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Abstract—In this paper, we demonstrate the concepts of a pro-
totype of a knowledge-driven content-based information mining
system produced to manage and explore large volumes of remote
sensing image data. The system consists of a computationally in-
tensive offline part and an online interface. The offline part aims at
the extraction of primitive image features, their compression, and
data reduction, the generation of a completely unsupervised image
content-index, and the ingestion of the catalogue entry in the data-
base management system. Then, the user’s interests—semantic in-
terpretations of the image content—are linked with Bayesian net-
works to the content-index. Since this calculation is only based on
a few training samples, the link can be computed online, and the
complete image archive can be searched for images that contain
the defined cover type. Practical applications exemplified with dif-
ferent remote sensing datasets show the potential of the system.

Index Terms—Content-based image retrieval (CBIR), image in-
formation mining, information extraction, statistical learning.

I. INTRODUCTION

DURING THE LAST decades, the imaging satellite sensors
have acquired huge quantities of data. Optical, synthetic

aperture radar (SAR), and other sensors have delivered several
millions of scenes that have been systematically collected,
processed, and stored. The state-of-the-art systems for ac-
cessing remote sensing data and images, in particular, allow
only queries by geographical coordinates, time of acquisition,
and sensor type [3]. This information is often less relevant than
the content of the scene, e.g., structures, patterns, objects, or
scattering properties. Thus, only few of the acquired images
can actually be used [6]. In the future, the access to image
archives will even become more difficult due to the enormous
data quantity acquired by a new generation of high-resolution
satellite sensors. As a consequence, new technologies are
needed to easily and selectively access the information content
of image archives and finally to increase the actual exploitation
of satellite observations [7].
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For many years, it has been known that classical image
file text annotation is prohibitive for large databases. The last
decade is marked by important research efforts to develop
content-based image retrieval (CBIR) concepts and systems:
query by image and video content (QBIC) [9], VisualSEEK
[16], Virage [1], etc. Images in an archive are searched by
their visual similarity with respect to color, texture, or shape
characteristics. While image size and information content are
continuously growing, CBIR was not any more satisfactory,
and thus, region-based information retrieval (RBIR) has been
developed [17]. Each image is segmented, and individual
objects are indexed by primitive attributes like color, texture,
and shape. Thus, RBIR is a solution to deal with the variability
of image content.

However, both CBIR and RBIR have been computer-centered
approaches, i.e., the concepts hardly allowing for any adaptivity
to user needs. Furthermore, the image retrieval systems have
been equipped with relevance feedback functions [4], [13]. The
systems are designed to search images similar to the user conjec-
ture. The algorithms are based on analyses of the probabilities
of an image to be the search target. A feedback that takes this
part into account is introduced.

Another interesting approach was developed. It is based on
a learning algorithm to select and combine feature grouping
and to allow users to give positive and negative examples. The
method refines the user interaction and enhances the quality of
the queries [11].

Both previously mentioned concepts are first steps to include
the user in the search loop; they are information mining con-
cepts. They are also methods in the trend of designing human-
centered systems.

In addition to the operational state-of-the-art archive and
database systems, we have developed a knowledge-driven
information mining (KIM) system. KIM is a next-generation
architecture to support the man–machine interaction via the
internet and to adaptively incorporate application-specific in-
terests. In the system, the user-defined semantic image content
interpretation is linked with Bayesian networks to a completely
unsupervised content-index. Based on this stochastic link, the
user can query the archive for relevant images and obtains a
probabilistic classification of the entire image archive as an
intuitive information representation.

The paper is organized as follows. After presenting the basic
concept behind KIM of hierarchical information modeling in
Section 2, we will show the applied methods for primitive image
feature extraction in Section 3. From the extracted parameters,
we will obtain a global content-index by an unsupervised
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Fig. 1. Hierarchical modeling of image content and user semantic. First, primitive image features��� and metafeatures are extracted from image dataD, based
on different parametric signal modelsM . Through an unsupervised clustering of the features, we obtain a vocabulary of signal classes! . User-defined semantic
cover typesL are linked to the signal classes! by probabilitiesp(! jL) using Bayesian networks.

across-image clustering and subsequentely the catalogue entry
as described in Section 4. How this content-index can be asso-
ciated with user-specific interests by interactive learning will be
pointed out in Sections 5 and 6. By making this association, all
images in the archive that have the trained semantic information
can be queried as shown in Section 7. The organization and
connections of user, interactive training, and image query in
the DBMS are demonstrated in Section 8 where we emphasize
the information transmission between different parts of the
system. After Section 9, a section of practical applications, we
will conclude with a short summary.

