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Abstract—The limitations of conventional model-based control 
mechanisms for flexible manipulator systems have stimulated the 
development of intelligent control mechanisms incorporating 
fuzzy logic and neural networks. Problems have been encountered 
in applying the traditional PD-, PI-, and PID-type fuzzy 
controllers to flexible-link manipulators. A PD-PI-type fuzzy 
controller has been developed where the membership functions 
are adjusted by tuning the scaling factors using a neural network. 
Such a network needs a sufficient number of neurons in the 
hidden layer to approximate the nonlinearity of the system. A 
simple realisable network is desirable and hence a single neuron 
network with a nonlinear activation function is used. It has been 
demonstrated that the sigmoidal function and its shape can 
represent the nonlinearity of the system. A genetic algorithm is 
used to learn the weights, biases and shape of the sigmoidal 
function of the neural network. 

 
 

Index Terms—Fuzzy control, Flexible-link manipulators, 
Genetic algorithms, Neuro-fuzzy control.  
 

I. INTRODUCTION 
 Due to elastic properties of flexible manipulators, the 
development of a mathematical description and subsequent 
model-based control of the system is a complicated task. This is 
made difficult by the presence of a large (infinite) number of 
modes of vibration in the system. The modes become 
significant in two ways: firstly, because the oscillations 
themselves prolong the settling time and secondly, because 
attempts to actively control some modes result in instability of 
the other modes. This non-linear behaviour of the structure at 
high speeds, firstly, degrades end-point accuracy and secondly 
complicates controller development. Furthermore, the 
performance of such a control system depends mainly on the 
parameters during operation. These limitations of conventional 
model-based control for flexible manipulator systems have 
stimulated the development of intelligent control mechanisms 
incorporating adaptive control, neural networks (NNs) and 

fuzzy logic. Thus, an investigation into the development of an 
intelligent control mechanism using fuzzy logic and neural 
networks is intended in this research work. 
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Although fuzzy logic controllers (FLCs) exhibit superior 
applicability to the traditional PID controllers and are highly 
robust, PI-like and PD-like FLCs possess mainly the same 
characteristics as traditional PI and PD controllers, 
respectively. The PI-like fuzzy controller has good 
performance at the steady state, but yields penalised rise time 
and settling time. On the other hand, PD-like control can 
reliably predict and correct large overshoots, but the derivative 
control will affect the steady-state error of a system only if the 
steady-state error varies with time. If the steady-state error of a 
system is constant with respect to time, the time derivative of 
error will be zero, and derivative control will have no effect on 
the steady-state error [1], [2].  In order to meet the design 
criteria of zero steady state error, minimum overshoot and fast 
rise time, a further option is to develop a PID-type FLC which 
ensures fast rise time, smaller overshoot and settling time from 
PD part and minimum steady state error from PI part of the PID 
controller. The generic fuzzy PID controller is a 
four-dimensional (three input - one output) fuzzy system with a 
huge rule-base, which increases exponentially with the number 
of inputs and number of fuzzy sets. Processing of such a 
rule-base is time consuming and demands large memory space. 
To overcome the problems of PD-, PI-, and PID-type 
controllers described earlier, a PD-PI-type FLC is developed 
for a flexible-link manipulator where a PD-type FLC is used 
first and after reaching the set point the controller is switched 
from PD-type to PI-type [3],[4]. Thus, a shorter rise time and 
smaller overshoot is guaranteed with the use of PD-type 
controller and shorter settling time and minimised steady-state 
error is guaranteed with the use of the PI-type controller. The 
membership functions (MFs) for error, change of error and sum 
of error were chosen heuristically, especially for change of 
error and sum of error these were heuristically defined within 
the same universe of discourse and a single rule-base was used. 

