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Approximate range closest-pair search
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Abstract

The range closest-pair (RCP) problem, as a range-
search version of the classical closest-pair problem, aims
to store a dataset of points in some data structure such
that whenever a query range Q is given, the closest-pair
inside Q can be reported efficiently. This paper studies
an approximate version of the RCP problem in which
the answer pair is allowed to be “approximately” con-
tained in the query range. A general reduction from
the approximate RCP problem to the range-minimum
and range-reporting problems is given, which works for
a general class of query spaces. The reduction is applied
to obtain efficient approximate RCP data structures for
disk queries in R2 and ball queries in higher dimen-
sions. Finally, the paper also shows that for orthogonal
queries, the approximate RCP problem is (asymptoti-
cally) at least as hard as the orthogonal range-minimum
problem.

1 Introduction

The closest-pair problem, as one of the most fundamen-
tal problems in Computational Geomtry, finds many
real-world applications in similarity search and collision
detection, etc. In some scenarios, instead of finding the
global closest-pair, users are interested in computing the
closest-pair inside some specified query range. This re-
sults in the so-called range closest-pair (RCP) problem,
which aims to store a dataset of n points in some data
structure such that whenever a query range Q is given,
the closest-pair inside Q can be reported efficiently. The
RCP problem has been the subject of some recent pa-
pers [1, 4, 5, 6, 7, 9].

Unlike most traditional range-search problems, the
RCP problem is non-decomposable. That is, even if a
query range Q can be written as Q = Q1 ∪Q2, the an-
swer for Q cannot be obtained efficiently from the an-
swers for Q1 and Q2. Due to this non-decomposability,
many traditional range-search techniques are inappli-
cable to the RCP problem, which makes the problem
quite challenging. Even for very simple query types in
R2 (e.g., quadrants, strips, etc.), the RCP problem is
nontrivial. In higher dimensions, it is even not clear
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how to build efficient data structures for answering RCP
queries.

When handling such a difficult range-search problem,
approximation could be helpful. In this paper, we study
an approximate version of the RCP problem, where
the approximation is defined with respect to the query
ranges. Specifically, we allow the returned point-pair to
be approximately (instead of strictly) contained in the
query range Q in the sense that one point of the pair
can be slightly outside Q but still within a small ex-
pansion of Q. For example, consider the disk query in
the plane. Given a query disk Q and an approximation
factor ε > 0 (which is part of the query), the data struc-
ture should return a pair (a, b) of points in the dataset
which satisfies the following conditions:
(i) the distance between a and b is at most the distance
of the closest-pair in Q.
(ii) a ∈ Q and b ∈ (1 + ε)Q, where (1 + ε)Q is the disk
obtained by expanding Q by a factor 1 + ε.
Such an approximation can be useful in many real-world
applications where the underlying data and/or query is
not known precisely anyway. We are interested in how
to build efficient data structures for this kind of approx-
imate RCP search.

1.1 Related work

The RCP problem has received attention in recent years
[1, 4, 5, 6, 7, 9]. The problem was for the first time in-
troduced in the work [6]. The papers [4, 5, 7] mainly
studied the RCP problem in R2 for orthogonal queries,
while the paper [1] considered halfplane queries. Very
recently, the previous results were all improved in [9]. In
the table below, we summarize the best known bounds
for various query types in R2 (Space refers to the space
cost of the data structure and Qtime refers to the query
time). In higher dimensions, the RCP problem is quite
open. To our best knowledge, even in R3, no RCP
data structure with guaranteed worst-case performance
is known currently.

1.2 Our contributions

As mentioned before, in this paper, we study the prob-
lem of building efficient data structures for approximate
RCP search. Throughout the paper, the query ranges
under consideration are always convex bodies (i.e., con-
vex compact subsets) in Rd. Let Q be a collection of
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Query Source Space Qtime
Quadrant [9] O(n) O(log n)

Strip [9] O(n log n) O(log n)

Rectangle [9] O(n log2 n) O(log2 n)
Halfplane [9] O(n) O(log n)

Table 1: Summary of the best known bounds for the
RCP problem in R2.

convex bodies in Rd, called the query space. An approx-
imate Q-RCP data structure built on a dataset S in Rd
can return, for a specified query (Q, ε) where Q ∈ Q is
the query range and ε > 0 is the (user-specified) approx-
imation factor, a pair φ = (a, b) of points in S such that
(i) ‖b − a‖2 is at most the distance of the closest-pair
in S ∩Q and (ii) a ∈ Q, b ∈ (1 + ε)Q, where (1 + ε)Q
is the (1 + ε)-expansion of Q (see Section 2 for a precise
definition).