II. A PPLICATION-FREE HIERARCHICAL MODELING

OF IMAGE INFORMATION

In order to build a system that is free of the application speci-
ficity, to enable its open use in almost any scenario and to ac-
commodate new scenarios that are required both by the devel-
opment of sensor technology and the growing user expertise,
we start from an application-free hierarchical modeling of the
image content (Fig. 1).

The concept of information representation on hierarchical
levels of different semantic abstraction is based on a five-level
Bayesian learning model [15].

• First, primitive image features(level 1) and metafeatures
(level 2) are extracted from image data(level 0) using
different signal models (Section 3).

• Next, by a completely unsupervised clustering of the pre-
extracted image parameters, we obtain a vocabulary of
signal classes separately for each model (Section 4).

• Finally, user-specific interests, i.e., semantic cover type la-
bels (level 4), are linked to combinations of these vocab-
ularies by simple Bayesian networks (Section 5).

Levels 1–3 are obtained in a completely unsupervised and ap-
plication-free way during data ingestion in the system. The in-
formation at level 4 can be interactively defined by users with
a learning paradigm (Section 6) that links (objective) signal
classes and user (subjective) labels.

III. EXTRACTION OF PRIMITIVE IMAGE FEATURES

Automatic interpretation of remote sensing images and the
growing interest for image information mining and query by
image content from large remote sensing image archives re-
lies on the ability and robustness of information extraction from
the observed data. We focus on the modern Bayesian way of
thinking and introduce a pragmatic approach to extract struc-
tural information from remote sensing images by selecting those
prior models that best explain the structures within an image.
On the lowest level, the image data, we apply stochastic
models to capture spatial, spectral, and geometric structures in
the image. These models are given as parametric data models

and assign the probability to a given realization of
the data for a particular value of the parameter vector.

A. Optical Images

To apply parametric stochastic models [8] in order to extract
primitive image features, the data are understood as a realiza-
tion of a stochastic process. The Gibbs–Markov random field
(GMRF) family of stochastic models assumes that the statistics
of the gray level of a pixel in the image depends only on the
gray levels of the pixels belonging to a neighborhood with a re-
stricted dimension. The probability of the gray level of the pixel

is given by

(1)
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where acts as a normalization factor given by the sum over
all the possible states for the pixel. Assumptions have to be
made for the functional form of the energy function. In this
approach, we use an autobinomial model with its energy func-
tion

(2)

(3)

as the joint influence of all neighbors weighted by the elements
of the parameter vector. Each element of the parameter
vector describes the interaction between the pixeland the
pair , while the parameter represents a sort of autoint-
eraction. indicates the maximum gray value, e.g., 255 for an
eight-bit image.

A fitting of the model on the image is performed in order to
obtain the best fitting parameters. For the estimation a condi-
tional least squares (CLS) estimator [14] is obtained by

(4)

The evidence of the model, e.g., the probability of the model
given the data, can be calculated by

(5)

where the probability of the data can be obtained via the
integration

(6)

From the estimated parameters, we derive several features to
describe the image content: the norm of the estimated parame-
ters as the strength of the texture, the estimate of the variance

as the difference between signal and model energy [12], the
evidence of the model , (5), and the local mean of the estima-
tion kernel (Fig. 2).

To describe the image content by using the spectral proper-
ties, we do not have to explicitely estimate the parameter vector
. Instead, we can directly assign the individual spectral chan-

nels (after a normalization) to elements of the vector, e.g.,
the six spectral channels in the visible spectrum of the Landsat
Thematic Mapper (TM) result in a six-dimensional vector

.

B. SAR Images

In KIM, there exist coregistered optical and SAR images. To
include radar information in the retrieval process for an entire
exploitation of the image archive and to enable the mining of
multisensor data for sensor qualification, we have to extract con-
tent-based image parameters from SAR data, too.

The information extraction is achieved as a model-based
Bayesian approach [8], [18]. The system models and recon-
structs an estimated backscatter image that is free of speckle
noise, while still completely preserving its most important
structural information.

