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Unfolding Low-Degree Orthotrees with Constant Refinement
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Abstract

We show that every orthotree of degree 3 or less can
be unfolded with a 4 × 4 refinement of the grid faces.
This is the first constant refinement unfolding result for
orthotrees that are not required to be well-separated.
Our approach shows promise of extending to arbitrary
degree orthotrees.

1 Introduction

An unfolding of a polyhedron is obtained by cutting
its surface in such a way that it can be flattened in
the plane as a simple non-overlapping polygon called
a net. An edge unfolding allows only cuts along the
polyhedron’s edges, while a general unfolding allows
cuts anywhere on the surface. Edge cuts alone are
not sufficient to guarantee an unfolding for non-convex
polyhedra [BDE+03, BDD+98], however it is unknown
whether all non-convex polyhedra have a general unfold-
ing. In contrast, all convex polyhedra have a general un-
folding [DO07, Sec. 24.1.1], but it is unknown whether
they all have an edge unfolding [DO07, Ch. 22].

Prior work on unfolding algorithms for non-convex
objects has focused on orthogonal polyhedra. This class
consists of polyhedra whose edges and faces all meet
at right angles. Because not all orthogonal polyhe-
dra have edge unfoldings [BDD+98], the unfolding algo-
rithms typically use additional non-edge cuts that fol-
low one of two models. In the grid unfolding model,
the surface is subdivided into rectangular grid faces by
adding edges where axis-perpendicular planes through
each vertex intersect the surface, and cuts along these
added edges are also allowed. In the grid refinement
model, each grid face under the grid unfolding model
is further subdivided by an (a× b) orthogonal grid, for
some positive integers a, b ≥ 1, and cuts are also allowed
along any of these grid lines.

A series of algorithms have been developed for un-
folding arbitrary genus-0 orthogonal polyhedra, with
each successive algorithm requiring less grid refinement.
The first such algorithm [DFO07] required an expo-
nential amount of grid refinement. This was reduced
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to quadratic refinement in [DDF14], and then to lin-
ear in [CY15]. These ideas were further extended
in [DDFO17] to unfold arbitrary genus-2 orthogonal
polyhedra with linear refinement.

The only unfolding algorithms for orthogonal poly-
hedra that use sublinear refinement are for specialized
orthogonal shape classes. For example, there exist al-
gorithms for unfolding orthostacks using 1 × 2 refine-
ment [BDD+98] and Manhattan Towers using 4 × 5
refinement [DFO05]. There also exist unfolding algo-
rithms for several classes of polyhedra composed of unit
cubes. For example, orthotubes [BDD+98] and one
layer block structures [LPW14] with an arbitrary num-
ber of unit holes can both be unfolded with cuts re-
stricted to the cube edges.

Figure 1: Orthotree of maximum degree three.

Our focus here is on the class of orthogonal polyhe-
dra known as orthotrees. An orthotree O is composed
of axis-aligned unit cubes (boxes) glued face to face,
whose surface is a 2-manifold and whose dual graph T
is a tree. (See Figure 1 for an example.) In the grid
unfolding model, cuts are allowed along any of the cube
edges. Each node in T is a box in O and two nodes are
connected by an edge if the corresponding boxes are ad-
jacent in O (i.e., if they share a face). In this paper we
will use the terms box and node interchangeably. The
degree of a box b ∈ O is defined as the degree of its
corresponding node in the dual tree T . We select any
node of degree one to be the root of T .

In an orthotree, each box can be classified as either
a leaf, a connector, or a junction. A leaf is a box of
degree one; a connector is a box of degree two whose
two adjacent boxes are attached on opposite faces; all
other boxes are junctions.

Because orthotrees are orthogonal polyhedra, they
can be unfolded using the general algorithm in [CY15]
with linear refinement. It is unknown whether or-
thotrees can be unfolded using sublinear refinement.
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Prior algorithms specialized for unfolding orthotrees
have been limited to orthotrees that are well-separated,
meaning that no two junction boxes are adjacent.
In [DFMO05], the authors provide an algorithm for
grid unfolding well-separated orthotrees. Recent work
in [HCY17] shows that the related class of well-
separated orthographs (which allow arbitrary genus)
can be unfolded with a 2× 1 refinement.

In this paper we provide an algorithm for unfolding
orthotrees of degree up to three using a 4 × 4 refine-
ment of the cube faces. For each box b in T , the algo-
rithm unfolds b and the boxes in the subtree rooted at
b recursively. Intuitively, the algorithm unfolds surface
pieces of b along a carefully constructed path. When
the path reaches a child box of b, the child is recursively
unfolded and then the path continues on b again to the
next child (if there is one). The unfolding of b and its
subtree is contained within a rectangular region having
two staircase-like bites taken out of it.

This is the first sublinear refinement unfolding result
for orthotrees that are not required to be well-separated.
Our algorithm can handle trees with adjacent junction
boxes of degrees two or three, which other constant re-
finement algorithms are unable to do. In addition, the
ideas used here show promise of extending to arbitrary
degree orthotrees.

2 Terminology

For any box b ∈ O, Rb and Lb are the right and left
faces of b (orthogonal to the x-axis); Fb and Kb are the
front and back faces of b (orthogonal to the z-axis); and
Tb and Bb are the top and bottom faces of b (orthogonal
to the y-axis). We use a different notation for boxes
adjacent to b, to clearly distinguish them from faces: Eb

and Wb are the east and west neighbors of b (adjacent
to Rb and Lb, resp.); Nb and Sb are the north and south
neighbors of b (adjacent to Tb and Bb, resp.); and Ib
and Jb are the front and back neighbors of b (adjacent
to Fb and Kb, resp.). We omit the subscript whenever
the box b is clear from the context. We use combined
notations to refer to the east neighbor of N as NE, the
back neighbor of NE as NEJ , and so on.

If a face of a box b ∈ O is also a face of O, we call
it an open face; otherwise, we call it a closed face. On
the closed face shared by b with its parent box in T , we
identify a pair of opposite edges, one called the entry
port and the other called the exit port (shown in red
and labeled in Figure 2). The unfolding of b is deter-
mined by an unfolding path that starts on b’s entry port,
recursively visits all boxes in the subtree Tb ⊆ T rooted
at b, and ends on b’s exit port.

To make it easier to visualize the unfolding path, we
use an L-shaped guide (or simply L-guide) with two or-
thogonal pointers, namely a Hand pointer and a Head

pointer, as shown in Figure 2, where the circle is the
Head and the arrow is the Hand. With very few ex-
ceptions, the unfolding path extends in the direction of
one of the two pointers. Whenever the unfolding path
follows the direction of the Hand, we say that it extends
Hand-first ; otherwise, it extends Head-first. Surface
pieces traversed in the direction of the Hand(Head)
will flatten out horizontally (vertically) in the plane. We
denote by Nb the unfolding net produced by a recursive
unfolding of b.

We refer the reader to Figure 2a which shows the
unfolding path for the simple case of a leaf box A. The
L-guide is shown positioned on top of A’s parent box I
at the entry port. The unfolding path extends Head-
first around the top, back, and bottom faces of A, and
ends on the bottom of I at the exit port. The resulting
unfolding net NA consisting of A’s open faces TA, KA,
BA, LA, and RA is shown. In all unfolding illustrations,
the outer surface of O is shown. When describing and
illustrating the unfolding of a box A, we will assume
without loss of generality that the box is in standard
position (as in Figure 2a), with its parent IA attached
to its front face FA and its entry (exit) port on the top
(bottom) edge of FA.

The ring r of a box b includes all the points on the
surface of b (not necessarily on the surface of O) that are
within distance 0 < δ ≤ 1/4 of the closed face shared
with b’s parent. Thus, r consists of four 1/4 × 1 rect-
angular pieces (which we call ring faces) connected in
a cycle. The entry box be of b is the box containing the
open face in T \Tb adjacent to b’s entry port. Note that
be may be b’s parent (as in Figure 4a), but this is not
necessary (see Figure 4b where be is the box on top of
the parent I). The entry ring re of b includes all points
of be that are within distance 1/4 of the closed face of
be adjacent to b’s entry port. (See Figure 4.) The face
e of re adjacent to b’s entry port is the entry ring face.
Similarly, the exit box bx of b is the box containing the
open face in T \ Tb adjacent to b’s exit port. Note that
bx is not necessarily b’s parent (see Figure 4b, where bx
is the box south of the parent I). The exit ring rx of b
includes all points of bx that are within distance 1/4 of
the closed face of bx adjacent to b’s exit port. The face x
of rx adjacent to b’s exit port is the exit ring face. Note
that both e and x are open ring faces (by definition).
When unclear from context, we will use subscripts (i.e.,
eb and xb) to specify box b’s entry and exit faces.

