
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Time-Dependent Shortest Path Queries Among Growing Discs

Anil Maheshwari∗ Arash Nouri∗ Jörg-Rüdiger Sack∗

Abstract

The determination of time-dependent collision-free short-
est paths has received a fair amount of attention. Here,
we study the problem of computing a time-dependent
shortest path among growing discs which has been previ-
ously studied for the instance where the departure times
are fixed. We address a more general setting: For two
given points s and d, we wish to determine the function
A(t) which is the minimum arrival time at d for any de-
parture time t at s. We present a (1 + ε)-approximation
algorithm for computing A(t).

As part of preprocessing, we execute O(1ε log(
Vr

Vc
))

shortest path computations for fixed departure times,
where Vr is the maximum speed of the robot and Vc is
the minimum growth rate of the discs. For any query
departure time t ≥ 0 from s, we can approximate the
minimum arrival time at the destination in O(log(1ε) +

log log(Vr

Vc
)) time, within a factor of 1 + ε of optimal.

Since we treat the shortest path computations as black-
box functions, for different settings of growing discs, we
can plug-in different shortest path algorithms. Thus, the
exact time complexity of our algorithm is determined by
the running time of the shortest path computations.

1 Introduction

An algorithmic challenge in robotics arises when a point
object (modeling a robot, person or vehicle) is operat-
ing among moving entities or obstacles, e.g., settings
in which a point object needs to avoid encountering in-
dividuals who are moving from known locations, with
known speeds, but in unknown directions. This uncer-
tainty can be modeled by discs, whose radii grow over
time. Therefore, the task of computing a shortest path
avoiding these individuals reduces to computing shortest
path among growing discs. This particular motivation
arose, e.g., in video games [1].

Given are a set of growing discs C = {C1, ..., Cn}
(the obstacles), a point robot R with maximum speed
Vr, a source point s and a destination point d, located
on the plane. The radii of the discs are growing with
the same constant speed V ∈ (0,Vr). The shortest
path among growing discs (SPGD) problem is to find a
shortest path from s to d, such that the robot leaves the

∗School of Computer Science, Carleton University,
{anil,arash,sack}@scs.carleton.ca

source immediately (i.e., at time t = 0) and does not
intersect the interior of the discs, to reach d as quickly as
possible. Yi [2] showed that this problem can be solved
in O(n2 log n) time.

In this paper, we study the time-dependent version
of the SPGD problem, where the departure time is a
variable. The objective is to find the minimum arrival
time function A(t), defined as the earliest time when the
robot can arrive at destination d such that: (1) R leaves
s at time t, (2) R does not intersect the interior of the
discs after the departure. We refer to this problem as
the time-dependent shortest path among growing discs
(TDSP) problem.

Related results. The SPGD problem has been stud-
ied in different settings. Overmars et al. studied this
problem in the setting where the discs are growing with
equal constant speed. They presented an O(n3 log n)
time algorithm, where n is the number of discs. This re-
sult was improved by Yi [2] who showed that the shortest
path among the same-speed growing discs can be found
in O(n2 log n) time. Yi also presented an O(n3 log n)
time algorithm for the case where the discs are grow-
ing with different speeds. Nouri and Sack [3] studied
a general version of this problem where the speeds are
polynomial functions of time.

Time-dependent shortest path problems have been
studied in network settings (see [4, 5, 6]). A network
is a graph G = (V,E) with edge set E and node set V .
Each edge e ∈ E is assigned with a real valued weight.
Given a source node s ∈ V and a destination node d ∈ V ,
a shortest path from s to d is a path in G, where the
sum of the weights of its constituent edges is minimized.
However, in many applications, the weight of the edges
are dynamically changing over time. In such situations,
the total weight of a path depends on the departure
time at its source. The problem of computing shortest
paths from s to d for all possible departure times at s
is known as the time-dependent shortest path problem.
The general shortest path problem on time-dependent
networks has been proven to be NP-Hard [7]. However,
there are several approximation algorithms (see [8, 5, 6]),
which are of interest in real-world applications [9].

