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Abstract

The paper describes the approaches and the results of our participation in the protein-protein
interaction (PPI) extraction task (sub-tasks 1 to 3) of the BioCreative II challenge.1 The core of
our approach is to analyse the logical forms of those sentences which contain the mentioning of
relevant protein names, and to rank the sentences from which the relations where extracted using
the class descriptors computed in the sub-task 1 and interaction sentences from the Christine Brun
corpus.
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1 Introduction

One of the goals of the Question Answering group at the DFKI LT-Lab is taking part in standard
evaluations such as TREC or CLEF. During the last three years, our group has focused on the Cross-
Lingual German-English, English-German and monolingual German tracks of the CLEF campaign.
Results have been strongly encouraging, obtaining the best results for these tracks [13, 14, 15].

In QA the current research focus is still on domain–open QA in order to answer term-based
questions like Where was the “killer smog” of 1952 which resulted in 4,000 deaths? from newspaper
articles. However, there is an increasing interest to explore also domain–specific QA, i.e., to answer
domain–specific questions from domain–specific sources. Here, event specific questions are of interest,
which require the identification of relevant relation instances, e.g., in order to answer a question like
How does GUKH interacts with DLG? from scientific articles.

Our approach is to consider domain–specific QA as a kind of on-demand information extraction
where the NL question describes important constraints for the relation instances that have to be
extracted from the answer sources. This perspective actually motivated our interest in the BioCreative
challenge, especially in the Protein-Protein interaction subtask. Of course, the focus in the BioCreative
challenge is on off-line information extraction in the sense that the information request (i.e., the
question) is pre-specified and that all possible valid relation instances have to be extracted (i.e., the
answer candidates). For researchers in question answering like us, there are important subtasks in
common for on-demand and off-line information extraction, like named entity recognition, relation
mining, co-reference detection, concept name disambiguation, etc.

Since BioCreative II was our first excursion into Information Extraction in Biology, our objectives
were: (a) learn about the inherent challenges and share our experience, and (b) discriminate key
components of systems that deal with natural language texts in the biological domain. Here, the
main motivation raises from the way that biological texts are written: a plenty of technical words and

1The work presented here was partially supported by a research grant from the German Federal Ministry of Education,
Science, Research and Technology (BMBF) to the DFKI project HyLaP (FKZ: 01 IW F02) and the EC-funded project
QALL-ME.
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complex sentence structures as well as a high term variation, especially gene names. Assessing several
Natural Language Processing techniques is hence positively encouraging, and by the same token, our
group focused essentially on covering the sub-tasks (a) Protein Interaction Article Sub-task (IAS), (b)
Protein Interaction Pairs Sub-task (IPS), and (c) Protein Interaction Sentences Sub-task (ISS).

In the next section, we firstly describe our principle approach and then focus on particular solutions
for the different sub-tasks in the subsequent sections. In section 6 we briefly discuss our results, which
– of course – we interpret as “the glass is half full”.

2 Predicate Analysis

Predication computes the semantic representation of a sentence. This representation distinguishes
relationships or semantic roles played by its different constituents within a semantic frame[10]. To
neatly illustrate this, consider the sentence “GUKH interacts with DLG in vivo”, its corresponding
predicate representation is given by:

interact(“GUKH”, “with DLG”, “in Vivo”)

In this representation, the verb is the predicate and the remaining constituents are arguments. Labels
are then assigned to each argument according to their role in the predicate. The level of specification
can be abstract such as VERB, SUBJECT, OBJECT, or specific to the different framesets of a particular
verb. Good examples are the two framesets for the verb “inhibit” (see [11] for examples in the
PropBank[16]):

1. inhibit(preventor entity, thing prevented from happening), i. e. “Influenza virus NS1 protein
inhibits pre-mRNA splicing ”.

2. inhibit(preventor entity, thing prevented from happening, medium), for instance: “ArhGAP9
inhibits Erk and p38 activation through WW domain binding Boon K Ang1 ,2”.