In a Head-first unfolding of a box b, the L-guide be-
gins on the entry ring face with the Head pointing to-
ward the entry port, and it ends on the exit ring face
with the Head pointing away from the exit port; the
Hand has the same orientation at the start and end of
the unfolding. (See Figure 2a.) Similarly, in a Hand-
first unfolding, the L-guide begins on the entry ring face
with the Hand pointing toward the entry port, and it
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Figure 2: (a) Head-first and (b) Hand-first unfolding of leaf box.

ends on the exit ring face with the Hand pointing away
from the exit port; the Head has the same orientation
at the start and end of the unfolding. (See Figure 2b.)
In standard position, the Hand in a Head-first unfold-
ing will point either east or west. If it points east (west)
we say that the unfolding is a Hand-east (west), Head-
first unfolding. Similarly, in a Hand-first unfolding,
the Head will either point east or west. If it points
east (west), we say the unfolding is a Head-east (west),
Hand-first unfolding.

In a Head-first (Hand-first) unfolding of b with entry

ring face e,
e−→ is the ring face of re encountered imme-

diately after e when cycling around re in the direction
pointed to by the Hand(Head) of the L-guide as po-
sitioned on e at the start of b’s unfolding. Similarly, in
a Head-first (Hand-first) unfolding of b with exit ring

face x,
x←− is the ring face of rx encountered just before

x when cycling around rx in the direction pointed to by
the Hand(Head) of the L-guide as positioned on x at

the end of b’s unfolding path. Figure 4 shows
e−→ and

x←−
labeled. Note that although e and x are open ring faces
by definition,

e−→ and
x←− may not be open, as illustrated

in Figure 4c.

3 Net Connections and Inductive Regions

Let b ∈ T be a box to be unfolded recursively. A Head-
first inductive region for b is an orthogonally convex
polygon shaped as in Figure 3a. Its bounding box is at
least three units wide and at least three units tall. The
lower (upper) convex vertex that lies strictly inside the
bounding box is at unit vertical and horizontal distance
from the lower left (upper right) corner of the bounding
box, one unit away from the clockwise adjacent (reflex)
vertex, and two units away from the counterclockwise
adjacent (reflex) vertex. If the successor

e−→ of the en-
try ring face e is open, then the unit cell labeled Eb
in Figure 3a is not part of the inductive region; oth-
erwise, Eb is included as part of the inductive region.
Similarly, if the predecessor

x←− of the exit ring face x is
open, then the unit cell labeled Xb in Figure 3a is not
part of the inductive region; otherwise, Xb is included

as part of the inductive region. (See Figure 4 for exam-
ples.) The entry (exit) port of the inductive region is
the horizontal unit segment incident to the lower (up-
per) convex corner that lies strictly inside the bounding
box of the region. A Head-first unfolding of b produces
a net Nb that fits within the Head-first inductive region
and whose entry and exit ports coincide with the entry
and exit ports of the inductive region.

(b)(a)
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Figure 3: Inductive region for (a) Head-first unfolding
(b) Hand-first unfolding

A Hand-first inductive region for b is an orthogonally
convex polygon shaped as in Figure 3b. It is isometric
to a Head-first inductive region, and one can be ob-
tained from the other through a clockwise 90◦-rotation,
followed by a vertical reflection.

Lemma 1 Let Nb be the unfolding net produced by a re-
cursive Hand-east (west), Head-first recursive unfold-
ing of b. If Nb is rotated clockwise by 90◦ and then re-
flected vertically, then the result is a Head-east (west),
Hand-first recursive unfolding of b.

Lemma 1 (whose proof is deferred to the appendix)
enables us to focus the rest of our discussion on Head-
first unfoldings only, and assume that the same results
apply to the Hand-first unfoldings. Next we discuss
the type of connections that each net must provide to
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e−→ and
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and Xb belong to b’s inductive region.

ensure it connects to the rest of T ’s unfolding. To do
so, we need a few more definitions.

Let e′ (x′) be the open ring face of Tb that is adjacent

to e (x) along the entry (exit) port. If
e−→ (

x←−) is open,

let
e′−→ (

x′

←−) be the open ring face adjacent to it along its
side of unit length (see Figure 4). Note that, although

e and
e−→ are ring faces from the same box by definition,

ring faces e′ and
e′−→ may be from different boxes (as in

Figure 4b), and similarly for x′ and
x′

←−.
If b is not the root of T , to ensure that b’s net connects

to the rest of T ’s unfolding, it must provide type-1 or
type-2 connection pieces placed along the boundary in-
side its inductive region. These connections are defined
as follows:

• A type-1 entry connection consists of the ring face e′

placed alongside the entry port. (See Figure 4(b,c)
for examples.)

• A type-1 exit connection consists of the ring face x′

placed alongside the exit port. (See Figure 4(b,c)
for examples.)

• A type-2 entry connection is used when the ring
face

e−→ is open and adjacent to Tb. It consists

of the ring face
e′−→ placed right of the entry port.

(See Figure 4a for an example.)

• A type-2 exit connection is used when the ring face
x←− is open and adjacent to Tb. It consists of the ring

face
x′

←− placed left of the exit port. (See Figure 4a
for an example.)

Note that the unfolding of b begins on e (by definition)
and is therefore adjacent to the entry port. The entry
box be will provide a piece of e alongside the entry port
of b’s inductive region which connects to e′ in b’s net in a
type-1 entry connection; for a type-2 entry connection,

it places a piece of
e−→ next to e, which connects to

e′−→
in b’s net. Examples of these pieces are shown in yellow

along the boundary of the inductive regions in Figure 4.
Similarly, the unfolding of b ends on x (by definition)
and is therefore adjacent to the exit port. The exit box
bx will provide a piece of x alongside the exit port of
b’s inductive region which connects to x′ in b’s net in a
type-1 exit connection; for a type-2 exit connection, it

places a piece of
x←− next to x, which connects to

x′

←− in
b’s net.

4 Inductive Hypothesis

We will make use of the following inductive hypothesis
for the recursive unfolding of a box b ∈ T other than
the root box:

(I1) The recursive Head-first (Hand-first) unfolding of
b produces an unfolding net Nb that fits within a
Head-first (Hand-first) inductive region and in-
cludes all open faces of Tb, with cuts restricted to
a 4× 4 refinement of the box faces.

(I2) The unfolding net Nb provides the following entry
and exit connections (see Figure 4):

(a) If
e−→ is open and adjacent to a face in Tb, then

Nb provides either a type-1 or type-2 entry
connection. Otherwise, Nb provides a type-1
entry connection.

(b) If
x←− is open and adjacent to a face in Tb,

then Nb provides either a type-1 or type-2 exit
connection. Otherwise, Nb provides a type-1
exit connection.

(I3) Open faces of b’s ring that are not used in Nb’s
entry and exit connections can be removed from
Nb without disconnecting Nb.

5 Unfolding Algorithm

Our unfolding algorithm uses an unfolding path that
begins on the top face of the root box of T , recursively
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visits all nodes in the subtree rooted at the child of
the root box, and ends on the bottom face of the root
box. The following theorem shows how the inductive
hypothesis can be used to derive our main result.

FA

TA

end

start

A

J

RA

BA

LANJ

(a) (b)

Figure 5: Head-first unfolding of root box A with back
child J (a) unfolding path (b) unfolding net.

Theorem 2 Let O be an orthotree of degree at most
three. If the inductive hypothesis is met by all boxes in
T other than the root box, then O can be unfolded into
a net using a 4× 4 refinement.

Proof. Let A ∈ T be the root of T (by definition, A is a
node of degree one in T ). Assume A has a back child J
(if this is not the case, reorient O to make this true). A
recursive unfolding of O is depicted in Figure 5a: start-
ing Head-first on the top face of A, the unfolding path
recursively visits J and returns to the bottom face of A.
The resulting net takes the shape depicted in Figure 5b.

Property (I2) applied to J tells us that NJ provides
either type-1 or type-2 entry and exit connections. If of
type-1, the entry (exit) connection attaches to TA (BA);
otherwise, it attaches to RA (LA). In either case, the
surface piece NA depicted in Figure 5b is connected.
Property (I1) applied to J tells us that NJ is a net that
includes all open faces in the subtree TJ rooted at J and
uses a 4 × 4 refinement. This along with the fact that
the open faces of A attach to NJ without overlap shows
that NA is a net that uses a 4× 4 refinement. �

The rest of the paper is devoted to proving that the
inductive hypothesis holds for all boxes A ∈ T other
than the root box. Lemma 1 allows us to restrict our
attention to Head-first unfoldings only.

We discuss several cases depending on the node de-
gree. The Head-first unfolding of a leaf node is de-
picted in Figure 2a, and it can be easily verified that
this unfolding satisfies the inductive hypothesis. In the
appendix we include a proof of this claim, and show
that degree-2 nodes can be handled as degenerate cases
of degree-3 nodes. Our analysis of degree-3 nodes is
split into five different cases, depending on the position
of A’s children:

Case 3.1: E and J are children of A. The case where
W and J are children of A is a vertical mirror plane
reflection of this case.