Heuristically chosen membership functions do not reflect the 
actual data distribution in the input and output spaces. In 
general, the designer chooses the shape of membership 
functions and the respective parameters are required to be 
adjusted by using learning algorithms. Furthermore, the 
performance of Mamdani-type fuzzy controller mainly depends 
on the If-Then rules, membership functions and tuning of both 
[5]. Unfortunately, there are no formal methods to construct the 
rule-base or define the membership functions for 
Mamdani-type fuzzy controllers. Efforts have been made to 
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automate the construction of rule-bases and define the MFs in 
various ways using NNs and genetic algorithms (GAs) [6]-[10]. 
In most of the cases, the rule-base is fixed and the parameters of 
the MFs are adjusted. In many cases, the same result can be 
obtained by tuning the scaling factors or adjusting the MFs. 
Adjustment of MFs requires learning of several parameters and 
hence scaling factor tuning is a much simpler task than 
adjustment of parameters [11]. A multilayer NN with sufficient 
number of neurons in the hidden layer can approximate 
non-linearities such as this but a possible difficulty is that it will 
consume most of the processing time in calculating values of 
the scaling factors, and this will make the real-time application 
difficult. A simple realisable network is desirable, which can be 
employed in the PD-PI FLC. Considering this as a design 
criterion, the self-learning task of a multilayer perceptron could 
be simply replaced by a single neuron with a non-linear 
activation function.  

As experience persuades to believe that single neuron 
network with non-linear activation function shows better 
performance than that with a linear activation function. A 
criterion is required for selection of an optimal NN to represent 
the non-linearity of the system. However, many parameters of 
such non-linear activation functions, such as the optimum 
shape of a sigmoid function, are determined by trial and error. 
In this paper, a GA-based technique is used to optimise the 
shape of the activation function, weights and bias of the 
network.  

II. FLEXIBLE-LINK MANIPULATOR 
The experimental rig constituting the flexible manipulator 

system consists of two main parts: a flexible arm and measuring 
devices. The flexible arm contains a flexible link driven by a 
printed armature motor at the hub. The measuring devices are 
shaft encoder, tachometer, accelerometer and strain gauges 
along the length of the arm. The shaft encoder, tachometer and 
accelerometer are essentially utilised in this work. The 
schematic diagram of the flexible-link manipulator is shown in 
Figure 1. The flexible arm consists of an aluminium-type beam, 
shown in Figure 2. The outputs of the sensors as well as a 
voltage proportional to the current applied to the motor are fed 
to a computer through a signal conditioning circuit and an 
anti-aliasing filter for analysis and calculation of the control 
signal. Physical parameters of the flexible arm are given in 
Table 1. 

Due to the elastic properties of the flexible manipulators, the 
development of a dynamic mathematical description is a 
complicated task. This non-linear behaviour of the structure 
firstly degrades end-point accuracy and secondly complicates 
controller development. Furthermore, the performance of such 
control depends mainly on the parameters during operation. 
These limitations of conventional model-based control 
mechanisms for flexible manipulator systems have stimulated 
the development of a GA-based neuro-fuzzy controller.  
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Figure 1: Schematic diagram of the manipulator. 

 
Figure 2: Experimental flexible-link manipulator. 

Table 1: Physical parameters of the flexible manipulator.  
 

Parameter Value 

Length 960.0 mm 
 

Width 19.008 mm 
 

Thickness 3.2004 mm 
 

Mass density/  
unit volume 

2710 kgm  -3

 

III. FUZZY LOGIC CONTROLLER FOR FLEXIBLE-LINK 
MANIPULATOR 

The conventional approach to FLC design is to generate a fuzzy 
rule set based upon the system states such as error, change of 
error or sum of error, thus producing a two-input single-output 
PD-, or PI-type or three-input single-output PID-type control 
rule base.  PI-type FLCs are most common and practically 
followed by the PD-type FLCs. Generally, good performance is 
achieved with PD-type fuzzy controller during the transient 
state, i.e., the PD-type fuzzy controller will result in a rapid 
response. However, at the steady state, elements of error and 
change of error are possibly too small and the control signal, 



 
 

 

through fuzzy inference, becomes zero. The zero control 
signals will cause steady-state error or oscillations at the steady 
state [24, 25]. 

