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Trajectory Planning for an Articulated Probe
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Abstract

We present a geometric-combinatorial algorithm for
computing a feasible solution for a new trajectory plan-
ning problem involving a simple articulated probe. The
probe is modeled as two line segments ab and bc, with a
joint at the common point b, where bc is of fixed length
r and ab is of arbitrarily large (infinite) length. Initially,
ab and bc are collinear. Given a set of obstacles repre-
sented as n line segments, and a target point t, the probe
is to first be inserted in straight line, followed possibly
by a rotation of bc, so that in the final configuration
c coincides with t, all while avoiding intersections with
the line segments (obstacles). We prove that a feasible
probe trajectory can be determined in O(n2 log n) time
using O(n log n) space (in fact, our algorithm finds a set
of “extremal” feasible configurations). In the process,
we address and solve some other interesting problems,
such as circular sector emptiness queries and a special
case of circular arc ray shooting queries for line segments
in the plane.

1 Introduction

Consider the following trajectory (or motion) planning
problem. An articulated needle-like probe is modeled
in <2 as two line segments, ab and bc, joined at point
b. Line segment bc may rotate at point b. The length
of line segment ab can be arbitrarily large (infinitely
long), while line segment bc has a fixed length r (e.g.,
unit length).

A two-dimensional workspace is defined as the region
bounded by a circle S, which contains a set of n disjoint
line segment obstacles P (see Figure 1). Let t be a
point in the free space (i.e., inside S and outside the
obstacles).

In the beginning, the probe assumes a straight con-
figuration, that is, line segments ab and bc are collinear,
with b ∈ ac. We call this an unarticulated configuration.
Starting from outside S, the unarticulated probe, rep-
resented by straight line segment abc, may be inserted
into S as long as no obstacle is intersected by abc. After
the insertion, line segment bc may be rotated at point
b up to π/2 radians in either direction, provided that
line segment bc does not collide with any obstacle. If a
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Figure 1: Trajectory planning for an articulated probe.
After a straight insertion of line segment abc, in order to
reach point t in the midst of obstacles, line segment bc
may be required to rotate from its intermediate position
(red dashed line) to the final position (black solid line).

rotation is performed, then we have an articulated con-
figuration of the probe.

A feasible probe trajectory consists of an initial inser-
tion of straight line segment abc, possibly followed by a
rotation of line segment bc at point b, such that point
c ends at the target point t, while avoiding obstacles in
the process of insertion and rotation.

The objective of the problem is to determine a fea-
sible probe trajectory, if one exists. As far as the au-
thors are aware, no previous geometric-combinatorial al-
gorithm for this problem is known. Possible extensions
of the problem include reporting the space of all feasi-
ble probe trajectories and finding feasible probe trajec-
tories of maximum clearance, although these extensions
are beyond the scope of this extended abstract.

Because bc may only rotate up to π/2 radians, it is an
easy observation that for any feasible probe trajectory,
point b is the first intersection of segment ab with a
circle C of radius r centered at point t. As illustrated
in Figure 1, segment bc may rotate about point b, and
the area swept by segment bc is a sector of a circle (a
portion of a disk enclosed by two radii and an arc), with
the center located on C, radius r, and the endpoint of
one of its two bounding radii located at point t. For
conciseness, the center of the circle on which a circular
sector is based is referred to herein as the center of the
circular sector.
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Related work

The motion of a linkage – that is, a sequence of fixed-
length edges connected consecutively through joints –
has been formerly studied from various perspectives,
ranging from basic properties and questions (e.g., reach-
ability, reconfiguration, and locked decision) with strong
geometric and topological aspects [4, 9] to application-
driven robotic arm modeling and motion planning prob-
lems [10].

In contrast to those previous studies, our paper is
concerned with finding a collision-free path of motion
for a two-bar linkage constrained to an ordered sequence
of motions – namely, a straight insertion (of the linkage)
followed by a rotation (at the joint). Furthermore, one
of the links is considered to be unbounded in length.