Case 3.2: E and W are children of A.

Case 3.3: N and S are children of A.

Case 3.4: N and J are children of A. The case where
S and J are children of A is a horizontal mirror plane
reflection of this case, with the unfolding path traversed
in the opposite direction.

Case 3.5: N and E are children of A. The case where
N and W are children of A is a vertical mirror plane
reflection of this case; the case where S and E are chil-
dren of A is a horizontal mirror plane reflection of this
case, with the unfolding path followed in the opposite
direction; the case where S and W are children of A is a
vertical mirror plane reflection of the case where S and
E are children of A.

In this paper we discuss case 3.1 only, and defer the re-
maining cases to the appendix. Case 3.1 is handled by
Lemma 5 and Theorem 6, which make use of the follow-
ing two preliminary lemmas (whose proofs are deferred
to the appendix).

Lemma 3 Let X ∈ {E,W} be a child of A. In a
Head-first unfolding of A, if the Hand points in the
direction of X (opposite to X), then the successor

eA−−→
(predecessor

xA←−−) of the entry (exit) ring face eA (xA)
is open.

Lemma 4 Let ξ be the unfolding path and N the un-
folding net produced by a recursive unfolding of a box

in T . Let
←−
ξ be the unfolding path traversed in reverse,

starting at the exit port of N and ending at the entry
port of N , with the Head and Hand pointing in op-
posite direction. If N satisfies the inductive hypothesis,

then the unfolding net induced by
←−
ξ also satisfies the

inductive hypothesis.

Lemma 5 Let A ∈ T be a degree-3 node with parent I
and children E and J . There is a Hand-east, Head-
first unfolding of A whose net NA satisfies the inductive
hypothesis.

Proof. One such unfolding is depicted in Figure 6a:
starting at A’s entry port, the unfolding path moves
Head-first on TA, then proceeds Hand-first to recur-
sively visit E; from E’s exit face on BA, it proceeds
Head-first to recursively visit J ; from J ’s exit face on
TA, it moves Hand-first to LA and BA and then to A’s
exit port. We now show that, when visited in this order
and laid flat in the plane, the open faces in TA form a
net NA that satisfies the inductive hypothesis.

We start by showing that NA provides the appropri-
ate entry and exit connection pieces. By Lemma 3,

eA−−→
is open, therefore EA does not belong to A’s inductive
region (by definition). If

xA←−− is closed (open), then XA

belongs (doesn’t belong) to A’s inductive region. This
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Figure 6: Box A with back and east children, Head-first unfolding (a) Hand pointing east (b) Hand pointing west.

dual case scenario is depicted by the cell labeled XA?
in Figure 6a. Observe that NA provides type-1 entry
and exit connections since e′A ∈ TA and x′A ∈ BA are
positioned alongside the entry and exit ports. Thus NA

satisfies condition (I2) of the inductive hypothesis.

Turning now to condition (I1) of the inductive hy-
pothesis, we begin by showing that the unfolding NA

from Figure 6a is connected. Note that
eE−−→∈ KA and

xE←−−∈ FA are both closed, so EE and XE belong to E’s
inductive region (by definition). The inductive hypothe-
sis applied to NE tells us that NE provides type-1 entry
and exit connections, and thus it connects to the pieces
of eE ∈ TA and xE ∈ BA placed along NE ’s boundary
at the entry and exit ports.

Next we show that the netNJ produced by a recursive
unfolding of J connects to the pieces of BA, LA and TA
placed alongside its boundary. First note that

eJ−→∈ LA

is open and therefore EJ does not belong to J ’s inductive
region. Because

eJ−→ is adjacent to TJ , the inductive hy-
pothesis applied toNJ tells us thatNJ provides a type-1
or type-2 entry connection. If type-1, then it connects
to the piece eJ ∈ BA; if type-2, then it connects to
eJ−→∈ LA. Also note that

xJ←−−∈ RA is closed, so by def-
inition XJ is inside J ’s inductive region. The inductive
hypothesis applied to NJ tells us that NJ provides a
type-1 exit connection, which connects to xJ ∈ TA. It
follows that the net NA is connected.

By the inductive hypothesis, NE covers all faces in
TE and NJ covers all faces in TJ , both using a 4 × 4
refinement. Observe that NA includes all points in TA,
LA and BA (which are A’s open faces) using a 4× 4 re-

finement. Thus we conclude that NA satisfies condition
(I1) of the inductive hypothesis.

Turning to (I3) of the inductive hypothesis, observe
that the only open ring face of A not used in A’s entry or
exit connections is part of LA (this ring face is shown in
dark gray in the unfolding in Figure 6a, left of the exit
port). Its removal does not disconnectNA, and thus NA

satisfies condition (I3) of the inductive hypothesis. �

Theorem 6 Any degree-3 node A ∈ T with children E
and J can be unfolded into a net NA that satisfies the
inductive hypothesis.

Proof. Lemma 1 enables us to restrict our attention to
Head-first unfoldings of A. If the Hand points east,
then by Lemma 5 there is an unfolding net NA that
satisfies the inductive hypothesis. If the Hand points
west, the unfolding follows the same path but in reverse
direction (compare Figure 6a and Figure 6b) This along
with Lemma 4 implies that the unfolding net from Fig-
ure 6b satisfies the inductive hypothesis. �

A complete unfolding example is included in sec-
tion 10 of the appendix.

6 Conclusion

This paper presents the first result on unfolding or-
thotrees of degree 3 or less with a 4 × 4 refinement.
Our preliminary investigations show promise of this ap-
proach extending to arbitrary degree orthotrees. It is
open whether all orthotrees can be grid-unfolded with-
out any refinements.
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Appendix

7 Proofs of Preliminary Lemmas

Lemma 1 Let Nb be the unfolding net produced by a re-
cursive Hand-east (west), Head-first recursive unfold-
ing of b. If Nb is rotated clockwise by 90◦ and then re-
flected vertically, then the result is a Head-east (west),
Hand-first recursive unfolding of b.

Proof. Note that, when applied to the L-guide, this
combined (90◦-rotation, vertical reflection) transforma-
tion switches the Head and the Hand positions, so a
Head-first orientation at the beginning (end) of the un-
folding becomes Hand-first. This implies that, when
applied to the unfolded net, the same transformation
turns a Hand-east (west), Head-first unfolding into a
Head-east (west), Hand-first unfolding. �

Lemma 3 Let X ∈ {E,W} be a child of A. In a
Head-first unfolding of A, if the Hand points in the
direction of X (opposite to X), then the successor

eA−−→
(predecessor

xA←−−) of the entry (exit) ring face eA (xA)
is open.

Proof. Consider first the case where the Hand points
east and E is a child of A. If TI is open, then eA ∈ TI
and

eA−−→∈ RI ; in this case
eA−−→ is necessarily open, oth-

erwise IE ∈ O would close a cycle (I, A, E, IE), con-
tradicting the fact that O is an orthotree. If TI is not
open, then NI ∈ O, eA ∈ KNI and

eA−−→∈ RNI . As
noted earlier, IE 6∈ O. This along with the fact that
O is a 2-manifold implies that RNI is open (otherwise
NIE ∈ O either meets E at an edge or closes a cy-
cle (NIE,EN ,E,A,I,NI)). It follows that

eA−−→ is open.
Similar arguments hold for the other cases. �

Lemma 4 Let ξ be the unfolding path and N the un-
folding net produced by a recursive unfolding of a box

in T . Let
←−
ξ be the unfolding path traversed in reverse,

starting at the exit port of N and ending at the entry
port of N , with the Head and Hand pointing in op-
posite direction. If N satisfies the inductive hypothesis,

then the unfolding net induced by
←−
ξ also satisfies the

inductive hypothesis.

Proof. The unfolding net
←−
N induced by

←−
ξ is a diagonal

flip (180◦-rotation) of N . It can be verified that the
inductive hypothesis is invariant under 180◦-rotations,

therefore it holds for
←−
N as well. �

8 Unfolding Degree-3 Nodes

In this section we discuss the unfoldings of cases 3.2
through 3.5 listed in Section 5.

Lemma 7 Let A ∈ T be a degree-3 node with parent I
and children E and W . There is a Hand-east, Head-
first unfolding of A whose net NA satisfies the inductive
hypothesis.

Proof. One such unfolding is depicted in Figure 7a.
The unfolding path is similar to the one from Figure 6a,
with the only difference that the recursive unfolding of
J in Figure 6a is replaced with a straight path across
the back face of A in Figure 7a, and the straight path
across the west face of A in Figure 6a is replaced with
a recursive unfolding of W in Figure 7a. We now show
that, when visited in this order and laid flat in the plane,
the faces in TA form a netNA that satisfies the inductive
hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. By Lemma 3
eA−−→ and

xA←−− are both open, therefore EA and XA are
outside A’s inductive region. Observe that NA provides
type-1 entry and exit connections, since e′A ∈ TA and
x′A ∈ BA are placed alongside the entry and exit ports.
Thus NA satisfies condition (I2) of the inductive hy-
pothesis.

