
 
 

 

  
Abstract—Researchers have shown a considerable amount of 

interest in the control of pneumatic drives over the past decade, 
for two main reasons, firstly, the response of the system is very 
slow and it is difficult to attain set points due to hysteresis and 
secondly, the dynamic model of the system is highly non-linear, 
which greatly complicates controller design and development. To 
address these problems, two streams of research effort have 
evolved and these are: (i) using conventional methods to develop a 
modelling and control strategy, (ii) adopting a strategy that does 
not require mathematical model of the system. This paper 
presents an investigation into the modelling and control of an air 
motor incorporating a pneumatic equivalent of the electric 
H-bridge. The pneumatic H-bridge has been devised for speed 
and direction control of the motor. The system characteristics are 
divided into three regions, namely low speed, medium speed and 
high speed. The system is highly nonlinear in the low speed region, 
for which neuro-modelling, simulation and control strategies are 
developed.  
 

Index Terms—Modelling, neural networks, pneumatic motor, 
simulation.  
 

I. INTRODUCTION 
 Industrial processes, in general, require objects to be moved, 
manipulated or subjected to some force. The use of electrical 
equipment, such as DC motors, or mechanical equipment via 
devices driven by air (pneumatics) or liquid (hydraulics) 
normally achieves these tasks. Air motors are compact, 
lightweight sources of smooth vibration-less power. They start 
and stop almost instantly, and are not affected by continuous 
stalling or overload, and thus are suitable for intermittent 
operation. Air motors are relatively cheap, easy to maintain, 
and have the versatility of variable speed, high starting torque, 
are intrinsically safe in hazardous areas, and can operate in 
exceptionally bad environments. Detailed literature on the 
advantages of air motors over electric motors can be found in 
[1-3]. Since air motors do not require electric power, they can 
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be used in volatile atmospheres. Air motors generally have high 
power density, so a smaller air motor can deliver the same 
power as its electrical counterpart. Unlike electric motors, 
many air motors can operate without the need for auxiliary 
speed reducers. Overloads that exceed stall torque generally 
cause no harm to air motors. With electric motors, overloads 
can trip circuit breakers, so an operator must reset them before 
restarting the equipment. In contrast to electric motors, which 
utilise expensive and complicated speed controls, speed of an 
air motor can be regulated through simple flow control valves. 
The motor torque can vary simply by regulating the input 
pressure. Air motors do not need magnetic starters, overload 
protection, or the host of other support components required by 
electric motors, and air motors generate much less heat than 
electric motors.  
 

A. Related work 
Many attempts have been made to introduce simplified 

models in order to construct a model-based air motor controller 
[4]. A common method has been to approximate non-linear 
dynamics of the air motor into linear (ideal) models assumed to 
have sufficiently small uncertainty [5]. Studies on modelling of 
pneumatic systems, especially locally linearised modelling, can 
be found in the literature [6]. Linear and nonlinear dynamics of 
the dynamic model of a pneumatic actuator forms the platform 
and the launching pad point of the motion control algorithms of 
the air motor system in this study. [7]. There are numerous 
researchers who have focused their efforts on different issues 
of modelling of pneumatic servo systems. The issues include 
but are not limited to the following:  Air flow: a normal 
pneumatic valve does not behave like a simple nozzle. The 
mathematical model of the valve airflow must be produced 
specifying the flow capacity of the pneumatic fluid power 
valves. Valve modelling: there is little work found in the 
literature on this topic. The valve’s input/output behaviour has 
significant influence on the servo control system. Analysis of 
pneumatic valve model parameters reveals that, the valve 
model contains two friction parts, namely static part and 
dynamic part. Friction parameters may be identified using 
evolutionary strategies [8, 9]. This paper addresses modelling, 
simulation and control of an air motor using neural networks. 
The rest of the paper is structured as follows: Section 2 
provides a brief description of the experimental set up utilised 
in this study. Section 3 briefly describes the modelling 
approach. Section 4 discusses the design and implementation of 
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a PI control strategy for the air motor. The paper is concluded in 
Section 5.  

