
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Red-Blue-Partitioned MST, TSP, and Matching

Matthew P. Johnson∗

Abstract

Arkin et al. [2] recently introduced partitioned pairs net-
work optimization problems: Given n pairs of points
in a metric space, the task is to color one point from
each pair red and the other blue, and then to com-
pute two separate network structures or disjoint (node-
covering) subgraphs of a specified sort, one on the graph
induced by the red points and the other on the blue
points. Three structures have been investigated by
[2]—spanning trees, traveling salesperson tours, and per-
fect matchings—and the three objectives to optimize
for when computing such pairs of structures: min-sum,
min-max, and bottleneck. We provide improved approxi-
mation guarantees and/or strengthened hardness results
for these nine NP-hard problem settings.

1 Introduction

We consider the class of partitioned pairs network op-
timization problems recently introduced by Arkin et
al. [2]. Given a complete metric-weighed graph G whose
vertex set consists of n pairs {p1, q1}, ..., {pn, qn} (with
n even), the task is to color one node from each pair
red and the other blue, and then to compute two net-
work structures or disjoint (node-covering) subgraphs of
a specified sort, one on the graph induced by the blue
nodes and the other on the red nodes. One motivation
is robustness: if the pairs represent n different types
of resources needed to build the desired network struc-
ture, with two available instances pi, qi of each type i,
then solving the problem means computing two sepa-
rate independent instances of the desired structure, one
of which can be used as a backup if the other fails.

The structures that have been investigated are span-
ning trees, traveling salesperson, and perfect matchings.
A solution consists of a disjoint pair of subgraphs cov-
ering all nodes, i.e., two (partial) matchings, two trees,
or two cycles, and there are different potential ways of
evaluating the cost of the pair. The optimization ob-
jectives that have been considered are: 1) minimize the
sum of the two structures’ costs (min-sum), 2) minimize
the maximum of the two structures’ costs (min-max),
and 3) minimize the weight of the heaviest edge used in
either of the structures (bottleneck).

Contributions. We provide a variety of results for

∗Lehman College and The Graduate Center, CUNY

these nine problem settings (all of which turn out to be
NP-hard; see Table 1), including algorithms with im-
proved approximation guarantees and/or stronger hard-
ness results for each. In particular, we provide tighter
analyses of the min-sum and min-max approximation
factors (along with problem instances matching these
factors) of Arkin et al. [2]’s 2-MST approximation al-
gorithm, which is equivalent to that of Algorithm 1 be-
low. We also show that a simple extension of this algo-
rithm (see Algorithm 2 below) provides improved min-
sum and min-max approximation guarantees for 2-TSP.
See the full version of the paper for omitted proofs.

Related work. The primary antecedent of this work
is Arkin et al. [2] (see also references therein), which
introduced the class of 2-partitioned network optimiza-
tion problems. Earlier related problem settings include
optimizing a path visiting at most one point from each
pair [8], generalized MST [15, 17, 3], generalized TSP
[3], constrained forest problems [9], adding conflict con-
straints to MST [18, 12, 6] and to perfect matching
[16, 6], and balanced partition of MSTs [1].

2 2-MST

2.1 Min-sum/min-max 2-MST: algorithm

In this section we give a simple algorithm (see Algo-
rithm 1) that provides an approximation guarantee for
2-MST under both the min-sum and min-max objec-
tives. The key lemma that the approximation guar-
antee relies on proves a property about the result of
partitioning a metric-edge-weighted spanning tree into
a 2-component spanning forest.

Initially we show that for any 2-coloring V1 ∪V2 = V
of the graph, the sum of the costs of MSTs on V1 and
V2 will be at most 3 times the cost of the spanning tree
on V . Then we modify the argument to improve the
combined cost of the two trees slightly, reducing it by
the weight of their single heaviest edge in the following
key lemma.