Next we turn to condition (I1) of the inductive hy-
pothesis. We begin by showing that the unfolding NA

from Figure 7a is connected. First note that
eE−−→∈ KA

is open, therefore EE is outside E’s inductive region.
Because

eE−−→ is open and adjacent to TE , the induc-
tive hypothesis applied to NE tells us that NE provides
a type-1 or type-2 entry connection: if a type-1 entry
connection, then it connects to eE ∈ TA; if a type-2
entry connection, then it connects to

eE−−→∈ KA. Also
note that

xE←−−∈ FA is closed, therefore XE is inside E’s
inductive region. The inductive hypothesis applied to
NE tells us that NE provides a type-1 exit connection,
which connects to xE ∈ BA.

Next we show that the net NW produced by a re-
cursive unfolding of W connects to the pieces TA, BA

and KA placed alongside its boundary. First note that
eW−−→∈ FA is closed, therefore EW is inside W ’s inductive
region. The inductive hypothesis applied to NW tells
us that NW provides a type-1 entry connection, which
connects to eW ∈ TA. Also note that

xW←−−∈ KA is open,
therefore XW is outside W ’s inductive region. Because
xW←−− is open and adjacent to TW , the inductive hypoth-

esis applied to NW tells us that NW provides a type-1
or type-2 exit connection: if a type-1 exit connection,
then it connects to xW ∈ BA; if a type-2 exit connec-
tion, then it connects to

xW←−−∈ KA. It follows that the
entire net NA is connected.

By the inductive hypothesis NE covers all faces in
TE and NW covers all faces in TW , both using a 4 × 4
refinement. Observe that NA includes all points in TA,
KA and BA (which are A’s open faces) using a 4 × 4
refinement. Thus we conclude that NA includes all open
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Figure 7: Box A of degree 3, Head-first unfolding (a) case when A has east and west children (b) case when A has
north and south children.

faces of TA and satisfies condition (I1) of the inductive
hypothesis.

Condition (I3) of the inductive hypothesis is trivially
satisfied, because only two ring faces of A are open, and
they are both used in A’s entry and exit connections.
This concludes the proof. �

Theorem 8 Any degree-3 box A ∈ T with children E
and W can be unfolded into a net NA that satisfies the
inductive hypothesis.

Proof. Lemma 1 enables us to restrict our attention to
Head-first unfoldings of A. If the Hand points east,
then by Lemma 7 there is an unfolding net NA that
satisfies the inductive hypothesis. Observe that the case
when the Hand points west is symmetric, so arguments
analogous to those in Lemma 7 show that its net also
satisfies the inductive hypothesis. �

Lemma 9 Let A ∈ T be a degree-3 node with parent I
and children N and S. There is a Hand-east, Head-
first unfolding of A whose net NA satisfies the inductive
hypothesis.

Proof. One such unfolding is depicted in Figure 7b:
starting at the entry port on A, the unfolding path pro-
ceeds Head-first to recursively visit N , then crosses N ’s
exit faceKA and proceeds Head-first to recursively visit
S, ending at A’s exit port. We now show that, when
visited in this order and laid flat in the plane, the open
faces in TA form a net NA that satisfies the inductive
hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. Note that
the entry ports of A and N coincide, therefore the left
boundaries of their inductive regions also coincide. If
eA−−→=

eN−−→∈ RI is closed (open), then EA = EN belongs
(does not belong) to A and N ’s inductive region. This
dual case scenario is depicted by the free cell labeled
EA in Figure 7b. Because

eN−−→ is not adjacent to TN ,
the inductive hypothesis tells us that N will provide a
type-1 entry connection, which also serves as a type-1
entry connection for A since e′N = e′A. By analogous
arguments, the right boundaries of A and S coincide,
XA = XS may or may not belong to their inductive re-
gions, and S will provide a type-1 exit connection that
also serves as a type-1 exit connection for A. Thus NA

satisfies condition (I2) of the inductive hypothesis.

Next we turn to condition (I1) of the inductive hy-
pothesis. We begin by showing that the unfolding NA

from Figure 7b is connected. First note that
xN←−−∈ LA

is open, therefore XN is outside N ’s inductive region.
Because

xN←−− is open and adjacent to TN , the inductive
hypothesis applied to NN tells us that NN provides a
type-1 or type-2 exit connection: if a type-1 exit con-
nection, then it connects to xN ∈ KA; if a type-2 exit
connection, then it connects to

xN←−−∈ LA.

Similarly,
eS−→∈ RA is open, therefore ES is outside S’s

inductive region. Because
eS−→ is open and adjacent to

TS , the inductive hypothesis applied to NS tells us that
NS provides a type-1 or type-2 entry connection: if a
type-1 entry connection, then it connects to eS ∈ KA; if
a type-2 entry connection, then it connects to

eS−→∈ RA.
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It follows that the entire net NA is connected.
By the inductive hypothesis NN covers all faces in

TN and NS covers all faces in TS , both using a 4 × 4
refinement. Observe that NA includes LA, KA and RA

(which are A’s open faces) using a 4 × 4 refinement.
Thus we conclude that NA includes all open faces of TA
and satisfies condition (I1) of the inductive hypothesis.

Finally we turn to condition (I3) of the inductive hy-
pothesis. Note that the open ring faces of A not involved
in A’s entry and exit connections are the dark-shaded
pieces of LA andRA from Figure 7b, whose removal does
not disconnect NA. Thus NA satisfies (I3) as well. �

Theorem 10 Any degree-3 node A ∈ T with children
N and S can be unfolded into a net NA that satisfies
the inductive hypothesis.

Proof. Lemma 1 enables us to restrict our attention to
Head-first unfoldings of A. If the Hand points east,
then by Lemma 9 there is an unfolding net NA that
satisfies the inductive hypothesis. Observe that the case
when the Hand points west is symmetric, so arguments
analogous to those in Lemma 9 show that its net also
satisfies the inductive hypothesis. �

Lemma 11 Let A ∈ T be a degree-3 node with parent I
and children N and J . If RI is open, there is a Hand-
east, Head-first unfolding of A whose net NA satisfies
the inductive hypothesis.

Proof. One such unfolding is depicted in Figure 8a:
starting from the entry face TI , the unfolding path
moves Hand-first to RI , Head-first to RA, then it cy-
cles Hand-first around A to LA; from there it proceeds
Head-first to recursively visit J and then Hand-first
to recursively visit N ; from N ’s exit face LA it moves
Hand-first to BA and then to A’s exit port. We now
show that, when visited in this order and laid flat in the
plane, the open faces in TA form a net NA that satisfies
the inductive hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. By the
lemma statement

eA−−→∈ RI is open, therefore EA is out-
side the inductive region for A. Because

eA−−→∈ RI is
adjacent to TA, the inductive hypothesis allows NA to
provide a type-2 entry connection, which it does in the

form of
e′A−−→∈ RA placed right of NA’s entry port. If

xA←−−∈ LI is open (closed), then XA is outside (inside)
the inductive region for A. This dual case scenario is de-
picted by the free cell labeled XA in Figure 8a. Note that
NA provides a type-1 exit connection, because x′A ∈ BA

is placed alongside its exit port. Thus NA satisfies con-
dition (I2) of the inductive hypothesis.

Next we turn to condition (I1) of the inductive hy-
pothesis. We begin by showing that the unfolding NA

from Figure 8a is connected. First note that
eJ−→∈ TA is

closed, therefore EJ belongs to the inductive region for
J . The inductive hypothesis applied to NJ tells us that
NJ provides a type-1 entry connection, which connects
to eJ ∈ LA. Also note that

xJ←−−∈ BA is open and adja-
cent to TJ . In this case the inductive hypothesis applied
to NJ tells us that NJ provides a type-1 or type-2 exit
connection: if type-1, it connects to xJ ∈ RA; if type-2,
it connects to

xJ←−−∈ BA.
Next we show that the net NN produced by a recur-

sive unfolding of N connects to the pieces of RA and
LA placed alongside its boundary. Since

eN−−→∈ FA and
xN←−−∈ KA are closed, EN and XN are inside the induc-

tive region for N . The inductive hypothesis applied to
N tells us that NN provides type-1 entry and exit con-
nections, therefore it connects to the pieces of eN ∈ RA

and xN ∈ LA placed alongside NN ’s entry and exit
ports. It follows that the entire net NA is connected.

By the inductive hypothesis NJ covers all faces in
TJ and NS covers all faces in TS , both using a 4 × 4
refinement. Observe that NA includes all points in LA,
BA and RA (which are A’s open faces) using a 4 × 4
refinement. Thus we conclude that NA includes all open
faces of TA and satisfies condition (I1) of the inductive
hypothesis.