Contribution. We say an approximation function
A(t, ε) is a (1 + ε)-approximation for function A(t)
if A(t) ≤ A(t, ε) ≤ (1 + ε)A(t) for all positive val-
ues of t. Here, our contribution is to compute a
(1+ ε)-approximation for the minimum arrival time func-
tion A(t). The preprocessing step of our algorithm exe-

30th Canadian Conference on Computational Geometry, 2018

cutes O(1ε log(
Vr

Vc
)) time-minimal path computations for

fixed departure times, where Vr is the maximum speed
of the robot and Vc is the minimum growth rate of the
discs. Then, for a given query departure time t ≥ 0 from
s, we can report the minimum arrival time at the desti-
nation in O(log(1ε) + log log(Vr

Vc
)) time, within a factor

of 1 + ε of optimal. We first start with a simple version
of the problem, where all discs are growing with speed
Vc. In this setting, each time-minimal path computation
runs in O(n2 log n) time [2]. Our algorithm runs the
shortest path computations as a black-box and its time
complexity is determined by the number of such calls.
This enables us to extend our algorithm for different set-
tings of growing discs [2, 10], by plugging-in appropriate
shortest path algorithms.

In Section 3, we establish several properties of the
arrival time function. These properties allow us to work
with arrival time functions instead of a more indirect
approach of using the travel time, which has been uti-
lized in previous work. We show that A(t) is the lower
envelope of a set of curves called the arrival time func-
tions. The algorithm’s output size is denoted by FA and
counts the number of pieces (i.e. the sub-arcs) on the
lower envelope needed to represent the function A(t). In
Section 3.1, we establish a lower bound for FA. This
lower bound, along with the complexity of computing
the lower envelope, provides the motivation to study the
approximation algorithm in the first place.

In Section 4, we define the reverse shortest path prob-
lem, in which we are to find a path from the destination
to the source. Existing algorithms for the time dependent
shortest paths utilize the reverse shortest path compu-
tations. These computations were done by a reversal of
Dijkstra’s algorithm [11, 5]. Here, we need to generalize
the existing shortest path computations for growing discs
[2] to shortest path computations for shrinking discs.

2 Preliminaries

2.1 Time-minimal paths among growing discs

A robot-path is a path in the plane that connects the
source point s to the destination point d. The time at
which the robot departs s is called the departure time
and the time it arrives at d is the arrival time. We call
a path λ valid (or collision-free) if it does not intersect
any of the discs in C ; otherwise, λ is invalid. For a
fixed departure time, a time-minimal path is a valid
robot-path, where the arrival time is minimized over all
valid paths.

It is proven that on any time-minimal path, the point
robot always moves with maximal velocity of Vr [1]. It is
shown in [3, 12] that any time-minimal path from s to d
is solely composed of two types of alternating sub-paths:
(1) tangent paths: straight line paths that are tangent
to pairs of discs, and (2) spiral paths: logarithmic

spiral paths that each lies on a boundary of the growing
disc. We describe these two paths in the following.

For any pair of discs Ci and Cj , we define four tangent
paths corresponding to their tangent lines: right-right,
right-left, left-right and left-left tangents, denoted by
`rrij , `rlij , `rlij and `llij (see Figure 4). Each tangent path
−→
`rrij (τ) = pq represents a straight line robot-path from
a point p on the boundary of Ci to a point q on the
boundary of Cj . The two points p and q are called
Steiner points. A spiral path −→σ = Ùpq, represents the
trace of the robot’s move, over time, from p to q, where
p, q ∈ ∂Ci are two “consecutive” Steiner points (see
Figure 4 (a)). Note that the length of these paths are
changing over time. If the robot leaves p at time τ , then
it arrives at q at time τ̂ , where τ < τ̂ . Observe that there
exist O(n2) (moving) tangent/spiral paths and O(n2)
(moving) Steiner points.