Theorem 1 Let V C be a set of points lying within a
metric space. Let TC be an MST on V . Let V C

1 ∪V C
2 =

V C be any 2-coloring of V C , and let TC
1 and TC

2 be
MSTs of V C

1 and V C
2 , respectively. Let eC = {vCL , vCR}

be a heaviest edge in T , with weight wC . Let TL, TR
be the trees (on nodes V C

L , V
C
R , respectively) obtained by

30th Canadian Conference on Computational Geometry, 2018

Table 1: Summary of results. R,B ⊆ E denote the red and blue solutions, respectively. UB values indicate the approximation
factors we obtain, all for general metric spaces; LB values indicate hardness of approximation lower bounds, all (except min-
sum and min-max TSP) for the special case of metric weights {1, 2}. Best prior bounds (all due to [2]) are also shown, where
ρSt ≤ 2 denotes the underlying metric space’s Steiner ratio (conjectured to be 2√

3
≈ 1.1547 in Euc. 2D [11]), and ρtsp denotes

TSP’s best achievable approximation factor in the underlying metric space (currently ρtsp = 1.5 in general [4]).

min-sum min-max bottleneck
c(R) + c(B) max{c(R), c(B)} max{we : e ∈ B ∪R}

MST

our UB: 3 4 −
[2]’s UB: (3ρSt) (4ρSt) (9)
our LB: NP-h NP-h 2
[2]’s LB: (-) (NP-h in metric) (-)

TSP

our UB: 4 4 −
[2]’s UB: (3ρtsp) (6ρtsp) (18)
our LB: 123/122 ≈ 1.00819 with metric weights {.5,1,1.5,2} 2
[2]’s LB: (-) (-) (-)

matching

our UB: − − −
[2]’s UB: (2) (3) (3)

our LB: 8305
8304 ≈ 1.00012 8305

8304 ≈ 1.00012 2
[2]’s LB: (NP-h in metric) (weakly NP-h in 2D Euc.) (-)

Algorithm 1 Min-sum/min-max 2-MST approx

1: T ← an MST on the 2n nodes
2: {TL, TR} ← result of deleting a max-weight edge e×

from T
3: for each node pair (pi, qi) ∈ VL × VR do

color pi blue and qi red

4: for each other node pair (pi, qi) do
assign pi, qi arbitrary distinct colors

5: for c ∈ {b, r}: Tc ← a minimum-weight tree span-
ning the color-c nodes

6: return {Tb, Tr}

deleting eC from TC , where vCL ∈ TC
L and vCR ∈ TC

R .
Then we have:

(a) c(TC
1) + c(TC

2) ≤ 3c(TC)− wC , and

(b) max{c(TC
1), c(TC

2)} ≤ 2c(TC)− wC .

Observation 1 There exist families of instances show-
ing that bounds (a) and (b) of Theorem 1 are (simulta-
neously) tight.

Then we analyze Algorithm 1, which forms trees
TL, TR by deleting a max-weight edge e× (of weight w×)
from an MST T computed on the 2n nodes, and then
colors all “lone” nodes appearing without their partners
in TL blue and all lone nodes in TR red, and assigns ar-
bitrary distinct colors to all other node pairs.

Theorem 2 Algorithm 1 provides a 3-approximation
for min-sum 2-MST.

The proof analyzes three cases, depending on whether
one, both, or neither TL, TR contains a pair, the first

two cases of which imply that OPT must cross between
TL and TR at least once or twice, respectively. The
challenge is that c(OPT) is lower-bounded by c(TL) +
c(TR) but not by c(T) = c(TL)+w×+c(TR). We bound
ALG by carefully applying Theorem 1 to both TL and
TR, and we obtain a bound on c(OPT) include w× or
2w×, permitting the two bounds to be compared, by
subtracting max-weight edges from one or both sides.

This immediately implies that the same algorithm
provides 6-approximation for min-max 2-MST, but we
perform a tighter analysis.

Theorem 3 Algorithm 1 provides a 4-approximation
for min-max 2-MST.