B.  System set up 
The control system for the air motor is shown schematically 

in Fig. 1. The personal computer (PC) with auxiliary hardware 
is used to source out and read all plant devices. All electrical 
devices are externally powered. Coding the control algorithm is 
straightforward. However, it is always advisable to consider 
factors such as realisation, actuator nonlinearities and 
computational delay to minimise controller sensitiveness to 
errors. 

 
The motor speed is measured by a shaft encoder, which 

represents the measured speed in terms of frequency. The 
frequency to voltage (F2V) converter transforms the frequency 
from the shaft encoder to a voltage in the range 0-5 V. This 
analogue voltage is then converted into binary form by an A/D 
converter, which the computer can then read. The control 
algorithm uses this measured speed along with other variables 
to generate a control signal. A D/A converter convert the 
control signal from binary into analogue voltage. This analogue 
voltage when applied to the pressure control valve (PCV) either 
increases or decreases the air pressure to the motor, thus 
controlling the speed of the motor. 
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Figure 1 Schematic of an air motor system 

 

II. SYSTEM IDENTIFICATION 
System identification is one of the most fundamental 

requirements for many engineering and scientific applications. 
The objective of system identification is to find exact or 
approximate models of dynamic systems based on observed 
input and output data. Well developed techniques exist for 
parameters estimation of linear models and 
linear-in-the-parameters nonlinear models. Techniques for 
selection of structure and for non-linear-in-the-parameters 
estimation are still the subject of ongoing research. These input 
and output data can be obtained through experimental work, 
simulation or directly collected from the plant. The procedure 
for identifying a dynamic system consists of the basic steps as 
shown in Fig. 2. 

 
Once a model of the physical system is obtained, it can be 

used for solving various problems such as, to control the 
physical system or to predict its behaviour under different 
operating conditions. A number of techniques have been 
devised by many researchers to determine models that best 
describe input / output behaviour of a system. 

In many cases when it is difficult to obtain a model structure 
for a system with traditional system identification techniques, 
intelligent techniques are desired that can describe the system 
in the best possible way [10]. The air motor system 
incorporates a pneumatic H-bridge. The pneumatic H-bridge 
has been devised for speed and direction control of the motor.  
The main objective of this paper is to carry out modelling of the 
air motor using neural networks. The input (u) is the voltage 
signal initiated by the compressed air while the output (y) is the 
rotor speed. A set of data is collected and divided into two 
halves, one set for training and the other for testing. It is 
important to use the test data for validation to ensure that the 
neural network model does replicate the air motor system in 
general than memorise a specific data set. 

 
DATA FROM PLANT/ 

SIMULATION 

SELECTION OF MODEL  
STRUCTURE 

MODEL ESTIMATION 

MODEL VALIDATION 

Accepted 

Not accepted

Accepted 
Not accepted 

 
Figure 2 System identification procedures 

 
A black box identification approach was adopted for 

modelling the system. This involved several tests using data 
obtained from a speed of 0 to 380 rev/min, termed the low 
speed region. There are a number of nonlinear models that are 



 
 

 

potentially suited to this problem. In this investigation, a neural 
network with input data structure of nonlinear autoregressive 
model with exogenous inputs (NARX) type, which provides a 
concise representation of a wide class of non-linear systems, is 
employed. The NARX model is also referred to in the literature 
by various other names such as one-step-ahead predictor or as 
series-parallel model. 