Our main contribution is a general reduction from
the approximate RCP problem to the range-reporting
and range-minimum problems for the same query space
(Theorem 1). Our reduction works for any query space
Q (consisting of convex bodies) whose elements have
width-diameter ratio lower-bounded by a positive con-
stant (this ratio will be explained Section 2). As con-
crete applications of the reduction, we obtain efficient
approximate RCP data structures for disk queries in
R2 (Corollary 3) and ball queries in higher dimensions
(Corollary 4). These query types have not been con-
sidered in previous work. Finally, we give a hardness
result which shows that, for orthogonal queries, the ap-
proximate RCP problem is (asymptotically) at least as
hard as the orthogonal range-minimum problem (The-
orem 5).

The rest of the paper is organized as follows. Sec-
tion 2 presents some preliminaries. (We suggest the
reader reads this section carefully before moving on.)
The general reduction is given in Section 3, while its
applications are given in Section 4. In Section 5, we
present the hardness result.

2 Preliminaries

Point-pairs and closest-pair. For a pair φ = (a, b) of
points in Rd, the length of φ, denoted by |φ|, is referred
to the distance between a and b, i.e., |φ| = ‖a−b‖2. The
closest-pair (in a set of points) is the pair of (distinct)
points with minimum length. For a point-set S, we
denote by κ(S) the closest-pair distance of S, i.e., the
length of the closest-pair in S.

Slabs. A slab in Rd is a closed region bounded by two
distinct parallel hyperplanes in Rd. The thickness of a
slab L, denoted by thk(L), is the distance between its
two bounding hyperplanes. Note that for any slab in Rd,
we can always write the equations of its two bounding

hyperplanes as
∑d
i=1 aixi+b = −1 and

∑d
i=1 aixi+b =

1 for some a1, . . . , ad, b ∈ R.

Diameter, width, and directional width. Let X
be a convex body in Rd, and LX be the collection of all
minimal (with respect to the partial order of “⊆”) slabs
enclosing X. For a unit vector u in Rd, the directional
width of X in the direction u, denoted by widu(X), is
defined as

widu(X) = sup
x∈X
〈u, x〉 − inf

x∈X
〈u, x〉,

where 〈·, ·〉 denotes the inner product. Equivalently,
widu(X) is the thickness of the slab L ∈ LX whose
two bounding hyperplanes are perpendicular to u. The
diameter diam(X) of X is defined as diam(X) =
supu(widu(X)) for u taken over all unit vectors in Rd,
while the width wid(X) of X is defined as wid(X) =
infu(widu(X)). Equivalently, we can also define the
diameter and width as diam(X) = supL∈LX

(thk(L))
and wid(X) = infL∈LX

(thk(L)). The width-diameter
ratio of X, denoted by γ(X), is defined as γ(X) =
wid(X)/diam(X). If X is a collection of convex bod-
ies in Rd, we define the width-diameter ratio of X as
γ(X ) = infX∈X γ(X).

Expansion of a convex body. In order to introduce
our result, we need to formally define what we mean
by “expanding” a convex body. Let X be a convex
body in Rd. If X is a ball, then expanding X (by a
factor δ ≥ 1) can be simply defined as scaling X with
respect to the center of X by a factor of δ. This defi-
nition can be naturally generalized to a general convex
body as follows. For a slab L bounded by two hyper-
planes

∑d
i=1 aixi + b = −1 and

∑d
i=1 aixi + b = 1,

we define the δ-expansion of L (for δ ≥ 1), denoted
by δL, as the slab bounded by the two hyperplanes∑d
i=1 aixi + b = −δ and

∑d
i=1 aixi + b = δ. Let LX be

the collection of all minimal (with respect to the partial
order of “⊆”) slabs enclosing X. Then we define the
δ-expansion of X, denoted by δX, as δX =

⋂
L∈LX

δL.
Under this definition, the 1-expansion of X is X itself
(since X =

⋂
L∈LX

L). Furthermore, as one can easily
verify, widu(δX) = δwidu(X) for any unit vector u.