Extending Observation 1, we obtain:

Observation 2 There exist families of instances show-
ing that the 2-MST min-sum and min-max approxima-
tion ratios are both tight.

2.2 Min-sum/min-max/bottleneck: hardness

We provide a reduction inspired by the reduction of [7]
from Three-Dimensional Matching to the problem of
partitioning a bipartite graph into two connected com-
ponents, each containing exactly half the vertices.

In our reduction, however, we reduce the traditional
3-SAT problem.

Given the 3-SAT formula, we construct the following
graph (see Fig. 1). For each clause, create a path of
length p. For each variable xi, we create create two
nodes, xi and x̄i. We also create a path of length pb
called b and a path of length pr called r. From each xi
or x̄i, we draw an edge to the final nodes of the paths

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Pb

Pr

C1 C2 C3 Cm

x1 x2 x3 xn

x̄1 x̄2 x̄3 x̄n

Figure 1: Spanning tree reduction.

corresponding the clauses that the literal appears in.
Finally, from each xi and x̄i, we draw edges to the final
nodes paths b and r. All the edges defined have 1; all
non-defined edges have weight 2. (In all cases when we
refer to the “final” node of one of these m+ 2 paths, we
mean the node with degree > 2.)

The path lengths are defined as follows: pr = (n+1) ·
n3 + n+ n+ 1, pb = n3 + n+ 1, p = n3 + 1.

Then the total number of nodes in the graph con-
structed is: |V | = n · p+ pb + pr +m,= 2 · (nr +m).

Finally, we must specify the {pi, qi} pair relationships
of these nodes. Each pair {xi, x̄i} is a {pi, qi} pair. All
pr nodes of path pr are pi s. All pb nodes of path p and
all p nodes of path corresponding to an element are qi
nodes. Observe that results in an equal number of pi
and qi nodes since pb + n · p = pr.

Lemma 4 The formula is satisfiable iff the constructed
graph admits a 2-MST solution using only weight-1
edges.

Thus we conclude:

Theorem 5 In the special case of metric graphs with
weights 1 and 2, min-sum and min-max, 2-MST are
both (strongly) NP-Complete, and bottleneck 2-MST is
NP-hard to approximate with factor better than 2.

Algorithm 2 Min-sum/min-max 2-TSP approx

Identical to Alg, 1, except with lines 5,6 replaced by:
5: C ← a TSP tour, computed from T by edge-

doubling
6: for c ∈ {b, r}: Cc ← a tour of the color-c nodes,

computed by shortcutting C
7: return {Cb, Cr}

3 2-TSP

3.1 Min-sum/min-max/bottleneck 2-TSP: hardness

Clearly the min-sum and min-max objectives for 2-TSP
are at least as hard to approximate as ordinary TSP in
the same metric space (e.g., hard to approximate with
factor better than 123/122 [13], even with edge weights
{.5, 1, 1.5, 2}): to reduce TSP to either of these, simply
introduce a co-located pair {pv, qv} for each node v in
the TSP instance. Similarly, the same reduction implies
that the bottleneck objective for 2-TSP is at least as
hard to approximate as ordinary bottleneck TSP in the
same metric space (e.g., hard to approximate with factor
better than 2, even with edge weights {1, 2}).

3.2 Min-sum/min-max 2-TSP: algorithm

Now we adapt Algorithm 1 above to obtain a 4-
approximation algorithm for min-sum and min-max 2-
TSP (see Algorithm 2).

The proof again analyzes three cases, depending on
whether one, both, or neither TL, TR contains a pair.
Unlike with 2-MST, 2-TSP’s c(OPT) is lower-bounded
by c(T) in the first two cases, and so we can compare it
to the simple upper bound on c(ALG) of 4c(T).

Theorem 6 Algorithm 2 is a 4-approximation algo-
rithm for min-sum 2-TSP.

Theorem 7 Algorithm 2 is a 4-approximation algo-
rithm for min-max 2-TSP.

