

GA-based Neural Fuzzy Control of
Flexible-link Manipulators

M. N. H. Siddique and M. O. Tokhi

Abstract—The limitations of conventional model-based control
mechanisms for flexible manipulator systems have stimulated the
development of intelligent control mechanisms incorporating
fuzzy logic and neural networks. Problems have been encountered
in applying the traditional PD-, PI-, and PID-type fuzzy
controllers to flexible-link manipulators. A PD-PI-type fuzzy
controller has been developed where the membership functions
are adjusted by tuning the scaling factors using a neural network.
Such a network needs a sufficient number of neurons in the
hidden layer to approximate the nonlinearity of the system. A
simple realisable network is desirable and hence a single neuron
network with a nonlinear activation function is used. It has been
demonstrated that the sigmoidal function and its shape can
represent the nonlinearity of the system. A genetic algorithm is
used to learn the weights, biases and shape of the sigmoidal
function of the neural network.

Index Terms—Fuzzy control, Flexible-link manipulators,
Genetic algorithms, Neuro-fuzzy control.

I. INTRODUCTION
 Due to elastic properties of flexible manipulators, the
development of a mathematical description and subsequent
model-based control of the system is a complicated task. This is
made difficult by the presence of a large (infinite) number of
modes of vibration in the system. The modes become
significant in two ways: firstly, because the oscillations
themselves prolong the settling time and secondly, because
attempts to actively control some modes result in instability of
the other modes. This non-linear behaviour of the structure at
high speeds, firstly, degrades end-point accuracy and secondly
complicates controller development. Furthermore, the
performance of such a control system depends mainly on the
parameters during operation. These limitations of conventional
model-based control for flexible manipulator systems have
stimulated the development of intelligent control mechanisms
incorporating adaptive control, neural networks (NNs) and

fuzzy logic. Thus, an investigation into the development of an
intelligent control mechanism using fuzzy logic and neural
networks is intended in this research work.

Manuscript received February 15, 2006.
M. N. H. Siddique is with the School of Computing and Intelligent Systems,

University of Ulster at Magee, Londonderry BT48 7JL, NI, UK. (Phone:
+44(0)28-71375340; fax: +44(0)28-71375470; e-mail:
nh.siddique@ulster.ac.uk).

M. O. Tokhi, is with the Department of Automatic Control and Systems
Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD,
England, UK (e-mail: o.tokhi@sheffield.ac.uk).

Although fuzzy logic controllers (FLCs) exhibit superior
applicability to the traditional PID controllers and are highly
robust, PI-like and PD-like FLCs possess mainly the same
characteristics as traditional PI and PD controllers,
respectively. The PI-like fuzzy controller has good
performance at the steady state, but yields penalised rise time
and settling time. On the other hand, PD-like control can
reliably predict and correct large overshoots, but the derivative
control will affect the steady-state error of a system only if the
steady-state error varies with time. If the steady-state error of a
system is constant with respect to time, the time derivative of
error will be zero, and derivative control will have no effect on
the steady-state error [1], [2]. In order to meet the design
criteria of zero steady state error, minimum overshoot and fast
rise time, a further option is to develop a PID-type FLC which
ensures fast rise time, smaller overshoot and settling time from
PD part and minimum steady state error from PI part of the PID
controller. The generic fuzzy PID controller is a
four-dimensional (three input - one output) fuzzy system with a
huge rule-base, which increases exponentially with the number
of inputs and number of fuzzy sets. Processing of such a
rule-base is time consuming and demands large memory space.
To overcome the problems of PD-, PI-, and PID-type
controllers described earlier, a PD-PI-type FLC is developed
for a flexible-link manipulator where a PD-type FLC is used
first and after reaching the set point the controller is switched
from PD-type to PI-type [3],[4]. Thus, a shorter rise time and
smaller overshoot is guaranteed with the use of PD-type
controller and shorter settling time and minimised steady-state
error is guaranteed with the use of the PI-type controller. The
membership functions (MFs) for error, change of error and sum
of error were chosen heuristically, especially for change of
error and sum of error these were heuristically defined within
the same universe of discourse and a single rule-base was used.

Heuristically chosen membership functions do not reflect the
actual data distribution in the input and output spaces. In
general, the designer chooses the shape of membership
functions and the respective parameters are required to be
adjusted by using learning algorithms. Furthermore, the
performance of Mamdani-type fuzzy controller mainly depends
on the If-Then rules, membership functions and tuning of both
[5]. Unfortunately, there are no formal methods to construct the
rule-base or define the membership functions for
Mamdani-type fuzzy controllers. Efforts have been made to

Engineering Letters, 13:2, EL_13_2_13 (Advance online publication: 4 August 2006)
__

automate the construction of rule-bases and define the MFs in
various ways using NNs and genetic algorithms (GAs) [6]-[10].
In most of the cases, the rule-base is fixed and the parameters of
the MFs are adjusted. In many cases, the same result can be
obtained by tuning the scaling factors or adjusting the MFs.
Adjustment of MFs requires learning of several parameters and
hence scaling factor tuning is a much simpler task than
adjustment of parameters [11]. A multilayer NN with sufficient
number of neurons in the hidden layer can approximate
non-linearities such as this but a possible difficulty is that it will
consume most of the processing time in calculating values of
the scaling factors, and this will make the real-time application
difficult. A simple realisable network is desirable, which can be
employed in the PD-PI FLC. Considering this as a design
criterion, the self-learning task of a multilayer perceptron could
be simply replaced by a single neuron with a non-linear
activation function.