Motivation

The problem setting described in the current study has
practical relevance in the field of robotics, particularly
in minimally invasive robotic surgery, where the plane
of insertion for a surgical probe can be defined based on
various medical imaging techniques. In minimally inva-
sive surgical approaches, a small incision is made, and
the surgical operation is performed by using specialized
tools inserted through the incision.

Most conventional surgical devices are straight, rigid,
or flexible. A simple articulated probe such as one
defined herein could be useful in minimally invasive
surgery for reaching previously unattainable targets by
circumventing critical structures, and for reaching mul-
tiple targets from a single insertion site while minimiz-
ing healthy tissue damage.

Results and contributions

We describe an algorithm that finds a feasible probe
trajectory in O(n2 log n) time using O(n log n) space.
In fact, our algorithm finds a set of so called “extremal”
feasible probe configurations. In such a configuration,
one or two obstacle endpoints are tangent to the probe
(see Lemma 1 below).

In the process of describing our solution, we solve
some special cases of a number of fundamental problems
of theoretical interest in computational geometry, such
as circular sector intersection and circular sector empti-
ness queries. In particular, we present a data structure
of near-linear size with logarithmic query time for solv-
ing a special instance of the circular arc intersection
query problem (i.e., for a query circular arc with a fixed
radius r and fixed endpoint t).

Our algorithm for articulated probe trajectory plan-
ning can be extended for polygonal obstacles, where we
can exploit output sensitive algorithms with respect to
the number of polygons and the complexity of the visi-
bility (to infinity) from a given point.

2 Main observation

Our algorithm crucially depends upon the following ob-
servation. It immediately implies that it suffices to test
a finite number of probe trajectories for feasibility. We
refer to these trajectories as extremal.

Lemma 1 There exists a feasible probe trajectory such
that the probe assumes either I: an unarticulated final
configuration (i.e., it is a straight line segment abc with
c = t) that intersects an obstacle endpoint, or II: an ar-
ticulated final configuration (i.e., line segments ab and
bc are not colinear and c = t) that intersects an obstacle
endpoint outside C and another obstacle endpoint inside
or outside C.

Proof. The existence of feasible probe trajectories for
case I and II can be proven using simple perturbation
arguments. The full proof of Lemma 1 is given in the
Appendix. �

3 Solution approach

Based on the observation stated in Lemma 1, the set
of extremal feasible probe trajectories can be obtained
using the following approach. For the purpose of anal-
ysis and clarity, the line segments of P are divided into
those lying inside C and those lying outside C. Since a
line segment may intersect C at most two times, a line
segment may be partitioned by C into at most three line
segments. Let Pin (resp. Pout) be the set of line seg-
ments lying inside (resp. outside) C. In addition, let V ,
Vin, and Vout denote the set of endpoints of the line seg-
ments of P , Pin, and Pout, respectively. Let nin = |Vin|,
nout = |Vout|. We have nin + nout = O(n).

Case I. Feasible unarticulated probe trajectory

We compute the set R of O(n) rays, each of which origi-
nates at point t, passes through a vertex of V , and does
not intersect any line segment of P . Each ray γ ∈ R
represents a feasible unarticulated probe trajectory, and
the set R of rays can be obtained by computing the visi-
bility polygon from point t in O(n log n) time [1, 6, 15].1

Lemma 2 The set of extremal feasible unarticulated
probe trajectories can be determined in O(n log n) time.

1For our case of disjoint line segments or even polygonal ob-
stacles, we could use the visibility complex to compute R. The
visibility complex is a two-dimensional subdivision in which each
cell corresponds to a collection of rays with the same visibility
properties [12]. For a simple scene of polygonal obstacles with
a total of n vertices, the visibility complex can be computed in
O(n logn + m) time using O(m) space, where m is the size of
the visibility complex (or the corresponding visibility graph) [13].
In the worst case, m = O(n2). After the visibility complex is
built, one can compute the view from a point in time O(k logn),
where k is the size of the computed view (from which the “visible”
tangents or rays can be reported).
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Case II. Feasible articulated probe trajectory

For ease of exposition, the two subcases of Case II,
depending on whether an articulated final configuration
intersects 1) an obstacle endpoint outside C and an
obstacle endpoint inside C, or 2) two obstacle endpoints
outside C, are considered separately.