Finally we turn to condition (I3) of the inductive hy-
pothesis. Note that the only open ring face of A not
involved in A’s entry and exit connections is the dark-
shaded piece of LA from Figure 8a, whose removal does
not disconnect NA. Thus NA satisfied (I3) as well. �

Lemma 12 Let A ∈ T be a degree-3 node with parent I
and children N and J . If RI is closed, there is a Hand-
east, Head-first unfolding of A whose net NA satisfies
the inductive hypothesis.

Proof. One such unfolding is depicted in Figure 8b:
starting at the entry port on A, the unfolding path
moves Head-first to FN and cycles Hand-first around
N to KN ; it then proceeds Head-first to recursively
visit NN , Hand-first to recursively visit NW , and then
Head-first to recursively visit J ; from J ’s exit face BJ it
moves Head-first to A’s exit port. We now show that,
when visited in this order and laid flat in the plane,
the open faces in TA form a net NA that satisfies the
inductive hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. By the
lemma statement

eA−−→∈ RI is closed, therefore EA is in-
side the inductive region for A. If

xA←−−∈ LI is closed
(open), then XA is inside (outside) the inductive region
for A. Note that NA provides a type-1 entry and exit
connection, because e′A ∈ FN and x′A ∈ BA are placed
alongside its entry and exit ports. Thus NA satisfies
condition (I2) of the inductive hypothesis.
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Figure 8: Box A of degree 3 with north and back children, Head-first unfolding (a) right face of I open (b) right
face of I closed (so right face of N open).

Next we turn to condition (I1) of the inductive hy-
pothesis. We begin by showing that the unfolding NA

from Figure 8b is connected. Here we assume the sub-
trees rooted at NN and NW are non-degenerate and
thus consist of at least one box. (Handling cases in
which one or both are degenerate requires only minor
modifications.) By the lemma statement

eNN−−−→∈ LN is
closed (and so ENN is inside the inductive region for
NN). The inductive hypothesis applied to NNN tells
us that NNN provides a type-1 entry connection, which
connects to eNN ∈ KN placed alongside its entry port.
Also note that

xNN←−−−∈ RN is open and adjacent to TNN

(and so XNN is outside the inductive region for NN).
In this case the inductive hypothesis applied to NNN

tells us that NNN provides a type-1 or type-2 exit con-
nection: if type-1, it connects to xNN ∈ FN ; if type-2,
it connects to

xNN←−−−∈ RN .

Next we show that the net NNW produced by a re-
cursive unfolding of NW forms a connected compo-
nent with the pieces of FN and KN placed alongside its
boundary. Since

eNW−−−→∈ BN is closed, ENW is inside the
inductive region for NW . The inductive hypothesis ap-
plied to NW tells us that NNW provides a type-1 entry
connection, which connects to the piece of eNW ∈ FN

placed alongside its entry port. By the lemma state-
ment

xNW←−−−∈ TN is closed (and so XNW is inside the
inductive region for NW ). In this case the inductive
hypothesis applied to NNW tells us that NNW provides
a type-1 exit connection, which connects to xNW ∈ KN

placed alongside its exit port.
Next we show that the net NJ produced by a recur-

sive unfolding of J connects to pieces of KN , BA, and
LA placed alongside its boundary. Note that

eJ−→∈ RN

is open (and so EJ is outside the inductive region for
J) but not adjacent to TJ . The inductive hypothesis
applied to J tells us that NJ provides a type-1 entry
connection, which connects to eJ ∈ KN placed along-
side its entry port. Also note that

xJ←−−∈ LA is open (and
so XJ is outside J ’s inductive region) and adjacent to
TJ . The inductive hypothesis applied to NJ tells us
that NJ provides a type-1 or type-2 exit connection: if
type-1, it connects to xJ ∈ BA; if type-2, it connects to
xJ←−−∈ LA. It follows that the entire net NA is connected.

By the inductive hypothesis NNN covers all faces in
TNN , NNW covers all faces in TNW , and NJ covers all
faces in TJ , all using a 4 × 4 refinement. Observe that
NA includes all points in FN , RN and KN (which are
N ’s open faces) and in LA, BA and RA (which are A’s
open faces), also using a 4×4 refinement. Thus we con-
clude that NA includes all open faces of TA and satisfies
condition (I1) of the inductive hypothesis.

Finally we turn to condition (I3) of the inductive hy-
pothesis. Note that the only open ring faces of A that
are not involved in A’s entry and exit connections are
the dark-shaded piece of RA and LA from Figure 8b,
whose removal does not disconnect NA. Thus NA sat-
isfied (I3) as well. �

Theorem 13 Any degree-3 node A ∈ T with parent I
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and children N and J can be unfolded into a net NA

that satisfies the inductive hypothesis.

Proof. Lemma 1 enables us to restrict our attention
to Head-first unfoldings of A. If the Hand points east
and RI is open, then by Lemma 11 there is an unfolding
net NA that satisfies the inductive hypothesis; if RI is
closed, then by Lemma 12 there is an unfolding net NA

that satisfies the inductive hypothesis. Observe that
the case when the Hand points west is symmetric, so
arguments analogous to those in Lemma 11 (when LI

is open) and Lemma 12 (when LI is closed) show that
the theorem holds for this case as well. �

Lemma 14 Let A ∈ T be a degree-3 node with parent
I and children N and E. If KN is open, there is a
Hand-east, Head-first unfolding of A whose output net
NA satisfies the inductive hypothesis.

Proof. One such unfolding is depicted in Figure 9a:
starting at the entry port on A, the unfolding path pro-
ceeds Head-first to recursively visit N ; from N ’s exit
port on KN it moves Hand-first to RN , then proceeds
Head-first to recursively visit E; from E’s exit face BA

it moves in the direction opposite the Hand to KA, then
Head-first to LA, Hand-first BA and then to A’s exit
port. We now show that, when visited in this order and
laid flat in the plane, the open faces in TA form a net
NA that satisfies the inductive hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. Observe
that the entry ports of A and N coincide, and thus
the left boundaries of their inductive regions also coin-
cide. By Lemma 3,

eN−−→=
eA−−→∈ RI is open, therefore

EN = EA does not belong to the inductive region of
N and A. Because

eN−−→ is not adjacent to TN , the in-
ductive hypothesis tells us that N will provide a type-1
entry connection, which is also a type-1 entry connec-
tion for A (since e′N = e′A). Now consider the right side

of A’s inductive region. Observe that
xA←−− may or may

not be open, therefore XA may or may not belong to
the inductive region of A, as indicated by the free cell
in Figure 9a. As shown in Figure 9a, A places ring
face x′A ∈ BA adjacent to its exit port, and thus pro-
vides a type-1 exit connection. Therefore, NA satisfies
condition (I2) of the inductive hypothesis.

We now show that the net NA is itself connected.
First note that XN is not part of N ’s inductive region
because

xN←−−∈ LA is open. Because
xN←−− is adjacent

to TN , it seems at first that N could provide a type-1
or type-2 exit connection. However, we can argue in
this situation N must provide a type-1 exit connection.
Specifically, if N is of degree 1 or 2, then it has a type-
1 exit connection because all degree 1 and 2 unfoldings

do 1. If N is of degree 3, then it must be Case 3.1. To see
this, orient N in standard position2 and observe that it
can only have a west and back child; its other faces are
either open or attached to its parent. Observe that all
Case 3.1 unfoldings have type-1 exit connections. This
implies that N has a type-1 exit connection which tells
us that x′N ∈ KN is positioned as shown under N ’s
exit port. This attaches to the piece of RN (taken from
N) on the right. By (I3) of the inductive hypothesis
applied to N , it is safe to remove this piece of RN from
NN without disconnecting NN .

Next we show that the net NE connects to RN , KA,
and BA placed around its boundary. First note that
eE−−→∈ FN and

xE←−−∈ KA are open, so EE and XE are
not part of E’s inductive region. Because

eE−−→ is not
adjacent to TE , E has a type-1 entry connection, and
therefore eE ∈ RN placed along E’s entry port is suf-
ficient to make the connection to NE . Now consider
xE←−−. It is adjacent to TE , so E may have a type-1 or a

type-2 exit connection. Therefore to ensure NE is con-
nected to the rest of the unfolding, both xE ∈ BA and
xE←−−∈ KA are placed as shown alongside E’s inductive

region. Thus we have shown that NA is connected.
By the inductive hypothesis, NN covers all faces in TN

(except for the piece of RN used by A) and NE covers
all faces in TE , both using a 4× 4 refinement. Observe
that NA includes all pieces of LA, KA, and BA (which
are A’s open faces), also using a 4× 4 refinement. Thus
we conclude that NA includes all open faces of TA and
satisfies (I1) of the inductive hypothesis.