As experience persuades to believe that single neuron
network with non-linear activation function shows better
performance than that with a linear activation function. A
criterion is required for selection of an optimal NN to represent
the non-linearity of the system. However, many parameters of
such non-linear activation functions, such as the optimum
shape of a sigmoid function, are determined by trial and error.
In this paper, a GA-based technique is used to optimise the
shape of the activation function, weights and bias of the
network.

II. FLEXIBLE-LINK MANIPULATOR
The experimental rig constituting the flexible manipulator

system consists of two main parts: a flexible arm and measuring
devices. The flexible arm contains a flexible link driven by a
printed armature motor at the hub. The measuring devices are
shaft encoder, tachometer, accelerometer and strain gauges
along the length of the arm. The shaft encoder, tachometer and
accelerometer are essentially utilised in this work. The
schematic diagram of the flexible-link manipulator is shown in
Figure 1. The flexible arm consists of an aluminium-type beam,
shown in Figure 2. The outputs of the sensors as well as a
voltage proportional to the current applied to the motor are fed
to a computer through a signal conditioning circuit and an
anti-aliasing filter for analysis and calculation of the control
signal. Physical parameters of the flexible arm are given in
Table 1.

Due to the elastic properties of the flexible manipulators, the
development of a dynamic mathematical description is a
complicated task. This non-linear behaviour of the structure
firstly degrades end-point accuracy and secondly complicates
controller development. Furthermore, the performance of such
control depends mainly on the parameters during operation.
These limitations of conventional model-based control
mechanisms for flexible manipulator systems have stimulated
the development of a GA-based neuro-fuzzy controller.

 Shaft encoder

AccelerometerMotor

Drive signal

Hub

Data acquisition,
analysis and computing

Tachometer

Figure 1: Schematic diagram of the manipulator.

Figure 2: Experimental flexible-link manipulator.

Table 1: Physical parameters of the flexible manipulator.

Parameter Value

Length 960.0 mm

Width 19.008 mm

Thickness 3.2004 mm

Mass density/
unit volume

2710 kgm -3

III. FUZZY LOGIC CONTROLLER FOR FLEXIBLE-LINK
MANIPULATOR

The conventional approach to FLC design is to generate a fuzzy
rule set based upon the system states such as error, change of
error or sum of error, thus producing a two-input single-output
PD-, or PI-type or three-input single-output PID-type control
rule base. PI-type FLCs are most common and practically
followed by the PD-type FLCs. Generally, good performance is
achieved with PD-type fuzzy controller during the transient
state, i.e., the PD-type fuzzy controller will result in a rapid
response. However, at the steady state, elements of error and
change of error are possibly too small and the control signal,

through fuzzy inference, becomes zero. The zero control
signals will cause steady-state error or oscillations at the steady
state [24, 25].

A PD-like FLC can be developed by using an error and
change of error model as

 (1) ekeku dp Δ+=

where and are the proportional and the differential gain
coefficients and is the error, is the change of error and
is the control input. In this type of FLC, it is assumed that no
mathematical model for the flexible-link is available except two
states, namely, the hub angle error and change of error. Only
hub angle

pk dk
e eΔ u

θ is measured from the system and the error and
change of error are derived from θ . The hub angle error and
change of error are defined as:

)()(kke d θθ −= (2)

 (3))1()()(−−=Δ kekeke

where dθ is the desired hub angle, e is the error and eΔ is the
change in angle error.

Triangular MFs are chosen for error , change of error e eΔ
and torque input u . The membership functions for hub angle
error, change of hub angle error, and torque input are shown in
Figures 3(a)-3(c). The universe of discourse for the hub angle
error, change in hub angle error are chosen as [–36, +36]
degree, and [–25, +25]. The universe of discourse of the output,
i.e., input torque is chosen as [–3, +3] volts. To construct a rule
base, the hub angle error, change of angle error and torque
input are partitioned into five primary fuzzy sets as:

Hub angle error E = {NB, NS, ZO, PS, PB}
Change of angle error C = {NB, NS, ZO, PS, PB}
Torque U = {NB, NS, ZO, PS, PB}

where E, C and U are the universes of discourse for hub angle
error, change of hub angle error, and torque input respectively.
The nth rule of the rule base for the FLC, with error and change
of error as inputs, is as:

Rn : IF (e is Ei) and (Δe is Cj) THEN (u is Uk)

where Rn, is the nth fuzzy rule, Emax,,2,1 Nn L= i, Cj, and Uk,
for are the primary fuzzy sets. 5,,2,1,, L=kji

The performance of PI-type FLC, on the other hand, is
known to be quite satisfactory for linear first-order systems [22,
23]. But, as with conventional PI-controllers, the performance
of PI-type FLCs for higher order systems, and for systems with
integrating elements or large dead time, and also for non-linear
systems may be very poor due to large overshoot and excessive
oscillation. It is well known that the PI-type FLC exhibits good

performance at the steady state like the traditional PI-type
controllers. That is, the PI-like FLC reduces steady-state error,
but yields penalized rise time and settling time [24]. The
PI-type controllers give inevitable overshoot when attempted to
reduce the rise time, especially when a system of order higher
than one is under consideration [22]. These undesirable
characteristics of fuzzy PI controllers are caused by integral
operation of the controller, even though the integrator is
introduced to overcome the problem of steady state error.