Since the system takes both the statistics of the noisy and
the noise-free data in a Bayesian framework into account, the
choice of an appropriate model for the estimated backscatter
image plays an important role and affects the obtained results
directly. In order to filter out speckle, the Bayesian formula

(7)

is used, where we try to estimate the noise-free image that best
explains the noisy observation assuming some prior informa-
tion. By we describe a noise-free pixel of the image;indi-
cates a pixel of the noisy observation, e.g., the European Remote
Sensing 1 (ERS-1) image; and bywe characterize the param-
eters of the applied model.

The Bayes’ equation (7) allows the formulation of the infor-
mation extraction problem as a maximuma posteriori(MAP)
estimation

(8)

(9)

Analytically computed MAP estimates of the cross section
are generated from the filter. Subsequently, they are employed to
produce parameters for by iterative maximization of
the evidence [18]. Expectation maximization is used to estimate
the nonstationary texture parameters that provide the highest ev-
idence value. The estimated model parameters express the char-
acteristics of the texture and the strength of geometrical struc-
tures in the data.

The model used as a prior is the Gauss–Markov random field
(GMRF) texture model [8], [18]

(10)

specified by and the parameter vector .
The latter is defined on a neighborhood of cliques centered on
the generic pixel so that the scalar parameters are symmetric
around the central element. The main strength of the Gauss-
Markov model lies in its ability to model structures in a wide set
of images while still allowing analytical tractability. The likeli-
hood used in the Bayes equation (7) is the gamma distribution

(11)

with the number of looks of the data. From the estimated pa-
rameters, we take the model-based filtered intensity image and
the norm of the model parameter as exemplified in (Fig. 3).
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(a) (b)

(c) (d)

(e)

Fig. 2. Extracted textural features from a Landsat TM image. (a) Fourth band of Landsat as dataD and (b) normj�̂��j of the estimated texture parameters. (c)
Variance�̂ and (d) evidencep(M jD). (e) Local mean of the estimation kernel.

C. Information Extraction at Multiple Scales

We showed that parametric data models are suitable to char-
acterize spatial information in images by its parameter vector.
Capturing highly complex textures that have features at different
scales, particularly large-scale structures such as mountains or
rivers, requires high-order models. With an increasing neigh-
borhood size, the number of parameters grows and leads to an
averaging effect of different parameters. This results in a lim-

ited discrimination power of the extracted texture features and
impairs the interpretation.

The approach we follow for a complete description of all tex-
ture structures is to generate a multiresolution image pyramid
where the original image is located at the lowest layer and the
reduced resolution representations of the image at higher layers
[14]. If the same Gibbs random field texture model is applied
with a limited neighborhood size at different layers, informa-
tion for different structures is extracted. Thus, we can charac-
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(a)

(b)

(c)

Fig. 3. Information extraction from radar images. (a) and (b) Original ERS-1
intensity image covering Mozambique with (a) mountains, rivers, and flat terrain
and (b) the model-based despeckled image. (c) Normj^���j of the estimated texture
parameter vector.

terize large-extended spatial information by a restricted model
order.

IV. UNSUPERVISEDCLUSTERING OFPRIMITIVE IMAGE

FEATURES AND CATALOGUE ENTRY GENERATION

In the previous section, we pointed out how the content of
optical and radar images can be described by parametric data

models. Since the feature extraction produces large volumes of
data that cannot be managed in practice, estimated image pa-
rameters must be compressed and reduced. Clustering, which
is similar to a quantization process, reduces the accuracy of the
system, but justifies its practical use due to a large data reduc-
tion. In order to reject existing structures in the different feature
spaces of the data and to avoid the time-consuming calculation
of similarity functions, the unsupervised clustering is performed
across all images as outlined in Fig. 1. We perform the global
unsupervised clustering using a dyadicmeans algorithm [5],
which substitutes the “clouds” of primitive features by para-
metric data models . Although our clustering method
is slightly less accurate thanmeans, it significantly reduces
the processing time. Especially for a large number of clusters,
the algorithm has proved to be very efficient.

From the results of unsupervised feature classification, we de-
rive a set of signal classes that describe characteristic groups of
points in the parametric spaces of different models. This “vo-
cabulary” of signal classes is valid across all images, ensured by
the global across-image classification. The elementsof this
“vocabulary” are given by the cluster membership of all image
points to one of the clusters. For each image, this results in as
many classification maps as the number of models that are used.
From these maps, we calculate the probabilities of the
th class given a certain image. These probabilities are sep-

arately computed for each signal model. We obtain the proba-
bilities by calculating the histogram of the occurrence of signal
classes in an image . The elements of the histograms, the
probabilities , are stored in a relational database system
together with the classification maps. The latter are stored as bi-
nary large objects (BLOBs). Additionally, Quick-Looks (QLs)
and their thumbnails as BLOBs in JPEG format, metainforma-
tion, such as sensor type, time of acquisition, geographical in-
formation, etc., are inserted.