Each frameset is seen as a different semantic frame. The motivation behind applying predication to
discriminate protein interaction is two-fold: (a) since proteins interactions are likely to be expressed
by complex semantic constructions at the sentence level [4, 6], and (b) the existence of tools, like
Montylingua[17], which compute a semantic representation of a raw text in English. Montylingua
specifically extracts tuples verb(subject, objects), which are an abstract predicate-argument represen-
tation of sentences in a given text.

3 Document Classification

In this sub-task, documents containing relevant protein interaction information must be accurately
identified. This identification must be performed by accounting solely for their headlines and abstracts.
For this purpose, systems were allowed to submit three different runs, and in our case, to test three
different strategies. Two out of these three strategies started stepwisely pre-processing the training
and testing sets as follows:

1. Protein name removal Since protein and gene names are the most obvious source of clas-
sification bias[1], they are distinguished by Abner[18] and replaced with the word “Protein”
afterwards.

2. Lemmatization In this step, words are lemmatized by means of MontyLingua[17], in order
to avoid counting several morphological inflections of the same term as occurrence of different
words.
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3. Sentence normalization Abstracts are split into sentences by means of JavaRap[19] and nor-
malized afterwards. This normalization consists chiefly in inserting spaces between punctuation
and words, this way our methods avoid also misinterpreting words followed by their punctuation
as occurrence of different words. By the same token, all words are lowercased.

4. Bag of words Each abstract is represented as a bag of words. These words are distinguished
by means of spaces and every word is linked to their frequency on the corresponding abstract.
Stop-words2 are removed from each bag.

While our strategies were dealing with this task, we found that the unbalanced training data, caused
by the strong bias in favour of positive samples, was a major problem. Consequently, strategies aiming
specifically for dealing with unbalanced data were explored. The first two runs (RUN I and RUN II)
were based on the binary Bayes classifier presented in [2]. In these runs, we trained two classifiers:
one with abstracts and the other with headlines. Documents in the test set were eventually ranked by
weighting the output of both classifiers in the following way:

rd(D) =





rh(D) ∗ ra(D) if rh(D) <> 0 and ra(D) <> 0.
rh(D) if ra(D) == 0.
ra(D) if rh(D) == 0.

Where rh(D) and ra(D) are the output (corresponding to a document D) of the Maximum Entropy
classifier trained with headlines and abstracts respectively. A new document D was considered con-
taining relevant protein interaction information, if rd(D) > 1, otherwise irrelevant. The training tuples
were chosen by means of a 10-fold validation and due to three reasons, they were deliberately selected
only from negatives and noisy positives samples: (a) we found that positive samples did not improve
results, (b) markedly reduce the size of the training set, and (c) given the fact that the test set belongs
solely to the positive and negative class, we clearly intended to increase the robustness of our classifiers
by decreasing their dependence upon positive samples. These first two runs differ fundamentally in
the training model obtained by the 10-fold cross validation.

RUN III was based on the approach presented in [9]. In this approach, documents and categories
are seen as sets of independent words. For each category, this classifier creates two data structures:
semantics-oriented topic words and surface focused index words with a high discrimination value.
Documents are classified by means of two category rankings (each for index and topic words) which
are combined to one ranking (m-ary classifier) afterwards. This classifier was trained with non pre–
processed negative and positives samples only.

4 Protein protein interaction identification

This sub-task aims at recognising protein interactions from full text articles. The underlying assump-
tion of our methods is that interacting proteins are expected to co-occur in many sentences along
the respective article, and therefore, in several semantic frames. Some of these semantic frames are
accordingly more likely to indicate whether they interact or not. The flow of our strategy is as follows:

1. Pre-processing starts by extracting the content from the PDF2TXT version of the article and
splitting it into sentences by means of JavaRap[19] afterwards. The higher frequent sentence
was interpreted as the title or headline of the article, since it is seldom directly recognised from
the text and it is usually repeated. Like [3], citations were permanently removed by means of
purpose-built regular expressions, this way the quality of the predicate analysis noticeably im-
proves. Another key issue is that sections within documents are identified by searching for special

2The stop-list from [20] is used. It contains 319 highly frequent closed class forms.
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tags such as “MATERIALS”, “REFERENCES”, “ACKNOWLEDGMENTS”. In case that no
section was correctly identified, the article is seen as containing only one section. Sentences are
then associated with their corresponding sections afterwards.