A conventional PI-controller is described as:

 (4) ∫⋅+⋅= edtkeku IP

where and are the proportional and the integral gain
coefficients. Taking the derivative with respect to time of
equation (4) yields

Pk Ik

 ekeku IP += && (5)

This can equivalently be written as:

 ekeku IP +Δ=Δ (6)

The PI-like FLC rule-base, accordingly, consists of rules of the
form:

If is Ee i and eΔ is Then is jCE uΔ kCU

This type of controller is called an incremental PI-like FLC.
The inputs are the same as a PD-like FLC with error and change
of error except the control input is incremented at each time.
Actually, the rules of fuzzy controller are designed with phase
plane in mind, in which the fuzzy controllers drive a system
into the so-called sliding mode. The tracking boundaries in the
phase plane, however, are related not with incremental control
input but with control input itself, which is calculated as

 (7))1()()(−+Δ= kukuku

To select the maximum variation of the incremental control
input uΔ giving satisfactory rise time and maximum overshoot
is not so easy as in the case where the control input itself is to be
determined [22]. One natural approach to overcome such
difficult situation is to adopt the rate of change of error. Such a
controller may be called as PID fuzzy controller. The problems
associated with implementing a fuzzy PID-type controller will
be discussed later in this section. Rather an absolute PI-type
controller is computationally viable. In an absolute PI-type
FLC, error and sum of error are used as inputs and it is
expressed as

 (8) ∑+= ekeku IP

where is the sum of error. In this type, the hub angle is

measured from the system and the sum of hub angle error is
derived from the hub angle error. Triangular MFs are chosen
for error e , sum of error and torque input u . The MF for
sum of hub angle error is shown in Figure 3(d). The universes
of discourse for sum of hub-angle error is chosen as [–150,
+150] degree. The MFs for error and torque inputs are defined
in Figure 3(a) and 3(c).

∑e

eΣ

-36 -20 -10 0 10 20 36
0

0.5

1 NB NS ZO PS PB

(a) Hub angle error.

-20 -10 0 10 20
0

0.5

1 NB NS ZO PS PS

-25 25
(b) Change of hub-angle error.

-3 -2 -1 0 1 2 3
0

0.5

1 NB NS ZO PS PB

(c) Torque input.

-150 -50 -10 0 10 50 150
0

0.5

1 NB NS ZO PS PB

(d) Sum of hub-angle error.

Figure 3: Membership functions for inputs and
output.

To construct a rule base, the hub angle error, sum of hub

angle error and torque input are partitioned into five primary
fuzzy sets as:

Hub angle error E = {NB, NS, ZO, PS, PB}
Sum of hub-angle S = {NB, NS, ZO, PS, PB}
Torque U = {NB, NS, ZO, PS, PB}

where E, S and U are the universes of discourse for hub-angle
error, sum of hub-angle error and torque input respectively. The
nth rule of the rule base for this PI-type FLC is as:

Rn : IF (e is Ei) and (s is Sj) THEN (u is Uk)

where Rn, max,,2,1 Nn L= is the nth fuzzy rule, Ei, Sj, and Uk,
for 5,,2,1,, L=kji are the primary fuzzy sets.

A practical problem of implementing a fuzzy controller with
an integral term is the difficulty of deciding on the number of
time units to go back in calculating the sum in equation (8).
Even the literature on conventional control theory tends to be
somewhat vague on this point, and many texts use an indefinite
integral type of notation when representing the integral term,
though obviously it is not to be taken literally. Experience with
the system suggested using 10 time units to indicate recent
tendencies in the error, and experimentation demonstrated that
this works very well. It was also convenient to work with an
average rather than a sum so that the base value can be easily
compared with the current error. Thus, the ∑ base value is

calculated as

e

 (9) ∑∑
−=

=
k

ki

ieke
9

)()(

 Generally, PD-type two-term fuzzy controllers usually cannot
eliminate steady state error and PI-type two-term fuzzy
controller can eliminate steady state error but it has slower
response due to the integral control variable. In order to meet
the design criteria of fast rise time, minimum overshoot, shorter
settling time and zero steady state error, a further option is to
develop a PID-type FLC which enables fast rise time, smaller
overshoot and settling time from PD part and minimum steady
state error from PI part of the PID controller. The generic fuzzy
PID controller is a four-dimensional (three input-one output)
fuzzy system. The basic idea of a PID controller is to choose the
control law by considering the error , change of error e eΔ and
integral of error or sum of error ∑ , and thus giving the

controller as

e

 (10) ∑⋅+Δ⋅+⋅= ekekeku IDPPID

The fuzzy control rule corresponding to the PID-controller
has the form

 lkji
n

PID UisuthenSEiseandCEiseandEiseifR ∑Δ:)(

Theoretically, the number of rules to cover all possible input
variations for a three-term fuzzy controller is 321 nnn ×× ,
where n1, n2, and n3 are the number of linguistic labels of the
three input variables. If , then the number of

rules . For example, if , then the total
number of rules will be . In practical applications the
design and implementation of such a large rule base is a tedious
task, and it will take a substantial amount of memory space and
reasoning time. Because of a long reasoning time the response
of such a generic PID-type FLC will be too slow and hence not
suitable when a fast response is desired e.g. for a flexible-link
manipulator.