V. USER-SPECIFICSEMANTIC LABELING

The first three levels of our hierarchical modeling describe
the image data at level 0 in a completely unsupervised way
(Section 2). Based on this objective representation, we can now
link subjective user interests (level 4) to the signal classes

by probabilities . For a robust characterization of
user-specific semantics, several signal models (level 3) have
to be applied.

Then, we link the elements of the joint space of signal classes
to the user’s interests. The stochastic link can be achieved with
different models for , but only if we suppose a full
statistic independence written as

(12)

a fast computation is possible. In the following, we will restrict
ourselves to a statistic independence for with two
models and .

With the results of unsupervised classification (level 3),
we obtain the posterior probabilities for the signal
classes given the data . With these results and the
assumption that the signal characteristics of the semantic label
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are fully representated by , we can calculate the posterior
probability as

(13)

With Bayes’ formula, (13) can further be expressed as

(14)

where indicates the prior probability of semantic labels
and the prior of signal classes

. Since the posterior probability can be calculated for each
image pixel, we can visualize . The spatial visualiza-
tion of is named in the following as “posterior map.”
This map gives the system operator feedback of how strong and
accurate the cover type label has been already defined.

VI. I NTERACTIVE LEARNING

In order to make the inference from the image data(level
0) to the cover type label (level 4), the system first has to
learn the probabilistic link based on user-supplied
training samples. As mentioned in the last section [see (12)],
we assume conditional independence for the signal classes
as a combination of two features. In the following, we denote
the classes by . We perform the probabilistic learning with
a simple Bayesian network [10]. Assume we have a set of
user-supplied training data expressed by with

being the occurrence of in . Then, the vector of has
a multinomial distribution, since is a variable with states
[2], if we consider the parameter vector as a
model for the set of probabilities

(15)

Now, we change our discussion from determining the
probabilities of the signal classes to the parameter vector.
For a newly defined label, we start with a constant initial prior
distribution

(16)

where indicates the number of signal classesand the
gamma function. With our observed training setand its in-
stances , we obtain the posterior probability

Dir

Dir (17)

with the total sum of training samples , the Dirichlet
function Dir , and the hyperparameters

(18)

If we observe another training set that is considered to be
independent on , we obtain by

Dir (19)

an additional update of the hyperparameters by adding the
number of times occurs in the training dataset

(20)

The initial state of the hyperparameters is given by

(21)

and a new set of training samples updates the hyperparameters
as given in (20).

Having a definition of the hyperparameters by some
training sets , we can finally calculate the probabilities as
expectation over all possible values ofas

(22)

The fast computation of the probabilistic link [see
(22)] and the updating after observing new training data [see
(20)] make the hyperparametersa very advantageous tool to
describe the stochastic link between objective signal classes and
subjective user semantics (Fig. 1).

In order to allow high-precision training specified on full-res-
olution images, an online training interface has been developed
(Fig. 4).

A human trainer can define an arbitrary number of (pairwise
disjunct) cover types (e.g., “lake” and “not lake”) on a set of
images in full resolution. After selecting a combination of signal
classes of feature models, the trainer can ask for the posterior
map of a particular cover type label or an assessment of the
selected features classes. Since the image content has already
been extracted up to level 3, only the probabilistic link has to
be recalculated, and the response is pretty fast. This allows an
iterative refinement of the training regions and “simultaneous”
observation of the consequences for the posterior probabilities.

VII. PROBABILISTIC SEARCH

We can calculate the posterior probability of given the
image as

(23)

in a similar way as we calculated the posterior probability of
given a particular data [see (14)]. The posterior probability is
a measure of how probable an image “is of” a particular cover
type.
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Fig. 4. Graphical user interface in KIM for interactively learning the contents (water) of remote sensing images. The system operator can specify hisinterests by
giving positive and negative training samples, either directly (top left) into the original image, (bottom left) the zoom window, or (top right) the posterior map. After
each mouse click, the hyperparameters��� and the probabilitiesp(! jL) of the stochastic link are updated, and the posterior map on the right side is recomputed and
redisplayed. As a further quality measurement, we display (bottom right) the divergence between positive and negative training samples. If the users are satisfied
with the posterior map, they can search the entire archive for relevant images by clicking on the “SEARCH” button.