A PD-like FLC can be developed by using an error and 
change of error model as  

  (1) ekeku dp Δ+=

where  and  are the proportional and  the differential gain 
coefficients and  is the error,  is the change of error and  
is the control input.  In this type of FLC, it is assumed that no 
mathematical model for the flexible-link is available except two 
states, namely, the hub angle error and change of error. Only 
hub angle 

pk dk
e eΔ u

θ  is measured from the system and the error and 
change of error are derived from θ . The hub angle error and 
change of error are defined as: 

 )()( kke d θθ −=  (2) 

  (3) )1()()( −−=Δ kekeke

where dθ  is the desired hub angle, e  is the error and eΔ  is the 
change in angle error. 

Triangular MFs are chosen for error , change of error e eΔ  
and torque input u . The membership functions for hub angle 
error, change of hub angle error, and torque input are shown in 
Figures 3(a)-3(c). The universe of discourse for the hub angle 
error, change in hub angle error are chosen as [–36, +36] 
degree, and [–25, +25]. The universe of discourse of the output, 
i.e., input torque is chosen as [–3, +3] volts. To construct a rule 
base, the hub angle error, change of angle error and torque 
input are partitioned into five primary fuzzy sets as: 

Hub angle error E = {NB, NS, ZO, PS, PB} 
Change of angle error C = {NB, NS, ZO, PS, PB} 
Torque U = {NB, NS, ZO, PS, PB} 

 
where E, C and U are the universes of discourse for hub angle 
error, change of hub angle error, and torque input respectively.  
The nth rule of the rule base for the FLC, with error and change 
of error as inputs, is as: 
 

Rn : IF (e is Ei) and (Δe is Cj) THEN (u is Uk) 
 
where Rn,  is the nth fuzzy rule, Emax,,2,1 Nn L= i, Cj, and Uk, 
for  are the primary fuzzy sets.  5,,2,1,, L=kji

The performance of PI-type FLC, on the other hand, is 
known to be quite satisfactory for linear first-order systems [22, 
23]. But, as with conventional PI-controllers, the performance 
of PI-type FLCs for higher order systems, and for systems with 
integrating elements or large dead time, and also for non-linear 
systems may be very poor due to large overshoot and excessive 
oscillation. It is well known that the PI-type FLC exhibits good 

performance at the steady state like the traditional PI-type 
controllers. That is, the PI-like FLC reduces steady-state error, 
but yields penalized rise time and settling time [24]. The 
PI-type controllers give inevitable overshoot when attempted to 
reduce the rise time, especially when a system of order higher 
than one is under consideration [22]. These undesirable 
characteristics of fuzzy PI controllers are caused by integral 
operation of the controller, even though the integrator is 
introduced to overcome the problem of steady state error. 

A conventional PI-controller is described as: 

  (4) ∫⋅+⋅= edtkeku IP

where  and  are the proportional and the integral gain 
coefficients. Taking the derivative with respect to time of 
equation (4) yields 

Pk Ik

 ekeku IP += &&  (5) 

This can equivalently be written as: 

 ekeku IP +Δ=Δ   (6) 

The PI-like FLC rule-base, accordingly, consists of rules of the 
form: 

If  is Ee i   and eΔ  is  Then  is  jCE uΔ kCU

This type of controller is called an incremental PI-like FLC. 
The inputs are the same as a PD-like FLC with error and change 
of error except the control input is incremented at each time. 
Actually, the rules of fuzzy controller are designed with phase 
plane in mind, in which the fuzzy controllers drive a system 
into the so-called sliding mode. The tracking boundaries in the 
phase plane, however, are related not with incremental control 
input but with control input itself, which is calculated as  