Subcase 1. In order to find a feasible probe trajectory
with an articulated final configuration that intersects an
obstacle endpoint outside C and an endpoint inside C,
we first determine a feasible articulated final configura-
tion in the following manner.

We compute the set Rin of rays, each of which origi-
nates at point t, passes through an endpoint of Vin, and
does not intersect any line segment of Pin. By using the
same algorithm for computing the visibility polygon of
t used in Case I, Rin can be obtained in O(nin log nin)
time (alternatively, we can actually extract Rin directly
from the visibility polygon constructed for Case I in
O(n) additional time).

For each ray γin ∈ Rin, we i) find the intersection
point b of γin and C in O(1) time, and ii) compute
the set Rout of rays, each of which originates at point
b, passes through an endpoint of Vout, and does not
intersect any line segment of Pout. This can be done in
O(nout log nout) time (we could get rid of the O(log n)
factor with some care, using duality, while treating all
such b points at once).

A pair of rays γin ∈ Rin and γout ∈ Rout intersecting
at a point b defines a feasible final configuration of an
articulated probe trajectory, that intersects an endpoint
outside C and an endpoint inside C. Given that the
number of rays in Rin is bounded by O(nin), the worst-
case running time for finding the final configuration
pairs of rays γin and γout, intersecting at a point b, is
in the order of O(ninnout log nout + nin log nin).

Subcase 2. In order to find a feasible probe trajectory
with an articulated final configuration that intersects
two endpoints outside C, we determine a feasible inter-
mediate configuration (i.e., the probe configuration af-
ter inserting straight line segment abc into S and before
rotating line segment bc) using the following procedure.

For each endpoint v ∈ Vout, we compute the set R
of rays, each of which has the following properties: it
originates at endpoint v, passes through an endpoint of
Vout \{v}, does not intersect any line segment of P , and
its reversal intersects C and goes at least a distance r
beyond the intersection point with C without intersect-
ing any line segment of P . Again, R can be obtained in
O(n log n) time by computing the visibility polygon of
v. For each ray γ ∈ R, in O(1) time, we find the first
intersection point b of C with the reversal of γ.

A ray γ ∈ R whose reversal intersects C at a point
b and satisfies the obstacle free restriction above

represents a feasible intermediate configuration of an
articulated probe trajectory that intersects two vertices
outside C. Since |Vout| = nout, the worst-case running
time for finding such a ray γ is O(noutn log n).2

An articulated probe trajectory with a feasible final
or intermediate configuration is feasible if and only if
the area swept by segment bc after the initial insertion
(i.e., a circular sector) is not intersected by any obstacle.
Thus, the remainder of Case II entails a circular sector
intersection problem, detailed in the next section.

4 Circular sector intersection queries

The general line segment circular sector intersection
query problem can be formally stated as follows.

Given a set P of n line segments, preprocess it so that,
for a query circular sector σ, one can efficiently
determine whether σ intersects P .

For our purposes, it suffices to solve a special case of
this problem where the radius of the circular sector is
fixed to r and one endpoint of the circular arc of the sec-
tor is fixed at t. The intersection of a line segment and
a circular sector can only occur as some combination of
the three basic scenarios depicted in Figure 2.

Figure 2: Basic scenarios of a line segment intersecting
with a circular sector. (A) The segment intersects both
radii of the sector. (B) The segment intersects the sec-
tor’s circular arc at least once. (C) At least one segment
endpoint lies inside the sector.