A. Parametric identification techniques 
The air motor system falls into the class of many real world 

processes that are not amenable to mathematical modelling 
because of the following: 

i. The process is too complex to represent mathematically 
ii. Process model is difficult and expensive to evaluate 
iii. There are uncertainties in process operation 
iv. The process is non-linear, distributed, incomplete and 

stochastic in nature 
The need to cope with significant un-modelled and 

unanticipated changes in the plant further complicates the 
control objectives. This will involve the use of advanced 
decision-making processes to generate control actions so that a 
certain level of performance is achieved and maintained even 
though there are drastic changes in the operating conditions. 
Given their inherent ability to approximate any non-linear 
continuous function without requiring any priori knowledge, 
neural networks (NNs) are remarkable choice, particularly for 
systems with un-modelled dynamics. Modelling of systems 
with non-linearities and little physical insight such as 
pneumatic drives is a domain of black box models showing 
universal approximating capabilities such as NN models. 
Models of dynamic systems are used for various purposes such 
as analysis, fault diagnostic and controller design. 

Processes with complex non-linear characteristics, friction 
and or uncertainty in parameters make theoretical modelling 
difficult and sometimes even impracticable. The theoretical 
approach applies fundamental interaction. A fundamental 
interaction is a mechanism by which particles interact with each 
other, and which cannot be explained by another more 
fundamental interaction. It results in a model description in 
terms of linear and/or non-linear differential equations, in 
general. For many technical plants physical knowledge is not 
sufficient for a successful theoretical or semi-physical 
modelling [11]. This is the case in pneumatic drives. 

The system considered in this paper is a rotary vane air motor 
equipped with two servo-valves. Nonlinearities resulting from 
friction and thermodynamic laws concerning the state of the air 
are difficult to handle as analytical description and parameters 
are unknown. Theoretical modelling is not suitable for this 
approach [12]. The approach used here, is the full experimental 
technique called identification. Identification means computing 
the parameters of a given model structure assessing 
input/output data of the system considered. Various model 
structures are known. In general, linear models are easy to 
handle but will not yield satisfactory performance if the model 
validity is not restricted to small deviations from fixed 
operating point. Non-linear conventional methods such as state 

polynomial, e.g. bilinear or quadratic, require apriori 
knowledge for the choice of an appropriate model structure. In 
case of uncertain nonlinearities a mismatch between the 
nonlinearities of the model and process may result in large 
deviation between predictions and true values. In contrast, NN 
models present a rather general and flexible approach. They 
describe the input/output behaviour of the system using a set of 
weights. Such models can be interpreted as a weighted 
combination of several local models resulting in a non-linear 
global model. Hence the mismatch between the nonlinearities 
of local models and process is less significant compared with 
single non-linear model. Therefore, NN modelling has been 
applied especially to modelling tasks with uncertain 
nonlinearities, uncertain parameters and or high complexity.  

B. Non-parametric identification techniques 
Various modelling techniques can be used with neural 

networks to identify nonlinear dynamic systems. Nonlinear 
autoregressive moving average process with exogenous input 
(NARMAX) model (also known as error model) is one of them.  

Fig. 3 gives a graphical representation of the NARX model 
identification structure using NNs.  
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Figure 3 NARX Model identification structure 

 
Literature has revealed that, if the plant input and output data 

are available, the NARMAX model is a suitable choice for 
modelling nonlinear systems with suitable neuro-learning 
algorithms. The NARMAX model is mathematically expressed 
as: 

 
y

u e

ŷ(t) = f [(y(t - 1),y(t - 2), , y(t - n ),  u(t - 1), u(t - 2),

              , u(t n ), e(t 1), e(t 2), ,e(t n )] e(t)− − − − +

"
" "

  (1) 

 
where: ( )tu , ( )ŷ t  and ( )e t  represent the output vector 

determined by the past values of the system input vector, output 
vector and noise respectively, y un , n , and en  represent 

associated maximum lags respectively, f ( )i  represents the 
system mapping constructed with a NN such as multi-layered 
perceptron (MLP) together with appropriate activation function 
and learning algorithm. 

