
ARTICLE IN PRESS
0306-4379/$ - se

doi:10.1016/j.is.

$This is an

‘‘Using Security

Information S

International C

(ICEIS), Porto
�Correspond
E-mail addr

paolo.giorgini@
Information Systems 32 (2007) 1166–1183

www.elsevier.com/locate/infosys
Security Attack Testing (SAT)—testing the security of
information systems at design time$

Haralambos Mouratidisa,�, Paolo Giorginib

aSchool of Computing and Technology, University of East London, UK
bDepartment of Information and Communication Technology, University of Trento, Italy

Received 7 June 2006; received in revised form 1 March 2007; accepted 15 March 2007

Recommended by: F. Carino Jr.
Abstract

For the last few years a considerable number of efforts have been devoted into integrating security issues into

information systems development practices. This has led to a number of languages, methods, methodologies and

techniques for considering security issues during the developmental stages of an information system. However, these

approaches mainly focus on security requirements elicitation, analysis and design issues and neglect testing. This paper

presents the Security Attack Testing (SAT) approach, a novel scenario-based approach that tests the security of an

information system at the design time. The approach is illustrated with the aid of a real-life case study involving the

development of a health and social care information system.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Information systems development methodology; Integrating security and software engineering; Scenarios; Information system

security testing
1. Introduction

Developers face many challenges in the develop-
ment of modern information systems (ISs). These
challenges are mainly associated with characteristics
that modern ISs need to demonstrate, such as
openness, adaptability, interoperability and security.
e front matter r 2007 Elsevier B.V. All rights reserved

2007.03.002

extended and substantially revised version of the

Attack Scenarios to Analyse Security During the

ystems Design’’ paper presented in the 6th

onference on Enterprise Information Systems

– Portugal, ICEIS (3), 2004, pp. 10–17.

ing author. Tel.: +44 20 8223 3315.

esses: haris@uel.ac.uk (H. Mouratidis),

unitn.it (P. Giorgini).
Although many new techniques and technologies are
being developed, on a regular basis, to enable
developers to deal with most of these challenges,
security has not yet received the attention it
deserves.

Security engineering of ISs is mainly concerned
with methods providing cost effective and opera-
tionally effective protection of ISs from undesirable
events [1], and as Anderson claims [2], security
engineering is about building systems to remain
dependable in the face of malice, error or mis-
chance. Current literature [3–6] extensively argues
that in order to effectively design secure ISs, it is
necessary to integrate security engineering principles
into development techniques and introduce an ISs
.

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2007.03.002
mailto:haris@uel.ac.uk
mailto:paolo.giorgini@unitn.it

ARTICLE IN PRESS
H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–1183 1167
development methodology that will consider secur-
ity as an integral part of the whole development
process. However, there are various problems
associated with the integration of security consid-
erations during the development of ISs [4,7,8]:
1.
 A large number of ISs developers have very
limited knowledge of security. However, in
practice they need to develop ISs that require
knowledge of security.
2.
 There are many security-related concepts and
definitions that are used differently by security
specialists and ISs developers. As a result, there is
an abstraction gap that makes the integration of
security into information system development
practices more difficult.
3.
 It is difficult to define together security and
functional components and at the same time
provide a clear distinction. For instance, which
components are part of the security architecture
and which ones are part of the functional
specification.
4.
 It is difficult to move from a set of security
requirements to a design that satisfies these
requirements, and also understand what are the
consequences of adopting specific design solu-
tions for such requirements.
5.
 It is difficult to get empirical evidence of security
issues during the design stages. This makes the
process of analysing security during the design
stage more difficult.
6.
 It is difficult to test the proposed security
solutions at the design level.

All these problems raise a number of research
questions and challenges: How developers with

minimum knowledge of security can develop secure

ISs? What are the requirements for structured

methods and methodologies to support security

analysis during the development process? Is it possible

to define security requirements together with func-

tional requirements and at the same time provide a

clear distinction indicating which are the security

requirements? Is it possible to test the developed

solution with respect to security at design time?

Although the current state of the art fails to
provide solutions and answers to all the above
problems and research challenges, in the last few
years a considerable number of promising works
have appeared. A number of ontologies and
modelling languages [9–12] have developed aiming
to narrow the gap and create a common ground for
the integration of security issues into ISs develop-
ment processes. Methodologies and methods
[4,8,13] are under development aiming to provide
a structured approach towards the integration of
security issues in the development process and allow
simultaneous definition of security and functional
requirements. We have also contributed to this line
of research. In previous work we have proposed
secure Tropos [4,14,15], a methodology that con-
siders security issues as part of the ISs development
process by employing the same concepts and
notations throughout the development process.
We then enhanced the secure Tropos methodology
by providing a set of security patterns [16] to assist
developers with limited knowledge of security to
produce a security-aware design. However, neither
secure Tropos nor any of the existing approaches
have focused on providing a process to test at design
time the security solution that derives from the
application of a structured ISs development meth-
odology. Such a testing process does not aim to
substitute the existing security testing techniques
[6,17,18], but rather to compliment them and in
effect act as an initial filter to identify at design time
security problems of the developed system and
allow developers to redefine the system and improve
its security at an early stage of the development. It is
well known that problems identified during the
design stage are easier and less expensive to fix than
problems identified in subsequent stages of the
development process.

In this paper we introduce the Security Attack
Testing (SAT) process; a novel scenario-based
approach that assists developers to test, at design
time, the developed system against potential secur-
ity attacks. Our approach is based on five key ideas:
�
 employ the same concepts in testing as in the
requirements elicitation, analysis and design;

�
 test during the design time;

�
 employ scenarios to test the security of the
system;

�
 create security scenarios and derive the test cases
through a systematic process;

�
 integrate the testing approach to the secure

Tropos development process.
To show the applicability of our approach we
revisit the electronic single assessment process
system case study [19]; the analysis and design of
which has been presented in the literature [14,15]

ARTICLE IN PRESS

Fig. 1. Tropos and Secure Tropos notation.

H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–11831168
and we illustrate how the proposed approach can be
used to test and improve the security of the system.

Section 2 of the paper provides a brief review of
secure Tropos, whereas Section 3 discusses security
testing. Section 4 describes the proposed Security
Attack Testing (SAT) process, and Section 5
discusses related work. Section 6 concludes the
paper and points out directions for future work.