To simplify our exposition, we let the two points s
and d be two discs with zero radii and zero velocities
and add them to C . Let E be the set of all spiral and
tangent paths. Let S be the set of all Steiner points.
We construct a directed adjacency graph G = (Vs, Es)
as follows. With each Steiner point v ∈ S we associate
a unique vertex, v̇, in Vs. Then, with each path −→uv ∈ E
we associate a unique edge −→̇

uv̇ in Es. The weight of each
edge in G is the length of its corresponding tangent or
spiral path, which is a function of time. Since each edge
in Es is associated with a path in E , therefore, each path
in the graph G is associated with a sequence of paths in
E .

Yi [2] showed that by running Dijkstra’s algorithm on
the adjacency graph, the SPGD problem can be solved
in O(n2 log n) time. The main steps of this algorithm
are as follows:

(i) Identify the Steiner points, tangent paths and spiral
paths (i.e., the sets S and E).

(ii) Construct the adjacency graph G = (Vs, Es).

(iii) Run Dijkstra’s algorithm to find a time-minimal
path between s, d ∈ Vs.

In our approximation algorithm, we use the above
algorithm as a black-box. The input to this algorithm is
a set of growing discs and a departure time τ . The output
is a shortest path between s and d in the adjacency graph,
denoted by π(s, d, τ).

2.2 Minimum time-dependent arrival time

Let P be the set of all paths between s and d, in the
adjacency graph G. Let π ∈ P and τ be a departure
time at s. Recall that there exists a unique geometric
path corresponding to the pair (π, τ). For instance,
Figure 5 shows the geometric paths corresponding to a

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Aπ4
(t)

Aπ1
(t)

Aπ3
(t)

Aπ2
(t)

Tmax

Arrival Time

Departure Time

Figure 1: This figure represents the arrival curves cor-
responding to the time-minimal paths in Figure 5. The
dotted curve (the lower envelope) represents the mini-
mum arrival time function A(t).

set of paths {π1, π2, π3, π4} at three different departure
times.

For a given path π ∈ P, let the arrival time func-
tion Aπ(t) represents the arrival time of the robot-path
corresponding to π when the departure time is t. Let
A = {Aπ(t)|π ∈ P} be the arrival time function cor-
responding to the paths in P. The lower envelope of
the set A , denoted by A(t), is defined as the point-wise
minimum of all the arrival functions in A . The lower
envelope is formally defined as:

A(t) = min
π∈P

Aπ(t)

where Aπ(t) = Aπ(t) if π is a valid path and Aπ(t) =
∞, otherwise. We call A(t) the minimum arrival time
function, which is found via finding the lower envelope of
the arrival functions in A . We also refer to the minimum
arrival time functions as arrival curves.

Figure 1 depicts the arrival functions corresponding to
the paths in Figure 5. A(t) is found as the lower envelope
of the arrival functions {Aπ1(t),Aπ2(t),Aπ3(t),Aπ4(t)}.
Observe that after a certain time, the destination point
will be contained in some disc. We denote this time by
Tmax. Since there exists no valid path from s to d after
Tmax, for any t > Tmax we have A(t) = ∞. Observe
that the lower envelope is composed of sub-arcs of arrival
curves in A . A sub-arc is a maximal connected piece of
an arrival curve on the lower envelope.

3 Properties of A(t)

In this section, we define some properties of the minimum
arrival time function. First, we show that A(t) is an
increasing function. If the robot is allowed to move
with any speed lower than Vr, then the below lemma is

π
0(t1)

π(t0)s

d

Figure 2: This figure illustrates two time-minimal paths
for two departure times t0 and t1, where t1 > t0. For
the sake of simplicity, we assumed that the speed of the
robot is considerably higher than the growth rates of
the discs (V � Vr).

straightforward (the later it departs from the source the
later it arrives at the destination). However, we assumed
that the robot moves with maximum speed at all time
and only uses tangent and/or spiral paths. Thus, the
following proof is necessary.

Lemma 1 A(t) is an increasing function.

Proof. Let π(t0) and π′(t1) be any two time-minimal
robot-paths between s and d, corresponding to two
departure times t0 and t1, where t0 < t1 (see Figure
2). We prove that Aπ(t0) < Aπ′(t1) and consequently
A(t0) < A(t1).