   (7) )1()()( −+Δ= kukuku

To select the maximum variation of the incremental control 
input uΔ  giving satisfactory rise time and maximum overshoot 
is not so easy as in the case where the control input itself is to be 
determined [22]. One natural approach to overcome such 
difficult situation is to adopt the rate of change of error. Such a 
controller may be called as PID fuzzy controller. The problems 
associated with implementing a fuzzy PID-type controller will 
be discussed later in this section. Rather an absolute PI-type 
controller is computationally viable. In an absolute PI-type 
FLC, error and sum of error are used as inputs and it is 
expressed as  

  (8) ∑+= ekeku IP



 
 

 

where  is the sum of error. In this type, the hub angle is 

measured from the system and the sum of hub angle error is 
derived from the hub angle error. Triangular MFs are chosen 
for error e , sum of error  and torque input u . The MF for 
sum of hub angle error is shown in Figure 3(d). The universes 
of discourse for sum of hub-angle error is chosen as [–150, 
+150] degree. The MFs for error and torque inputs are defined 
in Figure 3(a) and 3(c). 
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(a) Hub angle error. 
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(d) Sum of hub-angle error. 

Figure 3: Membership functions for inputs and 
output. 

 
To construct a rule base, the hub angle error, sum of hub 

angle error and torque input are partitioned into five primary 
fuzzy sets as: 

Hub angle error E = {NB, NS, ZO, PS, PB} 
Sum of hub-angle S = {NB, NS, ZO, PS, PB} 
Torque U = {NB, NS, ZO, PS, PB} 

 
where E, S and U are the universes of discourse for hub-angle 
error, sum of hub-angle error and torque input respectively. The 
nth rule of the rule base for this PI-type FLC is as: 
 

Rn : IF (e is Ei) and ( s is Sj) THEN ( u is Uk) 
 
where Rn,  max,,2,1 Nn L= is the nth fuzzy rule, Ei, Sj, and Uk, 
for 5,,2,1,, L=kji  are the primary fuzzy sets.  

A practical problem of implementing a fuzzy controller with 
an integral term is the difficulty of deciding on the number of 
time units to go back in calculating the sum in equation (8). 
Even the literature on conventional control theory tends to be 
somewhat vague on this point, and many texts use an indefinite 
integral type of notation when representing the integral term, 
though obviously it is not to be taken literally. Experience with 
the system suggested using 10 time units to indicate recent 
tendencies in the error, and experimentation demonstrated that 
this works very well. It was also convenient to work with an 
average rather than a sum so that the base value can be easily 
compared with the current error. Thus, the ∑  base value is 

calculated as 

e

  (9) ∑∑
−=

=
k

ki

ieke
9
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 Generally, PD-type two-term fuzzy controllers usually cannot 
eliminate steady state error and PI-type two-term fuzzy 
controller can eliminate steady state error but it has slower 
response due to the integral control variable. In order to meet 
the design criteria of fast rise time, minimum overshoot, shorter 
settling time and zero steady state error, a further option is to 
develop a PID-type FLC which enables fast rise time, smaller 
overshoot and settling time from PD part and minimum steady 
state error from PI part of the PID controller. The generic fuzzy 
PID controller is a four-dimensional (three input-one output) 
fuzzy system. The basic idea of a PID controller is to choose the 
control law by considering the error , change of error e eΔ  and 
integral of error or sum of error ∑ , and thus giving the 

controller as 

e

  (10) ∑⋅+Δ⋅+⋅= ekekeku IDPPID

The fuzzy control rule corresponding to the PID-controller 
has the form 
 



 
 

 

  lkji
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Theoretically, the number of rules to cover all possible input 
variations for a three-term fuzzy controller is 321 nnn ×× , 
where n1, n2, and n3 are the number of linguistic labels of the 
three input variables. If , then the number of 

rules . For example, if , then the total 
number of rules will be . In practical applications the 
design and implementation of such a large rule base is a tedious 
task, and it will take a substantial amount of memory space and 
reasoning time. Because of a long reasoning time the response 
of such a generic PID-type FLC will be too slow and hence not 
suitable when a fast response is desired e.g. for a flexible-link 
manipulator.  