nnnn === 321

3nnnnR =××= 5=n
125=R

A variety of approaches have been made to overcome the
problems of PID controllers in [26]. Kwok et al. have
considered a novel means of decomposing a PID controller into
a fuzzy PD controller in parallel with various types of fuzzy
gains, fuzzy integrators, fuzzy PI controller and deterministic
integral control [27, 28, 29]. A fuzzy PD controller in parallel
with a fuzzy PI controller will still require

, i.e., 50 rules in case of linguistic
labels. The first set of rule-base used for PD-type and the
second set of rule-base used for PI-type FLC.

22nnnnnR =×+×= 5=n

A further reduction of rule base is possible if the controller is
switched from PD- to absolute PI-type after a certain period of
time. In that case only one set of rules, rules for each
type of controller, will be executed at a time and thus the
executed rules in a controller rule base will be reduced to only
25 rules for 5 linguistic labels in each input variable. Having
been impressed with this idea, a switching type FLC is
developed for the flexible-link manipulator where a PD-type
FLC is executed first and then switched to a PI-type FLC [4].
The block diagram of this switching PD-PI-type controller is
shown in Figure 4. The state variables used in PD-PI-type FLC
are the same as in equations (1) and (8) and , , , and

 are the proportional, differential, integral and controller
gain coefficients (or scaling factors) respectively.

2555 =×

Pk Dk Ik

Ck

Set point

Rulebase

Fuzzy

Controller
Flexible

Manipulator
output

eΔ

∑e

dθ
+

_ θ
θ

u e

kc

kp

kd

kI

Figure 4: Block diagram of a PD-PI-type FLC system.

The data obtained by experimentation on the PD-PI FLC can
be split into two separate data sets which represent change of
error during PD control, i.e., before switching point and sum of
error during PI control, i.e., for the rest of the time. The change
of error before switching point and sum of error after switching

point is plotted over time in Figure 5. As can be seen in Figure 5
the range of change of error and sum of error are within such
suitable interval that they can be brought within a common
universe of discourse. In FLC design, the actual values of the
inputs do not matter, rather the MF for each linguistic variable
to be defined is important. Therefore, the aim is to unify the
MFs for change of error and sum of error so that a further
simplification of the rule-base can be achieved in designing an
FLC. Now the initial universes of discourse for change error
and sum of error are chosen within the same interval [–25,
+25]. This enables the FLC to use a single rule-base for the
both parts of the controller.

0 5 10 15 20 25
-8

-6

-4

-2

0

2

4

6

Time units, 1unit= 0.12 sec

C
ha

ng
e

of
 e

rr
or

 /
S

um
 o

f
er

ro
r

sum of error

change of error

Figure 5: Change and sum of error within a common

universe of discourse.

Table 2: Rule base for PD-PI-type FLC.

Change/Sum of error Error
NB NS ZO PS PB

NB PB PB PB PS ZO
NS PB PS ZO ZO NS
ZO PS ZO ZO ZO NS
PS PS ZO ZO NS NB
PB ZO NS NB NB NB

A common rule-base, shown in Table 2, was designed and
used for both the PD- and PI-type controllers. This actually
demands the MFs of the fuzzy sets for change of error and sum
of error to be re-adjusted as they were forced to deviate and
were merged within a common universe of discourse. Tuning
of the MFs becomes more important if a merging procedure is
used to reduce the number of fuzzy rules. One possible way is
learning of the parameters of the fuzzy sets. In many cases,
tuning the scaling factors or adjusting the membership
functions can lead to the same result. Adjustment of
membership functions requires learning of several parameters
and hence scaling factor tuning is a much simpler task than
adjusting the parameters [11].

IV. INTEGRATION OF FUZZY LOGIC, NEURAL NETWORKS AND
GENETIC ALGORITHMS

The MFs, which were shifted from their original universe of
discourse by merging procedure, are now re-adjusted by tuning
the scaling factor and using a neural network. There is
no need to re-adjust the MF for error, since it is the same in both
types of controller. For simplicity the scaling factor is not
tuned and hence eliminated from equation (1) and (8). Dividing
both sides of equations (1) and (8) by yields

dk Ik

pk

pk

 (11) ekeuk dc Δ⋅+=⋅ ''

 (12) ∑⋅+=⋅ ekeuk Ic
''

where
p

d
d k

kk =′ ,
p

i
I k

kk =′ and
p

c
c k

kk =′ are the new

differential, integral and controller gain coefficients of the
PD-PI-type controllers. This can be done by determining
suitable parameters, or by approximating the MFs with an NN.
Modern neuro-fuzzy systems are often represented as
multi-layer feedforward NNs [12]. The ANFIS model for
example implements a Sugeno-type fuzzy system in a network
structure, and applies a mixture of backpropagation algorithms
and least squares procedure to train the system [13]. The
problem associated with these types of neuro-fuzzy models is
that they sometimes are not as easy to interpret for
Mamdani-type fuzzy systems [14].