Let Tπ′(t1) = Aπ′(t1)− t1 be the travel time for the
path π′(t1). Similarly, let Tπ(t0) = Aπ(t0) − t0. By
contradiction, we assume Aπ′(t1) ≤ Aπ(t0). Then:

Tπ′(t1) + t1 ≤ Tπ(t0) + t0
t0<t1⇒ Tπ′(t1) < Tπ(t0)

Therefore, π(t0) is a longer robot-path than π′(t1). Since
the discs are continuously growing, the free space is
shrinking simultaneously. Thus, if π′(t1) is a valid robot-
path, it is also valid for any departure time before t1.
As illustrated in Figure 2, π′(t1) is a valid path when
the robot leaves s at time t0.

Since |π′(t1)|< |π(t0)| and π′(t1) is a valid robot-path
when the robot departs s at time t0, this contradicts the
fact that Aπ′(t1) ≤ Aπ(t0). �

Define |sd| as the Euclidean distance between the
source and the destination. Recall that Vr is the maxi-
mum speed of the robot, and Vc is the minimum growth
rate among the discs in C .

Let
−→
sd be a tangent path from s to d. For a given

departure time t, if
−→
sd(t) is not obstructed by any disc,

then the calculation of A(t) is straightforward. Thus, we
are interested in computing A(t) when

−→
sd(t) is invalid,

30th Canadian Conference on Computational Geometry, 2018

i.e.,
−→
sd(t) is intersected by a disc for any departure time

t. With the above assumption, we have the following
lemma which states the upper and the lower bound on
A(t).

Lemma 2 Let τ be a departure time, where A(τ) is
defined (i.e., A(τ) < ∞). Then,

(i) A(τ) ≥ |sd|
Vr

(ii) A(τ) ≤ |sd|
Vc

Proof. (i) Let λ1 be a valid time-minimal robot-path
from s to d with departure time 0. It is observed that
the length of λ1 is greater or equal to |sd|. Thus, |sd|

Vr
≤

A(0). By Lemma 1, we have A(0) ≤ A(τ). Therefore,
|sd|
Vr

≤ A(τ).
(ii) Let λ2 be the straight line (invalid) robot-path

from s to d, which is obstructed by the disc C ∈ C . Let
the robot depart s at time τ and move along the path λ2

with speed Vr, until it arrives at the boundary of C at
point q. Note that the robot arrives at q at time τ + |sq|

Vr
.

Let x be the shortest Euclidean distance between d and
the boundary of C at time τ + |sq|

Vr
. If C encloses d at

time T , then the robot must arrive at the destination at
or before T . Thus, we obtain T ≤ τ + |sq|

Vr
+ x

V . Because
x ≤ |qd| and V < Vc, we have:

T ≤ τ +
|sq|
Vr

+
|qd|
Vc

Since the above inequality is true for all departure times
(including τ = 0), we must have:

T ≤ |sq|
Vc

+
|qd|
Vc

=
|sd|
Vc

⇒A(τ) ≤ |sd|
Vc

�

3.1 The output size

The output size of the time-dependent shortest path,
denoted by FA, is defined as the number of sub-arcs in
the lower-envelope needed to represent the minimum
arrival time function A(t). In Lemma 3, we provide an
example for which FA is Θ(n2). Therefore, the number
of sub-arcs in the lower envelope is lower bounded by
Ω(n2). This lower bound, along with the complexity
of calculating the sub-arcs, inspired us to develop an
approximation algorithm for this problem.

Lemma 3 FA is lower bounded by Ω(n2).

X

Y

s d

C1

C2

Cn

C3

(x0; 0) (x1; 0) (x2; 0) (x3; 0)
(xn; 0) (xn+1; 0)

Cn+1

C2n+1

C2n+2

Cn+2

(a)

X

Y

s d

C1

C2

Cn

C3

(x0; 0) (x1; 0) (x2; 0) (x3; 0)
(xn; 0) (xn+1; 0)

Cn+1

C2n+1

C2n+2

Cn+2

(b)

Figure 3: This figure illustrates an example where there
are Θ(n2) unique time-minimal paths for different depar-
ture times. For the ease of demonstration, we assumed
V � Vr.