nnnn === 321

3nnnnR =××= 5=n
125=R

A variety of approaches have been made to overcome the 
problems of PID controllers in [26]. Kwok et al. have 
considered a novel means of decomposing a PID controller into 
a fuzzy PD controller in parallel with various types of fuzzy 
gains, fuzzy integrators, fuzzy PI controller and deterministic 
integral control [27, 28, 29].  A fuzzy PD controller in parallel 
with a fuzzy PI controller will still require 

, i.e., 50 rules in case of  linguistic 
labels. The first set of rule-base used for PD-type and the 
second set of rule-base used for PI-type FLC.  

22nnnnnR =×+×= 5=n

A further reduction of rule base is possible if the controller is 
switched from PD- to absolute PI-type after a certain period of 
time. In that case only one set of rules,  rules for each 
type of controller, will be executed at a time and thus the 
executed rules in a controller rule base will be reduced to only 
25 rules for 5 linguistic labels in each input variable. Having 
been impressed with this idea, a switching type FLC is 
developed for the flexible-link manipulator where a PD-type 
FLC is executed first and then switched to a PI-type FLC [4]. 
The block diagram of this switching PD-PI-type controller is 
shown in Figure 4. The state variables used in PD-PI-type FLC 
are the same as in equations (1) and (8) and , , , and 

 are the proportional, differential, integral and controller 
gain coefficients (or scaling factors) respectively. 
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Figure 4: Block diagram of a PD-PI-type FLC system. 
 

The data obtained by experimentation on the PD-PI FLC can 
be split into two separate data sets which represent change of 
error during PD control, i.e., before switching point and sum of 
error during PI control, i.e., for the rest of the time. The change 
of error before switching point and sum of error after switching 

point is plotted over time in Figure 5. As can be seen in Figure 5 
the range of change of error and sum of error are within such 
suitable interval that they can be brought within a common 
universe of discourse. In FLC design, the actual values of the 
inputs do not matter, rather the MF for each linguistic variable 
to be defined is important. Therefore, the aim is to unify the 
MFs for change of error and sum of error so that a further 
simplification of the rule-base can be achieved in designing an 
FLC. Now the initial universes of discourse for change error 
and sum of error are chosen within the same interval [–25, 
+25].  This enables the FLC to use a single rule-base for the 
both parts of the controller. 
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Figure 5: Change and sum of error within a common 

universe of discourse. 

 
Table 2: Rule base for PD-PI-type FLC. 

Change/Sum of error Error 
NB NS ZO PS PB 

NB PB PB PB PS ZO 
NS PB PS ZO ZO NS 
ZO PS ZO ZO ZO NS 
PS PS ZO ZO NS NB 
PB ZO NS NB NB NB 

A common rule-base, shown in Table 2, was designed and 
used for both the PD- and PI-type controllers. This actually 
demands the MFs of the fuzzy sets for change of error and sum 
of error to be re-adjusted as they were forced to deviate and 
were merged within a common universe of discourse.  Tuning 
of the MFs becomes more important if a merging procedure is 
used to reduce the number of fuzzy rules.  One possible way is 
learning of the parameters of the fuzzy sets. In many cases, 
tuning the scaling factors or adjusting the membership 
functions can lead to the same result. Adjustment of 
membership functions requires learning of several parameters 
and hence scaling factor tuning is a much simpler task than 
adjusting the parameters [11].  