Observation 3 There exist families of instances show-
ing that the 2-TSP min-sum and min-max approxima-
tion factors are both tight.

4 2-Matching

4.1 Preliminaries

In the case of perfect matching we require that the num-
ber of pairs n be even. It will be convenient to re-express
the 2-Matching problem as an equivalent problem con-
cerning cycle covers.

We begin with some observations about the nature
of feasible solutions in this setting. By definition, two
nodes pi, qi from the same pair can never be matched

30th Canadian Conference on Computational Geometry, 2018

because they must receive different colors. Each must
then be matched with a node of the same color, and
each of those nodes’s partners must receive the opposite
color and be matched with a node of that color, and
so on, in a consistent fashion. One way to make this
consistency requirement concrete is the following alter-
native description. First, for each pair {pi, qi}, draw
a length-2 path (of unit-weight edges) between them,
separated by a dummy node di, and in the resulting
3n-node graph G′ consider instead the task of finding
a 2-factor, i.e., a node-disjoint cycle cover, of minimum
cost. In particular, consider seeking a cycle cover that
uses only unit-weight edges, which would have cost 3n.

Definition 1 Say that a 2-matching or cycle cover is
feasible if it uses only unit-weight edges. We call a non-
dummy node of G′ (i.e., a node from G) a real node;
similarly, we call an edge between a dummy node and a
real node G′ a dummy edge and a path pidiqi a dummy
path; we call an edge between two real nodes a real edge.

Observe that any feasible 2-matching in G will in-
duce a 2-factor of G′: imagine G′ drawn in a “tripar-
tite” style, with the red nodes in the left column, the
blue nodes in the right column, and the dummy nodes
in the center column. Then each path pi−di− qi forms
a “cross-edge” (going either left or right), each red edge
appears in the left column, and each blue edge appears
in the right column. Each non-dummy node is matched
with one other node in the 2-matching, so if we combine
the edges of the paths pi−di−qi to those of the match-
ing, then in the graph induced by these edges, each of
the 3n nodes will have degree 2. This implies the edge
set is a 2-factor. Note that the cost of the 2-factor dif-
fers by a known amount (2n, because each dummy nodes
two edges are unit-weight)) from the (min-sum) cost of
the corresponding 2-matching.

The problem of finding a minimum-cost 2-factor is
known to be polynomial-time solvable by reduction to
bipartite matching (folklore). Unfortunately, a 2-factor
of G′ will not necessarily induce a valid 2-matching on
G. In G′ as defined, the additional property needed
(somewhat analogously to bipartite graphs having no
odd cycles) is for each cycle’s size to be a multiple of 6,
which we will call a C6×-cover.

Definition 2 Let a C6×-cover for a given graph be a 2-
factor, i.e., a node-disjoint collection of subgraphs cov-
ering all nodes, where each subgrraph is a member of
{C6, C12, C18, ...}.

Lemma 8 Any feasible C6×-cover for G′ will induce a
feasible 2-matching for G.

Unfortunately, unlike the problem of deciding
whether a graph admits a feasible cycle cover, decid-
ing whether it admits a C6×-cover is NP-Complete [10].

This fact does not immediately imply the hardness of
the 2-Matching problems, however, because G′ is not
an arbitrary graph. We can characterize it as follows.
It contains 3n nodes consisting of n triples {pi, di, qi},
where each di is degree 2, with neighbors pi, qi.

4.2 Bottleneck 2-Matching: hardness

To prove hardness, we give a reduction inspired by Pa-
padimitriou’s reduction [5] from 3-SAT to the problem
of deciding whether a graph can be partitioned into a
node-disjoint collection of cycles, each of size at least 6.

We reduce from Monotone 1-in-3 SAT (which has
no negated literals) to the problem of deciding whether
G′ admits a (feasible, i.e., using unit-weight edges only)
C6×-cover. Recall that edge weights in G′ are 1 or 2,
and that each dummy node’s two edges are weight-1.
Given the boolean formula, we proceed as follows.