Proof. We prove this lemma by giving an example
where FA is Θ(n2). In this example, which is illustrated
in Figure 3, the source is located at (x0, 0) and the des-
tination is located at (xn+1, 0), where x0 � xn+1. A set
of growing discs C1 = {C1, ..., Cn} are sorted along the x-
axis, such that Ci ∈ C1 is centered at point (xi, 0), where
xi−1 < xi < xi+1 and x0 � xi � xn+1. We also define
a set of “disjoint” growing discs C2 = {Cn+1, ..., C2n},
such that Ci ∈ C2 is centered at point (x1, yi), where
yi+1 < yi < 0. Similarly, we define a set of “disjoint”
growing discs C3 = {C2n+1, ..., C3n}, such that Ci ∈ C3

is centered at point (x1,−yi). For the sake of simplicity,
we assume that V � Vr, where V is the speed of the
discs and Vr is the maximum speed of the robot.

Let T1 = {τ1, ..., τn} be a set of departure times, sorted
in increasing order. Denote by {λτ1 , ..., λτn} the set of
time-minimal robot-paths corresponding to the depar-
ture times in T1. We choose the initial radius of disc
C1 large enough (with respect to the other discs in C1)
so that the robot-path λτ1 is tangent to disc C1 and
does not touch the other discs in C1 (see Figure 3 (a)).
Similarly, we choose the initial radius of disc C2 such
that λτ2 is only tangent to C1 and C2. We repeat the
same procedure for all the departure times in T1. Con-
sequently, each robot-path λτi is tangent all the discs in
{C1, C2, ..., Ci}.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Observe that we can choose an appropriate value for
yn+1 such that C1 and Cn+1 intersect at time τ ′1, where
for a small value of α we have τn < τ ′1 < τn + α. Let
λτ ′

1
be the time-minimal robot-path corresponding to

the departure time τ ′1. As illustrated in Figure 3 (b),
observe that λτ ′

1
is tangent to disc Cn+1. By an argument

similar to the above paragraph, we can define a set
T2 = {τ ′1, ..., τ ′n}, where the corresponding time-minimal
paths of the departure times τ ′i ∈ T2 are tangent to
all the discs in {Cn+1, C2, ..., Ci}. We repeat the above
procedure for all the discs in C2. Let T = T1∪T2∪...∪Tn.

Let π(s, d, τi) and π(s, d, τj) be a pair of shortest paths
in the adjacency graph G, corresponding to the departure
times τi, τj ∈ T1, where i 6= j. Since λτi and λτj are
tangent to different sets of discs, we have π(s, d, τi) 6=
π(s, d, τj). Thus, observe that A(t) consists of Θ(|T |) =
Θ(n2) sub-arcs. �

4 Approximating A(t)

4.1 The reverse shortest path

Let us define a function A−1 : [0, Tmax] → [0, Tmax]
where A−1(t) is the latest departure time at s, when the
robot arrives at d at time t. In this section, we describe
our method for computing the function A−1(t) for a set
of “fixed” values of t. We generalize the time-minimal
path algorithm presented in [2] to the case where the
discs are shrinking.

A growing disc Ci is defined by a pair (Oi, Ri(t)),
where Oi is the center and Ri(t) is the radius of Ci at
time t. Let ∂Ci(t) denote the boundary of the disc Ci

at time t ∈ [0, Tmax]. We now define a shrinking disc
Ĉi by a pair (Oi, R̂i(t)), such that R̂i(t) = Ri(Tmax− t).
Note the following properies:

• Ĉi and Ci are centered at the same point.

• ∂Ci(0) = ∂Ĉi(Tmax).

• ∂Ci(t) = ∂Ĉi(Tmax − t).

Let Ĉ = {Ĉ1, ..., Ĉn} be a set of shrinking discs. We
begin with the following observation.