3 A general reduction

Let Q be a collection of convex bodies in Rd. Recall
that an approximate Q-RCP data structure built on a
dataset S in Rd can return, for a specified query (Q, ε)
where Q ∈ Q is the query range and ε > 0 is the ap-
proximation factor, a pair φ = (a, b) of points in S such
that (i) ‖b−a‖2 ≤ κ(S∩Q) and (ii) a ∈ Q, b ∈ (1+ε)Q.
Note that here ε is specified in the query and needs not
to be known beforehand.

Our main result is a reduction from the approxi-
mate RCP problem to the range-reporting and range-
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minimum problems for the same query space. This re-
duction works for any query space Q (consisting of con-
vex bodies) satisfying γ(Q) > 0.

Theorem 1 Let Q be a fixed collection of convex bod-
ies in Rd satisfying γ(Q) > 0. Given a range-minimum
data structure D1 and a range-reporting data structure
D2 for query space Q, one can build an approximate Q-
RCP data structure D such that
• If the space of D1 is s1(n) and the space of D2 is s2(n),
then the space of D is O(s1(n) + s2(n)).
• If the query time of D1 is q1(n) and the query time of
D2 is q2(n, k) where k is the number of points to be re-
ported, then the query time of D is O(q1(n)+q2(n, ε−d)+
ε−d log(1/ε)) where ε is the parameter specified in the
query.
• If the preprocessing time of D1 is p1(n) and the pre-
processing time of D2 is p2(n), then the preprocessing
time of D is O(p1(n) + p2(n) + n log n).

The rest of this section is dedicated to proving the
above result. To this end, we first describe the con-
struction of the desired data structure in Theorem 1,
and then analyze its space, query time, and preprocess-
ing time. Let S be the given dataset in Rd of size n. We
want to build an approximate Q-RCP data structure D
on S, given the range-minimum data structure D1 and
the range-reporting data structure D2.

Data structure. For a point a ∈ S, let nn(a) ∈ S
denote the nearest neighbor of a in S\{a}. We associate
the information of nn(a) with the point a for all a ∈ S.
Define a weight function w : S → R as w(a) = ‖nn(a)−
a‖2. This gives us a weighted dataset S = (S,w). We
build on S the range-minimum data structure D1. Also,
we build on S the range-reporting data structure D2.
Then our approximate Q-RCP data structure D (built
on S) simply consists of D1 and D2.

Query algorithm. Let (Q, ε) be a query, where Q ∈ Q
is the query range and ε > 0 is the approximation fac-
tor. Our query algorithm consists of two phases. In the
first phase, we use the range-minimum data structure
D1 to find the point a∗ ∈ S ∩ Q with the minimum
weight. If w(a∗) ≤ εwid(Q), then we report the pair
(a∗, nn(a∗)) and terminate the query process. Other-
wise, we proceed to the second phase. In the second
phase, we use the range-reporting data structure D2 to
report all the points in S ∩ Q. Then we simply run
the standard divide-and-conquer closest-pair algorithm
on S ∩ Q to find the closest-pair and report it as the
answer.

Correctness. Let φ be the answer returned by our
query algorithm. If φ is reported in the second phase,
then it is in fact the closest-pair in S ∩ Q and hence
our algorithm is clearly correct (as |φ| = κ(S ∩Q) and
both points of φ are contained in Q). Suppose φ is re-
ported in the first phase. Then φ = (a∗, nn(a∗)) where