For each variable xi, we create a gadget as shown
in Fig. 2a. It consists of a 6-path (pi, di, qi, p

′
i, d
′
i, q
′
i),

whose nodes form two triples {pi, di, qi}, {p′i, d′i, q′i}, plus
an edge (pi, q

′
i) labeled eiT and a pseudoedge labeled eiF .

There will be exactly two feasible ways to cover the
nodes of this gadget in a C6×-cover, with the cycle in-
cluding eTi , corresponding to xi being true, and the one
including eFi , corresponding to false.

For each clause Cj , we create a gadget as shown in
Fig. 2b. It consists of two copies of K4, where each
node uj` in one Kr is connected by a 2-path and dummy

node to a corresponding node vj` in the other. Three

pseudoedges connecting a distinguished node uj0 to the

other three nodes of the same K4 are labeled f j1 , f
j
2 , f

j
3 .

If a feasible C6×-cover, one of these edges will be on
and the other two off, corresponding to a satisfied 1-in-
3 SAT clause.

Definition 3 A pseudoedge is an edge, or the result of
attaching a connection gadget to a pseudoedge.

Finally, to implement the appearance of a variable in
a clause, we use the gadget shown in Fig. 2c, which will
appear in sequence. Applying a connection gadget to
pseudoedges eiF and f j` does the following:

1. the last (rightmost) edge of f j` is split into a 9-path
path via the creation of 8 new nodes (compare eiF
in Figs. 2a, 2c(left), and 2d);

2. f j` ’s edge is replaced with two new edges (labeled
ε1, ε5 in Fig. 2c) incident to two new nodes (com-
pare f j` in Figs. 2b and 2c(left));

3. f j` ’s first new node is connected to eiF ’s first and
seventh new nodes, by a 2-path and an edge, re-
spectively (see Fig. 2c(left)); and

4. f j` ’s second new node is connected to eiF ’s second
and eighth new nodes, by an edge and a 2-path,
respectively (see Fig. 2c(left)).

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

ei
T

ei
F

pi q′
i

(a) Variable gadget for xi. Any feasible C6×-cover
must include pseudoedge eiF xor edge eiT .

f j
1

f j
3

f j
2

uj
1 uj

2 uj
3

uj
4

(b) Clause gadget for Cj . Any feasible C6×-cover
must include exactly one of the three distinguished
pseudoedges f1, f2, f3 (plus one of the unlabeled
dashed edges from the bottom and two of the top).

ei
F

f j
`

ε6 ε5b ε4ε3

ε1 ε5

ε2ε4b

pi qi′

uj
k uj

k′

ei
F = off

f j
` = on

pi qi′

uj
k uj

k′

ei
F = on

f j
` = off

pi qi′

uj
k uj

k′

(c) Connection gadget (left fig.) for an appearance (negated iff v = F) of variable xi in clause Cj . The lower shaded path is a
more detailed view of one of the xi gadget’s pseudoedge eiF (see (a)); the upper shaded path is a more detailed view of one of
the Cj gadget’s three distinguished pseudoedges f j

1 , f
j
2 , f

j
3 (see (b)). We show (see Lemma 8) that there are only two possible

feasible C6×-covers of the gadget, one in which f j
` is on and eiF is off, meaning this connection represents Cj ’s unique true

literal (middle fig.), and one in which f j
` is off and eiF is on, meaning it represents one of Cj ’s two false literals (right fig.).

f j
`

ei
F

pi

uj

uj

f j′

`′uj′
uj′

f j′′

`′′

qi′

uj′′

uj′′

(d) The example eiF shown here is a more detailed view of pseudoedge eiF in variable xi’s gadget (see (a)). An eiF can have
multiple connections (in this example, three), corresponding to appearances of xi’s in different clauses (in this example, an xi
literal appears as the `th literal in clause Cj , and so on; typically j, j′, j′′ will all be distinct); an f j

` has only one connection,
since it indicates what literal the `th literal in clause Cj is. Subscripts of u nodes are omitted for clarity.