2. Secure tropos

This paper is not intended to provide a full
description of the analysis and design stages of the
secure Tropos methodology. Such descriptions are
widely available in the literature [4,14,15,20]. How-
ever, it is important to provide a brief introduction
to the secure Tropos methodology to enable readers
not familiar with it to understand the fundamentals
of it, so they can easily understand the rest of the
paper.

Secure Tropos is based on the Tropos methodol-
ogy [21], which uses the concepts of actor (entity
that has strategic goals and intentionality), goal
(an actor’s strategic interest), soft-goal (goal with-
out clear criteria whether it is satisfied or not), task
(it represents the way of doing something), resource
(it represents a physical or informational entity,
without intentionality) and social dependencies
(indicate that one actor depends on another in
order to attain some goals, execute some tasks, or
deliver a resource).

Secure Tropos extends the Tropos methodology
by adding security concerns during the development
of ISs. In particular, secure Tropos extends the
Tropos language as well as its development process.
The language extension consists of redefining
existing concepts with security in mind as well as
introducing new concepts. A security constraint is
defined as a restriction related to security issues,
such as privacy, integrity and availability, which can
influence the analysis and design of the information
system under development by restricting some
alternative design solutions, by conflicting with
some of the requirements of the system, or by
refining some of the system’s objectives [22]. Secure
Tropos uses the term secure entity to describe any
goals and tasks related to the security of the system.
A secure goal represents the strategic interests of an
actor with respect to security. Secure goals are
mainly introduced in order to achieve security
constraints that are imposed on an actor or exist
in the system. However, a secure goal does not
particularly define how the security constraints can
be achieved, since alternatives can be considered
[22]. The precise definition of how the secure goal
can be achieved is given by a secure task. A secure

task is defined as a task that represents a particular
way for satisfying a secure goal. A secure depen-

dency introduces security constraint(s) that must be
fulfilled for the dependency to be satisfied. Both the
depender and the dependee must agree for the
fulfilment of the security constraint in order for
the secure dependency to be valid. That means the
depender expects from the dependee to satisfy the
security constraint(s) and also that the dependee will
make an effort to deliver the dependum by
satisfying the security constraint(s).

Fig. 1 provides a graphical representation of the
above concepts.

Based on the above concepts, the process in
secure Tropos is one of analysing the security needs
of the stakeholders and the system in terms of
security constraints imposed on the stakeholders
and the system, identifying secure entities that
guarantee the satisfaction of the security con-
straints, and assigning capabilities to the system to
help towards the satisfaction of the secure entities.
In particular, as for Tropos, the secure Tropos
methodology covers four main phases [15]:
�
 During the early requirements analysis phase the
security reference diagram [14,22] is constructed
and security constraints are imposed on the
stakeholders of the system (by other stake-
holders). During this stage, imposed security
constraints are expressed, initially as high-level

ARTICLE IN PRESS
H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–1183 1169
statements which are later further analysed. Then
secure goals and entities are introduced to the
corresponding actors to satisfy the security
constraints.

�
 During the late requirements analysis phase,
security constraints are imposed on the system-
to-be (by reference to the security reference
diagram). These constraints are further analysed
according to the analysis techniques [15,22] of
secure Tropos and security goals and entities
necessary for the system to guarantee the security
constraints are identified.

�
 During the architectural design any possible
security constraints and secure entities that new
actors might introduce are analysed. Addition-
ally, the architectural style of the information
system is defined with respect to the system’s
security requirements and the requirements are
transformed into a design with the aid of security
patterns. Furthermore, the agents of the system
are identified along with their secure capabilities.

�
 During the detailed design phase, the components
identified in the previous development stages are
designed with the aid of Agent Unified Modeling
Language (AUML). In particular, agent capabil-
ities and interactions taking into account the
security aspects are specified with the aid of
AUML. The important consideration, from the
security point of view, at this stage is to specify
the components by taking into account their
secure capabilities. This is possible by adopting
AUML notation.

3. Security testing

Security testing is widely considered an important
activity that helps to identify security vulnerabil-
ities. Existing testing techniques, such as network
mapping and vulnerability scanning [6,17], have
been used for many years and automated security
analysis tools, such as Nessus and Retina, are
considered valuable solutions. However, such tech-
niques and tools only work for systems that are
already built, i.e. they are useful after the system has
been developed. As development methodologies
start to consider security issues throughout the
development process, it is important to test the
design models, rather than just the implementation,
to ensure that the design of the system enforces the
necessary security requirements. However, as dis-
cussed in the introduction, current state of the art
fails to provide structured and well-defined pro-
cesses to test at the design time the security of an
information system. Therefore, a security testing
process is needed. Such process should demonstrate
at least the following characteristics:
�
 It should be clear and well guided. The concepts
used in the process must be well defined and the
activities and steps of the process well explained.

�
 It should be flexible enough to allow integration
into a methodological framework. The guidelines
and the structural processes of the methodology
will allow the explicit definition of the applic-
ability of the security testing process within the
stages of the methodology.

To meet the above requirements, we have chosen
a scenario-based testing method. Our decision is
based on the fact that scenarios can be represented
in various ways [23]. This allows better adoption to
a methodology’s concepts and notations and there-
fore better integration within a methodology’s
development lifecycle. Moreover, the effectiveness
of scenario-based methods has been widely tested in
many different areas of computer science research,
such as software engineering [24], business-process
reengineering [25], and user interface design [26] and
for different activities such as eliciting information
about a system’s requirements, communicating with
stakeholders, providing context for requirements
[23] and validation of requirements [23,27].

4. A security attack testing (SAT) process

Our scenario-based security testing process aims
to test, at the design time, the system’s security
against potential attacks. In doing so, two sets of
scenarios—dependency and security attack—are
identified and constructed and Security Test Cases

are defined, from the scenarios, to test the developed
design of the system against various types of
attacks.

In particular, SAT aims to identify the goals and
the intentions of possible attackers; identify through
these a set of possible scenario attacks to the system;
and apply these attacks to the system to see how it
copes. By analysing the goals and the intentions of
the attackers, the developer obtains valuable in-
formation that helps to understand not only the how

the attacker might attack the system, but also the
why an attacker wants to attack the system. This
leads to a better understanding on how possible

ARTICLE IN PRESS

Early

Requirements

Late

Requirements

Architectural

 Design

Detailed

Design

Security Attack

 Testing

Fig. 2. The secure Tropos stages and SAT.