a∗ is the point in S ∩ Q with the minimum weight.
Assume (s, t) is the closest-pair in S ∩ Q. We see
‖nn(a∗) − a∗‖2 = w(a∗) ≤ w(s) = ‖nn(s) − s‖2 ≤
‖t − s‖2 = κ(S ∩ Q). Next, we show that a∗ ∈ Q
and nn(a∗) ∈ (1 + ε)Q, whence the correctness of our
algorithm is verified. We have a∗ ∈ Q by the def-
inition of a∗. To see nn(a∗) ∈ (1 + ε)Q, let L be
any minimal (with respect to the partial order of “⊆”)
slab enclosing Q. The thickness thk(L) of L is at
least wid(Q). Furthermore, we have dist(nn(a∗), L) ≤
dist(nn(a∗), Q) ≤ ‖nn(a∗)− a∗‖2 ≤ εwid(Q) ≤ εthk(L),
where dist(nn(a∗), L) (resp., dist(nn(a∗), Q)) denotes
the minimum distance between nn(a∗) and a point in
L (resp., Q), which is zero when nn(a∗) ∈ L (resp.,
nn(a∗) ∈ Q). Hence, we have nn(a∗) ∈ (1 + ε)L, which
implies nn(a∗) ∈ (1 + ε)Q (as the slab L is arbitrarily
chosen). See Figure 1 for an intuitive illustration. Since
‖nn(a∗)−a∗‖2 ≤ κ(S∩Q) and a∗ ∈ Q, nn(a∗) ∈ (1+ε)Q,
our algorithm is correct.

Q

a∗

nn(a∗)

L

(1 + ε)L

Figure 1: nn(a∗) ∈ (1 + ε)L because ‖nn(a∗) − a∗‖2 ≤
εwid(Q) ≤ εthk(L).

Analysis. We now show that the space, query time,
and preprocessing time of our data structure D sat-
isfy the requirements in Theorem 1. The space of D
is clearly O(s1(n) + s2(n)), as it just consists of D1 and
D2. To analyze the query time of D, we observe that
there are not too many points reported in the second
phase.

Lemma 2 The number of the points reported in the sec-
ond phase is bounded by O(ε−d).

Proof. Recall that in the query algorithm, we proceed
to the second phase only if w(a∗) > εwid(Q). Since a∗

is the point in S∩Q with the minimum weight, we have
w(a) > εwid(Q) for all a ∈ S ∩ Q, i.e., ‖nn(a) − a‖2 >
εwid(Q) for all a ∈ S ∩ Q. It follows that ‖b − a‖2 >
εwid(Q) for any a, b ∈ S ∩ Q unless a = b. Now we
can show |S∩Q| = O(ε−d) using the Pigeonhole Princi-
ple. Indeed, diam(Q) = wid(Q)/γ(Q) ≤ wid(Q)/γ(Q),
hence ‖b − a‖2 ≤ diam(Q) ≤ wid(Q)/γ(Q) for any
a, b ∈ S ∩Q. So there exists a hyper-cube of side-length
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wid(Q)/γ(Q) that contains S ∩ Q. Because the pair-
wise distances of the points in S ∩ Q are greater than
εwid(Q), we have |S ∩ Q| = O((γ(Q) · ε)−d) = O(ε−d)
by the Pigeonhole Principle. (The Pigeonhole Principle
implies that a set of points in a hyper-cube with side-
length α whose pairwise distances are greater than β
has size O((α/β)d).) �

The time cost of the first phase is O(q1(n)). By
Lemma 2, the time cost for range reporting in the second
phase is O(q2(n, ε−d)). The standard closest-pair algo-
rithm on m points runs in O(m logm) time, therefore
to compute the closest-pair among the reported points
takes O(ε−d log(1/ε)) time. Thus, the total query time
of D is O(q1(n) + q2(n, ε−d) + ε−d log(1/ε)). Finally, we
analyze the preprocessing time of D. To build D, we
need to compute nn(a) for all a ∈ S. This can be done
using the well-known all-nearest-neighbor algorithm [3],
which takes O(n log n) time. After all nn(a) are com-
puted, we build D1 and D2 directly. Thus, the overall
preprocessing time is O(p1(n) + p2(n) + n log n). This
completes the proof of Theorem 1.