Figure 2: Gadgets used in 2-Matching’s hardness proof. Real nodes are shown filled in, dummy nodes unshaded.
Edges that must be used in any feasible solution are shown solid, other edges dashed. eiF and f j1 , f

j
2 , f

j
3 are pseu-

doedges, i.e., schematic representations of paths that connections attach to.

For each variable xi appearing (in some position k ∈
[3]) within a clause Cj , we draw a connection gadget

between xi’s e
i
F and Cj ’s f

j
k . First observe the following,

which can be verified by inspection:

Fact 1 If all pseudoedges eiF and f jk were simply edges,
then a C6×-cover would induce one of two legal states
within any variable Xi’s gadget, with exactly one of
eiF , e

i
T on, and one of three legal states within any clause

Cj’s gadget, with exactly one of f j1 , f
j
2 , f

j
3 on.

Now we show that any C6×-cover will induce one
of two canonical states on each connection gadget (see

Fig. 2c middle and right), each pseudoedge, and each
variable gadget.

Lemma 9 Within any pseudoedge pair (eiF , f
j
k) con-

nected by a connection gadget, a feasible C6×-cover
induces one of only two legal states: one with the
first and last edges (labeled ε1 and ε5, respectively, in
Fig. 2c(left)) within f jk on (“f jk is on”), and the other
with with the first and last edges (labeled ε6 and ε4, re-
spectively, in Fig. 2c(left)) within eiF on (“eiF is on”).

This immediately implies:

30th Canadian Conference on Computational Geometry, 2018

Corollary 1 A feasible C6×-cover induces one of two
canonical states within each variable gadget and one of
three canonical states within each cause gadget.

In a solution where the clause’s edge f jk is on, this
forces eFik to be off, and hence eTik to be on; similarly, it
forces clause Cj ’s other two distinguished pseudoedges
to be off, and hence the variables connected to those
edges to be false. (The clause gadget’s other edges
can be freely used or not, as needed to form a fea-
sible C6×-cover.) Finally, observe that the final con-
structed graph G′ indeed satisfies the required structure
for corresponding to an equivalent instance G of the 2-
Matching problem: every dummy node has exactly two
neighbors (both real), and every real node has exactly
one dummy neighbor.

From the arguments above, we conclude that G′ ad-
mits an all-unit weight C6×-cover iff G admits an all-
unit weight 2-matching iff the underlying boolean for-
mula is satisfiable. Thus we conclude:

Theorem 10 In the special case of metric graphs with
weights 1 and 2, bottleneck 2-Matching is NP-hard to
approximate with factor better than 2 (and min-sum and
min-max 2-Matching are both (strongly) NP-Complete).

4.3 Min-sum/min-max 2-Matching: hardness

By reduction from a special case of Max 1-in-3 SAT,
we can obtain a hardness of approximation result for
the min-sum and min-max objectives. Let Max 1-in-3
SAT-5 denote Max 1-in-3 SAT under the restriction
that each variable appears in at most 5 clauses.

Lampis has shown (implicitly in [14]1) the following:

Lemma 11 There exists a family of Max 1-in-3
SAT-5 instances with 15m clauses and 8.4m variables,
each appearing in at most 5 clauses, for which, for any
ε > 0, it is NP-hard to decide whether the minimum
number of unsatisfiable clauses is at most εm or at least
(0.5− ε)m.

For concreteness, let Min Not-1-in-3 SAT-5 indi-
cate the optimization problem of minimizing the num-
ber of unsatisfied clauses in a 1-in-3 SAT-5 formula.

Now we argue that the same construction used above
provides an approximation-preserving reduction from
Min Not-1-in-3 SAT-5.

Corollary 2 Min-sum and min-max 2-Matching are
both, in the special case of metric graphs with weights 1
and 2, NP-hard to approximate with factor better than
8305/8304 ≈ 1.00012.