2. Protein detection is performed by Abner across the whole document. Since our system works
with predicates at the sentence level, protein references across sentences must be unveiled. For
this specific purpose, we took advantage of the full implementation of [5] provided by JavaRap,
instead of its partial implementation presented in [4].

3. Predicate Analysis takes all sentences containing at least two recognised proteins and identifies
its predicate and arguments. This semantic structure is a crucial aspect of our strategy (also in
[4, 6]), because the role of proteins within sentences signals their relation and verbs whether this
relation a protein-protein interaction is or not [4, 3, 7]. Arguments with no protein mentions
were for this reason also completely discarded. Another thing is, headlines of articles are usually
ungrammatical, MontyLingua could not then distinguish their structure. Our system keeps
hence track of co-occurring proteins within headlines, because they are likely to signal a relevant
relation.

4. Gene name normalisation maps protein names, which occur in at least one predicate, to their
corresponding UniProt Accession Numbers. This mapping consists of the next steps:

(a) The UniProt light Knowledge Base was indexed by normalized terms extracted from
the following columns: description and gene name lines, gene synonyms, locus and ORF
names, keywords. These terms indexed their corresponding accession numbers and their
normalization consisted in leaving only letters and numbers [8].

(b) Candidate protein keys are extracted by looking for matches across this index. Firstly, our
system attempts to find exact string matches, if it does not succeed, it looks for inexact
matches. The first matching considers only the exact gene name identified in the text, and
the second accounts solely for the letters and number in the distinguished gene name.

(c) Our system searches for co-occurring pairs organism-protein within sentences. If any highly
co-occurring pair exists, the organism is used for disambiguating the key.

(d) If key ambiguity still exists, our system tries to discover known interacting key pairs in the
Expasy Knowledge Base[21].

(e) If our system cannot disambiguate the key, the first key in alphabetical order is selected.

Protein names were eventually replaced in predicates with their mapped accession numbers.
Each predicate provided accordingly the following interacting pairs:

(a) The subject was paired with each argument.

(b) Each argument was paired with the other arguments.

5. Ranking predicates and protein pairs Let S be the set of 1 ≤ s ≤| S | sentences extracted
from a given article D and Ss the s-th sentence in S, 1 ≤ s ≤| S |. Each sentence Ss ∈ S
is then ranked according to the potential of its words for expressing protein interactions. The
computation of this potential is based mainly on the following equation:

word potential(Ss) =
∑

∀wi∈S

P ISS(wi) + W IAS(wi)

Where P ISS(wi) is the probability that the word wi occurs within interaction sentences across
abstracts in the Christine Brun corpus. W IAS(wi) is given by:

W IAS(wi) = W+(wi)−W−(wi)
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Where W+(wi) and W−(wi) are the likelihood of wi to the noisy positive and negative class
respectively (previously computed in sub-task I (see section 3)). Additionally, we define the
potential of a verb for expressing protein interactions as P IAS

verb , the probability that a protein
and a particular verb co-occur in the same sentence across positive and noisy positive abstracts
given in sub-task I. The rank of a sentence is eventually defined as follows:

rank(Ss) = Γ ∗ (1 + word potential(Ss)) ∗ (1 +
∑

∀ϑr∈ϑ(Ss)

P IAS
verb (verb(ϑr))) (1)

Where verb(ϑr) is a function which returns the verb in the predicate ϑr, ϑ(Ss) a function which
returns the identified predicates for Ss, and Γ is a weight according to the section in which Ss

occurs. Γ = 1 for all sections, apart from “MATERIALS”, “MATERIALS AND METHODS”,
“RESULTS AND DISCUSSION ”, “RESULTS”, “EXPERIMENTAL”, “DISCUSSION ”, “EX-
PERIMENTAL PROCEDURES”, which their value for Γ was set to two. The rank of the
interaction of two proteins p1 and p2 is given by:

rank(p1, p2) = τ(g1, g2)γ
∑

∀Ss∈S

λ(p1, p2, Ss) ∗ rank(Ss)

Where λ(p1, p2, Ss) is the number of predicates ϑr ∈ ϑ(Ss) in which p1 and p2 occur. The weight
γ favours pairs occurring in the title. τ(g1, g2) favours interaction pairs that can be found in the
Expasy Knowledge Base (step 4.d).