For I3, observe that the only open ring face of A
not used in A’s entry or exit connections is part of LA,
shown in dark gray in Figure 9a. Its removal does not
disconnect NA so (I3) is satisfied. �

Lemma 15 Let A ∈ T be a degree-3 node with parent
I and children N and E. If KN is closed, there is a
Hand-east, Head-first unfolding of A whose output net
NA satisfies the inductive hypothesis.

Proof. First note that KN closed implies that KE is
open, because otherwise box EJ exists and shares an
edge with NJ and so either box AJ or EJN exists (be-
cause the orthotree is a manifold), which implies a cycle
in the orthotree. The unfolding for this case is depicted
in Figure 9b: from the entry ring face on TI , the un-
folding path moves Hand-first to RI , Head-first to E,
then proceeds Hand-first to recursively visit ES, then
Head-first to recursively visit EE; from EE’s exit face
FE it moves Hand-first to TE , then proceeds Head-first
to recursively visit N ; from N ’s exit face LA it moves
Hand-first to KA, then Head-first to BA, and finally to
A’s exit port. We now show that, when visited in this

1check this
2defined in Section 1: entry and exit ports are the top and

bottom edges of the front face.
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Figure 9: Box A of degree 3 with north and east children, Head-first unfolding, Hand pointing east (a) KN open
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order and laid flat in the plane, the open faces in TA
form a net NA that satisfies the inductive hypothesis.

We start by considering the left/right boundaries
of A’s inductive region and show that A provides
the appropriate entry and exit connection pieces. By
Lemma 3,

eA−−→∈ RI is open, therefore EA does not be-
long to A’s inductive region. Because

eA−−→ is adjacent to
TA, the inductive hypothesis tells us that NA can pro-
vide a type-2 entry connection, which it does in the form

of
e′A−−→∈ FE placed just to the right of the entry port.

Now consider the right side of A’s inductive region. Ob-
serve that

xA←−− may or may not be open, therefore XA

may or may not belong to the inductive region of A, as
indicated by the free cell in Figure 9b. Notice that A
places the ring face x′A ∈ BA adjacent to its exit port,
and thus provides a type-1 exit connection. Therefore,
NA satisfies condition (I2) of the inductive hypothesis.

We now show that the net NA is itself connected. We
will assume that the subtrees rooted at ES and EE
are non-degenerate and thus consist of at least one box.
(Handling cases in which one or both are degenerate re-
quires only minor modifications.) First note that EES

and XES are both part of ES’s inductive region because
eES−−→∈ RE and

xES←−−−∈ LE are closed. The inductive hy-
pothesis applied to ES tells us thatNES provides type-1
entry and exit connections, which connect to pieces of
eES ∈ FE and xES ∈ KE .

Next we show that the net NEE connects to KE , TE ,
and FE placed around its boundary. First note that

eEE−−−→∈ TE is open, so EEE is not part of EE’s inductive
region. Because

eEE−−−→ is adjacent to TEE , the inductive
hypothsis tells us that EE provides either a type-1 or
type-2 entry connection, which attaches to eEE ∈ KE

(if type-1) or
eEE−−−→∈ TE (if type-2). Because

xEE←−−−∈ BE

is closed, XEE is part of EE’s inductive region. The
inductive hypothsis tells us that EE provides a type-1
exit connection, which attaches to the piece of xEE ∈
FE .

Next we show that the netNN connects to TE and LA

placed around its boundary. First note that
eN−−→∈ KE is

open, so EN is not part of N ’s inductive region. Because
eN−−→ is not adjacent to TN , the inductive hypothsis tells
us that NN provides a type-1 entry connection, which
attaches to eN ∈ TE . Because

xN←−−∈ FA is closed, XN

is part of N ’s inductive region. The inductive hypoth-
sis tells us that NN provides a type-1 exit connection,
which attaches to xN ∈ LA. Thus we have shown that
NA is connected.

By the inductive hypothesis, NES , NEE , and NN

cover all faces in TES , TEE and TN , all using a 4 × 4
refinement. Observe that NA includes all pieces of LA,
KA, BA, FE , TE , and KE (which are A’s and E’s open
faces), also using a 4× 4 refinement. Thus we conclude
that NA includes all open faces of TA and satisfies (I1)
of the inductive hypothesis.

For condition (I3) of the inductive hypothesis, observe
that the only open ring face of A not used in A’s entry
or exit connections is part of LA, shown in dark gray
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in Figure 9b. Its removal does not disconnect NA so
(I3) is satisfied. �

Lemma 16 Let A ∈ T be a degree-3 node with parent
I and children N and E. If BI is open, then there is
a Hand-west, Head-first unfolding of A whose output
NA satisfies the inductive hypothesis.

Proof. One such unfolding is depicted in Figure 10a:
from the entry port on A, the unfolding path proceeds
Head-first to recursively visit N ; from N ’s exit face
KA it moves Hand-first to LA, Head-first to BA, in
the direction opposite the Hand to KA, then proceeds
Head-first to recursively visit E; from E’s exit port it
moves Head-first to RI and then Hand-first to the exit
face BI . We now show that, when visited in this order
and laid flat in the plane, the open faces in TA form a
net NA that satisfies the inductive hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. Observe
that the entry ports of A and N coincide, and thus the
left boundaries of their inductive regions also coincide.
Also note that

eN−−→=
eA−−→∈ LI may be open or closed,

therefore EN = EA may or may not belong to the in-
ductive region of N and A, as indicated by the free cell
in Figure 10a. Because

eN−−→ is not adjacent to TN , the
inductive hypothesis applied to N tells us that N will
provide a type-1 entry connection eN ∈ FN , which is
also a type-1 entry connection for A (since e′N = e′A).

Now consider the right side of A’s inductive region.
Observe that

xA←−−∈ RI is open, therefore XA does not
belong to the inductive region of A. Because

xA←−− is ad-
jacent to TA, A can provide either a type-1 or type-2
exit connection, and in this case A provides a type-2
connection. To see this, observe that the right bound-
aries of E’s and A’s inductive regions overlap along E’s
exit port, which is also where A would place a type-2
connection piece. Because

xE←−−∈ TI is open but not ad-
jacent to TE , the inductive hypothesis tells us that E
provides a type-1 exit connection x′E ∈ FE placed under

its exit port. Because x′E =
x′
A←−−, this piece also serves

as a type-2 connection for A. Therefore, NA satisfies
condition (I2) of the inductive hypothesis.

We now show that the net NA is itself connected.
First note that XN is part of N ’s inductive region be-
cause

xN←−−∈ RA is closed. The inductive hypothesis ap-
plied to N tells us that N provides a type-1 exit con-
nection, which attaches to the piece xN ∈ KA.

Next we show that the net NE connects to KA and
BA placed along its left boundary. First note that

eE−−→∈
BA is open, so EE is not part of E’s inductive region.
Because

eE−−→ is adjacent to TE , NE may have a type-1 or
type-2 entry connection which will connect to eE ∈ KA

(if type-1) or
eE−−→∈ BA (if type-2). Thus we have shown

that NA is connected.
By the inductive hypothesis, NN covers all faces in

TN and NE covers all faces in TE , both using a 4 × 4
refinement. Observe that NA includes all pieces of LA,
KA, and BA (which are A’s open faces), also using a
4 × 4 refinement. Thus we conclude that NA includes
all open faces of TA and satisfies (I1) of the inductive
hypothesis.

For (I3), observe that the only open ring face of A
not used in A’s entry or exit connections is part of LA,
shown in dark gray in Figure 10a. Its removal does not
disconnect NA so (I3) is satisfied. �

Lemma 17 Let A ∈ T be a degree-3 node with parent
I and children N and E. If TN is open, then there is
a Hand-west, Head-first unfolding of A whose output
NA satisfies the inductive hypothesis.

Proof. One such unfolding is depicted in Figure 10b:
from the entry port on A, the unfolding path moves
Head-first across FN to TN and then proceeds Hand-
first to recursively visit NW ; from NW ’s exit face LA

it moves Hand-first to BA and Head-first to KA, then
proceeds Head-first to recursively visit NJ ; from NJ ’s
exit face TN it moves Hand-first to RN and then pro-
ceeds Hand-first to recursively visit E; and from E’s
exit face it reaches directly A’s exit port. We now show
that, when visited in this order and laid flat in the plane,
the faces in TA form a netNA that satisfies the inductive
hypothesis.

We start by considering the left/right boundaries of
A’s inductive region and show that A provides the ap-
propriate entry and exit connection pieces. Because
eA−−→∈ LI may be open or closed, EA may or may not
belong to A’s inductive region, as indicated by the free
cell in Figure 10b. Because

xA←−−∈ RI is open, EA does
not belong to A’s inductive region. Observing that A
provides type-1 entry and exit connections e′A ∈ FN and
x′A ∈ BA, we conclude that NA satisfies condition (I2)
of the inductive hypothesis.