1Karpinksi et al. [13] provide a similar construction yielding a
stronger hardness of approximation lower bound for Metric TSP,
but adapting that construction to our present problem actually
leads to a slightly weaker lower bound.

Acknowledgements. This work was supported in part by
NSF award INSPIRE-1547205, and by the Sloan Foundation
via a CUNY Junior Faculty Research Award. We thank Ali
Assapour, Ou Liu, and Elahe Vahdani for useful discussions.

References

[1] M. Andersson, J. Gudmundsson, C. Levcopoulos, and
G. Narasimhan. Balanced partition of minimum spanning
trees. International Journal of Computational Geometry &
Applications, 13(04):303–316, 2003.

[2] E. M. Arkin, A. Banik, P. Carmi, G. Citovsky, S. Jia, M. J.
Katz, T. Mayer, and J. S. B. Mitchell. Network optimization
on partitioned pairs of points. In ISAAC, pages 6:1–6:12,
2017.

[3] B. Bhattacharya, A. Ćustić, A. Rafiey, A. Rafiey, and
V. Sokol. Approximation algorithms for generalized MST
and TSP in grid clusters. In COCOA, pages 110–125. 2015.

[4] N. Christofides. Worst-case analysis of a new heuristic for the
travelling salesman problem. Technical Report 88, Manage-
ment Sciences Research Group, Carnegie-Mellon University,
Pittsburgh, PA, 1976.

[5] G. Cornuejols and W. Pulleyblank. A matching problem
with side conditions. Discrete Mathematics, 29(2):135–159,
1980.

[6] A. Darmann, U. Pferschy, J. Schauer, and G. J. Woeginger.
Paths, trees and matchings under disjunctive constraints.
Discrete Applied Mathematics, 159(16):1726–1735, 2011.

[7] M. E. Dyer and A. M. Frieze. On the complexity of parti-
tioning graphs into connected subgraphs. Discrete Applied
Mathematics, 10(2):139–153, 1985.

[8] H. N. Gabow, S. N. Maheshwari, and L. J. Osterweil. On
two problems in the generation of program test paths. IEEE
Transactions on Software Engineering, (3):227–231, 1976.

[9] M. X. Goemans and D. P. Williamson. A general approx-
imation technique for constrained forest problems. SIAM
Journal on Computing, 24(2):296–317, 1995.

[10] P. Hell and D. G. Kirkpatrick. Packings by cliques and by
finite families of graphs. Discrete Mathematics, 49(1):45–59,
1984.

[11] A. O. Ivanov and A. A. Tuzhilin. The Steiner ratio Gilbert–
Pollak conjecture is still open. Algorithmica, 62(1-2):630–
632, 2012.

[12] M. M. Kanté, C. Laforest, and B. Momege. Trees in graphs
with conflict edges or forbidden transitions. In TAMC, pages
343–354. Springer, 2013.

[13] M. Karpinski, M. Lampis, and R. Schmied. New inapprox-
imability bounds for TSP. Journal of Computer and System
Sciences, 81(8):1665–1677, 2015.

[14] M. Lampis. Improved inapproximability for TSP. In AP-
PROX/RANDOM, pages 243–253. Springer, 2012.

[15] Y.-S. Myung, C.-H. Lee, and D.-W. Tcha. On the generalized
minimum spanning tree problem. Networks, 26(4):231–241,
1995.

[16] T. Öncan, R. Zhang, and A. P. Punnen. The minimum
cost perfect matching problem with conflict pair constraints.
Computers & Operations Research, 40(4):920–930, 2013.

[17] P. C. Pop. New models of the generalized minimum span-
ning tree problem. Journal of Mathematical Modelling and
Algorithms, 3(2):153–166, 2004.

[18] R. Zhang, S. N. Kabadi, and A. P. Punnen. The minimum
spanning tree problem with conflict constraints and its vari-
ations. Discrete Optimization, 8(2):191–205, 2011.