6. The three runs were generated according to the following criteria:

(a) RUN I: All identified ranked pairs.

(b) RUN II: All ranked pairs that satisfactorily fulfil the next rule:

rank(p1, p2) > 0.1 ∗ rank∗

Where rank∗ is the rank value of the higher ranked pair.

(c) RUN III: Top five ranked pairs.

5 Protein protein interaction sentence Ranking

This sub-task asks participants to provide, for each protein interaction pair, a ranked list of at most
five text passages (maximal three sentences per passage) describing their interaction. For this sub-
task, we submitted only one run. Our system took advantage of the ranking provided by sub-task II
(eq. 1) and selected the top five ranked sentences for each protein interaction pair. Each sentence was
aligned with the source HTML document as follows:

1. The first word in the sentence was used as an anchor. This anchor signals the start of a window
of two times the length of the ranked sentence.

2. Words were placed in each window according to their relative position within the ranked sentence.
When a word could not be accurately located within the window, it was marked with a “*”.
The window with less “*” was eventually selected.

3. If the last word in the selected sentence was properly aligned, the window is cut off at the end
of this word.

6 Results

The following section describes the results obtained by our system in details.
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6.1 Document Classification

Table 1 and 2 provide the results obtained by each run for the document classification sub-task:

Table 1: Results overview.
Precision Recall Accuracy F-Score AUC Error Rate

RUN I 0.527 0.986 0.550 0.687 0.795 0.44
RUN II 0.518 0.992 0.536 0.681 0.797 0.46
RUN III 0.577 0.725 0.597 0.643 0.589 0.40

RUN I and RUN II finished with a F-score about the mean of all systems (0.6868). Conversely, RUN
III achieved a slightly worse F-score, but a higher accuracy. Table 2 shows the confusion matrices
for each run:

Table 2: Confusion matrices.
TP FP TN FN

RUN I 370 332 43 5
RUN II 372 345 30 3
RUN III 272 199 176 103

The number of FP gives the reason for the high recall and low precision of RUN I and RUN II,
caused by the assignment of many negative test documents to the positive class. Table 2 also shows that
RUN III improved the recall of the negative class at expenses of its precision, which is a consequence
of the few number of negative training samples used for our classifiers. Table 3 provides greater details
about the results achieved by the three runs:

Table 3: Comparisson of the three runs.
RUN I RUN II RUN III

RUN I - 19 116
RUN II 6 - 109
RUN III 153 158 -

This table compares two runs by taking documents, for which their prediction differ, and counting
the number of correct forecast for each run. For instance, RUN I and RUN II obtained different
predictions for 25 documents and six cases were correctly labelled by RUN II, while 19 cases by RUN
I. This result envisages that the combination of the output of several classifiers can improve results.

6.2 Protein-protein interaction identification

Protein-protein interaction prediction
Tables 4 and 5 supply our per document and overall results respectively. In these tables, EVAL stands
for all articles and SP EVAL for the subset containing exclusively SwissProt interaction pairs.

The total recall of our system was about the mean respecting the 45 runs submitted by all systems.
In case of EVAL, our system achieved 0.09 (0.1064 overall) and in case of SP EVAL, it finished with
0.094 (0.1150 overall). In contrast to recall, results concerning precision are unconvincing. Given
this sharp difference, it can be concluded that our system discovers interacting pairs of proteins along
with a large amount of incorrect pairs. Looking closer upon table 5, we additionally observe that the
decrease in recall from RUN I to RUN II and RUN III leads us to conclude that interaction pairs tend
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Table 4: Mean values for the three different runs (per document).
EVAL SP EVAL