We now show that NA is itself connected. We will
assume that the subtrees rooted at NW and NJ are
non-degenerate and thus consist of at least one box.
(Handling cases in which one or both are degenerate re-
quires only minor modifications.) First note that ENW

and XNW are both part of NW ’s inductive region be-
cause

eNW−−−→∈ KN and
xNW←−−−∈ FA are closed. The in-

ductive hypothesis applied to NNW tells us that it pro-
vides type-1 entry and exit connections, which connect
to pieces eNW ∈ TN and xNW ∈ LA placed alongside
its entry and exit ports.

Next we show that NNJ connects to the pieces of
KA and TN placed along its boundary. First note that
eNJ−−→∈ RA and

xNJ←−−−∈ LN are closed, so ENJ and XNJ

are part of NJ ’s inductive region. By the inductive
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Figure 10: Box A of degree 3 with north and east children, Head-first unfolding, Hand pointing west. (a) BI open
(b) TN open.

hypothesis, NNJ provides type-1 entry and exit connec-
tions, which connect to eNJ ∈ KA and xNJ ∈ TN .

Next we show that NE connects to the pieces of RN ,
BA, and KA placed along its boundary. First note that
eE−−→∈ FN and

xN←−−∈ KA are open, so EE and XE are
not part of E’s inductive region. Because

eE−−→ is not
adjacent to TE , the inductive hypothesis tells us that E
provides a type-1 entry connection, which connects to
eE ∈ RN . Because

xE←−− is adjacent to TE , the inductive
hypothesis tells us that E provides a type-1 or type 2
exit connection: if type-1 it connects to xE ∈ BA and
if type-2 it connects to

xE←−−∈ KA. Thus we have shown
that NA is connected.

By the inductive hypothesis, NNW , NNJ , and NE

cover all faces in TNW , TNJ and TE , all using a 4 × 4
refinement. Observe that NA includes all pieces of LA,
KA, BA, FN , TN , and RN (which are A’s and N ’s open
faces), also using a 4× 4 refinement. Thus we conclude
that NA includes all open faces of TA and satisfies (I1)
of the inductive hypothesis.

For condition (I3) of the inductive hypothesis, observe
that the only open ring face of A not used in A’s entry
or exit connections is part of LA, shown in dark gray
in Figure 10b. Its removal does not disconnect NA so
(I3) is satisfied. �

Lemma 18 Let A ∈ T be a degree-3 node with parent I

and children N and E. If TN and BI are both closed and
KN is open, there is a Hand-west, Head-first unfolding
of A whose output NA satisfies the inductive hypothesis.

Proof. One such unfolding is depicted in Figure 11a:
from the entry port on A, the unfolding path moves
Head-first to FN , then proceeds Hand-first to recur-
sively visit NW , then Head-first to recursively visit
NN ; fromNN ’s exit face FN it moves Hand-first across
RN to KN , Head-first to KA, Hand-first to LA, Head-
first to BA, in the direction opposite the Hand across
KA to KN , Head-first to RN , Hand-first to TE , then
Head-first across FE to BE ; it then proceeds Hand-
first to recursively visit EE, then Head-first to recur-
sively visit EJ ; finally, from EJ ’s exit face BE , it moves
across BA to the exit port. We now show that, when
visited in this order and laid flat in the plane, the faces
in TA form a net NA that satisfies the inductive hypoth-
esis.

Arguments identical to the ones used in the proof of
Lemma 17 show that A provides the appropriate entry
and exit connection pieces. We now show that the net
NA is itself connected. We will assume that NW is not
degenerate and therefore it consists of at least one box.
(Handling the case where NW is degenerate requires

only minor modifications.) First note that
eNW−−−→∈ TN
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and
xNW←−−−∈ BN are closed, so ENW and XNW are part of

NW ’s inductive region. The inductive hypothesis tells
us that NW provides type-1 entry and exit connections,
which connect to pieces of eNW ∈ FN (along the entry
port) and xNW ∈ KN (along the exit port).

Next we show that the netNNN connects to the pieces
of KE , RN , and FN placed along its boundary. First
note that

eNN−−−→∈ RN is open and adjacent to TNN , so
ENN is not part of NN ’s inductive region. The induc-
tive hypothesis applied to NN tells us that NNN pro-
vides either a type-1 or type-2 entry connection. If type-
1, it connects to eNN ∈ KN and if type-2, it connects
to

eNN−−−→∈ RN . Because
xNN←−−−∈ LN is closed, XNN is

part of NN ’s inductive region. The inductive hypothe-
sis tells us that NN provides a type-1 exit connection,
which attaches to xNN ∈ FN .

We now consider NEE and NEJ and show they con-
nect to the pieces of BE , TE , and FE placed along their
boundaries. We will assume that their subtrees are non-
degenerate and thus consist of at least one box. (Han-
dling cases in which one or both are degenerate require
only minor modifications.) First note that EEE and
EEJ are part of their respective inductive regions be-
cause

eEE−−−→∈ KE and
eEJ−−→∈ LE are closed. Similarly,

XEJ is part of EJ ’s inductive region because
xEJ←−−∈ RE

is closed. The inductive hypothesis applied to these two
nets tells us that NEE has a type-1 entry connection
(which attaches to eEE ∈ BE), and NEJ has a type-1
entry and exit connection (which attach to eEJ ∈ TE
and xEJ ∈ BE). Also note that XEE is not part of

EE’s inductive region because
xEE←−−−∈ FE is open. The

inductive hypothesis applied to NEE tells us that it pro-
vides a type-1 or type-2 exit connection, which connects
xEE ∈ TE (if type-1) or

xEE←−−−∈ FE (if type-2). Thus we
have shown that NA is connected.

By the inductive hypothesis, NNW , NNN , NEE , and
NEJ cover all faces in TNW , TNN , TEE and TEJ , all
using a 4× 4 refinement. Observe that NA includes all
open faces of A, N , and E, also using a 4×4 refinement.
Thus we conclude that NA includes all open faces of TA
and satisfies (I1) of the inductive hypothesis.

For condition (I3) of the inductive hypothesis, observe
that the only open ring face of A not used in A’s entry
or exit connections is part of LA, shown in dark gray
in Figure 11a. Its removal does not disconnect NA so
(I3) is satisfied. �

Lemma 19 Let A ∈ T be a degree-3 node with parent I
and children N and E. If TN , BI and KN are all closed,
then there is a Hand-west, Head-first unfolding of A
whose output NA satisfies the inductive hypothesis.

Proof. First note that TNJ is open, because otherwise
boxes {NJN,NN,N,NJ} form a cycle. Also note that
RNJ is open, because otherwise box NJE exists and is

edge-adjacent to E; this implies that box EJ must also
exist (to ensure that the orthotree is a manifold), but
this creates the cycle {NJ,NJE,EJ,E,A,N}.

An unfolding that satisfies the conditions of the
lemma is depicted in Figure 11b: from A’s entry port
the unfolding path moves to FN and proceeds Hand-
first to recursively visit NW , then Hand-first to recur-
sively visit NJ ; from RNJ it moves Head-first to TNJ

and proceeds Hand-first to recursively visit NN ; from
NN ’s exit face FN it moves in the direction opposite
the Head to RN and then proceeds Hand-first to re-
cursively visit E; and from E’s exit face BA it reaches
A’s exit port. We now show that, when visited in this
order and laid flat in the plane, the faces in TA form a
net NA that satisfies the inductive hypothesis.

Arguments identical to the ones used in the proof of
Lemma 17 show that A provides the appropriate en-
try and exit connection pieces. We now show that the
net NA is itself connected. We will assume that NW
is not degenerate and therefore consists of at least one
box. (Handling the case where TNW is empty requires

only minor modifications.) First note that
eNW−−−→∈ TN

is closed, so ENW is part of NW ’s inductive region.
The inductive hypothesis tells us that NNW provides
a type-1 entry connection, which connects to a piece of
eNW ∈ FN placed adjacent to its entry port. Also note
that

xNW←−−−∈ BNJ is open but not adjacent to NW , so
XNW is not part of the inductive region. The inductive
hypothesis applied to NW tells us that NNW provides
a type-1 exit connection.

Now we show that the net NNJ connects to NNW ’s
type-1 exit connection and to the piece of TNJ placed
along its boundary. First note that

eNJ−−→∈ TNW is open
(so ENJ is not part of NJ ’s inductive region) but not
adjacent to TNJ . The inductive hypothesis applied to
NJ tells us that NNJ provides a type-1 entry connec-
tion e′NJ ∈ LNJ , which is adjacent toNNW ’s type-1 exit
connection x′NW ∈ KNW , so the two nets are connected

to each other. Because
xNJ←−−−∈ BN is closed, XNJ is part

of NJ ’s inductive region. The inductive hypothesis ap-
plied to NJ tells us that NNJ provides a type-1 exit
connection x′NJ ∈ RNJ , which attaches along the bot-
tom of the ring face piece of TNJ extracted from NNJ .
Because this ring face piece is not used in the entry or
exit connections of NNJ , removing it from NNJ does
not disconnect NNJ , by the inductive hypothesis (I3)
applied to NJ .