Observation 1 For any two given times τ and τ̂ , where
0 ≤ τ < τ̂ ≤ Tmax, Ci(τ) and Cj(τ̂) have the same
tangent lines as Ĉi(Tmax − τ) and Ĉj(Tmax − τ̂).

Let `rlij(τ) = pq be a tangent line where p ∈ ∂Ci(τ) and
q ∈ ∂Cj(τ̂). Similarly, let ˆ̀lr

ji(Tmax − τ̂) = qp be a tan-
gent line where q ∈ ∂Ĉj(Tmax−τ̂) and p ∈ ∂Ĉi(Tmax−τ).
By Observation 1, `rlij(τ) is equivalent to ˆ̀lr

ji(Tmax − τ̂).

Thus, the two tangent paths
−→
ˆ̀lr
ji(Tmax − τ̂) and

−→
`rlij(τ)

are the same line segments, but with opposite directions.
We call

−→
ˆ̀lr
ji(Tmax − τ̂) the reverse tangent path of

−→
`rlij(τ).

Similarly, for a spiral path −→σ (τ) there exists a reverse
spiral path

−→
σ̂ (Tmax − τ̂). Moreover, we can extend this

definition to a robot-path: let λ be a valid robot-path
from s to d, where the departure time is τs and the
arrival time is τd. Then, there exists a reverse robot-path
λ̂ from d to s whose departure time is Tmax − τd and
arrival time is Tmax − τs.

Recall that in Step (ii) of the SPGD algorithm (see
Section 2.1), the adjacency graph G is constructed us-
ing the identified tangents and spiral paths in Step (i).
Similarly, we construct the reverse adjacency graph Ĝ
using the reverse tangents and spiral paths.

Lemma 4 Let π(u, v, τu) be a valid path from vertex u
to vertex v in G, where the departure time is τu and
the arrival time is τv. Then, there exists a valid path
π̂(v, u, Tmax − τv) in Ĝ whose arrival time is Tmax − τu.

Proof. Since π(u, v, τu) is a valid path, there exists a
robot-path λ with departure time τu and arrival time
τv. By definition, there exists a reverse robot-path of
λ, denoted by λ̂, whose departure time and arrival time
are Tmax − τv and Tmax − τu, respectively. Thus, there
exists a valid path π̂(v, u, Tmax − τv) in Ĝ. �

By the above lemma, for any path π from s to d in
G, there exists a path π̂ from d to s in Ĝ of the same
length as π. Thus, in order to find a shortest path form
s to d, we can find a shortest path in Ĝ and reverse
its direction. Therefore, similar to the SPGD algorithm
in Section 2.1, a reverse shortest path can be found by
running Dijkstra’s algorithm in Ĝ. We summarize the
steps of the above algorithm as follows.

(i) Identify the reverse tangents and spiral paths.

(ii) Construct the reverse adjacency graph Ĝ.

(iii) Run Dijkstra’s algorithm on Ĝ to find a time-
minimal path.

We call the above algorithm the reverse shortest path
among growing discs (RSPGD). Using this algorithm,
for any given time t, a time-minimal path can be found
which arrives at destination at time t.

Corollary 1 For a given arrival time t at d, A−1(t)
can be computed by running the RSPGD algorithm.

We should remark that finding a shortest path from
d to s in Ĝ does not always yield a time-minimal path
among shrinking discs. For example, consider the case
where the robot stops and waits for some discs to shrink
to a certain size, until they open a previously blocked
path. Then, the robot starts moving with maximum ve-
locity towards the destination along the recently opened
path. This contradicts our assumption that the robot
always moves with the maximum speed. Thus, a shortest
path in Ĝ does not guarantee a time-minimal robot-path
among shrinking discs.