Set point

NN

Fuzzy

Controller
Flexible

Manipulator

eΔ

θ dθ e +

_

e
 Δe/Σe

Σe
k′d

k′i

k′c

PD-PI-type FLC
u

Rule-base

Figure 6: Learning scaling factors using an NN.

Simulation results in [15] with tuned membership functions
show a marginal improvement in transient response of a
second-order linear process, where tuning has resulted in
asymmetric membership functions (triangular) with unequal
base for e . To be more specific, the width of membership
functions increased around . Such membership functions
contradict the usual practice where the membership functions
take narrow width and become more crowded near the origin to
provide increased sensitivity at steady state [16],[17]. Thus, the
purposed MFs tuning scheme cannot guarantee improved
performance under load disturbance, which is a very important
criterion for performance evaluation of a control system.
Moreover, a training scheme such as backpropagation
algorithm is bounded by its input-output data set though it is

minimising the objective function during training and does not
guarantee any improved performance of the controller.
Furthermore, the use of multilayer perceptron could simply
exhaust the system by calculating exponential terms in the
network, causing very slow response of the system. Hence
scaling factor tuning is a much simpler task than adjustment of
parameters. A single neuron network with non-linear activation
function will be used to tune the scaling factors

0=e

kd′ and Ik ′ and

ck′ will be chosen by heurictic rule. A block diagram of the
PD-PI FLC with modified scaling factors and neural network
learning scheme is shown in Figure 6.

A. SIGMOID FUNCTION SHAPE LEARNING
Nonlinearity can be represented with suffient number of hidden
layers with fixed activation function. However, many
parameters such as the optimum shape of the sigmoid function
are determined by trial and error in most of the cases. This
limits advanced application of NNs. There have been few
studies on the optimum shape of the sigmoid function. Yamada
and Yabuta proposed an auto-tuning method for the sigmoid
function shape for application to a servo control system [18].
Their method is based on the steepest descent method and
confirmed the characteristics and practicality of the method
with simulation results.

The usual sigmoid function is defined as ()xf

 ax

ax

e
exf −

−

+
−

=
1
1)((13)

where x is the network output and a defines the shape of the
activation function. The shape of sigmoid function is shown in
Figure 7 for different values of a.

This type of activation function is characterised by its gain
(slope) and seriously affects the control characteristics. If this
gain tuning is used in control applications, the plant output may
become unstable in certain cases. When the usual sigmoid
function is used only in the hidden layer, sigmoid function
shape tuning is the same as weight tuning. A mathematical
proof is given in [18]. Therefore, sigmoid function shape
tuning in a single NN can contribute more in improving
performance of the controller.

B. GA-BASED TRAINING OF NEURAL NETWORK
Interest in training neural networks using GAs has been
growing rapidly in recent years [19]-[22]. The interest in this
study is to explore possible benefits arising from the
interactions between NNs and evolutionary search procedures.
One of the most popular training algorithms for feed-forward
NNs is backpropagation (BP), which is a gradient descent
search algorithm based on minimization of the total mean
squared error between actual output and a desired output. The
error is used to guide BP’s search in the weight space.
However, the BP algorithm suffers from a number of problems.
It is very often trapped in local minima and is very inefficient in

searching for global minimum of the search space. BP’s speed
and robustness are sensitive to several parameters of the
algorithm and the best parameters to use appear to vary from
problem to problem [19]. Shape of the sigmoid function in BP
learning is chosen mostly heuristically or by trial and error.
There are several basic arguments suggesting that applying
GAs to NN weight optimisation is advantageous. GAs have the
potential to produce a global minimum of the weight space and
thereby avoid local minima. It is also an advantage to apply
GAs to problems where gradient information is either not
available or costly to obtain or there is non-differentiable node
transfer function involved. In this specific issue the parameter
of the sigmoid function shape can be easily included in the
learning process.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Input x

f(x
)

a=1.5

a=2.3

a=3.1

a=3.9

Figure 7: Shape of sigmoid function for different values of .a

A block diagram of the GA-based neuro-fuzzy control
system is shown in Figure 8, which incorporates a single
neuron network. The activation function is defined in equation
(13) and the parameter a defines the shape of the sigmoidal
function. The use of different shapes of sigmoidal function can
lead to different weights and biases during learning with the BP
algorithm, which has been experienced in previous
investigations. That is, the shape of sigmoidal functions should
be fixed during execution of the BP algorithm.

A mechanism is sought to learn the weights, bias and the
parameter of the network. Two approaches present
themselves instantly for this purpose: firstly, BP algorithm
learning of weights and bias by trial and error method for
parameter and secondly, GA based learning of the weights,
biases and the parameter a simultaneously. It seemed
somewhat tedious and slow because of the computation
involved in updating the weights and bias for each parameter

, which prolonged the computation in each learning epoch in
the BP. This study aims to investigate possible benefits of
learning the shape of sigmoid function together with the
weights and bias, which will reduce the computing time greatly
and can exploit the non-linearity involved in the system.