H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–11831170
attacks can be prevented. In addition, the applica-
tion of a set of attacks to the system contributes
towards the identification of attacks that the system
might not be able to cope and this leads to the re-
definition of the agents of the system and the
addition of new secure capabilities to the system to
assist in the protection of these attacks.

As discussed earlier, one of our objectives was to
integrate the scenario-based security testing ap-
proach into the development process of the secure
Tropos methodology. However, this was not an
easy task and various research questions and
challenges surfaced: In which stage of the develop-

ment process should the approach be integrated?

What are the implications of such integration for the

rest of the development process? What kind of inputs

the proposed approach receives from earlier stages

and how it affects consequent stages?

Our initial analysis concluded that Early and Late

requirement phases did not provide enough infor-
mation with respect to the architecture of the system
which is necessary for the construction of the
security scenarios. To identify the scenarios required
by our approach, information is needed related to
the agents and resources of the system as well as the
communication paths and the secure capabilities of
each of the agents of the system.

Both Architectural and Detailed design phases
were candidates for integrating our proposed
approach. The main advantage of the detailed
design is that the components of the system have
been defined in more detail, as opposed to the more
abstract definition of components during the
architectural design stage. On the other hand, the
main advantage of the architectural design is that if
redefinition of the system is needed, this could take
place faster and with fewer expenses. Therefore, this
leads to a situation where a trade-off is required
between testing the system earlier and producing
some extra test cases. However, the factors influen-
cing such decision differ for different projects.

Therefore, we decided to develop our scenario-
based testing approach in such a way that a
pragmatic solution can be adopted for its integra-
tion to the development stages of the secure Tropos
methodology. That is, the approach can be em-
ployed if necessary throughout both architectural
and detailed design. For instance, the dependency
scenarios and a number of security attack scenarios
can be constructed during the architectural design
stage, whereas an extra number of security attack
scenarios together with the test cases can be defined
during the detailed design. This provides flexibility
to the developers. However, experience on applying
the approach [22] indicates that most of the times, it
will be employed during the latter part of the
architectural design.

Fig. 2 illustrates where our Security Attack
Testing process stands in the secure Tropos process.
The SAT process receives inputs mainly from the
architectural design stage for creating the initial
scenarios. In cases where limitations are identified in
the security of the system, after running the test
cases, and new components need to be added, this
information is fed back to the architectural design
where the new components are added into the
system’s architecture and then the SAT process runs
again. Moreover, if information is required from the
detailed design stage, such as detailed description of
a particular component for the construction of a
scenario or a test case, this information is input into
the SAT process. When the test cases have success-
fully run and no security limitations are identified,

ARTICLE IN PRESS
H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–1183 1171
the results of the SAT process are fed into
the detailed design phase of the secure Tropos
methodology.

The SAT process includes four main activities:
Derive Dependency Scenarios, Define Security At-

tack Scenarios, Define Security Test Cases and
Redefine the System. Each of these activities
includes a number of sub-activities as shown in
Fig. 3.

In theory a developer should follow a sequential
process when employing the above activities. The
dependency scenarios should be defined before the
security attack scenarios since information from the
former activity is used as input for the latter
activity. Similarly, the security attack scenarios
should be defined before the Security Test Cases
are defined. However, in reality the process is
highly iterative and usually more than one
iterations are required where the findings of one
(sub) activity might feed back a previous (chron-
ologically) activity as indicated with the arrows
pointing from a later to an earlier activity in Fig. 3.
Especially, this is the case with the last activity
Redefine the system. If during the Define Security

Test Cases activity is concluded that the system
cannot defend against some of the attacks, the
4. Redefine the System

1. Derive Dependency
Scenarios

2. Define Security Attack
Scenarios

3. Define Security Test Cases

Fig. 3. SAT A
results of the failing test cases are fed back to the
previous activities and the process starts again.
Depending on the extent of the problem, the
results can be fed to any of the previous activities.
For instance if new components of the system need
to be defined, the new components must be added to
the system and the testing process will go back to
the first activity where new dependency scenarios
will be defined taking into account the new
components.

The following section describes each one of the
above activities in detail. To support the description
of these activities and to demonstrate their useful-
ness and applicability we revisit the electronic single
assessment process system case study which was
used to initially motivate the development of the
secure Tropos approach [15,22]. The electronic
Single assessment Process system is a health and
social care information system to support the
effective care of older people.

Therefore, as part of the description of each
activity of our approach, we employ the eSAP case
study and we demonstrate how our approach can be
used to test the security of the eSAP system and how
it actually identifies limitations and improves the
security of the system.
1.1 Identify Resource Dependencies
1.2 Identify Dependency Scenarios

2.1 Identify Types of Attacks
2.2 Model Attacker Intentions
2.3 Model Attacks
2.4 Identify System Components Related
to the Attack
2.5 Create SAS template
2.6 Validate SAS

2.1 Identify Testing elements
2.2 Create Security Test Case template
2.3 Apply Security Test Case

ctivities.

ARTICLE IN PRESS

Fig. 4. Extended actors diagram for Assessment Evaluator.

H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–11831172
4.1. Derive dependency scenarios

The aim of this activity is to identify scenarios
that involve actors and resources of the system-to-
be. By identifying such scenarios, developers identi-
fy areas of the system where potential attacks might
take place. The output of this activity is used as an
input for the definition of the security attack
scenarios.
4.1.1. Identify resource dependencies

This sub-activity involves the identification of
resource dependencies and related actors of the
system under development. Such dependencies can
be identified by examining extended actor dia-
grams,1 which were constructed during the latest
phases of the architectural design stage of secure
Tropos. In particular, every resource dependency
modelled in an extended actor diagram is identified
and it is used as the starting point for the definition
of a dependency scenario.

Consider for instance the eSAP case study. Fig. 4
illustrates an extended actor diagram with respect to
the Assessment Evaluator actor as derived from the
early and late requirements analysis of the eSAP
case study [22].

Various resource dependencies can be identified
from that extended actor diagram. For instance, the
Social Worker depends on the Evaluation Synthe-
1An extended actor diagram captures the actors of the system

identified during the architectural design together with any

dependencies they might have with existing actors of the system.