  



 
 

 

IV. INTEGRATION OF FUZZY LOGIC, NEURAL NETWORKS AND 
GENETIC ALGORITHMS 

The MFs, which were shifted from their original universe of 
discourse by merging procedure, are now re-adjusted by tuning 
the scaling factor  and  using a neural network. There is 
no need to re-adjust the MF for error, since it is the same in both 
types of controller. For simplicity the scaling factor  is not 
tuned and hence eliminated from equation (1) and (8). Dividing 
both sides of equations (1) and (8) by yields 

dk Ik

pk

pk

   (11) ekeuk dc Δ⋅+=⋅ ''

   (12) ∑⋅+=⋅ ekeuk Ic
''

where 
p

d
d k

kk =′ , 
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i
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kk =′  and 
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c
c k

kk =′  are the new 

differential, integral and controller gain coefficients of the 
PD-PI-type controllers. This can be done by determining 
suitable parameters, or by approximating the MFs with an NN. 
Modern neuro-fuzzy systems are often represented as 
multi-layer feedforward NNs [12]. The ANFIS model for 
example implements a Sugeno-type fuzzy system in a network 
structure, and applies a mixture of backpropagation algorithms 
and least squares procedure to train the system [13]. The 
problem associated with these types of neuro-fuzzy models is 
that they sometimes are not as easy to interpret for 
Mamdani-type fuzzy systems [14].  
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Figure 6: Learning scaling factors using an NN. 

Simulation results in [15] with tuned membership functions 
show a marginal improvement in transient response of a 
second-order linear process, where tuning has resulted in 
asymmetric membership functions (triangular) with unequal 
base for e . To be more specific, the width of membership 
functions increased around . Such membership functions 
contradict the usual practice where the membership functions 
take narrow width and become more crowded near the origin to 
provide increased sensitivity at steady state [16],[17]. Thus, the 
purposed MFs tuning scheme cannot guarantee improved 
performance under load disturbance, which is a very important 
criterion for performance evaluation of a control system. 
Moreover, a training scheme such as backpropagation 
algorithm is bounded by its input-output data set though it is 

minimising the objective function during training and does not 
guarantee any improved performance of the controller.  
Furthermore, the use of multilayer perceptron could simply 
exhaust the system by calculating exponential terms in the 
network, causing very slow response of the system. Hence 
scaling factor tuning is a much simpler task than adjustment of 
parameters. A single neuron network with non-linear activation 
function will be used to tune the scaling factors 

0=e

kd′  and Ik ′  and  

ck′  will be chosen by heurictic rule. A block diagram of the 
PD-PI FLC with modified scaling factors and neural network 
learning scheme is shown in Figure 6. 

A. SIGMOID FUNCTION SHAPE LEARNING 
Nonlinearity can be represented with suffient number of hidden 
layers with fixed activation function. However, many 
parameters such as the optimum shape of the sigmoid function 
are determined by trial and error in most of the cases. This 
limits advanced application of NNs. There have been few 
studies on the optimum shape of the sigmoid function. Yamada 
and Yabuta proposed an auto-tuning method for the sigmoid 
function shape for application to a servo control system [18]. 
Their method is based on the steepest descent method and 
confirmed the characteristics and practicality of the method 
with simulation results. 

The usual sigmoid  function  is defined as   ( )xf

 ax

ax

e
exf −

−

+
−

=
1
1)(   (13) 

where x  is the network output and a defines the shape of the 
activation function. The shape of sigmoid function is shown in 
Figure 7 for different values of a. 

This type of activation function is characterised by its gain 
(slope) and seriously affects the control characteristics. If this 
gain tuning is used in control applications, the plant output may 
become unstable in certain cases. When the usual sigmoid 
function is used only in the hidden layer, sigmoid function 
shape tuning is the same as weight tuning. A mathematical 
proof is given in [18]. Therefore, sigmoid function shape 
tuning in a single NN can contribute more in improving 
performance of the controller. 