Discussion. We now briefly discuss which kinds of
concrete query spaces our reduction is applicable to.
The condition in Theorem 1 for the query space Q is
γ(Q) > 0. If Q is the collection of all balls in Rd (e.g.,
all disks in R2), then γ(Q) = 1, and our reduction is ap-
plicable; we will discuss this in detail in the next section.
More generally, let C be a convex body with nonempty
interior in Rd called base shape (note that γ(C) > 0
in this case). Define QC as the collection of all con-
vex bodies that can be obtained by applying rotation,
isotropic scaling, and translation on the base shape C.
Then γ(QC) = γ(C) > 0, and our reduction is applica-
ble. We remark that our reduction is inapplicable to the
axis-parallel box query, since γ(B) = 0 where B is the
collection of all axis-parallel boxes in Rd (indeed, the
width-diameter ratio of a box can be arbitrarily small).
However, if we consider a sub-collection Bη ⊆ B con-
sisting of the boxes in which the ratio of the length of
the shortest edge to the length of the longest edge is at
least η (where η > 0), then γ(Bη) ≥ η/

√
d > 0, and our

reduction is applicable.

4 Applications

In this section, we apply our general reduction to some
specific query spaces to build efficient approximate RCP
data structures.

First, we consider the disk query. Let O be the col-
lection of all disks in R2. Clearly γ(O) = 1 and thus
the reduction in Section 3 applies to the query space
O. Therefore, to build an approximate O-RCP data
structure, it suffices to have the disk range-minimum
and range-reporting data structures. It is well-known
that the disk range-minimum (resp., range-reporting)

problem can be reduced (via lifting) to the halfspace
range-minimum (resp., range-reporting) problem in R3.
Halfspace range-reporting in R3 can be solved optimally
(i.e., with O(n) space, O(log n + k) query time, and
O(n log n) preprocessing time), using the data struc-
ture given in [2]. Note that this data structure can also
be used to answer halfspace range-emptiness queries in
O(log n) time (i.e., decide whether a given halfspace
contains no points in the dataset). By taking advan-
tage of this range-emptiness data structure, we can eas-
ily build in O(n log2 n) time a halfspace range-minimum
data structure in R3 withO(n log n) space andO(log2 n)
query time; we defer the details to Section 4.1. As such,
Theorem 1 implies the following corollary.

Corollary 3 There exists an approximate O-RCP
data structure with O(n log n) space and O(log2 n +
ε−2 log(1/ε)) query time, which can be built in
O(n log2 n) time.

More generally, we consider the ball query in Rd.
Let Od be the collection of all disks in Rd where
d ≥ 3. Again, we have γ(Od) = 1 and thus the re-
duction in Section 3 works. Similar to the disk case,
the range-minimum (resp., range-reporting) problem for
query space Od can be reduced to the halfspace range-
minimum (resp., range-reporting) problem in Rd+1. By
reducing the halfspace range-minimum problem to the
halfspace range-emptiness problem, we can obtain a
halfspace range-minimum data structure in Rd+1 with
O(ndd/2e) space and O(log2 n) query time; we defer the
details to Section 4.1. The halfspace range-reporting
in Rd+1 can be solved with O(ndd/2e logc n) space and
O(log n+k) query time [8], where c is a sufficiently large
constant. Therefore, Theorem 1 implies the following
corollary.

Corollary 4 There exists an approximate Od-
RCP data structure with O(ndd/2e logc n) space and
O(log2 n+ ε−d log(1/ε)) query time.

While our reduction can be applied to obtain effi-
cient approximate RCP data structures for disk and ball
queries, it is unfortunately inapplicable to orthogonal
queries (i.e., axis-parallel box queries). In Section 5, we
will consider the approximate RCP problem for orthog-
onal queries and show that it is (asymptotically) at least
as hard as the orthogonal range-minimum problem.