For more information please see [21].
siser for the Assessment Evaluation secure depen-
dency. In turn, the Assessment Analyser depends on
the Social Worker for the assessment information
secure dependency.

4.1.2. Identify dependency scenarios

A dependency scenario is identified by taking into
account all the resource dependencies between the
same actors. For each identified scenario, a textual
description is generated to complement the graphi-
cal notation of secure Tropos and convey the
scenario easier.

Consider again for instance the eSAP case study.
By considering all the resource dependencies be-
tween the same two actors, a dependency scenario is
derived. For example, from the extended actors
diagram presented in Fig. 4, we identify the
following scenario for the Social Worker and the
Assessment Evaluator actors:

A Social Worker depends on the Assessment

Evaluator to obtain an assessment evaluation. For

this reason, the Social Worker sends an evaluation

request to the assessment evaluator along with the

assessment information. Then, the Assessment Eva-

luator returns the Assessment Evaluation.

4.2. Define security attack scenarios

Before explaining the second activity of the SAT
process, it is important to discuss some definitions
and concepts related to it.

The definition of attack that we use is one proposed
by Matt Bishop [17], according to which an attack is
an action that might cause a potential violation of

ARTICLE IN PRESS
H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–1183 1173
security in the system. The person, or software, who
executes such action is called an attacker.

A Security Attack Scenario (SAS) is defined as an
attack situation describing the actors of an informa-
tion system and their secure capabilities as well as
possible attackers and their goals. It identifies how
the secure capabilities of the system prevent (if they
prevent) the satisfaction of the attackers’ goals.

A security attack scenario involves possible
attacks to an information system, a possible
attacker, the resources that are attacked, and the
actors of the system related to the attack together
with their secure capabilities. Security Attack
Scenarios are modelled as enhanced secure Tropos
actor diagrams. In particular, an attacker is
depicted as an actor who aims to break the security
of the system. The attacker intentions are modelled
as goals and tasks and their analysis follows the
same reasoning techniques that the Tropos metho-
dology employs for goal and task analysis. For the
purpose of a security attack scenario, a differentia-
tion takes place between internal and external actors
of the system. Internal actors represent the core
actors of the system whereas external actors

represent actors that interact with the system. Such
a differentiation is essential since it allows devel-
opers to identify different attacks to resources of the
system that are exchanged between external and
internal actors of the system.

For each dependency scenario identified during
the previous activity, one or more security attack
scenarios are defined. There are six sub-activities in
defining a security attack scenario: Identify Types of

Attacks; Model Attacker Intentions; Model Attacks;
Identify System Components Related to the Attack;
Create SAS template; and Validate SAS. These are
described below.

4.2.1. Identify types of attacks

The security requirements and goals identified
during the early requirements analysis provide the
input for this activity. In particular, the first step
involves the identification of the different types of
attacks. The first step in identifying security attacks
is to consider the security requirements of the
system and to identify potential categories of
attacks that might endanger these requirements. In
doing so, libraries of attacks, attack trees and attack
patterns can be employed to provide a comprehen-
sive list of possible attacks. The activity concludes
with the creation of a list of the different types of
attacks together with a brief description.
As an example, consider the eSAP case study. As
derived from the analysis of the eSAP system [22],
the two main security features are privacy and
integrity. According to Stallings [28], the following
categories of attacks can be identified that can
endanger the above security features.
1.
 Interception Attack, in which an unauthorised
party, such as a person, a program or a
computer, gains access to an asset. This is an
attack on privacy.
2.
 Modification Attack, in which an unauthorised
party not only gains party to but also tampers
with an asset. This is an attack on integrity.

4.2.2. Model attacker intentions

When the types of attacks have been identified,
the intentions of an attacker according to these
types of attack are modelled. Tropos goal diagram
notation is used for analysing the intentions of an
attacker in terms of goals and tasks. The root goal
of the attacker derives from the type of attack
considered. Then this goal is decomposed to sub-
goals and tasks that capture more precise the
intentions of the attacker. Some of these goals/tasks
can be identified by considering the threats (related
to the type of attack) considered on the security
reference modelling [22] activity during the early
requirements development stage. However, other
goals could be derived from the analysis of a
possible attacker’s intentions following goal-reason-
ing techniques [21]. This is due to the fact that
an attack is an exploitation of a system’s vulner-
ability, whereas a threat is a circumstance that has
the potential to cause loss or harm [29]. Therefore,
an attack can lead to a threat only if the exploitation
of the vulnerability leads to a threat. This means
that some attacks can be successful but do not lead
to threats as other system features protect the
system. As with the previous step, attack trees and
libraries might also be employed to identify possible
goals of the attacker. This activity ends with the
construction of a goal diagram of an attacker
together with their intentions in terms of goals
and tasks.

As an example, consider again the eSAP case
study and let us assume an interception attack
scenario, where a possible attacker aims to attack
the privacy of the system in order to obtain
information such as private assessment data or
private care plan information. This is the root goal
of the attacker. Possible goals (amongst others)

ARTICLE IN PRESS
H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–11831174
towards the satisfaction of the root goal are read the

data and get access to the system. According to the
security reference diagram analysis [22], tasks to
accomplish these goals are social engineering, pass-
word sniffing and eavesdropping. Such analysis is
modelled as illustrated in Fig. 5.

4.2.3. Model attacks

When the intentions of the attacker have been
considered, the next activity aims to model the
attacks to the system that result from the identified
intentions. For each dependency scenario identified
during the previous activity, potential attacks are
modelled. Attacks are depicted as dash-lined links,
called attack links, which contain an ‘‘attacks’’ tag.
The attack links initiate from one of the attacker’s
tasks and end at the attacked resource. The activity
concludes with a goal diagram of the attacker
together with the possible attacks to the identified
dependency scenarios. An example of such a
diagram for the eSAP case study is shown in
Fig. 6. In this diagram various attacks are modelled.
For instance, password sniffing attacks endanger
the system access clearance resource dependency
whereas eavesdropping attacks endanger the system
access request dependency.