Recall that a feasible final or intermediate configura-
tion for an articulated probe trajectory has been found
in the previous section. Thus, one of the radii of the
query circular sector is surely not intersected by any
line segment of P . Therefore, the basic scenario in Fig-
ure 2A can be eliminated from consideration.

Hence, our case of the circular sector intersection
problem reduces to the following two problems:

1. Circular arc intersection query – for detecting the
basic scenario in Figure 2B.

2. Circular sector emptiness query – for detecting the
basic scenario in Figure 2C.

2As before, we can handle subcases 1 and 2 using the visibility
complex approach.
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Circular arc intersection queries. Consider the fol-
lowing circular arc intersection problem.

Problem 1 Given a set P of n line segments, prepro-
cess it so that, for a query circular arc γ that originates
at a fixed point t and has a fixed radius r, one can effi-
ciently determine if γ intersects P .

Notice that since a query circular arc γ originates
from a fixed point t and has a fixed radius r, the center
of γ is always located on a circle C of radius r centered
at point t.

Figure 3: Counter-clockwise circular arcs `Ss and `Ls em-
anating from point t.

Let D be a circle of radius r centered at any point
p ∈ C (Figure 3). Note that circle D passes through
the center t of circle C. We let θ be the angle of tp
relative to the x-axis; D is uniquely determined by θ
since we know p lies on C. We will consider only query
arcs that emanate counter-clockwise from t. The other
case can be handled symmetrically.

Fix a line segment s, and let hs be its supporting line.
We will define two partial functions `Ss , `

L
s : [0, 2π) →

R≥0. Let θ ∈ [0, 2π) and let D be the circle for that θ
as defined above. If D intersects hs and the first inter-
section lies on s, let `Ss (θ) be the length of the counter-
clockwise arc from t to that first intersection. Other-
wise, `Ss (θ) is undefined. Similarly, if D has a second
intersection with hs on s, let `Ls (θ) be the length of the
arc to that intersection. We easily observe the following
properties of `Ss (Figure 4). The same statements apply
to `Ls as well.

Property 1 Function `Ss is defined over at most two
maximal contiguous subsets of [0, 2π).

Property 2 Given two segments si, sj, we have
`Ssi(θ) = `Ssj (θ) for at most one value of θ. Specifically, it
is the value of θ for which D’s shorter counter-clockwise
arc ends at the intersection of si and sj. Because si and
sj can only intersect at their endpoints, `Ssi(θ) = `Ssj (θ)
only at the endpoints of the maximal contiguous subsets
of [0, 2π) for which `Ssi and `Ssj are defined.

Figure 4: Illustration of the properties of function `Ss .
A given line segment s induces a partially-defined piece-
wise continuous curve lSs . Two curves `Ssi and `Ssj inter-
sect (at most once) if and only if their corresponding
line segments si and sj intersect (e.g., s1 and s2).

The lower envelope of n segments in the plane has
complexity bounded by the third order Davenport-
Schinzel sequence, which is O(nα(n)), where α(n) is the
inverse of the Ackermann function [14]. The lower enve-
lope can be found by a worst-case optimal divide-and-
conquer algorithm running in O(n log n) time [7]. Let
V S be the lower envelope of the curves `Ssi for all given
line segments si ∈ P . Given the properties of each `Ssi
(in particular that the curves intersect at endpoints),
the size of lower envelope V S is actually bounded by
the second order Davenport-Schinzel sequence, which is
O(n), and we can again compute it in O(n log n) time.
We define and compute V L similarly for the curves `Lsi .
In order to determine whether a query circular arc γ
intersects P , the angle θ of center p of circular query
arc γ from point t is looked up in V S and V L by us-
ing two binary searches that take O(log n) time. If the
length of γ is less than `Ssi(θ) and `Lsi(θ) for all si, then
γ does not intersect any line segment of P . Otherwise,
it intersects the segment which lies on a lower envelope
at θ. Thus, we obtain the following result, which can
be easily shown to be worst case optimal (see [15]).