4.1 Halfspace range-minimum data structures

We show how to solve the halfspace range-minimum
problem via halfspace range-emptiness queries. Sup-
pose there is a halfspace range-emptiness data struc-
ture D0 in Rd, whose space is s0(n), query time is
q0(n), and preprocessing time is p0(n). We build a half-
space range-minimum data structure D in Rd as follows.
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Let S = (S,w) be a weighted dataset in Rd. Assume
S = {a1, . . . , an} where w(a1) ≤ · · · ≤ w(an). The
data structure D built on S, denoted by D(S), is con-
structed recursively. If n = 1, then D(S) is the triv-
ial data structure. Otherwise, let S1 = {a1, . . . , an/2}
and S2 = {an/2+1, . . . , an}. We recursively build D(S1)
and D(S2), where Si = (Si, w|Si

) (w|Si
denotes the re-

striction of the weight function w to Si). Furthermore,
we build the halfspace range-emptiness data structure
D0(S1). Then D(S) is the combination of D(S1), D(S2),
and D0(S1). If we write the space of D as s(n) and
the preprocessing time (excluding the time for sort-
ing the points by their weights) of D as p(n), we have
the recurrences s(n) = 2s(n/2) + s0(n/2) and p(n) =
2p(n/2) + p0(n/2).

To answer a halfspace range-minimum query H using
D(S), we first query D0(S1) to see whether S1 ∩ H is
empty. If S1 ∩H is nonempty, then the answer should
be some point in S1, and thus we can recursively query
D(S1) to find it. If S1 ∩H is empty, the answer should
be in S2, and we can query D(S2) to find it. If we write
the query time of D as q(n), we have the recurrence
q(n) = q(n/2) + q0(n/2).

In R3, the optimal halfspace range-reporting data
structure [2] gives us a halfspace range-emptiness data
structure with s0(n) = O(n) space, q0(n) = O(log n)
query time, and p0(n) = O(n log n) preprocessing time.
Thus the above recurrences solve to s(n) = O(n log n),
q(n) = O(log2 n), and p(n) = O(n log2 n).

In Rd+1 for d ≥ 3, there exists a halfspace range-
emptiness data structure with s0(n) = O(ndd/2e) space
and q0(n) = O(log n) query time [8]. Thus the above
recurrences solve to s(n) = O(ndd/2e) and q(n) =
O(log2 n).

5 Hardness result for orthogonal queries

In this section, we show that, for orthogonal queries, the
approximate RCP data structure is (asymptotically) at
least as hard as the range-minimum problem. We use
B to denote the collection of all axis-parallel boxes in
Rd. An orthogonal range-minimum (resp., RCP) data
structure in Rd refers to a range-minimum (resp., RCP)
data structure for query space B.

Theorem 5 Given an approximate orthogonal RCP
data structure D0 in Rd, one can build an orthogonal
range-minimum data structure D in Rd such that
• If the space of D0 is s(n), then the space of D is
O(s(2n) + n).
• If the query time of D0 is q(n, ε), then the query time
of D is O(q(2n, 1) + log n).
• If the preprocessing time of D0 is p(n), then the pre-
processing time of D is O(p(2n) + n log n).

Proof. Let S = (S,w) be a weighted dataset in Rd
of size n. We show how to build the desired orthog-

onal range-minimum data structure D on S, with D0

in hand. Suppose S = {a1, . . . , an}. For convenience,
assume a1, . . . , an have distinct coordinates in each di-
mension and have distinct weights. We keep d sorted
lists Γ1, . . . , Γd of {a1, . . . , an}, where Γj is sorted by
the j-th coordinates of the points. For i ∈ {1, . . . , n}
and j ∈ {1, . . . , d}, we write ti,j as the rank of the j-th
coordinate of ai in S, i.e., ti,j = k if the index of ai in Γj
is k. Set α = 1/(100

√
d). Define for each i ∈ {1, . . . , n}

a hypercube Ci =
∏d
j=1[ti,j , ti,j + α]. We now choose

2n points b1, . . . , bn, b
′
1, . . . , b

′
n such that (i) bi, b

′
i ∈ Ci

for all i ∈ {1, . . . , n} and (ii) ‖bi − b′i‖2 < ‖bj − b′j‖2
if w(ai) < w(aj). See Figure 2 for an intuitive il-
lustration. Our construction above guarantees that
‖bi − b′i‖2 ≤ 1/100 for all i ∈ {1, . . . , n}. Furthermore,
for distinct i, j ∈ {1, . . . , n}, the distance between a
point in Ci and a point in Cj is at least 0.5. We let
S′ = {b1, . . . , bn, b′1, . . . , b′n}, and build the orthogonal
RCP data structure D0 on S′. Then the desired data
structure D is just D0 and the sorted lists Γ1, . . . , Γd.

a2

a1

a3

a4

C2

C1

C4

C3

w = 3

w = 9

w = 6

w = 4

Figure 2: Illustration of the hyper-cubes C1, . . . , Cn.
The two points contained in each Ci are bi and b′i.