To provide a more practical measure for image retrieval, we
compute the “coverage”

Heaviside (24)

which specifies the approximate percentage of the image that
definitely contains the desired cover type. The degree of “defi-
nitely” is determined via the threshold .

Since the distribution of —resulting from limited
training data—is known in detail, we can specify both the prob-
ability of a label in a particular image and the expected degree
of variation. We do this by calculating the expected variance of
the posterior

(25)

with the symbol denoting the variance. As a measure of how
well is separated from in a particular image, we use the
separability

(26)

which is the variance in units of the maximal possible variance.
The smaller , the “better” we call the separability. The sep-
arability measurement is very useful for further learning, since

retrieved images with low separability are related to performed
positive training samples and images with high separability are
connected to negative training. The user can either decide to en-
force the positive training because of bad query results for low
separability or enforce negative training due to bad search re-
sults for high separability.

VIII. SYSTEM DESCRIPTION ANDCONFIGURATION

In this section, we describe the KIM system from the tech-
nical point of view with its main compontents (Fig. 5).

To access KIM, a user has to register first by choosing a user
id and a password. After successful login, a personal welcome
page is displayed. The user can decide to perform some admin-
istration to start the interactive learning process. The latter re-
quires the selection of a combination of up to four signal models.
In KIM, the information extracted from one single sensor as
well as the information from multiple sensors can be used for
interactive training and probabilistic search. Having selected a
certain model combination, the user has to pick out a starting
image from a gallery of randomly chosen images. If the gallery
does not contain an image of the user’s favor, they can choose
another set of random images.

Once clicked on an image, the interactive learning process
begins as depicted in Fig. 6.

In a first step, the following objects are downloaded by the in-
teractive learning applet: the QL image in JPEG format and the
corresponding classification maps (image content catalogue)
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Fig. 5. KIM client–server system architecture.

Fig. 6. Dataflow during interactive learning and probabilistic search. After identifying the user and choosing a combination of signal models, the learning applet
is downloaded from the server to the client browser. The system operator can continously train a specific label of interest by giving positive and negative training
samples. After each training (mouse click), the hyperparameters��� are updated, and the redisplayed posterior map indicates the current state of the label. If the
users are satisfied with the trained label, they can query the entire image archive for the defined cover type. The system delivers the top ranked images according
to (C) coverage, (P) posterior probability, and (S) separability. For further label definition, the user can select another image from the search results.

for the selected signal models in raw binary format. When
the downloading is finished (after a few seconds), the user
can start the definition of a semantic cover type of interest by
giving positive and negative samples using the left/right mouse
button. After each click, the hyperparameters, the likelihoods

, and the posterior map are updated. The latter per-
manently gives the user an intuitive feedback about the quality
of the learning process by marking regions corresponding to
the cover type with red color. If the current label definition is
satisfactory, the system operator can query the entire archive
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TABLE I
INGESTEDDATASETS IN KIM AND THE APPLIED SIGNAL MODELS

for images containing similar structures or objects. For the
computation of the probabilistic search measurements on the
KIM server’s site, only the hyperparameters with the derived
posterior probabilities and the probabilities
of the generated and inserted catalogue entries are necessary.
At this time, the label is persistently stored in the database. The
definition of the label is given by its name, the used image from
training, the selected signal models, the hyperparameters, and
the resulting (queried) images.

The user can continue the learning process until they are sat-
isfied with the query result. In order to improve the definition of
the semantic label, the system operator clicks on another image
in the resulting image set and continues to feed in positive and
negative examples. Every time the user selects an image from
the query gallery, the QL and the assigned signal model classi-
fication maps are transmitted via the World Wide Web. We want
to point out that the cover type learning using several images is
important to obtain a well-defined semantic label. We call this
“iterative incremental learning.” Each time the user queries the
image archive, the semantic label definition in the database is
updated.

A tool worth to be mentioned in KIM is the tracking module
that stores each human–machine interaction in the database.
Based on the stored information, the system computes a number
of statistical and information theoretical measures that indicate
the goodness of the learning process. These measures give the
user a further feedback about the learning progress (lower left
part in Fig. 4).

IX. PRACTICAL APPLICATIONS

The applied concept of unsupervised indexing of image con-
tent and the user-specific semantic labeling of cover types have
been extensively tested in KIM based on various remote sensing
datasets (Table I).