B. GA-BASED TRAINING OF NEURAL NETWORK 
Interest in training neural networks using GAs has been 
growing rapidly in recent years [19]-[22]. The interest in this 
study is to explore possible benefits arising from the 
interactions between NNs and evolutionary search procedures. 
One of the most popular training algorithms for feed-forward 
NNs is backpropagation (BP), which is a gradient descent 
search algorithm based on minimization of the total mean 
squared error between actual output and a desired output. The 
error is used to guide BP’s search in the weight space. 
However, the BP algorithm suffers from a number of problems. 
It is very often trapped in local minima and is very inefficient in 



 
 

 

searching for global minimum of the search space. BP’s speed 
and robustness are sensitive to several parameters of the 
algorithm and the best parameters to use appear to vary from 
problem to problem [19].  Shape of the sigmoid function in BP 
learning is chosen mostly heuristically or by trial and error. 
There are several basic arguments suggesting that applying 
GAs to NN weight optimisation is advantageous. GAs have the 
potential to produce a global minimum of the weight space and 
thereby avoid local minima. It is also an advantage to apply 
GAs to problems where gradient information is either not 
available or costly to obtain or there is non-differentiable node 
transfer function involved. In this specific issue the parameter 
of the sigmoid function shape can be easily included in the 
learning process. 
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Figure 7: Shape of sigmoid function for different values of .a

A block diagram of the GA-based neuro-fuzzy control 
system is shown in Figure 8, which incorporates a single 
neuron network. The activation function is defined in equation 
(13) and the parameter a  defines the shape of the sigmoidal 
function. The use of different shapes of sigmoidal function can 
lead to different weights and biases during learning with the BP 
algorithm, which has been experienced in previous 
investigations. That is, the shape of sigmoidal functions should 
be fixed during execution of the BP algorithm. 

A mechanism is sought to learn the weights, bias and the 
parameter  of the network. Two approaches present 
themselves instantly for this purpose: firstly, BP algorithm 
learning of weights and bias by trial and error method for 
parameter  and secondly, GA based learning of the weights, 
biases and the parameter a  simultaneously. It seemed 
somewhat tedious and slow because of the computation 
involved in updating the weights and bias for each parameter 

, which prolonged the computation in each learning epoch in 
the BP. This study aims to investigate possible benefits of 
learning the shape of sigmoid function together with the 
weights and bias, which will reduce the computing time greatly 
and can exploit the non-linearity involved in the system. 

Genetic algorithm can best serve such a learning objective. In 
this section, the weights ( , ), bias b  and parameter  of 
the NN, shown in Figure 9, are learnt by GA. The chromosome 
representation is straightforward and shown in Figure 10. 

a

a

a

1w 2w a

 

Set point

NN 

 
Fuzzy 

Controller 
Flexible 

Manipulator

eΔ

θ  dθ e+ 

_ 

e

GA Σ|e| 

w1,w2,b,a 

Δe/Σe

Σe
k′d 

k′i 

PD-PI-type FLC 

k′c 

u  

Rule-base 

 
Figure 8: Block diagram of the GA-based neuro-fuzzy control 

system. 
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Figure 9: Single neuron network with non-linear activation 

function. 
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Figure 10: String representation of chromosome of the NN. 

The objective function is defined as: 

 ∑
=

=
N

k

keJ
1

)(  (14) 

where  is hub-angle error and N  is some reasonable 
number of time units by which the system can be assumed to 
have settled close to steady state. The evaluation of the 
objective function is performed by applying the controller on 
the experimental manipulator. 

)(ke

Experience from experiments in a previous research shows 
that the values of the weights, bias and sigmoid function shape 
parameter are within the ranges [ ]  and 22.0,5.0 +− [ ]6.2,0.2  
respectively. Considering these results a population of 10  
chromosomes is initialised within the ranges of values. 



 
 

 

Elitists single point crossover operation is used. Elitism is an 
optional characteristic of GA. When used, it makes sure that the 
fittest chromosome of a population is passed on to next 
generation unchanged. In this investigation an extended form 
of elitism is used where best m  (  in this study) 
chromosomes are retained from N  chromosomes,  is the 
population size (  in this study). In other words, the 
worst two chromosomes are replaced by two off-springs 
created by crossing two best chromosomes in the population.  

