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Distance-Two Colorings of Barnette Graphs
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Abstract

Barnette identified two interesting classes of cubic poly-
hedral graphs for which he conjectured the existence of
a Hamiltonian cycle. Goodey proved the conjecture for
the intersection of the two classes. We examine these
classes from the point of view of distance-two color-
ings. A distance-two r-coloring of a graph G is an as-
signment of r colors to the vertices of G so that any
two vertices at distance at most two have different col-
ors. Note that a cubic graph needs at least four colors.
The distance-two four-coloring problem for cubic planar
graphs is known to be NP-complete. We claim the prob-
lem remains NP-complete for tri-connected bipartite
cubic planar graphs, which we call type-one Barnette
graphs, since they are the first class identified by Bar-
nette. By contrast, we claim the problem is polynomial
for cubic plane graphs with face sizes 3, 4, 5, or 6, which
we call type-two Barnette graphs, because of their rela-
tion to Barnette’s second conjecture. We call Goodey
graphs those type-two Barnette graphs all of whose faces
have size 4 or 6. We fully describe all Goodey graphs
that admit a distance-two four-coloring, and character-
ize the remaining type-two Barnette graphs that admit
a distance-two four-coloring according to their face size.

For quartic plane graphs, the analogue of type-two
Barnette graphs are graphs with face sizes 3 or 4. For
this class, the distance-two four-coloring problem is also
polynomial; in fact, we can again fully describe all col-
orable instances – there are exactly two such graphs.

1 Introduction

Tait conjectured in 1884 [22] that all cubic polyhedral
graphs, i.e., all tri-connected cubic planar graphs, have
a Hamiltonian cycle; this was disproved by Tutte in 1946
[24], and the study of Hamiltonian cubic planar graphs
has been a very active area of research ever since, see
for instance [1, 11, 17, 19]. Barnette formulated two
conjectures that have been at the centre of much of
the effort: (1) that bipartite tri-connected cubic pla-
nar graphs are Hamiltonian (the case of Tait’s conjec-
ture where all face sizes are even) [4], and (2) that tri-
connected cubic planar graphs with all face sizes 3, 4, 5
or 6 are Hamiltonian, cf. [3, 20]. Goodey [12, 13] proved
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that the conjectures hold on the intersection of the two
classes, i.e., that tri-connected cubic planar graphs with
all face sizes 4 or 6 are Hamiltonian. When all faces
have sizes 5 or 6, this was a longstanding open prob-
lem, especially since these graphs (tri-connected cubic
planar graphs with all face sizes 5 or 6) are the popu-
lar fullerene graphs [8]. The second conjecture has now
been affirmatively resolved in full [18]. For the first con-
jecture, two of the present authors have shown in [10]
that if the conjecture is false, then the Hamiltonicity
problem for tri-connected cubic planar graphs is NP-
complete. In view of these results and conjectures, in
this paper we call bipartite tri-connected cubic planar
graphs type-one Barnette graphs; we call cubic plane
graphs with all face sizes 3, 4, 5 or 6 type-two Barnette
graphs; and finally we call cubic plane graphs with all
face sizes 4 or 6 Goodey graphs. Note that it would be
more logical, and historically accurate, to assume tri-
connectivity also for type-two Barnette graphs and for
Goodey graphs. However, we prove our positive results
without needing tri-connectivity, and hence we do not
assume it.

Cubic planar graphs have been also of interest from
the point of view of colorings [6, 15]. In particular, they
are interesting for distance-two colourings. Let G be a
graph with degrees at most d. A distance-two r-coloring
of G is an assignment of colors from [r] = {1, 2, . . . , r} to
the vertices of G such that if a vertex v has degree d′ ≤ d
then the d′ + 1 colors of v and of all the neighbors of v
are all distinct. (Thus a distance-two coloring of G is a
classical coloring of G2.) Clearly a graph with maximum
degree d needs at least d + 1 colors in any distance-two
coloring, since a vertex of degree d and its d neighbours
must all receive distinct colors. It was conjectured by
Wegner [25] that a planar graph with maximum degree
d has a distance-two r-colouring where r = 7 for d = 3,
r = d + 5 for d = 4, 5, 6, 7, and r = b3d/2c + 1 for all
larger d. The case d = 3 has been settled in the positive
by Hartke, Jahanbekam and Thomas [14], cf. also [23].