In the performed experiments, the image data range from
monochromatic high-resolution (Ikonos) to hyperspectral

(Daedalus ATM) data and from medium-resolution SAR
(ERS-1) to high-resolution polarimetric (E-SAR) image data.
The fusion of different signal models from one sensor, as
well as the fusion of multisensor image data, is applied for
interactive learning and probabilistic retrieval. With it, we want
to demonstrate the power of KIM for data-independent image
mining applications.

In the following, we show examples of labeling user-defined
semantics and query results from the image archive. We start
with the analysis of a cover type “mountain” that was trained
with different combinations of signal models as shown in Fig. 7.

The selected combination of signal models influences both
the level of compactness and detail of the semantic label. The
retrieved images for the defined cover type “mountain” are given
in Fig. 8. By default, only the highest six top ranked images are
delived for probability, coverage, and separability, but the user
can ask for more results.

User-specific interactive learning with information from mul-
tiple sensors can be used for sensor qualification and further ex-
ploration of the image dataset. For this, the interactive training
with high-resolution image data is exemplified in Fig. 9.

In a final application, we show the classification and retrieval
of the label “water” from coregistered high-resolution hyper-
spectral and polarimetric radar data (Fig. 10).

The applied signal models are spectral from the hyperspectral
data and from E-SAR the despeckled SAR backscatter (L-band,
scale 2 m), the despeckled SAR backscatter (L-band, scale 2 m),
and the norm of the SAR texture vector (L-band, scale 4 m).
With an increasing number of signal models, the number of
structural details grows.

X. CONCLUSION

In this paper, we have presented KIM, which is a prototype of
a next-generation knowledge-driven image information mining
system developed for the exploration of large image archives.
We started our presentation with the offline part of KIM that
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Fig. 7. Interactive training of mountainous areas with different combinations of signal models. Regions belonging to the semantic label are marked with red color.
QL from (top left) Landsat TM and (top right) ERS-1 image data. (Middle left) Trained semantic label with spectral and texture information from Landsat TM
and (middle right) the obtained results with only texture features from ERS-1 at different scales. (Bottom) Cover type with across-sensor model combination of
spectral (Landsat) and texture (ERS-1).

consists of the extraction of primitive features from image data
and their compression by an unsupervised classification. After
generating the catalogue entries from the clustering results and
ingesting them in the database, we described the online part of
KIM: user-specific semantic image content labeling. The se-
mantic cover type is defined based on an intelligent graphical
user interface. If the users are satisfied with the trained semantic
label, they can query the whole archive for images that con-
tain the defined content. We demonstrated the system operation
of KIM and its potential for practical applications on various

datasets. Thereby, we included extracted information from mul-
tiresolution datasets as well as the information from multisensor
data.

In the future, we will further develop KIM and use the knowl-
edge and semantic information that is stored in the database
system. During interactive learning and probabilistic search, the
database management system records the user semantics, the
combination of models able to explain the user’s target, the
classification of the target structure in each individual image,
and a set of statistical and information theoretical measures of
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Fig. 8. Results of probabilistic search for the trained semantic label “mountain” in upper right panel of Fig. 7. The queried images are ranked according to (first
row) coverage [see (24)], (second row) posterior probability [see (23)], and (third row)separability [see (26)]. The user can continue training thecover type by
selecting one of the retrieved images.

Fig. 9. Interactive training of semantic labels in an Ikonos image with spectral and texture information. (Upper left) QL of a panchromatic Ikonos image with
a resolution of 1 m and (upper right) trained semantic label “industrial area.” (Bottom left) Trained cover type labels “grassland” and (bottom right) “coastline.”
Consider that the defined semantic labels were obtained with just a few training samples.

the quality of the learning process. This information and asso-
ciations represent a body of knowledge, either discovered or
learned from the various system users. It will be further used

for other mining tasks. The acquired knowledge will be the
object of mining, e.g., grouping of semantic levels, relevance
feedback, joint grouping between the semantic space, and the
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Fig. 10. Interactive learning and probabilistic search of semantic label “water” from hyperspectral and polarimetric data using four different signal models.
(Upper left) QL and (upper right) posterior map. (Second row) Top ranked retrieved images according to coverage. (Third row) Posterior probability.(Bottom row)
Separability.

statistical or information theoretical measures of the quality of
the learning process. The KIM system is available online at
http://www.acsys.it:8080/kim.
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