4.2.4. Identify system components related to the

attack

The next activity aims to identify and model the
agents (internal and external) of the system related
to the identified attack(s). The secure capabilities, of
Fig. 5. Example of attacker modelling.
each agent, that help to prevent the attacks are
identified and dashed-links (with the tag ‘‘help’’) are
provided indicating the capability and the
attack they help to prevent. The result of this
activity is an actor diagram modelling internal/
external agents of the system together with their
secure capabilities. A link that carries the ‘‘help’’ tag
is used to indicate the attacks these actors help to
prevent. For instance, for the eSAP case study
various system components are related to the
interception attack modelled in the previous activ-
ities, such as the eSAP Guard; the Authenticator;
and the Cryptography Manager. Moreover, as
shown in Fig. 7 the Social Worker actor has also
secure capabilities that help towards the prevention
of some of the attacks.
4.2.5. Create SAS template

The last sub-activity is the creation of the security
attack scenario template. Information from the
previous activities is gathered and the security
attack scenario template is used for each of the
scenarios that have been identified. The template
includes eight fields: SAS ID—this is a unique
number that identifies the Security Attack
Scenario modelled; SAS Name—this is a unique
name that identifies the Security Attack Scenario
modelled; Author(s)—the name(s) of the author(s)
of the SAS; Attack Type—the type of attack
that this scenario corresponds. The attack
type should match one of the types identified during
the first activity of the scenario creation process;
System Actors Involved—the actors (internal and
external) of the system involved on the scenario.
These actors have been identified during sub-
activity in Section 4.2.4; Scenario Trigger—the
situation that triggers the scenario. This is effec-
tively the dependency scenario for which the
attack scenario corresponds to; Textual Descrip-

tion—a textual description of the scenario
focusing on the analysis of the attacker and the
resources under attack; Graphical Representation—a
goal diagram of the security attack scenario. This
goal diagram includes the diagrams modelled
during sub-activities in Sections 4.2.2–4.2.4.
A simplified2 template for the interception sce-
nario of the eSAP system as results from the
2Not all the goals of the attacker are illustrated in this SAS. We

have kept the goals of the attacker to minimum number to allow

an easier understanding of the approach. For more attack goals

please see [14].

ARTICLE IN PRESS

Fig. 6. An example of modelling attacks.

Fig. 7. Example of ‘‘help’’ capabilities.

H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–1183 1175
analysis presented in the previous activities is shown
in Fig. 8.

4.2.6. Validate SAS

When the security attack scenarios have been
created the next step involves their validation.
Software Inspections are used for the validation
process. Software inspections have been proved as
effective means for document-based validation [30]
and in fact experiments [31] have demonstrated that
in some cases software inspections are more
effective than extensive testing. Moreover, as
Sommerville [32] indicates ‘‘software inspections do

not require the program to be executed’’. This fits
perfectly to our purpose, which is to validate our
scenario on the design level without necessarily
having a code corresponding to these scenarios.

For our project, the inspection of the scenarios
involves the use of validation checklists. Although
the information, questions and length of such
checklists might vary, there are some attributes that
all of them should demonstrate to be considered
satisfactory: syntax, completeness and consistency.
Syntax-related items of the list aim to identify any
possible violations of the secure Tropos and the
scenarios’ syntax.

The completeness related items of the list aim to
check the completeness of the developed security

ARTICLE IN PRESS

Fig. 8. Interception attack template.

H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–11831176
attack scenarios. The consistency-related items of
the list aim to identify any possible inconsistencies
within the security attack scenarios but also between
the security attacks scenarios and the secure Tropos
models developed during the previous stages of the
development process. An example of the validation
checklists used to validate the Security Attack
Scenarios for the eSAP case study is shown in
Fig. 9.

Although inspections have been proposed by this
research for the validation of the security attack
scenarios; other techniques could also be applied
depending on the developers’ experience and the
nature of the system. For instance, two well-known
validation techniques for requirements specification
are walkthroughs and prototyping [30].

4.3. Define security test cases

When the scenarios have been validated, the next
activity aims to identify test cases and test, using
these test cases, the security of the system against

ARTICLE IN PRESS

Syntax

1. Is a name defined for each scenario?

2. Are agents represented using the correct notation?

3. Are attack linksand help links correctly denoted?

4. Are the non-prevented attacks correctly marked?

Completeness

5. Do the attack scenarios capture all possible attacks?

6. Do different scenarios exist for thesamekind of attacks?

7. Are there any missing parts onthe identified scenarios? (Any links missing or any agents

missing?)

8. Are all the resources that can be attacked present in the scenarios?

Consistency

9. Are there any secure capabilities identified in the previous stages notpresent inthe

scenarios ?

10. Are there any agents, identified in the previous stages, relatedtothe attacks not present in

the scenarios ?

11. Are there any threats identified on the security referencediagram not presenton the

scenarios ?

Fig. 9. Example of validation checklist.

H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–1183 1177
any potential attacks. According to the IEEE
Standard 610 [33] a test case is defined as ‘‘a set of

test inputs, execution conditions, and expected

results developed for a particular objective, such as

to exercise a particular program path or to

verify compliance with a specific requirement’’.
A more recent definition by Ron Patton [34,
p. 65] indicates that ‘‘test cases are specific inputs

that you will try and the procedures that you will

follow when you test the software’’. Our under-
standing of test cases is consistent with these
definitions and in our work each test case is derived
from a possible attack depicted in the security
attack scenarios.

4.3.1. Identify testing elements

Each Security Attack Scenario might contain
more than one attack. It is important for testing
purposes to produce different test cases for each of
the attacks. In doing so, the first activity involves
the isolation of a particular attack and the
identification of the testing elements related to this
attack. The testing elements are components of the
security attack scenarios which are used as inputs
for the test case generation and execution. In
particular, the resource under attack, and the
system defences against the attack (as derived from
the related to the attack actors and their secure
capabilities) constitute the testing elements.

For instance, for the eSAP case study, various
testing elements can be identified from the intercep-
tion security attack scenario. These include
(amongst others) related resources, such as the
assessment information and the assessment evalua-
tion; secure capabilities, such as ask for consent and
change cryptographic algorithms; and related actors
such as the Authenticator, the eSAP Guard, and the
Cryptography Manager.

4.3.2. Create security test case

Although our approach does not restrict the
developers for the generation of the test cases, it is
important to highlight some guidelines to be
followed to ensure that test cases are easy to read
and that all the security-related aspects of the
system are adequately tested:
�
 For each attack-related task of an attacker,
identified during the scenario creation stage, a
test case should be generated.