For cubic planar graphs in general it was conjectured
in [14] that if a cubic planar graph is tri-connected, or
has no faces of size five, then it has a distance-two six-
coloring. We propose a weaker version of the second case
of the conjecture, namely, we conjecture that a bipar-
tite cubic planar graph can be distance-two six-colored.
We prove this in one special case (Theorem 5), which
of course also confirms the conjecture of Hartke, Ja-
hanbekam and Thomas for that case. Heggerness and
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Telle [16] have shown that the problem of distance-two
four-coloring cubic planar graphs is NP-complete. On
the other hand, Borodin and Ivanova [5] have shown
that subcubic planar graphs of girth at least 22 can be
distance-two four-colored. In fact, there has been much
attention focused on the relation of distance-two col-
orings and the girth, especially in the planar context
[5, 15].

Our results focus on distance-two colorings of cubic
planar graphs, with particular attention on Barnette
graphs, of both types. We prove that a cubic plane
graph with all face sizes divisible by four can always
be distance-two four-colored, and a give a simple condi-
tion for when a bi-connected cubic plane graph with all
face sizes divisible by three can be distance-two four-
colored using only three colors per face. It turns out
that the distance-two four-coloring problem for type-
one Barnette graphs is NP-complete, while for type-two
Barnette graphs it is not only polynomial, but the posi-
tive instances can be explicitly described. They include
one infinite family of Goodey graphs (cubic plane graphs
with all faces of size 4 or 6), and all type-two Barnette
graphs which have all faces of size 3 or 6. Interestingly,
there is an analogous result for quartic (four-regular)
graphs: all quartic planar graphs with faces of only sizes
3 or 4 that have a distance-two five coloring can be ex-
plicitly described; there are only two such graphs.

Note that we use the term “plane graph” when the ac-
tual embedding is used, e.g., when discussing the faces;
on the other hand, when the embedding is unique, as in
tri-connected graphs, we stick with writing “planar”.

The proofs omitted here can be found in [9].

2 Relations to edge-colorings and face-colorings

Distance-two colorings have a natural connection to
edge-colorings.

Theorem 1 Let G be a graph with degrees at most d
that admits a distance-two (d + 1)-coloring, with d odd.
Then G admit an edge-coloring with d colors.

Proof. The even complete graph Kd+1 can be edge-
colored with d colors by the Walecki construction [2].
We fix one such coloring c, and then consider a distance-
two (d+ 1)-coloring of G. If an edge uv of G has colors
ab at its endpoints, we color uv in G with the color
c(ab). It is easy to see that this yields an edge-coloring
of G with d colors. �

We call the resulting edge-coloring of G the derived
edge-coloring of the original distance-two coloring.

In this paper, we mostly focus on the case d = 3 (the
subcubic case). Thus we use the edge-coloring of K4 by
colors red, blue, green. This corresponds to the unique
partition of K4 into perfect matchings. Note that for

every vertex v of K4 and every edge-color i, there is a
unique other vertex u of K4 adjacent to v in edge-color
i. Thus if we have the derived edge-coloring we can
efficiently recover the original distance-two coloring. In
the subcubic case, in turns out to be sufficient to have
just one color class of the edge-coloring of G.

Theorem 2 Let G be a subcubic graph, and let R be
a set of red edges in G. The question of whether there
exists a distance-two four-coloring of G for which the
derived edge-coloring has R as one of the three color
classes can be solved by a polynomial time algorithm. If
the answer is positive, the algorithm will identify such
a distance-two coloring.

There is also a relation to face-colorings. It is a folk-
lore fact that the faces of any bipartite cubic plane graph
G can be three-colored [21]. This three-face-coloring in-
duces a three-edge-coloring of G by coloring each edge
by the color not used on its two incident faces. (It is
easy to see that this is in fact an edge-coloring, i.e., that
incident edges have distict colors.) We call an edge-
coloring that arises this way from some face-coloring of
G a special three-edge-coloring of G. We first ask when
is a special three-edge-coloring of G the derived edge-
coloring of a distance-two four-coloring of G.

Theorem 3 A special three-edge-coloring of G is the
derived edge-coloring of some distance-two four-coloring
of G if and only if the size of each face is a multiple of
4.