 



 
 

 

If the model is good enough to identify the system without 
including the noise term, then it can be represented as NARX 
model and expressed as:  

 
y

u

ŷ(t) = f [(y(t - 1),y(t - 2), , y(t - n ),

                              u(t - 1),u(t - 2), , u(t n )] e(t)− +

"
"

  (2) 

 

C. Model validation 
A common measure of predictive accuracy of model used in 
system identification is to compute the one ahead step (OSA) 
prediction of the system output. From the model shown in Fig. 
3, this can be expressed as: 

 

u yŷ(t) = f(u(t), u(t-1), ,u(t-n ), y(t-1), ,y(t-n ))" "   (3) 

 
where: f ( )i  represents a nonlinear function, u and y are the 
input and output samples respectively. The residual or error 
between the output and its prediction is given by: 
 

ˆ(t) = y(t) - y(t)ε   (4) 
 

Often ŷ(t) will be a relatively good prediction of y(t)  over the 
estimation set, even if the model is biased, because the model 
was estimated by minimising the prediction errors. Another 
method to evaluate the predictive capability of the fitted model 
is to compute the model predicted output (MPO). This can be 
expressed as: 
 

d u d d yˆ ˆ ˆy (t) = f(u(t), u(t-1), ,u(t-n ), y (t-1) ,y (t-n ))" "   (5) 

 
dˆ(t) = y(t) - y (t)dε   (6) 

 
If only lagged inputs are used to assign network input nodes, 
then: 
 

dˆ ˆ y(t) = y (t)   (7) 
 
The implication that if the fitted model behaves well for OSA 
and MPO does not necessarily imply that the model is 
unbiased. The prediction over a different set of data often 
reveals that the model could be significantly biased. One way to 
overcome this problem is by splitting the data set into two sets, 
estimation set and test set. The first half (estimation set) is used 
to train the NN and the output computed. The NN usually 
tracks the system output well and converges to a suitable error 
minimum. New inputs (test set) are presented to the trained NN 
and the predicted output is observed. If the fitted model is 
correct, then the network will predict well for the prediction 
(test) set. In this case the model will have captured the 
underlying dynamics of the system. If both OSA and MPO of a 
fitted model are good over the estimation and prediction data 
sets, then most likely the model is unbiased. A more convincing 
method of model validation is to use correlation tests. If a 
model is adequate then the prediction error ε(t)  should be 

unpredictable from (uncorrelated with) all linear and nonlinear 
combinations of past inputs and outputs. This can be tested by 
means of the following correlation functions [13]: 
 

( ) E[ (t ) (t)] ( )εεφ τ = ε − τ ε = δ τ   (8) 
 

u ( ) E[u(t ) (t)] 0    εφ τ = − τ ε = ∀τ   (9) 
 

2
2 2

u
( ) E[(u (t ) u (t)) (t)] 0    

ε
φ τ = − τ − ε = ∀τ   (10) 

 
2 2

2 2 2
u

( ) E[(u (t ) u (t)) (t)] 0    
ε

φ τ = − τ − ε = ∀τ   (11) 

 
( u ) ( ) E[( (t) (t 1 ) u(t 1 )] 0    0ε εφ τ = ε ε − − τ − − − τ = τ ≥   (12) 

 
where 

u ( )εφ τ  indicates the cross-correlation function between 
u(t) and (t)ε , and u(t) (t 1)u(t 1)ε = ε + +  is an impulse 
function.  All five tests defined in equations (8) to (12) should 
be satisfied if the u( )• and y( )• ’s are used as network input 
nodes. In practice normalized, correlations are computed. In 
general, if the correlation functions in equations (8) to (12) are 
within the 95% confidence intervals, 1.96 N± , where, N is 
the total number of data points, the model is regarded as 
satisfactory. 
 