To answer an orthogonal range-minimum query Q =∏d
j=1[pj , qj ] on S using D, we first create another box

Q′ as follows. For all j ∈ {1, . . . , d}, let Lj be the slab
bounded by the two hyperplanes xj = pj and xj = qj ,
and define uj = min{ti,j : ai ∈ Lj} and vj = max{ti,j :

ai ∈ Lj}. Then we set Q′ =
∏d
j=1[uj , vj+α], and query

the data structure D0 with (Q′, ε) for ε = 1. (Actually,
any ε > 0 works here.) Let φ be the pair returned by D0.
Assume that ak is the point in S∩Q with the minimum
weight, i.e., the answer to the range-minimum query Q.
We claim that φ = (bk, b

′
k). By the construction of Q′,

for all i ∈ {1, . . . , n}, bi, b′i ∈ Q′ if ai ∈ Q and bi, b
′
i /∈

Q′ otherwise. Therefore, according to the locations of
b1, . . . , bn, b

′
1, . . . , b

′
n, we observe that (i) the closest-pair

in S′∩Q′ is (bk, b
′
k) and (ii) the distance between a point

in S′ ∩ Q′ and a point in S′\(S′ ∩ Q′) is at least 0.5
(as the two points must be contained in different Ci’s).
Note that ‖bk − b′k‖2 ≤

√
dα = 1/100. It follows that

‖bk−b′k‖2 < ‖f−g‖2 for any distinct points f ∈ S′∩Q′
and g ∈ S′. Since |φ| ≤ ‖bk − b′k‖2 and one point of φ
must be contained in Q′, we have φ = (bk, b

′
k). As such,
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with φ in hand, we can know ak and answer the query
Q.

Now we analyze the performance ofD. The space ofD
is clearly O(s(2n)+n), as it consists of D0 and the sorted
lists Γ1, . . . , Γd. The query time of D consists of the time
for constructing Q′ and querying D0. To construct Q′, it
suffices to compute u1, . . . , ud, v1, . . . , vd, which can be
done in O(log n) time using binary search in Γ1, . . . , Γd.
Querying D0 takes O(q(2n, 1)) time. Thus the query
time of D is O(q(2n, 1) + log n). The preprocessing of
D can be done in O(p(2n) + n log n) time. Indeed, we
use O(n log n) time to create the sorted lists Γ1, . . . , Γd.
With the lists in hand, we can compute ti,j and S′ in
linear time. Finally, constructing D0 takes O(p(2n))
time. �

Theorem 5 implies that for orthogonal query ranges,
the range minimum problem is (asymptotically) no
harder than the approximate RCP problem considered
here (or equivalently, the approximate RCP problem is
asymptotically at least as hard as the range minimum
problem), assuming that s(n) is Ω(n), p(n) is Ω(n log n),
and the part of q(n, ε) that depends on n is Ω(log n).

6 Conclusion and future work

In this paper, we studied an approximate version of the
RCP problem in which one point of the answer pair is
allowed to be slightly outside the query range. We gave
a general reduction from the approximate RCP prob-
lem to the range-minimum and range-reporting prob-
lems, which works for any query space consisting of con-
vex bodies whose width-diameter ratio is lower bounded
by a positive constant. By applying our reduction,
we obtained efficient approximate RCP data structures
for disk and ball queries. Finally, we showed that
the approximate RCP problem for orthogonal queries
is (asymptotically) at least as hard as the orthogonal
range-minimum problem.

Next, we raise an open question for future work. The
approximation used in this paper is with respect to the
query range. Perhaps, the most natural approximation
model is with respect to the quality of the answer. That
is, for a specified query range Q, we want to report
a (1 + ε)-approximate closest-pair in Q, i.e., a pair of
points (strictly contained in Q) whose distance is at
most (1+ε)·κ(S∩Q). How to design efficient RCP data
structures for this approximation model is an interesting
direction for future study.
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