Genetic algorithm can best serve such a learning objective. In
this section, the weights (,), bias b and parameter of
the NN, shown in Figure 9, are learnt by GA. The chromosome
representation is straightforward and shown in Figure 10.

a

a

a

1w 2w a

Set point

NN

Fuzzy

Controller
Flexible

Manipulator

eΔ

θ dθ e+

_

e

GA Σ|e|

w1,w2,b,a

Δe/Σe

Σe
k′d

k′i

PD-PI-type FLC

k′c

u

Rule-base

Figure 8: Block diagram of the GA-based neuro-fuzzy control

system.

ID kk ′′

2w∑Δ ee

Σ

w1

w2

e

ax

ax

e
exf −

−

+
−

=
1
1)(

b

Figure 9: Single neuron network with non-linear activation

function.

w1, w2, b, a

Figure 10: String representation of chromosome of the NN.

The objective function is defined as:

 ∑
=

=
N

k

keJ
1

)((14)

where is hub-angle error and N is some reasonable
number of time units by which the system can be assumed to
have settled close to steady state. The evaluation of the
objective function is performed by applying the controller on
the experimental manipulator.

)(ke

Experience from experiments in a previous research shows
that the values of the weights, bias and sigmoid function shape
parameter are within the ranges [] and 22.0,5.0 +− []6.2,0.2
respectively. Considering these results a population of 10
chromosomes is initialised within the ranges of values.

Elitists single point crossover operation is used. Elitism is an
optional characteristic of GA. When used, it makes sure that the
fittest chromosome of a population is passed on to next
generation unchanged. In this investigation an extended form
of elitism is used where best m (in this study)
chromosomes are retained from N chromosomes, is the
population size (in this study). In other words, the
worst two chromosomes are replaced by two off-springs
created by crossing two best chromosomes in the population.

8=m
N

10=N

The crossover operation can suffer from two well-known
problems: firstly, crossover operation, when applying GAs to
NNs, can result in a competing convention problem.
Competing conventions prevent standard crossover operation
to produce useful offspring. Also the number of competing
conventions grows exponentially with the number of hidden
neurons. Secondly, crossover operation may not produce new
chromosomes for a small size of population in higher
generations. Mutation operation can thus strike a balance to
these problems encountered by crossover. Montana and Davis
used three different types of mutation operators [20] to
overcome such problems. In this study, a mutation operation
with a higher mutation rate is applied to GA based learning of
the NN. A randomly chosen value from the offspring is mutated
with a mutation rate of 0.5. This mutation rate will ensure
changes of at least two values in the offspring chromosome.

V. EXPERIMENTAL RESULTS
A population of 10 chromosomes is initialised within the
range of [] and [for weights and bias and for
the parameter a respectively. The practical constraints of
applying the GA-based neuro-fuzzy controller to the
flexible-link manipulator involved how to evaluate the
objective function. The easiest way is to operate the
neuro-fuzzy controller repeatedly and evaluate its performance
(evaluation function) by calculating the absolute sum of error.
The population is tested up to the 13

5.0,5.0 +−]4,0

th generation. Figure 11
shows the system response with the best 4 individuals in the 1st
generation. In earlier generations, some of the chromosomes
needed longer time to settle, and the chromosomes were
required to evaluate for 250 iterations in the program loop. This
has caused some ties of the fitness values. To help resolve the
ties, only 50 iterations were evaluated in later generations.
Figure 12 shows the system response with the best individual in
generations 5, 7 and 9. Figure 13 shows the system response
with the best individual in generations 11, 12 and 13. This
shows significant improvement of the performance in respect
of rise time, maximum overshoot and settling time. Figure 14
shows fitness convergence of GA over generations. The
weights, bias and the parameter after learning were found to
be , , and .

a
029.01 −=w 01.02 =w 23.0=b 18.2=a

The performance of a three-neuron network with linear
activation function and with non-linear activation function was
also verified. The performance of the three-neuron network is
shown in Figure 15. The network was trained using the BP
algorithm. The performance degradation of the system is

obvious and possibly caused by the excessive calculation of
weights and biases updates required in BP algorithms.

0 50 100 150 200 250
-10

0

10

20

30

40

50

60

Time units, 1 unit=0.12 sec

H
ub
 a
n
gle
 (d
eg
)

Figure 11: System response with the best 4 individuals in

generation 1.

VI. CONCLUSION
Experimentations showed improved performance of the system
response using the proposed controller over the PD-, PI-, and
PD-PI-type FLC. It has also been demonstrated that the
sigmoidal function and its shape can represent the nonlinearity
of the system. There are several algorithms like BP that learn
the weights and biases of an NN but very few algorithms that
learn the shape of the sigmoidal function. Genetic algorithm
can be used to learn the weights, biases and shape of the
sigmoidal function of the NN simultaneously.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Time units, 1 unit=0.12 sec

H
ub

 a
ng

le
 (

de
g)

 • generat ion 5
◊ generat ion 7

 generat ion 9

Figure 12: System response with best individuals in

generations 5, 7 and 9.