8=m
N

10=N

The crossover operation can suffer from two well-known 
problems: firstly, crossover operation, when applying GAs to 
NNs, can result in a competing convention problem. 
Competing conventions prevent standard crossover operation 
to produce useful offspring. Also the number of competing 
conventions grows exponentially with the number of hidden 
neurons. Secondly, crossover operation may not produce new 
chromosomes for a small size of population in higher 
generations. Mutation operation can thus strike a balance to 
these problems encountered by crossover. Montana and Davis 
used three different types of mutation operators [20] to 
overcome such problems. In this study, a mutation operation 
with a higher mutation rate is applied to GA based learning of 
the NN. A randomly chosen value from the offspring is mutated 
with a mutation rate of 0.5. This mutation rate will ensure 
changes of at least two values in the offspring chromosome.   

V. EXPERIMENTAL RESULTS 
A population of 10  chromosomes is initialised within the 
range of [ ]  and [  for weights and bias and for 
the parameter a  respectively.  The practical constraints of 
applying the GA-based neuro-fuzzy controller to the 
flexible-link manipulator involved how to evaluate the 
objective function. The easiest way is to operate the 
neuro-fuzzy controller repeatedly and evaluate its performance 
(evaluation function) by calculating the absolute sum of error. 
The population is tested up to the 13

5.0,5.0 +− ]4,0

th generation. Figure 11 
shows the system response with the best 4 individuals in the 1st 
generation. In earlier generations, some of the chromosomes 
needed longer time to settle, and the chromosomes were 
required to evaluate for 250 iterations in the program loop. This 
has caused some ties of the fitness values. To help resolve the 
ties, only 50 iterations were evaluated in later generations. 
Figure 12 shows the system response with the best individual in 
generations 5, 7 and 9. Figure 13 shows the system response 
with the best individual in generations 11, 12 and 13. This 
shows significant improvement of the performance in respect 
of rise time, maximum overshoot and settling time. Figure 14 
shows fitness convergence of GA over generations. The 
weights, bias and the parameter  after learning were found to 
be , ,  and . 

a
029.01 −=w 01.02 =w 23.0=b 18.2=a

The performance of a three-neuron network with linear 
activation function and with non-linear activation function was 
also verified. The performance of the three-neuron network is 
shown in Figure 15. The network was trained using the BP 
algorithm. The performance degradation of the system is 

obvious and possibly caused by the excessive calculation of 
weights and biases updates required in BP algorithms. 
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Figure 11: System response with the best 4 individuals in 

generation 1. 

 

VI. CONCLUSION 
Experimentations showed improved performance of the system 
response using the proposed controller over the PD-, PI-, and 
PD-PI-type FLC. It has also been demonstrated that the 
sigmoidal function and its shape can represent the nonlinearity 
of the system. There are several algorithms like BP that learn 
the weights and biases of an NN but very few algorithms that 
learn the shape of the sigmoidal function. Genetic algorithm 
can be used to learn the weights, biases and shape of the 
sigmoidal function of the NN simultaneously. 
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Figure 12: System response with best individuals in 

generations 5, 7 and 9. 
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Figure 13: System response with best individuals in 

generations 11, 12 and 13. 

 
 
 

Table 3: Comparison of response parameters 
(1 time unit = 0.12 sec) 

G
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Rise time  
(Time 
units) 

Max 
overshoot 
(deg) 

Settling 
time 
(Time 
units) 

Steady 
state 
error 
(deg) 

11 13 56.13 35 3.24 

12 14 55.55 39 3.34 

13 17 52.51 34 0.33 
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Figure 14: Convergence of the fitness. 
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Figure 15: System response using neuro-fuzzy controller 

with 3-neuron network 
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