Lemma 3 A set P of n non-crossing line segments can
be preprocessed in O(n log n) time into a data structure
of size O(n) so that, for a query circular arc γ that
originates at a fixed point t and has a fixed radius r,
one can determine whether γ intersects P in O(log n)
time.

Circular sector emptiness queries. Our special case
of the circular sector emptiness problem can be stated
as follows.

Problem 2 Given a set P of n points in the plane pre-
process it so that, for a query circular sector σ of fixed
radius r whose arc contains a fixed point t, one can ef-
ficiently determine whether σ contains any point of P .

Circular sector σ can be partitioned into i) a triangle
4bct and ii) a circular segment bounded by arc ct and
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the chord connecting the endpoints of the arc. Notice
that circular sector σ is void of P if and only if both
the triangle and circular segment are void of P . Thus,
Problem 2 can be reduced to the following two subprob-
lems – 1) restricted triangular emptiness query and 2)
restricted circular segment emptiness query.

Consider the restricted triangular emptiness problem
stated below.

Subproblem 1 Given a set P of n points in the plane,
preprocess it so that, for a query triangle4 with a vertex
incident on a fixed point t, one can efficiently determine
whether 4 contains any point of P .

As proposed by Benbernou et al. [2], Subproblem 1
can be solved as follows. The points of P can be at first
sorted around point t in counter-clockwise order. Con-
sider a wedge formed by two rays emanating from point
t. Let i and j be the first and last points, respectively,
within the wedge in counter-clockwise order. Points i
and j can be determined for any given wedge in O(log n)
time. Based on this observation, with O(n log n) prepro-
cessing space and time, a restricted triangular emptiness
query can be answered in O(log n) time. Daescu et al.
[5] also used a similar idea to build a data structure for
halfplane farthest-point queries.

The result for Subproblem 1 is summarized in the
following lemma.

Lemma 4 A set P of n points in the plane and a fixed
point t can be preprocessed in O(n log n) time into a data
structure of size O(n log n) so that, for a query trian-
gle 4 with a vertex incident on t, one can determine
whether 4 contains any point of P in O(log n) time.

The restricted circular segment emptiness problem is
given as follows.

Subproblem 2 Given a set P of n points in the plane,
preprocess it so that for a query circular segment s,
bounded by a circular arc originating from a fixed point
t and the chord connecting the endpoints of the arc, one
can efficiently determine if s contains any point of P .

Let sct be a query circular segment bounded by cir-
cular arc ct (of a circle C of radius r) and the chord
connecting points c and t. In order to determine if sct
contains any point of P , we begin by finding its corre-
sponding “enclosing” circular segment (or semi-circle)
spt as illustrated in Figure 5. spt is a circular segment
bounded by arc pt and the chord connecting points p
and t. Given circular arc ct emanating from point t
and running counter-clockwise, spt can be determined
by extending the arc until it intersects with a circle D
of radius 2r centered at point t. The case of clockwise
circular segments can be handled symmetrically.

Figure 5: Circular segment sct and its “enclosing” cir-
cular segment spt.

Figure 6: Circular segment spt and its corresponding
event interval indicated by [i, j].

Let Ppt ⊆ P be the set of points in spt, and CH(Ppt)
be the convex hull of Ppt. As shown in Figure 6, at most
two tangent lines on the convex hull pass through point
t. Let q be the intersection point between arc pt and
the first of the two tangents in counter-clockwise order.
If point c is located on arc qt, then sct is empty of P .

We now describe a preprocessing procedure based on
the earlier observations. At first, observe that, as spt
rotates about point t counter-clockwise, a point of P
may enter and leave spt. Each of these point-entering
and -leaving events can be determined in O(1) time by
computing the intersections between the boundary of
spt and each point of P . Since a point of P can en-
ter and leave spt at most once, the total number of
point-entering and -leaving events is bounded by 2n.
These events can be sorted in counter-clockwise order
in O(n log n) time.