30th Canadian Conference on Computational Geometry, 2018

4.2 Approximation Algorithm

In this section, we present a (1 + ε)-approximation al-
gorithm for computing the minimum arrival time func-
tion A(t). To obtain an approximation for A(t), our
algorithm (Algorithm 1) computes a set of arrival time
values A = {a1, a2, ..., am}, such that, for 2 ≤ i ≤ m,
ai

ai−1
= 1+ε (i.e., arrival times are spaced within a factor

of 1 + ε from each other). Since A(t) is an increasing
function (refer to Lemma 1), for each valid arrival time,
there exists a unique departure time. This is a key dis-
tinction to some of the previously standard variants of
the time-dependent shortest path problems. For each
ai ∈ A, the algorithm runs the RSPGD algorithm to
find its corresponding departure time bi. Let us denote
the departure time values by a set B = {b1, b2, ..., bm}.
Each departure time in B is referred to as a sampled
time.

Algorithm 1 Computing B

1: B = ∅, A = ∅, i = 0, a0 = A(0)
2: . A(0) is calculated by running the SPGD

algorithm [2]
3: while ai < Tmax do
4: ai+1 = (1 + ε)ai
5: bi = A−1(ai+1)
6: B := B ∪ {bi}
7: A := A ∪ {ai+1}
8: i = i+ 1

9: return B and A

Lemma 5 Algorithm 1 runs O(1ε log(
Vr

Vc
)) time-minimal

path computations.

Proof. We first estimate the number of sampled times
in B. Let B = {b1, b2, ..., bm}. By definition we have

A(bm)

A(b1)
=

am
a1

= (1 + ε)m−1

By Lemma 2, for any 1 ≤ i ≤ k we have A(bi) ≤ |sd|
Vr

and A(bi) ≥ |sd|
Vc

. So, we obtain

(1 + ε)m−1 ≤ Vr

Vc

For ε ∈ (0, 1), we observe that ε
2 < log(1 + ε). Thus,

(m− 1)
ε

2
≤ log

ÄVr

Vc

ä
Therefore, there are O(1ε log(

Vr

Vc
)) sampled times in B.

For each sampled time, the algorithm runs an instance
of the reverse shortest path algorithm in Line 5. Thus,
the total number of time-minimal path computations is
O(1ε log(

Vr

Vc
)). �

Using the sampled times reported by Algorithm 1, we
now define a step function A : [0, Tmax] × (0, 1) → A
such that for t ∈ [bi, bi+1), we have A(t, ε) = ai+1.

Lemma 6 For any real constant value of ε ∈ (0, 1),
function A is a (1 + ε)-approximation for the arrival
time function A.

Proof. The proof is deferred to the Appendix. �

Theorem 7 The minimum arrival time function can be
approximated by executing O(1ε log(

Vr

Vc
)) time-minimal

path computations.

Proof. This is a direct result of Lemmas 5 and 6. �

Since the time-minimal path algorithm for fixed
departure times runs in O(n2 log(n)) time [2], the
time complexity of our preprocessing algorithm is
O(n

2

ε log(Vr

Vc
) log(n)). For a given query departure time

t ≥ 0, we can report the approximated value of the min-
imum arrival time (i.e., A(t, ε)) using a binary search in
B. In Lemma 5, we proved that the size of the set B is
O(1ε log(

Vr

Vc
)). Thus, the query time of our algorithm is

O(log(1ε) + log log(Vr

Vc
)).

5 Conclusions

In this paper, we studied the time-dependent minimum
arrival time problem among growing discs. We presented
a (1 + ε)-approximation to compute the minimum ar-
rival time function. Our algorithm runs shortest path
algorithms as a black-box and its time complexity is
determined by the number of such calls. Therefore,
for different problem settings, we can plug-in differ-
ent shortest path algorithms. For example, Nouri and
Sack [3] studied a variant of the SPGD problem where
the growth rates of the discs are given as polynomial
functions of degree β. In this algorithm a query time-
minimal path can be found in O(n2 log(βn)) time. By
plugging-in this algorithm, our preprocessing step exe-
cutes O(1ε log(

Vr

Vc
)) shortest path computations, running

in O(n
2

ε log(Vr

Vc
) log(βn)) time.

In order to compute the output size of the minimum
arrival time function A(t), one would need to determine
the number of sub-arcs in the lower envelope, denoted
by FA. We presented a lower bound on FA and we leave
as an open problem to establish an upper bound.