We now consider NNN and NE and show they con-
nect to the pieces of TNJ , FN , RN , BA and KA placed
along their boundaries. First note that ENN and EE are
not part of their respective inductive regions because
eNN−−−→∈ LNJ and

eE−−→∈ FN are open. In addition,
eNN−−−→

is not adjacent to TNN and
eE−−→ is not adjacent to TE .

By the inductive hypothesis, NNN andNE both provide
type-1 entry connections, which connect to the piece of
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Figure 11: Box A of degree 3 with north and east children, Head-first unfolding, Hand pointing west, BI closed (so
BE open) and TN closed. (a) KN open (b) KN closed (and so TNJ and ENJ open).

eNN ∈ TNJ and eE ∈ RN , respectively. Similarly, XNN

and XE are also not part of their respective inductive re-
gions because

xNN←−−−∈ RN and
xE←−−∈ KA are both open.

In addition,
xNN←−−− is adjacent to TNN and

xE←−− is adja-
cent to TE . By the inductive hypothesis, NNN and NE

provide either type-1 or type-2 exit connections, there-
fore NNN connects to FN (if type-1) and RN (if type-2),
and NE connects to BA (if type-1) and KA (if type-2).
Thus we have shown that NA is connected.

By the inductive hypothesis, NNW , NNJ , NNN , and
NE cover all faces in TNW , TNJ , TNN and TE using a
4 × 4 refinement, except for the piece of TNJ that A
uses. Observe that NA includes all open faces of A and
N , also using a 4×4 refinement. Thus we conclude that
NA includes all open faces of TA and satisfies (I1) of the
inductive hypothesis.

For condition (I3) of the inductive hypothesis, observe
that the only open ring face of A not used in A’s entry
or exit connections is part of LA, shown in dark gray
in Figure 11b. Its removal does not disconnect NA so
(I3) is satisfied. �

Theorem 20 Any degree-3 box A ∈ T with children N
and E can be unfolded into a net NA that satisfies the
inductive hypothesis.

Proof. Lemma 1 enables us to restrict our attention
to Head-first unfoldings of A. Consider first the case
with the Hand pointing east. We discuss two cases,
depending on whether KN is open or closed. If KN is
open, by Lemma 14 there is an unfolding net NA that
satisfies the inductive hypothesis, so the theorem holds.
This unfolding is depicted in Figure 9a. If KN is closed,
by Lemma 15 there is an unfolding net NA that satisfies
the inductive hypothesis, so the theorem holds as well.
This unfolding is depicted in Figure 9b.

Consider now the case with the Hand pointing west.
We discuss four cases, depending on whether BI , TN
and KN are open or closed. If BI is open, the theorem
holds by Lemma 16; the unfolding for this case is de-
picted in Figure 10a. If TN is open, the theorem holds
by Lemma 17; the unfolding for this case is depicted
in Figure 10b. If BI and TN are both closed and KN
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is open, the theorem holds by Lemma 18; the unfold-
ing for this case is depicted in Figure 11a. Finally, if
BI and TN are both closed and KN is closed, the the-
orem holds by Lemma 19; the unfolding for this case is
depicted in Figure 11b. �

8.1 Unfolding Degree-2 Nodes

In this section we turn our attention to degree-2 nodes
in T and show that they can be unfolded into nets that
satisfy the inductive hypothesis. We discuss three cases,
depending on whether the degree-2 box has a back child,
a north child or an east child. The cases where A has a
south child or a west child are symmetric.

Theorem 21 Any degree-2 box A ∈ T with back child J
can be unfolded into a net NA that satisfies the inductive
hypothesis.

Proof. Lemma 1 enables us to restrict our attention to
Head-first unfoldings of A. One such unfolding is de-
picted in Figure 12a. Note that this unfolding is very
similar to the unfolding of the root box from Figure 5.
Because

eA−−→ (
xA←−−) may be open or closed, EA (XA) may

or may not belong to A’s inductive region, as indicated
by the free cells from Figure 12a. Since

eJ−→∈ RA is
open, the inductive hypothesis applied to NJ tells us
that NJ provides a type-1 or type-2 entry (exit) con-
nection, which attaches to either TA or RA (BA or LA).
Thus the net NA is connected. By the inductive hy-
pothesis, NJ covers all open faces in TJ using a 4 × 4
refinement. Noting that NA includes the open faces of
A, we conclude that NA includes all open faces of TA
and satisfies (I1) of the inductive hypothesis. Note that
NA provides type-1 entry and exit connections, there-
fore it satisfies (I2) of the inductive hypothesis. Finally,
the open ring faces of A not used in its entry and exit
connections (dark-shaded in Figure 12a) can be removed
from NA without disconnecting NA, therefore NA sat-
isfies (I3) of the inductive hypothesis. �

Theorem 22 Any degree-2 box A ∈ T with north child
N can be unfolded into a net NA that satisfies the in-
ductive hypothesis.

Proof. Lemma 1 enables us to restrict our attention
to Head-first unfoldings of A. One such unfolding is
depicted in Figure 12b. Note that this is a degenerate
case of the unfolding of the box with north and south
children from Figure 7b. The only difference is that
the net NS for the south child from Figure 7b has been
replaced by the south face BA in Figure 12b. Arguments
similar to the ones used in the proof of Theorem 10 show
that NA satisfies the inductive hypothesis. �

Theorem 23 Any degree-2 box A ∈ T with east child E
can be unfolded into a net NA that satisfies the inductive
hypothesis.

Proof. Lemma 1 enables us to restrict our attention to
Head-first unfoldings of A. These unfoldings are de-
picted in Figure 13a for the case with the Hand point-
ing east, and in Figure 13b for the case with the Hand
pointing west. Note that these unfoldings are degen-
erate cases of the unfoldings of the box with east and
back children from Figure 6. One difference is that the
unfolding net NJ for the back child from Figure 6 is
replaced by the back face KA in Figure 13. A few more
minor modifications are necessary to accommodate for
the fact that, in the Hand-east unfolding,

eE−−→∈ KA is
open (and so EE does not belong to the inductive re-
gion for E) and therefore NE may provide a type-1 or
a type-2 entry connection. Similarly, in the Hand-west
unfolding,

xE←−−∈ KA is open (and so XE does not be-
long to the inductive region for E) and thus NE may
provide a type-1 or a type-2 exit connection. These ac-
commodations are reflected in Figure 13. Arguments
similar to the ones used in the proof of Theorem 6 show
that the nets NA from Figure 6 satisfy the inductive
hypothesis. �

9 Unfolding Leaf Nodes

Lemma 24 Let A ∈ T be leaf box with parent I. There
is an unfolding of A whose net NA satisfies the inductive
hypothesis.

Proof. Lemma 1 enables us to restrict our attention
to Head-first unfoldings of A. Consider the unfolding
depicted in Figure 2a: starting at A’s entry port, the
unfolding path simply moves Head-first until it reaches
A’s exit port. We now show that, when laid flat in the
plane, the open faces of A form a net NA that satisfies
the inductive hypothesis.

If
e−→ is closed (open), then EA belongs (doesn’t be-

long) to the inductive region for A. This dual case
scenario is depicted by the free cell labeled EA in Fig-
ure 2a. Similarly, if

x←− is closed (open), then XA belongs
(doesn’t belong) to the inductive region for A. Thus
condition (I1) of the inductive hypothesis is trivially
satisfied.

To check that (I2) is satisfied, note that NA provides
type-1 entry and exit connections since e′ ∈ TA and
x′ ∈ BA are positioned alongside the entry and exit
ports.

Turning to (I3) of the inductive hypothesis, observe
that the open ring faces of A not used in A’s entry or exit
connections are the dark-shaded pieces from Figure 2a,
whose removal does not disconnect NA. Thus NA also
satisfies condition (I3) of the inductive hypothesis. �

10 A Complete Example

Figure 14 illustrates a complete unfolding example for
an orthotree composed of 9 boxes. The root A of the
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Figure 13: Box A of degree 2 with east child (a) Hand pointing east (b) Hand pointing west.

the unfolding tree is a degree-1 box with back child J ,
which is unfolded recursively. The unfolding of J follows
the pattern depicted in Figure 9b, slightly adjusted to
accommodate for the fact that J does not have a south-
east child. The east-east child of J (labeled C in Fig-
ure 14) follows the unfolding pattern depicted in Fig-
ure 13a. The north child of J (labeled F in Figure 14)
follows the unfolding pattern from Figure 10b, traversed
on reverse (note that the subtree rooted at F is a hori-
zontal mirror plane reflection of the case depicted in Fig-
ure 10b, after a clockwise 90◦-rotation about a vertical
axis followed by a clockwise 90◦-rotation about a hor-
izontal axis, to bring it in standard position). Finally,

the leaves are unfolded as in Figure 2.
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