Proof. The edges around a face f alternate in colors,
and the vertices of f can be colored consistently with
this alternation if and only if the size of f is a multi-
ple of 4. This proves the “only if” part. For the “if”
part, suppose all faces have size multiple of 4. If there is
an inconsistency, it will appear along a cycle C in G. If
there is only one face inside C, there is no inconsistency.
Otherwise we can join some two vertices of C by a path
P inside C, and the two sides of P inside C give two
regions that are inside two cycles C ′, C ′′. The consis-
tency of C then follows from the consistency of each of
C ′, C ′′ by induction on the number of faces inside the
cycle. �

Corollary 4 Let G be a cubic plane graph in which the
size of each face is a multiple of four. Then G can be
distance-two four-colored.

We now prove a special case of the conjecture stated
in the introduction, that all bipartite cubic plane graphs
can be distance-two six-colored. Recall that the faces of
any bipartite cubic plane graph can be three-colored.

Theorem 5 Suppose the faces of a bipartite cubic plane
graph G are three-colored red, blue and green, so that the
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red faces are of arbitrary even size, while the size of each
blue and green face is a multiple of 4. Then G can be
distance-two six-colored.

Proof. Let G′ be the multigraph obtained from G by
shrinking each of the red faces. Clearly G′ is planar,
and since the sizes of blue and green faces in G′ are half
of what they were in G, they will be even, so G′ is also
bipartite. Let us label the two sides of the bipartition as
A and B respectively. Now consider the special three-
edge coloring of G associated with the face coloring of
G. Each red edge in this special edge-coloring joins a
vertex of A with a vertex of B; we orient all red edges
from A to B. Now traversing each red edge in G in
the indicated orientation either has a blue face on the
left and green face on the right, or a green face on the
left and blue face on the right. In the former case we
call the edge class one in the latter case we call it class
two. Each vertex of G is incident with exactly one red
edge; the vertex inherits the class of its red edge. The
vertices around each red face in G are alternatingly in
class 1 and class 2. We assign colors 1, 2, 3 to vertices
of class one and colors 4, 5, 6 to vertices of class two.
It remains to decide how to choose from the three col-
ors available for each vertex. A vertex adjacent to red
edges in class i has only three vertices within distance
two in the same class, namely the vertex across the red
edge, and the two vertices at distance two along the red
face in either direction. Therefore distance-two coloring
for class i corresponds to three-coloring a cubic graph.
Since neither class can yield a K4, such a three-coloring
exists by Brooks’ theorem [7]. This yields a distance-
two six-coloring of G. �

3 Distance-two four-coloring of type-one Barnette
graphs is NP-complete

We now state our main intractability result.

Theorem 6 The distance-two four-coloring problem
for tri-connected bipartite cubic planar graphs is NP-
complete.

In this note we only derive the following weaker ver-
sion of our claim. (See [9] for the proof of the entire
claim.)

Theorem 7 The distance-two four-coloring problem
for bipartite planar subcubic graphs is NP-complete.

Proof. Consider the graph H in Figure 1.
We will reduce the problem of H-coloring planar

graphs to the distance-two four-coloring problem for bi-
partite planar subcubic graphs. In the H-coloring prob-
lem we are given a planar graph G and and the question
is whether we can color the vertices of G with colors
that are vertices of H so that adjacent vertices of G

H
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Figure 1: The graph H for the proof of Theorem 7

obtain adjacent colors. This can be done if and only
if G is three-colorable, since the graph H both con-
tains a triangle and is three-colorable itself. (Thus any
three-coloring of G is an H-coloring of G, and any H-
coloring of G composed with a three-coloring of H is a
three-coloring of G.) It is known that the three-coloring
problem for planar graphs is NP-complete, hence so is
the H-coloring problem.
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Figure 2: The ring gadget