III. 3 NEURAL NETWORK TRAINING 
In this section neuro approaches for modelling the air motor are 
presented.  Artificial NNs were first studied by a desire to 
understand and imitate the function of the human brain [14]. It 
has been recognised since early days that NNs offer a number 
of potential benefits for applications in the field of control 
engineering, particularly in modelling nonlinear systems. Some 
appealing features of NNs are their ability to learn through 
examples; they do not require a priori knowledge and can 
approximate any arbitrary nonlinear continuous function well 
[9]. Many kinds of NNs have been proposed, developed and 
currently extensively used from varying standpoints. Amongst 
the most popular NNs are the multilayered perceptron (MLP), 
Elman recurrent network (ENN), radial basis function (RBF), 
Hopfield, cellular and adaptive resonance theory networks. In 
this investigation, MLP and ENN are used to model the air 
motor system. Artificial networks used in this study have been 
chosen after a series of simulation, experiment and information 
from related work (literature review). It was found that they 
give better results. MLP and ENN give good results and faster 
convergence. 
 

A. 3.1 MLP network 
Multi-layered perceptron NNs are extensively used in 
numerous applications including pattern recognition, 
prediction and control. An MLP is capable of forming arbitrary 
decision boundaries and representing Boolean functions [15]. 
The network can be made up of any number of layers with 
reasonable number of neurons in each layer, based on the 
nature of application. The layer, to which the input data is 



 
 

 

supplied, is called the input layer and the layer from which the 
output is taken is called the output layer. All other intermediate 
layers are called hidden layers. Layers are fully interconnected 
which means that each processing unit (neuron) is connected to 
every neuron in the previous and succeeding layers. However, 
the neurons in the same layer are not connected to each other. A 
neuron performs two functions of combining and activation. 
Different types of function such as threshold, piecewise linear, 
sigmoid, tan sigmoid and Gaussian are used for activation. The 
most common learning algorithm used with MLP is the back 
propagation. The NN training may get stuck in a shallow local 
minimum with standard back propagation. In order to avoid 
centering the local minimum, the learning parameters, number 
of hidden neurons or initial values of the connecting weights 
could be changed. Also using Levenberg-Marquardt, which is a 
modified version of standard back propagation, can solve the 
shallow local minimum problem associated with standard back 
propagation. 
 

B.  Levenberg-Marquadt 
While back propagation is a steepest descent algorithm, 

Levenberg-Marquardt algorithm is an approximation to 
Newton’s method. Consider a function, 
 

( ) ( )
N

2
j

j 1
x e x

=

Ε = ∑   (13) 

 
and assume that it is required to minimise with respect to 
parameter vector x . Then according to Gauss-Newton method 
the update would be: 
 

( ) ( ) ( ) ( )1
x J x J x J x e x

−Τ Τ ∆ =     (14) 

 
where ( )J x is the Jacobian matrix. The Levenberg-Marquardt 
modification to the Gauss-Newton method is, 
 

( ) ( ) ( ) ( )1
x J x J x I J x e x

−Τ Τ ∆ = + µ    (15) 

 
The parameter µ  is multiplied by some factor ( )β whenever a 

step would result in an increase in ( )xΕ . When a step reduces 

( )xΕ , µ   is divided by ( )β . Note that when   is large the 

algorithm becomes steepest descent 1with step 
 
 µ 

while for 

infinitesimal µ  the algorithm becomes Gauss-Newton [16]. 
The Levenberg-Marquardt algorithm can be considered a trust 
region modification of the Jacobian matrix. For NN mapping 
problem the terms in the Jacobian matrix can be computed by a 
simple modification to the back propagation algorithm [17]. 
 
A neuro-model was set up with 15 hidden layer neurons with 
tansig activation function and a single saturated linear function 
in the output layer. The network training was carried out 

off-line using the Levenberg-Marquadt optimisation. The 
network used was of the prediction error type, so the algorithm 
essentially seeks to minimize the prediction error over the 
training data set. 
 