Let sit and sjt be the circular segments associated
with any two consecutive events in sorted order, where
i and j are the endpoints of the bounding arcs (ema-
nating from point t) for sit and sjt, respectively (see
Figure 6, right). Notice that, the set of points of P
in spt remains constant within this event interval. For
each of these event intervals, the set of points of inter-
est, their convex hull, and ultimately point q can be
determined by using a dynamic convex hull data struc-
ture [3, 8], which requires O(n) space, O(n log n) prepro-
cessing time, O(log n) time per update operation, and
O(log n) time for tangent queries. A simple O(log n)
query-time data structure of linear size can then be built
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to store point q for each event interval.
Thus, given a query circular segment sct, point p can

be computed in O(1) time, followed by a look-up of the
event interval [i, j] that contains p and its associated
point q in O(log n) time. If the endpoint c of sct is
located within arc qt, then sct does not contain any
point of P .

Lemma 5 For a fixed point t, a set P of n points in
the plane can be preprocessed in O(n log n) time into a
data structure of size O(n) so that, given a query cir-
cular segment s, bounded by a circular arc originating
from t and the chord connecting the endpoints of the
arc, one can determine whether s contains any point of
P in O(log n) time.

Altogether, the following result is obtained for Prob-
lem 2.

Lemma 6 For a positive number r and a fixed point t,
a set P of n points in the plane can be preprocessed in
O(n log n) time into a data structure of size O(n log n)
so that, given a query circular sector σ with radius r and
an endpoint of its arc located at t, one can determine
whether σ contains any point of P in O(log n) time.

Remark. We can solve the more general circular sec-
tor emptiness problem without a fixed radius or point
t on the arc using a multilevel data structure similar to
one by Matous̆ek [11] for counting points in the inter-
section of halfspaces (see also [5] for a similar approach
on a related problem). Specifically, the first level is con-
structed for halfplane range queries to select the points
of P lying on the σ side of the line supporting bc, and
the second level is for halfplane range queries on the re-
sulting points to select those lying on the σ side of bt.
Thus, these two levels are used to find the points inside
the wedge centered at b. Each subset of P on the second
level is further preprocessed for nearest neighbor queries
by computing its Voronoi diagram and augmenting it for
point location. At query time, we can locate b in this
data structure in logarithmic time. If the closest point
is within distance r of b, then the circular sector is not
empty of P . By following the strategy outlined in the
first half of [11, Theorem 6.2], we can create a tradeoff
between space and time usage by our data structure.

Lemma 7 A set P of n points can be preprocessed into
a data structure of size O(m) in O(m log n) time so
that, for a query circular sector σ of radius r centered
at point p, one can determine whether σ is void of P in
O(n/m1/2 log5/2 n) time for any n1+ε ≤ m ≤ n2.

Finishing up. According to Lemmas 3 and 6, the result
for our case of the circular sector intersection problem
can be stated as follows.

Lemma 8 For a positive value r and a fixed point t,
a set of P of n line segments can be preprocessed in
O(n log n) time into a data structure of size O(n log n)
so that, given a query circular sector σ with radius r
whose circular arc has an endpoint at t, one can deter-
mine whether σ intersects P in O(log n) time.

Let ns be the number of endpoints of V within dis-
tance 2r from point t. Then, in Case II, given that
O(ninnout + n2out) queries are to be processed in the
worst case and we only need to worry about endpoints
lying sufficiently close to t, the following result is ob-
tained.

Lemma 9 A feasible articulated probe trajectory can
be determined in O((ninnout + n2out) log ns) time using
O(ns log ns + n) space.

Given that the space/time complexity of Case II
(Lemma 9) is dominant over that of Case I (Lemma
2), the solution approach proposed herein for finding a
feasible probe trajectory leads to the following theorem.

Theorem 10 A feasible probe trajectory can be de-
termined in O((ninnout + n2out) log ns) time using
O(ns log ns + n) space.

Recall that nin, nout, ns ≤ n. Thus, the space us-
age and running time are bounded by O(n log n) and
O(n2 log n), respectively.