�
 The discussion of a test case should take into

account the testing elements identified during the
previous sub-activity. In particular, all the secure
capabilities of the agents of the system which

ARTICLE IN PRESS
H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–11831178
contribute towards the defence of the attack must
be considered.

�
 Each test case is documented with the aid of a

Security Test Case template. This template
includes eight fields: Test Case ID which indicates
the unique ID of the Test case; Test Case Name

which indicates the name of the test case;
Related SAS which indicates the security attack
scenarios related to the test case; Attack Trigger

which indicates the condition that triggers the
attack; Attack Description which provides a
textual description of the attack; System Ex-

pected Security Reaction which indicates in a
textual format the expected reaction of the
system to the attack; Discussion which provides
an in-depth discussion of the attack and the
system defences, and it forms the basis for the
result of the test case; Test Case Result which
indicates the output of the test case and it
suggests possible improvements. It is worth
Test Case ID TC 01 Test

Related SAS

The Attacker will try to eavesdrop data from any communi
system. However, currently the system and its external age
As a result all the important data is transmitted across the n
read it just by eavesdropping. However, the Attacker migh
encryption key.

Discussion

Test Case Result

Interception (SAS 01)

The system’s internal and external actors have capabilities

The system should prevent Attacker from reading the infor
internal actors.

System Expected Security Reaction

The Attacker eavesdrops the information exchanged betwe

Attack Description

The Social Worker communicates with the Assessment Ev

Attack Trigger

Fig. 10. Eavesdrop
mentioning that the last field of the template is
filled in during the next activity.

Example of test cases related to the eSAP
interception scenario are shown in Figs. 10–12.
For instance, Fig. 10 models an eavesdropping
attack which is triggered when the social worker
communicates with the assessment evaluator in
order to obtain assessment related information.

4.3.3. Apply the security test case

The test cases are applied and a decision is formed
as to whether the system can prevent the identified
attacks or not. The decision whether an attack can
be prevented (and in what degree) or not lies on the
developer. However as an indication of the decision
it must be taken into consideration that at least one
secure capability must help an attack, in order for
the developer to decide the attack can be prevented.
Attacks that cannot be prevented are notated on the
Case Name Eavesdropping

cations between the external agents and the eSAP
nts have capabilities to encrypt and decrypt data.
etwork encrypted and therefore the attacker cannot

t try to obtain (or sometimes even guess) the

to protect against eavesdropping attacks.

mation exchanged between the external and the

en the social worker and the assessment evaluator.

aluator to obtain assessment evaluation information

ping test case.

ARTICLE IN PRESS

Test Case ID TC 02 Test Case Name Password Sniffing

Related SAS

A password sniffing attack is in effect a passive eavesdropping. However, as indicated above, it is not enough
just to encrypt and decrypt the exchanged messages. A good technique to defend against password sniffing is
to use one-time-passwords. A one-time-password is a password that is valid for just one use. After this use, it
is not longer valid, and so even if the attacker obtains such a password it is useless. However, the users must
be able to gain access to the system more than once. This can be accomplished with what is commonly known
as a password lists. Each time a user tries to access the system they provide a different password from a list of
passwords.

Discussion

Test Case Result

Interception (SAS 01)

Currently the system fails to adequately protect against password sniffing attacks. For the eSAP system to be
protected against a password sniffing attack, the external agents of the system (such as the Nurse, the Social
Worker, the Older Person) must be provided with capabilities to provide passwords from a password list.

The system should prevent an attacker from obtaining users’ authorisation details.

System Expected Security Reaction

The attacker scan all the messages sent between the Social Worker and the eSAP system looking for any
messages that contain any kind of authorisation details. Although authorisation details are enrypted, this is not
enough since password sniffing might take place from a compromised computer belonging to the network. As
a result, the attacker might able to decrypt any message.

Attack Description

The Social Worker communicates with the Assessment Evaluator to obtain assessment evaluation information

Attack Trigger

Fig. 11. Password Sniffing Test Case.

H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–1183 1179
security attack scenarios as solid attack links,
as opposed to attacks that the system can prevent
and which are notated as dashed attack links.
Consider for instance the eavesdropping attack
introduced above. The Attacker will try to eaves-
drop data from the communication between
the external and the internal agents of the
eSAP. However, the agents (both internal and
external) have capabilities to encrypt and decrypt
data. Therefore, a simple eavesdropping will not
result in the attacker reading any of the transmitted
data.

4.4. Redefinition of system

For each attack that it has been decided it cannot
be prevented, as a result of failing test cases, extra
capabilities must be assigned to the system to
help towards the prevention of that attack. In
general, the assignment of extra secure capabilities
is not a unique process and it depends on the
perception of the developer regarding the attack
dangers. However, a good approach is to analyse
the capabilities, related to the specific attack,
of the attacker and assign capabilities to the actors’
of the system that can revoke the attacker’s
capabilities.

For instance, the application of the above
example test cases produced many useful results
about the security of the eSAP system. First of all, it
was identified that the system provides enough
protection against some of the identified attacks.
Secondly, for the attacks that the system did not
provide adequate protection, extra agents and extra

ARTICLE IN PRESS

Test Case ID TC 03 Test Case Name Social Engineering

Related SAS

As indicated above, an information system cannot actually prevent a social engineering attack since this is an
attack that takes place by exploiting “vulnerabilities” of the system’s human users rather than system
vulnerabilities. Currently, the eSAP system request consent to be obtained for any information that it is shared.
This is a defensive measurement against social engineering but it does not y any means guarantee any full
protection against the attack. A primary defence measurement against software engineering is security
awareness training. Good resistance training will help to prevent agents from being persuaded to give
information away.

Discussion

Test Case Result

Interception (SAS 01)

The system provides mechanisms which help towards the prevention of social engineering attacks.

The system can only help towards the prevention of social engineering attacks by incorporating more defense
measures which result in making the task of obtaining all the information more difficult.

System Expected Security Reaction

Social engineering attacks are attacks targeting humans. In a social engineering attack, an attacker exploits
human attributes such as trust with the intention to obtain information that will allow them to gain
unauthorised access to a computer system and the information that resides on that system. It is worth
mentioning that the Attacker will not directly ask for this information but they will try to gain the trust of the
agents and then exploit this trust.

Attack Description

The Social Worker communicates with the Assessment Evaluator to obtain assessment evaluation information

Attack Trigger

Fig. 12. Software Engineering Test Case.