The network in this study contained the following parameters: 
• Levenberg-Marquardt back propagation training rule 
• 15 hidden neurons 
• Number of delayed plant input = 2 
• Number of  delayed plant output = 2 
• Variable learning rate (‘traingda’ & ‘traingd’) 
• logarithmic tang-sigmoid transfer function, tansig for the 
hidden neurons outputs 
• Purelin linear transfer function for the output neuron 
• Epochs  (number of training data that NN has never seen 
during plant identification) = 500 
• Maximum reference input value (upper bound on the random 
reference input training) = 5 
• Minimum reference input value (lower bound on the random 
reference input training) = -5 
• Maximum interval value (maximum interval over which the 
random reference input will remain constant) = 5 seconds 
• Minimum interval value (maximum interval over which the 
random reference input will remain constant)= 1second 
• Number of segments (segments the training data will be 
divided into) = 10 
• Epochs (number of iterations per training segment) = 30 
 
The system was excited with a pseudo binary random sequence 
(PRBS) signal, and the input/output data was recorded and used 
to train the network. Fig. 4 shows the NN output tracking the 
plant output. It is noted that the fitted model behaves well for 
OSA and MPO. However, this does not necessarily guarantee 
that the model is unbiased. The prediction over a different set of 
data has to be carried out to ensure that the model could not be 
significantly biased. To overcome this problem, the best 
approach is to split the data into two sets, namely, estimation set 
and test set (prediction set). One half is used to train the NN and 
the output computed. This would reveal if the NN tracks the 
system output well i.e. converged to a suitable error minimum. 
Then, new inputs (another half that the NN has never seen) are 
presented to the trained NN and the predicted output observed. 
If the fitted model is correct, i.e. correct assignment of lagged   
and   then the network will predict well for the prediction set. 
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Figure 4 Mean square error 
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Figure 5 Actual and predicted output 

 

Table 1 Model training results 

NN-T

ype 

ITAE IAE ISE SSE MSE 

ENN 8.6550x1
 

8.5250x
 

8.3250x1
 

8.4550x1
 

8.2250x1
 

MLP 8.9858x1
 

8.8850x
 

8.8255x1
 

8.7350x1
 

8.6723x1
 

RBF 8.9725x1
 

8.8850x
 

8.7850x1
 

8.8756x1
 

8.7122x1
 

 
Where ITAE is the integral of time multiplied by absolute 

square error, IAE is the integral of absolute magnitude of the 
error, ISE is the integral of the square error, SSE is the sum 
square error and MSE is the mean square error. 

 
Validation and cross validation consist of applying the 

training and test data to the neural identification model in order 
to see how closely it fits the experimental data from the air 
motor in each case. Fig. 6-10 shows the five model validity 
correlation tests described by equations (8) to (12) for the 
developed NN model. It is important to note that only the first 
few lags are significant. Each lag in Fig. 6 is equivalent to a 
sample period  , which was set to 0.55 seconds. It is noted that 
an adequate model fit has been achieved. 
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Figure 7 Cross-correlation of residuals and input 
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Figure 8 Cross-correlation of residuals and input square 
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Figure 9 Cross correlation of residuals square and input square 
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Figure 10 Cross-correlation of residuals and (input*residuals) 

 



 
 

 

C.  Elman neural network 
Elman’s network is a partially recurrent NN. The connections 
are mainly feed-forward but also include a set of carefully 
chosen connections that let the network remember cues from 
the recent past. As the feedback connections are fixed, 
back-propagation can be used for training of the feed-forward 
connections. Early NN research in language learning showed 
that, the network was both able to handle large amount of data 
and provided evidence that abstract knowledge could emerge 
from statistical properties of a representative population of data 
and simple NN learning rule [18, 19]. The network is able to 
recognise sequences and also to produce short continuations of 
known sequences. Generalisation to new data sets arises from 
the spatial nature of the internal representation used by the 
network, allowing the new data sets to be encoded close to data 
sets that have already been learned in the hidden unit space of 
the network. The results are counter to the argument that 
learning algorithms based on weight adaptation after each data 
representation, cannot in principle extract symbolic knowledge 
from positive examples as prescribed by prevailing human 
linguistic and evolutionary psychology. This study has shown 
that Elman’s network can learn to mimic an existing finite state 
automation where different states of hidden units will represent 
the internal states of the automaton. 
Fig.11 shows the structure of Elman network used for training 
neural networks in this study. 
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Figure 11 Elman NN architecture 

