc cover as follows. If a disc is in k
windows then the new disc cover will have k copies of
the disc, each associated with one of the windows. Note
that this gives a disc cover for each of the windows.

Let us number the discs in the optimal cover,
1, ..., OPT, and let X; be the number of windows which
contain a portion of disc i. Since S is a random par-
tition, we have that for each coordinate j € [d], disc ¢
intersects a closed boundary of a window along coor-
dinate j with probability 1/¢. If this intersection hap-
pens along k coordinates then X; < 2. Hence, EX; <
S () (D" () "2 = @+ /07 < 14240
where the last inequality is because £ > 2d.

Let Y = Z?:PlT X;. Then Y is an upper bound on the
number of disc covers obtained by solving each window
optimally. Moreover, E[Y — OPT] < OPT -2d/¢, so
by Markov’s Inequality, Y — OPT < 4d/¢ - OPT with
probability at least 1/2. The lemma now follows since
A is an r 4-approximate algorithm for each window. [

B Proof of Lemma 5

Proof. Let H be a O(log(1/¢))-wise independent family
of hash functions. The input to the hash functions is
a window (there are poly(n) possible windows) and the
output is a number of [poly(n)]. By Theorem 1, the
family H is a (n,€)-min-wise family of hash functions.
To estimate 7, we do the following. Let » € N be a
parameter to be chosen later and hq,...,h, be drawn
from H uniformly and independently at random. For
each j € [r], we maintain a window W; for h; and a copy
of A (denoted Aj) as follows. We initialize W to be
a dummy window with h;(W;) = co. Now suppose we
receive a point p in the input and let W be the window
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that p belongs to. If W = W; then we stream p into A;.
On the other hand, if W # W, then we have two cases.
If hj(W) < h;(W;) then we replace W; with the new
window W, reset A;, and stream p into A;. Otherwise,
if h;(W) > h;(W;) then we ignore p.

Fix t € {2,...,T} and j € [r]. Let X; be the random
variable which is 1 if A; reports that the window mini-
mizing h; has a disc cover of size at least ¢t. Otherwise,
X,; =0. Since H is an (n, £)-min-wise family, it follows
that EX; = (1 4+ 2¢)n,. Now let 7, = £ 37, X;. By
Hoeffding’s Inequality, we have

Pr[|; — EX;| > ¢/T] < 2exp(—2re?/T?).

By choosing r > O(T?log(T)/<?), the above probability
is at most 1/(1007"). Hence, by a union bound, we have
e = (1 £ 2e)n £ ¢/T for all ¢t with probability at least
0.99.

Finally, it remains to analyze the space requirement
of this scheme. Storing each hash function requires sj
bits of space. Hence, storing all r hash function requires
O(e72¢* log(¢)sy,) bits of space. Next, we have a copy of
A for each of the r windows we maintain. So this uses
an additional O(e=2¢*1log(¢)s) bits of space. Hence, the
total space usage is O(¢~2¢*log(¢)(s + s1,)) bits. O

C Proof of Theorem 14

Proof. Let Sopt be the set of discs in an optimal solu-
tion. Let I' be the lattice of unit discs described above,
and let nr be the maximum number of lattice discs inter-
secting a disc in Sopr. In the worst case, the algorithm
above counts nr discs for each disc of Sopr.

To compute the expectation from choosing a random
shift of the lattice, we can view each disc of Sopr as
radius 2 and the discs on the lattice as having radius
0 with lattice points on a uniform grid of side length
V2. Thus nr is equivalent to the expected number of
lattice points that fall within a randomly placed radius
2 disc on the plane. In expectation, this is equal to the
area of the disc scaled by the area of a lattice square.
Hence we get that Enr = 27. For each disc in Sopr,
the number of discs it intersects within the lattice is
a probability distribution supported on {1,2,...,16}.
Since the mean of the distribution is 27, running the
algorithm with a randomly shifted lattice will produce at
most 27 - OPT discs with at least a constant probability.
By running multiple copies of the algorithm and taking
the minimum, we get the result of Theorem 14. O

D Proof of Theorem 16

Proof. Consider the following algorithm for UDC in L,
and L. First, set the shifting parameter £ of Theorem 8
to be 2. For the analysis, fix a window and consider
the points that fall within the window. In the first

pass, the algorithm goes through the input points and
maintains the smallest bounding rectangle that covers
all the points. Observe that we can cover the points with
0 unit squares if and only if the input is empty and we
can cover the points with 1 unit square if and only if the
bounding rectangle fits inside a unit square. In either
of these two cases, the second pass is not necessary. If
the input points can be covered by 2 unit squares then
this can be done by choosing 2 of the 4 corners of the
bounding rectangle and choosing the unit squares to
lie in the rectangle while covering the 2 corners. There
are 6 possible ways to do this so in the second pass,
we check if one these choices cover all the points. If
not then the point set requires at least 3 squares to
cover so we estimate it as 4. Hence, this gives a 4/3-
approximation for each window. Combining this with
the 9/4-approximation from using Theorem 8 with ¢ = 2
gives the theorem. O