H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–11831180
secure capabilities were identified and the following
modifications took place in the eSAP system.
1.
 Capabilities were given to the external agents and
to the Cryptography Manager to enable them to
change the cryptographic algorithm often. The
lack of such capabilities was identified during the
read data test case of the interception attack
scenario.
2.
 The external agents of the system were given the
capability to provide passwords from a password
list, and the Authenticator was given capabilities
to successfully process such passwords. The lack
of such capabilities was identified by the applica-
tion of the password-sniffing test case of the
interception attack scenario.
3To keep the size of the paper to a minimum, we do not explain

the second application of the SAT. This is explained in [22].
As explained earlier (see Fig. 3), when extra
components need to be added to the system
architecture the SAT process needs to be re-
applied.3

5. Related work

The literature provides many references to
scenario-based approaches for analysing and de-
signing IS. However, just few proposals introduce
the use of scenarios for testing and the derivation of
test cases [23]. Hsia et al. [35] describe a method to
create and validate scenarios which are used for
acceptance testing. Michailova et al. [4] developed a
scenario-based testing method for object-oriented
programs that uses constraints. Similarly, Tsai et al.
[36] proposed the SOOFT method, a scenario-based
object-oriented test framework for adaptive and
rapid testing. The SCENTOR approach [37]

ARTICLE IN PRESS
H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–1183 1181
provides e-business-specific support for the genera-
tion of scenario-based tests using JUnit as a basis.
All these approaches have been found valuable.
However, they demonstrate some limitations. For
instance, the Hsia approach does not provide
activities for the derivation of concrete test
cases and it requires extensive knowledge of
formal methods since it is based on regular
grammars and conceptual state machines.
Similarly, the Michailova, the SOOFT and the
SCENTOR also lack a well defined and structure
approach for the derivation of scenarios and
associated test cases. Moreover, these approa-
ches only support implementation based testing,
since their concepts and methods do not support
testing during the earlier stages of the development
process.

On the other hand, the SCEnario-Based Valida-
tion and Test of Software (SCENT) method
[23] provides a step-by-step approach to forma-
lise scenarios through state charts and then
uses these state charts to create test cases. However,
SCENT’s ontology and methods do not
support the development of security-related sce-
narios and test cases. In fact, as the developers
of the method point out: ‘‘yintegration of
non-functional requirements [such as security
requirements] in scenarios and statecharts is
problematicy’’.

The work most related to ours is the attack
scenario analysis method presented by Liu et al.
[11]. However our work differs in important issues:
�
 Liu’s et al. approach does not provide a structure
process for creating and validating the attack
scenarios. Therefore, developers find little help
when employing that method. In contrast, our
approach provides a well-defined process con-
taining activities which assist the developer in
identifying, creating and validating the security
attack scenarios.

�
 Our approach provides a process to derive

concrete test cases from the security attack
scenarios to test the security of the system. In
their approach, Liu et al. only use attack
scenarios to identify security requirements and
do not provide any support for deriving concrete
test cases to test the security of the system. This
limits the applicability of their attack scenario
analysis method.

�
 Our security attack scenarios incorporate analy-

sis of security countermeasures against the
potential attacks. Guidance is provided, through
defined activities, to assist developers in identify-
ing countermeasures of the system and identify
how these might influence the goals of the
attacker. In their work, Liu et al., argue that
when the intentions of the attackers are identified
the system can be equipped with countermea-
sures. However they do not explain how such
countermeasures can be identified neither they
describe any process for applying these counter-
measures to the system.

6. Conclusions

In this paper we have presented a novel scenario-
based process that enables information system
developers to test the security of the system under
development during design time. We have also
demonstrated the applicability of our approach by
applying it to a real-life case study.

It is important to note that our process does not
aim to replace existing security testing techni-
ques which focus on testing the security of an
information system after the implementation of the
system. At design time we are not able to detect or
consider attacks that are related to specific
implementations. On the contrary, our process aims
to complement such implementation-related testing
techniques and provide a well-guided approach that
enables developers to (1) identify important security
vulnerabilities related to the design models of the
system at an early stage in the developmental
process; and (2) provide mechanisms to refine the
system in order to overcome identified security
vulnerabilities and to ensure that the design of the
system enforces the necessary security requirements.

Nevertheless, further work is needed. The pro-
posed approach has been applied to a case study
from the health and social care sector. Therefore, an
obvious direction for future work is the application
of the approach to case studies from different
sectors in order to obtain a better understanding of
how the approach can be applied to different types
of problems with different types of security attacks
and security challenges. Moreover, the development
of a tool to automate some of the processes of the
approach would be an interesting and very useful
direction for future work. Such a tool, not only will
speed up the testing process but it will also allow
developers not familiar with some aspects of the

ARTICLE IN PRESS
H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–11831182
approach to successfully apply it by automating
some of the process’s activities.
References

[1] V.P. Lane, Security of Computer Based Information

Systems, Macmillan Education ltd, 1985.

[2] R. Anderson, Security Engineering: A Guide to Building

Dependable Distributed Systems, Wiley Computer Publish-

ing, 2001.

[3] P. Devanbu, S. Stubblebine, Software engineering for

security: a roadmap, in: Proceedings of the Conference of

the Future of Software Engineering, 2000.

[4] A. Michailova, M. Doche, M. Butler, Constraints for

scenario-based testing of object-oriented programs, Techni-

cal Report, Electronics and Computer Science Department,

University of Southampton, 2002.

[5] A. Van Lamsweerde, Elaborating security requirements by

construction of intentional anti-models, in: Proceedings of

the International Conference on Software Engineering, 2004,

pp. 148–157.

[6] J. Viega, G. McGraw, Building Secure Software—How to

Avoid Security Problems the Right Way, Addison-Wesley,

Reading, MA, 2004.

[7] J. McDermott, C. Fox, Using abuse care models for security

requirements analysis, in: Proceedings of the 15th Annual

Computer Security Applications Conference, December

1999.

[8] M. Schumacher, U. Roedig, Security engineering with

patterns, in: the Proceedings of the 8th Conference on

Pattern Languages for Programs (PLoP 2001), Illinois,

USA, September 2001.