Precision Recall F-Score Precision Recall F-Score
RUN I 0.01 0.11 0.018 0.011 0.11 0.019
RUN II 0.029 0.056 0.035 0.025 0.056 0.032
RUN III 0.026 0.087 0.036 0.023 0.087 0.034

Table 5: Overall result for the three different runs.
EVAL SP EVAL

Precision Recall F-Score Precision Recall F-Score
RUN I 0.01 0.09 0.018 0.01 0.094 0.019
RUN II 0.029 0.030 0.034 0.025 0.026 0.026
RUN III 0.018 0.05 0.027 0.019 0.05 0.027

to be ranked low (RUN II and RUN III consider only a subset of the highest ranked pairs of RUN I).
These conclusions motivate the usage of Montylingua for distinguishing protein interactions, but a
strategy that can filter out misleading interactions along with a better ranking strategy is necessary,
this way the noise could be reduced and the precision similarly increased.
Interactor proteins Normalisation.
Tables 6, 7 and 8 gives our results for the normalisation of interactors.

Table 6: Mean values for interactor proteins normalization (all evaluated articles).
EVAL SP EVAL

Precision Recall F-Score Precision Recall F-Score
RUN I 0.06 0.29 0.095 0.066 0.32 0.11
RUN II 0.11 0.18 0.13 0.11 0.19 0.135
RUN III 0.09 0.20 0.11 0.095 0.22 0.123

Table 7: Mean values for interactor proteins normalization (all evaluated articles with predictions).
EVAL SP EVAL

Precision Recall F-Score Precision Recall F-Score
RUN I 0.06 0.31 0.1 0.072 0.34 0.11
RUN II 0.14 0.23 0.17 0.15 0.26 0.18
RUN III 0.11 0.27 0.15 0.13 0.30 0.17

Our gene normalisation strategy achieves a slightly better recall than the mean considering all
evaluated documents and a slightly worse recall taking into account only articles with predictions. In
the three cases, RUN II was the best, because of its higher precision and F-Score. The higher recall
of RUN I is a logical consequence of accounting for an unfiltered set of pairs.

Table 9 provides the performance of our gene mormalisation strategy: 361 out of 1306 protein
names were correctly identified and correctly mapped to their database entries, and 268 out of 896
taking into account only SwisssProt entries. The difference in the number of correctly identified protein
names shows that our ranking strategy ranks many relevant interacting proteins low. This could be
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Table 8: Mean values for interactor proteins normalization (Overall SwissProt interactor pairs).
EVAL SP EVAL

Precision Recall F-Score Precision Recall F-Score
RUN I 0.06 0.28 0.09 0.04 0.3 0.074
RUN II 0.13 0.15 0.14 0.097 0.158 0.12
RUN III 0.09 0.18 0.12 0.064 0.19 0.096

Table 9: Number of interactor protein-article associations.
EVAL SP EVAL

Correct Wrong Missed Predicted Correct Wrong Missed Predicted
RUN I 361 6011 945 6372 268 6104 628 6372
RUN II 197 1273 1109 1470 142 1328 754 1470
RUN III 238 2421 1068 2659 171 2488 725 2659

due to the detection of sentences, some relevant sentences could not be parsed, therefore, the relation
between proteins could not be properly determined. Results show that this is the most critical module
in our system.

6.3 Protein-protein interaction sentence ranking

Our system found out 590 sentences that matched the gold standard (manually selected passages), 285
out of these 590 were unique. Since our system returned a long list of interacting proteins in sub-task
II, it returned a huge list of 21431 sentences for this sub-task (10422 unique), which caused an MMR
of 0.3785.

7 Conclusions

In this work, we presented our first participation in an evaluation of Information Extraction Systems
in Biology. For a future participation, we envisage the following improvements:

1. Combining the output of several classifiers in order to enhance the accuracy of our predictions
and the robustness of our classifier.

2. The usage of language models that consider more contextual information, like bi-grams.

3. A bootrapping strategy can also take advantage of recognised pairs, this way undetected sen-
tences by Montylingua can be identified, bringing about an improvement in the ranking of
sentences and interacting protein pairs.

4. The usage of LSA[12] and the Web for discriminating the source organism of a protein.
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