0 10 20 30 40 50
-10

0

10

20

30

40

50

60

Time units, 1 unit=0.12 sec

H
ub

 a
ng

le
 (d

eg
)

generation 13
generation 12
generation 11
target hub angle

Figure 13: System response with best individuals in

generations 11, 12 and 13.

Table 3: Comparison of response parameters
(1 time unit = 0.12 sec)

G
en

er
at

io
ns

Rise time
(Time
units)

Max
overshoot
(deg)

Settling
time
(Time
units)

Steady
state
error
(deg)

11 13 56.13 35 3.24

12 14 55.55 39 3.34

13 17 52.51 34 0.33

0 2 4 6 8 10 12 14
300

400

500

600

700

800

900

1000

1100

1200

Generations

Av
er
a
ge
 s
um
 o
f a
bs
ol
ut
e
er
ro
r

Figure 14: Convergence of the fitness.

0 10 20 30 40 50
-10

0

10

20

30

40

50

Time units, 1 unit=0.12 sec

H
ub

 a
ng

le
 (

de
g)

nonlinear activ ation f unction
linear activ ation f unction
target hub angle

Figure 15: System response using neuro-fuzzy controller

with 3-neuron network

REFERENCES
[1]. Chao, C.-T. and Teng, C.-C. “A PD-like self-tuning fuzzy
controller without steady-state error”, Fuzzy Sets and Systems,
Vol. 87, 1997, pp. 141-154.

[2]. Chung, H.-Y., Chen, B.-C. and Lin, J.-J. “A PI-type fuzzy
control with self-tuning Scaling Factors”, Fuzzy Sets and
Systems, Vol. 93, 1998, pp. 23-28.

[3]. Siddique, M.N.H. and Tokhi, M.O. “PD-PI Fuzzy Logic
Control of Flexible-link Manipulators”, Proceedings of 7th UK
Workshop on Fuzzy Systems, Sheffield, 26-27 October, 2000,
pp. 36-41.

[4]. Siddique, M.N.H. “Intelligent Control of Flexible-link
Manipulators”, PhD Thesis, Department of Automatic Control
and Systems Engineering, University of Sheffield, Sheffield,
England, 2000, UK.

[5]. Nauck, D and Kruse, R “A fuzzy neural network learning
fuzzy control rules and membership functions by fuzzy error
backpropagation”, Proceeding of IEEE International
Conference on Neural Networks, 1993, pp. 1022-1027.

[6]. Lin, .C.-T. and C.S.G. Lee “Neural-Network-based fuzzy
logic control and decision system”, IEEE Transaction on
Computer, vol. 40, 1991, pp. 1320-1336.

[7]. Lin, .C.-T. and Lee, C.S.G. “Real-time supervised
structure-parameter learning for fuzzy neural network”,
Proceeding of IEEE International Conference on Fuzzy
Systems, 1992, pp. 1283-1290.

[8]. Lin, .C.-T. and Lee, C.S.G. “Reinforced
structure-parameter learning for neural-network-based fuzzy
logic control systems”, Proceeding of IEEE International
Conference on Fuzzy Systems, 1993, pp. 88-93.

[9]. Lin, C.-T. and Lee, C.S.G. “A neural fuzzy control system
with structure and parameter learning”, Fuzzy Sets and
Systems, vol. 70, 1995, pp. 183-212.

[10]. Buckley, J.J. and Hayashi, Y. “Neural networks for fuzzy
systems”, Fuzzy Sets and Systems, Vol. 71, 1995, pp.265-276.

[11]. Chen, M. and Linkens, D.A. “A hybrid neuro-fuzzy
controller”, Fuzzy Sets and Systems, Vol. 99, 1998, pp. 27-36.

[12]. Jang, J.-S. R. “ANFIS: Adaptive-Network-based fuzzy
inference systems”, IEEE Trans. on Systems, Man and
Cybernetics, vol. 23, 1993, pp. 665-685.

[13]. Nauck, D., Klawonn, F. and Kruse, R. “Foundations of
Neuro-Fuzzy Systems”, John Wiley and Sons, Chichester, NY,
Weinheim, Brisbane, Singapore, Toronto, 1997.

[14]. Zheng, L., “A practical guide to tune of proportional and
integral (PI) like fuzzy controller”, Proceedings of 1st IEEE
International Conference on Fuzzy Systems, San Diego, CA,
March, 1992, pp. 633-641.

[15]. Drainkov, D.; Hellendorn, H. and Reinfrank, M. “An
Introduction to Fuzzy Control”, New York, Springer-Verlag.

[16]. Harris, C.J.; Moore, C.G. and Brown, M. “Intelligent
Control – Aspects of Fuzzy Logic and Neural Nets”, Singapore,
World Scientific, 1993.

[17]. Yamada, T. and Yabuta, T. “Neural Network Controller
using Auto-tuning Method for Nonlinear Functions”; IEEE
Trans. on Neural Networks; vol.3, No.4, 1992, pp. 595-601.

[18]. Caudell, Thomas P. and Dolan, Charles P. “Parametric
Connectivity: Training of Constrained Networks using Genetic
Algorithms”, Proceedings of the 3rd International Conference
on Genetic Algorithms (ICGA ’89), George Mason University,
June 4-7, 1989, pp. 370-374.