Thus suppose G is an instance of the H-coloring prob-
lem. We form a new graph G′ obtained from G by re-
placing each vertex v of G by a ring gadget depicted
in Figure 2. If v has degree k, the ring gadget has 2k
squares. A link in the ring is a square aibicidiai followed
by the edge ciai+1. A link is even if i is even, and odd
otherwise. Every even link in the ring will be used for a
connection to the rest of the graph G′, thus vertex v has
k available links. For each edge vw of G we add a new
vertex fvw that is adjacent to a vertex ds in one avail-
able link of the ring for v and a vertex d′t in one available
link of the ring for w. (We use primed letters for the cor-
responding vertices in the ring of w to distinguish them
from those in the ring of v.) The actual choice of (the
even) subscripts s, t does not matter, as long as each
available link is only used once. The resulting graph is
clearly subcubic and planar. It is also bipartite, since
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we can bipartition all its vertices into one independent
set A consisting of all the vertices ai, ci, bi+1, di + 1 with
odd i in all the rings, and another independent set B
consisting of the vertices ai, ci, bi+1, di + 1 with even i
in all the rings. Moreover, we place all vertices fvw into
the set A. Note that in any distance-two four-coloring
of the ring, each link must have four different colors
for vertices ai, bi, ci, di, and the same color for ai and
ai+1. Thus all ai have the same color and all ci have
the same color. The pair of colors in bi, di is also the
same for all i; we will call it the characteristic pair of
the ring for v. For any pair ij of colors from 1, 2, 3, 4,
there is a distance-two coloring of the ring that has the
characteristic pair ij.

One can prove that G is H-colorable if and only if G′

is distance-two four-colorable. �

We remark that (with some additional effort) we can
prove that the problem is still NP-complete for the class
of tri-connected bipartite cubic planar graphs with no
faces of sizes larger than 44.

4 Distance-two four-coloring of Goodey graphs

Recall that Goodey graphs are type-two Barnette graph
with all faces of size 4 and 6 [12, 13]. In other words, a
Goodey graph is a cubic plane graph with all faces having
size 4 or 6. By Euler’s formula, a Goodey graph has
exactly six square faces, while the number of hexagonal
faces is arbitrary.

A cyclic prism is the graph consisting of two disjoint
even cycles a1a2 · · · a2ka1 and b1b2 · · · b2kb1, k ≥ 2, with
the additional edges aibi, 1 ≤ i ≤ 2k. It is easy to
see that cyclic prisms have either no distance-two four-
coloring (if k is odd), or a unique distance-two four-
coloring (if k ≥ 2 is even). Only the cyclic prisms with
k = 2, 3 are Goodey graphs, and thus from Goodey
cyclic graphs only the cube (the case of k = 2) has a
distance-two coloring, which is moreover unique.

In fact, all Goodey graphs that admit distance-two
four-coloring can be constructed from the cube as fol-
lows. The Goodey graph C0 is the cube, i.e., the cyclic
prism with k = 2. The Goodey graph C1 is depicted
in Figure 4. It is obtained from the cube by separat-
ing the six square faces and joining them together by a
pattern of hexagons, with three hexagons meeting at a
vertex tying together the three faces that used to meet
in one vertex. The higher numbered Goodey graphs are
obtained by making the connecting pattern of hexagons
higher and higher. The next Goodey graph C2 has two
hexagons between any two of the six squares, with a cen-
tral hexagon in the centre of any three of the squares,
the following Goodey graph C3 has three hexagons be-
tween any two of the squares and three hexagons in the
middle of any three of the squares, and so on. Thus in

general we replace every vertex of the cube by a triangu-
lar pattern of hexagons whose borders are replacing the
edges of the cube. We illustrate the vertex replacement
graphs in Figure 3, without giving a formal description.
The entire Goodey graph C1 is depicted in Figure 4.
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Figure 3: The vertex replacements for Goodey graphs
C0, C1, C2, and C3

Figure 4: The Goody graph C1

We have the following results.

Theorem 8 The Goodey graphs Ck, k ≥ 0, have a
unique distance-two four-coloring, up to permutation of
colors.

Theorem 9 The Goodey graphs Ck, k ≥ 0, are the only
bipartite cubic planar graphs having a distance-two four-
coloring.

We can therefore conclude the following.

Corollary 10 The distance-two four-coloring problem
for Goodey graphs is solvable in polynomial time.

Recognizing whether an input Goodey graph is some
Ck can be achieved in polynomial time; in the same time
bound G can actually be distance-two four-colored.
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5 Distance-two four-coloring of type-two Barnette
graphs is polynomial

We now return to general type-two Barnette graphs, i.e.,
cubic plane graphs with face sizes 3, 4, 5, or 6. As a first
step, we analyze when a general cubic plane graph ad-
mits a distance-two four-coloring which has three colors
on the vertices of every face of G.

Theorem 11 A cubic plane graph G has a distance-
two four-coloring with three colors per face if and only
if

1. all faces in G have size which is a multiple of 3,

2. G is bi-connected, and

3. if two faces share more than one edge, the rela-
tive positions of the shared edges must be congruent
modulo 3 in the two faces.