Another interesting open problem is to approximate
the minimum arrival time function when the query in-
volves the departure time at s, as well as s and d as part
of the input.

References

[1] Jur van den Berg and Mark Overmars. Planning
the shortest safe path amidst unpredictably mov-

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

ing obstacles. Algorithmic Foundation of Robotics,
pages 103–118, 2008.

[2] Jiehua Yi. A Ubiquitous GIS: Framework, Services
and Algorithms Development. PhD thesis, Ottawa,
Carleton University, Ont., Canada, 2009.

[3] Arash Nouri and Jorg-Rudiger Sack. Query short-
est paths amidst growing discs. CoRR, arXiv :
abs/1804.01181, 2018.

[4] Frank Dehne, Masoud T. Omran, and Jörg-Rüdiger
Sack. Shortest paths in time-dependent FIFO net-
works. Algorithmica, 62(1):416–435, 2012.

[5] Masoud Omran and Jörg-Rüdiger Sack. Improved
approximation for time-dependent shortest paths.
Computing and Combinatorics: 20th International
Conference, COCOON 2014, pages 453–464, 2014.

[6] Luca Foschini, John Hershberger, and Subhash Suri.
On the complexity of time-dependent shortest paths.
Algorithmica, 68(4):1075–1097, 2014.

[7] Ariel Orda and Raphael Rom. Minimum weight
paths in time-dependent networks. Networks,
21(3):295–319, 1991.

[8] Frank Dehne, Masoud T. Omran, and Jörg-Rüdiger
Sack. Shortest paths in time-dependent FIFO net-
works using edge load forecasts. In Proceedings of
the Second International Workshop on Computa-
tional Transportation Science, IWCTS ’09, pages
1–6, New York, NY, USA, 2009. ACM.

[9] Danny Z. Chen. Developing algorithms and soft-
ware for geometric path planning problems. ACM
Comput. Surv., 28(4es), December 1996.

[10] A. Nouri and Jörg-Rüdiger Sack. Query Shortest
Paths Amidst Growing Discs. Preprint submitted
to SWAT 2018, 2018.

[11] Carlos F. Daganzo. Reversibility of the time-
dependent shortest path problem. Transportation
Research Part B: Methodological, 36(7):665 – 668,
2002.

[12] J. van den Berg. Path planning in dynamic environ-
ments. Ph.D. Thesis, Utrecht University, Utrecht,
The Netherlands, 2007.

Appendix

Lemma 6 For any real constant value of ε ∈ (0, 1),
function A is a (1 + ε)-approximation for the arrival
time function A.

Proof. By definition, for any t ∈ [bi, bi+1) we have
A(t, ε) = ai+1. Referring to the fact that A is an
increasing function, for any t ∈ [bi, bi+1) we obtain
A(bi) ≤ A(t) < A(bi+1). Thus,

A(bi+1)

A(bi+1)
<

A(t, ε)

A(t)
≤ A(bi+1)

A(bi)

Since we have A(bi+1) = ai+1 and A(bi) = ai:

1 <
A(t, ε)

A(t)
≤ ai+1

ai
= 1 + ε

�

p

p

q

qCi(tp)

Ci(tq)

(a)

Cj(0)

Ci(0)

p

q

lrlij(tp)

Ci(tp)

Cj(tq)

(b)

Figure 4: Two robot-paths are illustrated: (a) spiral
path, (b) a right-left tangent path. Note that tp is the
departure time and tq is the arrival time where tq > tp.

30th Canadian Conference on Computational Geometry, 2018

s

d

π1
π2

π3

(a)

s

π1

π3

d

(b)

s

π4

π3

d

(c)

Figure 5: This figure illustrates valid paths between s
and d for three different departure times. (a) At this
time, three paths π1, π2 and π3 are valid. (b) Path π2

is obstructed and becomes invalid. Consequently, path
π3 is the time-minimal path. (c) Path π1 is obstructed
and π4 is the time-minimal path.