[19]. Montana, D. J. and Davis, L. “Training Feedforward
Neural Network using Genetic Algorithms”, Proceedings of
11th International Joint Conference on Artificial Intelligence,
San Mateo, CA, Morgan Kaufmann, 1989, pp. 762-767.

[20]. Whiteley, D.; Starkweather, T. and Bogart, C. “Genetic
Algorithms and neural Networks: Optimizing Connections and
Connectivity”, Parallel Computing, vol. 14, 1990, pp. 347-361.

[21]. Yam, Jim Y. F. and Chow, Tommy W.S. “Extended Least
Squares Based Algorithm for Training Feedforward
Networks”, IEEE Trans. on Neural Networks, Vol. 8, No. 3,
1997, pp. 806-810.
[22]. Lee, J. “On Methods for Improving Performance of
PI-type Fuzzy Logic Controllers”; IEEE Trans. on Fuzzy
Systems; vol.1, No.1, 1993, pp. 298-301.

[23]. Mudi, R.K. and Pal, N.R. “A robust self-tuning scheme
for PI- and PD-type fuzzy controllers”, IEEE Trans. on Fuzzy
Systems, vol. 7(1), 1999, pp. 2-16.

[24]. Chao, C.-T. and Teng, C.-C. “PD-like self-tuning fuzzy
controller without steady-state error”, Fuzzy Sets and Systems,
Vol. 87, 1997, pp. 141-154.

[25]. Chung, H.-Y., Chen, B.-C. and Lin, J.-J. “A PI-type fuzzy
control with self-tuning Scaling Factors”, Fuzzy Sets and
Systems, vol. 93, 1998, pp. 23-28.

[25]. Tzafestas, S. and Papanikolopoulos, N.P., “Incremental
fuzzy expert PID control”, IEEE Transaction on Industrial
Electronics, vol. 37, 1990, pp. 365-371.

[26]. Brehm, T., “Hybrid fuzzy logic PID controller”,
Proceedings of 3rd IEEE Conference on Fuzzy Systems, Vol.3,
1994, pp. 1682-1687.

[27]. Kwok, D.P., Tam, D., Li, C.K., and Wang, P., “Linguistic
PID controllers”, Proceeedings of 11th IFAC World Congress,
Tallin, USSR, 1990, pp. 192-197.

[28]. Kwok, D.P., Tam, D., and Li, C.K., “Analysis and design
of fuzzy PID control systems”, Proceedings of IEE Control ’91
Conference, Heriot Watt University, Edinburg, 1991, pp.
955-960.

[29]. Harris, C.J., Moore, C.G., and Brown, M., “Intelligent
control: Aspects of fuzzy logic and neural nets”, World
Scientific (World scientific series vol. 6), Singapore, NJ,
London, Honkong, 1993.

MNH Siddique graduated from Dresden University of Technology, Germany in
Cybernetics and Automation Engineering in 1989. He obtained M. Sc. Eng. in
Computer Science and Engineering from Bangladesh University of
Engineering and Technology (BUET) in 1995. He received his PhD in
intelligent control from the Department of Automatic Control nd Systems
Engineering, University of Sheffield, England in 2003.

He has been a Lecturer in School of Computing and Intelligent Systems,
University of Ulster at Magee, UK since 2001. Prior to that he was with
Computer Science and Engineering Discipline, Khulna University, Bangladesh
since 1991.

Dr Siddique’s research interests relate to intelligent systems, computational
intelligence, perception-based system modelling, evolutionary robotics and
neuro-fuzzy-evolutionary hybrid techniques. Applications of the research
include control systems, robotics, pattern recognition, vision systems, and
signal processing. Dr Siddique has published some 50 journal/refereed
conference papers, book chapter and book. He has served as committee
members and chairs of a number of national and international conferences. He
is on the executive committee of the IEEE SMC UK-RI Chapter.

M. Osman Tokhi obtained his BSc (Electrical Engineering) from Kabul
University (Afghanistan) in 1978 and PhD from Heriot-Watt University (UK)
in 1988. He has worked as lecturer and Senior Lecturer in Kabul University,
Glasgow College of Technology (UK) and the University of Sheffield (UK) and
as sound engineer in industry. He is currently employed as Reader in the
Department of Automatic Control and Systems Engineering, the University of
Sheffield (UK). His main research interests include active control of noise and
vibration, adaptive/intelligent and soft computing techniques for modelling and
control of dynamic systems, high-performance computing for real-time signal
processing and control, and biomedical applications of robotics and control. He
has over 350 publications in print in these areas including textbooks, journal
and conference papers.

	I. INTRODUCTION
	II. Flexible-link Manipulator
	Table 1: Physical parameters of the flexible manipulator.
	III. fuzzy logic controller for flexible-link manipulator
	Hub angle error E = {NB, NS, ZO, PS, PB}
	Hub angle error E = {NB, NS, ZO, PS, PB}
	Figure 4: Block diagram of a PD-PI-type FLC system.

	IV. integration of fuzzy logic, neural networks and genetic algorithms
	A. SIGMOID FUNCTION SHAPE LEARNING
	V. Experimental results
	VI. conclusion