[9] A.I. Anton, J.B. Earp, A requirements taxonomy for

reducing web site privacy vulnerabilities, Requirements

Eng. 9 (3) (2004) 169–185.

[10] J. Jurjens, Secure Systems Development with UML, Spring-

er, 2004.

[11] L. Liu, E. Yu, J. Mylopoulos, Analysing security require-

ments as relationships among strategic actors, in: Proceed-

ings of the 2nd Symposium on Requirements Engineering

for Information Security (SREIS’02), Raleigh–North Car-

olina, 2002.

[12] H. Mouratidis, P. Giorgini, G. Manson, An ontology for

modelling security: The tropos approach, knowledge-based

intelligent information and engineering systems, Lecture

Notes in Artificial Intelligence, vol. 2773, 2003.

[13] R. Crook, D. Ince, L. Lin, B. Nuseibeh, Security require-

ments engineering: when anti-requirements hit the fan, in:

Paoceedings of the 10th International Requirements En-

gineering Conference, IEEE Press, 2002, pp. 203–205.

[14] H. Mouratidis, P. Giorgini, G. Manson, Integrating security

and systems engineering: towards the modelling of secure

information systems, in: Proceedings of the 15th Interna-

tional Conference on Advanced Information Systems

(CaiSE), 2003.

[15] H. Mouratidis, P. Giorgini, G. Manson, When Security

Meets Software Engineering: A Case of Modelling Secure

Information Systems, Inf. Syst. 30 (8) (2005) 609–629.

[16] H. Mouratidis, G. Weiss, P. Giorgini, Modelling secure

systems using an agent oriented approach and security
patterns, Int. J. Software Eng. Knowledge Eng. 16 (3) (2006)

471.

[17] M. Bishop, Introduction to Computer Security, Addison-

Wesley, Reading, MA, 2005.

[18] M.R. Blackburn, R.D. Busser, A.M. Nauman, R. Chan-

dramouli, Model-Based Approach to Security Test Auto-

mation, in: Proceedings of Quality Week, 2001

[19] H. Mouratidis, I. Philp, G. Manson, A novel agent-based

system to support the single assessment process of older

people, J. Health Inf. 9 (3) (2003) 149–162.

[20] P. Brescianni, P. Giorgini, H. Mouratidis, G. Manson,

Multiagent Systems and Security Requirements Analysis, in

Advances in Software Engineering for Multiagent Systems,

in: C. Lucena, A. Garcia, A. Romanovsky, J. Castro, P.

Alencar (Eds.), Lecture Notes in Artificial Intelligence, vol.

2940, Springer, Berlin, 2003.

[21] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A.

Perini, TROPOS: an agent-oriented software development

methodology, J. Autonom. Agents Multi-Agent Systems 8

(3) (2004) 203–236.

[22] H. Mouratidis, A security oriented approach in the

development of multiagent Systems: applied to the manage-

ment of the health and social care needs of older people in

England, Ph.D. thesis, University of Sheffield, 2004.

[23] J. Ryser, M. Glinz, SCENT—a method employing scenarios

to systematically derive test cases for system test, Technical

Report 2000.03, Institut für Informatik, University of

Zurich, 2000.

[24] C. Potts, K. Takahashi, A.I. Anton, Inquiry based require-

ments analysis, IEEE Software 11 (2) (1994) 21–32.

[25] A.I. Anton, W.M. McCracken, C. Potts, Goal Decomposi-

tion and Scenario Analysis in Business Process Reengineer-

ing, in: Proceedings of the 6th Conference on Advanced

Information Systems (CAiSE-1994), Utrecht-The Nether-

lands, 1994.

[26] J.M. Carroll, M.B. Rosson, Getting around the task-artifact

cycle: how to make claims and design by scenario, IBM

Research Report, Human Computer Interaction, RC 17908

(75365), 1991.

[27] V. Lalioti, C. Theodoulidis, Visual scenarios for validation

of requirements specification, in: Paoceedings of the 7th

International Conference on Software Engineering and

Knowledge Engineering (SEKE’95), Rochville, Maryland-

USA, 1995.

[28] W. Stallings, Cryptography and Network Security: Princi-

ples and Practice, second ed., Prentice-Hall, Englewood

Cliffs, NJ, 1999.

[29] B. Schneier, Secrets & Lies: Digital Security in a Networked

World, Wiley, New York, 2000.

[30] G. Kosters, B.U. Pagel, M. Winter, Coupling use cases and

class models, in: Proceedings of the BCS-FACS/EROS

workshop on ‘‘Making Object Oriented Methods More

Rigorous,’’ Imperial College, London-England, 1997.

[31] R.W. Selby, V.R. Basili, F.T. Baker, Cleanroom software

development: an empirical Evaluation, IEEE Trans. Soft-

ware Eng. 13 (9) (1997) 1027–1037.

[32] I. Sommerville, Software Engineering, seventh ed., Addison-

Wesley, Reading, MA, 2005.

[33] IEEE Standard Glossary of Software Engineering Termi-

nology, IEEE Std 729, 1990.

[34] R. Patton, Software Testing, Sams, 2000.

ARTICLE IN PRESS
H. Mouratidis, P. Giorgini / Information Systems 32 (2007) 1166–1183 1183
[35] P. Hsia, D. Kung, C. Sell, Software requirements and

acceptance testing, Ann. Software Eng. 3 (1997) 291–317.

[36] W.T. Tsai, A. Saimi, L. Yu, R. Paul, Scenario-based object

oriented testing framework, in: Proceedings of the 3rd

International Conference on Quality Software, 2002, p. 410.
[37] J. Wittevrongel, F. Maurer, SCENTOR: scenario-based

testing of e-business applications, in: Proceedings of the 10th

IEEE International Workshop on Enabling Techno-

logy: Infrastructure for Collaborative Enterprises, 2001,

USA, p. 41.

	Security Attack Testing (SAT)--testing the security of information systems at design time
	Introduction
	Secure tropos
	Security testing
	A security attack testing (SAT) process
	Derive dependency scenarios
	Identify resource dependencies
	Identify dependency scenarios

	Define security attack scenarios
	Identify types of attacks
	Model attacker intentions
	Model attacks
	Identify system components related to the attack
	Create SAS template
	Validate SAS

	Define security test cases
	Identify testing elements
	Create security test case
	Apply the security test case

	Redefinition of system

	Related work
	Conclusions
	References