The last condition means the following: if faces F1, F2

meet in edges e, e′ and there are n1 edges between e and
e′ in (some traversal of) F1, and n2 edges between e and
e′ in (some traversal of) F2, then n1 ≡ n2 mod 3.

Proof. Suppose G has a distance-two four-coloring
with three colors in each face. The unique way to
distance-two color a cycle with colors 1, 2, 3 is by re-
peating them in some order (123)∗ along one of the two
traversals of the cycle. Therefore the length is a multi-
ple of 3 so (1) holds. Moreover, there can be no bridge
in G as that would imply a face that self-intersects and
is traversed in opposite directions along any traversal
of that face, disagreeing with the order (123)∗ in one of
them; thus (2) also holds. Finally, (3) holds because the
common edges must have the same colors in both faces.

Suppose the conditions hold, and consider the dual
GD of G. (Note that each face of GD is a triangle.) We
find a distance-two coloring of G as follows. Let F be a
face in G; according to conditions (1-2), its vertices can
be distance-two colored with three colors. That takes
care of the vertex F in GD. Using condition (3), we
can extend the coloring of G to any face F ′ adjacent to
F in GD. Note that we can use the fourth colour, 4,
on the two vertices adjacent in F ′ to the two vertices
of a common edge. In this way, we can propagate the
distance-two coloring of G along the adjacencies in GD.
If this produces a distance-two coloring of all vertices
of G, we are done. Thus it remains to show there is no
inconsistency in the propagation. If there is an incon-
sistency, it will appear along a cycle C in GD. If there
is only one face inside of C, then C is a triangle corre-
sponding to a vertex of G, and there is no inconsistency.
Otherwise we can join some two vertices of C by a path
P inside C, and the two sides of P inside C give two
regions that are inside two cycles C ′, C ′′. The consis-
tency of C then follows from the consistency of each of

C ′, C ′′ by induction on the number of faces inside the
cycle. �

It turns out that conditions (1 - 3) are automatically
satisfied for cubic plane graphs with faces of sizes 3 or
6.

Corollary 12 Type-two Barnette graphs with faces of
sizes 3 or 6 are distance-two four-colorable.

Proof. Such a graph must be bi-connected, i.e., can-
not have a bridge, since no triangle or hexagon can
self-intersect. Moreover, only two hexagons can have
two common edges, and it is easy to check that they
must indeed be in relative positions congruent modulo
3 on the two faces. (Since all vertices must have degree
three.) Thus the result follows from Theorem 11. �

Theorem 13 Let G be type-two Barnette graph. Then
G is distance-two four-colorable if and only if it is one
of the graphs Ck, k ≥ 0, or all faces of G have sizes 3
or 6.

Proof. If there are faces of size both 3 and 4 (and pos-
sibly size 6), then there must be (by Euler’s formula)
two triangles and three squares, and as in the proof of
Theorem 9, the squares must be joined by chains of
hexagons, which is not possible with just three squares.

If there is a face of size 5, then there is no distance-
two four-coloring since all five vertices of that face would
need different colors. �

6 Distance-two coloring of quartic graphs

A quartic graph is a regular graph with all vertices of
degree four. Thus any distance-two coloring of a quar-
tic graph requires at least five colors. A four-graph is
a plane quartic graph whose faces have sizes 3 or 4.
The argument to view these as analogues of type-two
Barnette graphs is as follows. For cubic plane Euler’s
formula limits the numbers of faces that are triangles,
squares, and pentagons, but does not limit the number
of hexagon faces. Similarly, for plane quartic graphs,
Euler’s formula implies that such a graph must have 8
triangle faces, but places no limits on the number of
square faces.

We say that two faces are adjacent if they share an
edge.

Lemma 14 If a four-graph can be distance-two five-
colored, then every square face must be adjacent to a
triangle face. Thus G can have at most 24 square faces.

Proof. We view the numbers 1, 2, 3, 4 modulo 4, and
number 5 is separate. Let u1u2u3u4 be a square face
that has no adjacent triangle face. (This is depicted in
Figure 5 as the square in the middle.) Color ui by i. Let
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the adjacent square faces be uiui+1wi+1vi. One of vi, wi

must be colored 5 and the other one i+2. Then either all
vi or all wi are colored 5, say all wi are colored 5, and all
vi are colored i + 1. Then viuiwi cannot be a triangle
face, or wi, wi+1 would be both colored 5 at distance
two. Therefore tiviuiwi must be a square face. (In
the figure, this is indicated by the corner vertices being
marked by smaller circles; these must exist to avoid a
triangle face.) This means that the original square is
surrounded by eight square faces for u1u2u3u4, and ti
must have color i + 3, since ui, vi+3, vi, wi have colors
i, i + 1, i + 2, 5.