5 Conclusion

We presented an efficient geometric-combinatorial algo-
rithm for a novel trajectory planning problem involv-
ing a simple articulated probe. Specifically, we can de-
termine a feasible probe trajectory in O(n2 log n) time.
Our algorithm reduced to special cases of the circular
sector intersection problem, for which we provided so-
lutions.

A number of open problems remain: (1) Our algo-
rithm works by enumerating over a set of possible “ex-
tremal” solutions. Can it be sped up, possibly by skip-
ping some of these solutions? (2) Can the algorithm be
extended to find a representation of all feasible probe
trajectories? (3) Can the space usage of the special cir-
cular sector queries be reduced to O(n)? We conjecture
that our result would then be optimal. (4) Can we find
an efficient general data structure for circular arc ray
shooting queries among (disjoint or intersecting) line
segments?
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Appendix

For case I, suppose that a feasible probe trajectory T exists,
such that the final pose of the probe is unarticulated and
point c coincides with point t. In other words, t has unob-
structed vision to some points on the bounding circle S. Let
T ′ be the trajectory resulting from rotating T about point
t in clockwise direction until T intersects an obstacle end-
point v. It is apparent that T ′ is also a feasible trajectory,
and its articulation point b′ is the intersection of segment vt
and circle C.

Figure 7: Case II of Lemma 1. T ′′ represents a feasible
articulated probe trajectory such that the final config-
uration of the probe intersects an obstacle endpoint v1
outside C and an obstacle endpoint v2 inside C.

For case II, assume that a feasible trajectory T exists such
that the final pose of the probe is articulated (i.e., line seg-
ments ab and bc are not collinear) and point c coincides
with point t (Figure 7). Suppose probe trajectory T rotates
segment bc clockwise around b to reach point t; the other
case uses symmetric arguments. Let T ′ be the trajectory
resulting from rotating line segment ab of T about point b in
clockwise direction until line segment ab intersects an obsta-
cle endpoint v1 outside C. Given that the area swept by line
segment bc of T ′ is within that of T (indicated by the shaded
circular sectors in Figure 7), T ′ is also a feasible trajectory.

Now, let T ′′ be the trajectory obtained by rotating line
segment bc of T ′ about point t in counter-clockwise direction
while simultaneously rotating ab around v1 in the clockwise
direction until either abc becomes a line segment or either ab
or bc intersects some obstacle endpoint v2. Note that as T ′

changes into T ′′ point b of T ′ slides on circle C in counter-
clockwise direction into a new position b′′. If abc becomes
a line segment, we have achieved case I of the lemma. We
now assume otherwise.

Observe that every point of the circular sector centered at
b′′ lies on the t side of the line through v1 and b. They also
lie on the b side of the line through b′′ and t. Therefore, these
points either lie in the circular sector of radius r centered at
t with arc endpoints at b and b′′, or they lie in the wedge
emanating from the circular sector centered at b. We know
the sector centered at t is empty, because it was swept while
constructing T ′′. We now argue the remaining points of the
sector centered at b′′ not only lie in the wedge from b, but
they actually lie in the circular sector centered at b. Because
T ′ is a feasible probe trajectory, the sector at b and therefore
the whole sector at b′′ is empty as well, and T ′′ is a feasible
probe trajectory.

Indeed, let x be a point of the sector centered at b′′ that
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Figure 8: Point x lies inside the circular sector centered
at b.

lies in the wedge at b. Let o be the intersection of the line
segments bt and b′′x (Figure 8). By the triangle inequality,

|bx| ≤ |bo|+ |ox|
= |bt| − |ot|+ |b′′x| − |b′′o|
≤ |bt|+ |b′′x| − |b′′t|
= |b′′x|
≤ r

If v2 is inside circle C, then point b′′ is the intersection be-
tween circle C and a ray emanating from point t through v2.
Otherwise, both v1 and v2 lie on the line segment ab′′.