But then there cannot be a triangle face xiviwi+1,
since xi is within distance two of ui, ui+1, vi, ti, wi+1

of colors i, i + 1, i + 2, i + 3, 5, so each of the adjacent
square faces uiui+1wi+1vi for u1u2u3u4 has adjacent
square faces as well. This process of moving to adjacent
square faces eventually reaches all faces as square faces,
contrary to the fact that there are 8 triangle faces. �
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Figure 5: One square without adjacent triangles implies
all faces must be squares

It follows that there are only finitely many distance-
two five-colorable four-graphs.

Corollary 15 The distance-two five-coloring problem
for four-graphs is polynomial.

In fact, we can fully describe all four-graphs that are
distance-two five-colorable. Consider the four-graphs
G0, G1 given in Figure 6. The graph G0 has 8 triangle
faces and 4 square faces, the graph G1 has 8 triangle
faces and 24 square faces. Note that G0 is obtained
from the cube by inserting two vertices of degree four
in two opposite square faces. Similarly, G1 is obtained
from the cube by replacing each vertex with a trian-
gle and inserting into each face of the cube a suitably
connected degree four vertex. (In both figures, these
inserted vertices are indicated by smaller size circles.)

Theorem 16 The only four-graphs G that can be
distance-two five-colored are G0, G1. These two graphs
can be so colored uniquely up to permutation of colors.

G
0

G
1

Figure 6: The only four-graphs that admit a distance-
two five-coloring

Figure 7: A four-graph requiring nine colors in any
distance-two coloring

We close with a few remarks and open problems.
Wegner’s conjecture [25] that any planar graph with

maximum degree d = 3 can be distance-two seven-
colored has been proved in [14, 23]. That bound is actu-
ally achieved by a type-two Barnette graph, namely the
graph obtained from K4 by subdividing three incident
edges. Thus the bound of 7 cannot be lowered even for
type-two Barnette graphs.

Wegner’s conjecture for d = 4 claims that any planar
graph with maximum degree four can be distance-two
nine-colored. The four-graph in Figure 7 actually re-
quires nine colors in any distance-two coloring. Thus
if Wegner’s conjecture for d = 4 is true, the bound of
9 cannot be lowered, even in the special case of four-
graphs. It would be interesting to prove Wegner’s con-
jecture for four-graphs, i.e., to prove that any four-graph
can be distance-two nine-colored.

Finally, we’ve conjectured that any bipartite cubic
planar graph can be distance-two six-colored (a special
case of a conjecture of Hartke, Jahanbekam and Thomas
[14]). The hexagonal prism (a cyclic prism with k = 3,
which is a Goodey graph), actually requires six colors.
Hence if our conjecture is true, the bound of 6 cannot be
lowered even for Goodey graphs. It would be interesting
to prove our conjecture for Goodey graphs, i.e., to prove
that any Goodey graph can be distance-two six-colored.
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[18] F. Kardoš. A computer-assisted proof of Barnette-
Goodey conjecture: Not only fullerene graphs are
Hamiltonian. arXiv math:1409.2440

[19] X. Lu. A note on 3-connected cubic planar graphs.
Discrete Math. 310:2054–2058, 2010.

[20] J. Malkevitch. Polytopal graphs. in Selected Topics in
Graph Theory (L. W. Beineke and R. J. Wilson eds.)
3:169–188, 1998.

[21] O. Ore. The four colour problem. Academic Press,
1967.

[22] P.G. Tait. Listing’s topologie. Philosophical Magazine,
5th Series 17:30-46, 1884. Reprinted in Scientific Pa-
pers, Vol. II, pp. 85–98.

[23] C. Thomassen. The square of a planar cubic graph is
7-colorable. manuscript 2006.

[24] W.T. Tutte. On hamiltonian circuits. J. Lond. Math.
Soc. 21:98–101, 1946.

[25] G. Wegner. Graphs with given diameter and a coloring
problem. Technical Report, University of Dortmund,
Germany, 1977.