 
The symbols in Fig. 11 have the following definitions: 
PR represents an R 2× matrix defining the minimum and 
maximum values of R inputs 
TDL represents tapped delay lines 
IW represents the new input weight matrix 
Q represents the number of neurons in the layer 
LW represents the new Q R×   weight matrix 
b represents a new Q 1×  bias vector 
n represents the number of network layers 
y represents the network output 
 

The generalisation capability of the Elman recurrent network 
is demonstrated in Fig. 12. In this case the network had 500 
training epochs and 15 neurons in the recurrent layer. It is noted 
from the difference between neurons output error signal and the 
target output signals how well the NN generalises. 
Unfortunately, it is difficult to know off hand how large a 

network should be for a specific application [20]. 
Generalisation can be improved by other methods such as 
neuron regularisation and early stopping. The training strategy 
was implemented as follows: The entire input data set was 
presented to the network. Its outputs are calculated and 
compared with the target data to generate an error output.  For 
each time step, the error is back propagated to find the gradients 
of errors for each weight and bias. The gradient is then used to 
update the weights with the back propagation training function 
chosen by the user. 
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Figure 12 NNs showing generalisation capability 

 

Table 2 Model training results 

NN-Ty
pe 

ITAE IAE ISE SSE MSE 

ENN 8.6550x
 

8.5250x1
 

8.3250x1
 

8.4550x1
 

8.2250x1
 

MLP 8.9858x
 

8.8850x1
 

8.8255x1
 

8.7350x1
 

8.6723x1
 

 
 
A summary of the results obtained after training the NN models 
is as shown in Table 2, where ITAE is the integral of time 
multiplied by absolute square error, IAE is the integral of 
absolute magnitude of the error, ISE is the integral of the square 
error, SSE is the sum square error and MSE is the mean square 
error. 
 

D.  Adaptive Neuro-Fuzzy Inference System 
 
In this section an adaptive neuro-fuzzy inference system 
(ANFIS) is utilised for modelling the system. This constitutes 
an NN architecture with fuzzy inference mechanism for 
processing the input data to the NN. As mentioned earlier, 
hardware-based velocity acquisition methods do not yet exist as 
high-volume products and high order differential equations 
representing the dynamics of low speeds inhibit their analytical 
modelling. A natural alternative is to directly differentiate the 



 
 

 

existing velocity signal from a tachometer or optical pulse 
encoder output using the back-difference approximation: 
 

( ) ( ) ( )1

s

v k v k
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T
− −
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�   (16) 

 
where: ( )v k� represents the measured speed and     the sampling 
period. The back-propagation (BP) NN with the 
multi-perceptron structure is the most widely applied network 
model, due to its simple structure and computational algorithm 
but universal capability [21]. It has been proved that a BP NN 
can approximate any nonlinear function arbitrarily well [22]. A 
simplified BP NN with three layers, namely input, hidden and 

output layers is illustrated in Fig. 13. where ( ) ( ) ( ){ }1 2, ,k k k
Mx x x"  

and ( ) ( ) ( ){ }1 2, ,k k k
Ly y y"  represent the input and output of the 

network at iteration k , M  and L represent number of input 
and output nodes respectively. The learning algorithm of the 
BP NN utilises the well known gradient descent principle: 
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where ( )kE represent the sum squared error of the BP NN, 
which is usually defined as a quadratic function: 
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Figure 13 A three-layer neural network 

 
The main drawback of the BP NN is the black box structure as 
well as slow convergence. Jang proposes a fuzzy NN model 
ANFIS [23, 24], the conceptual structure of which is shown in 
Fig. 13. Generally structure identification constitutes two 
problems. Firstly, to find input variables from a number of 
input candidates by a heuristic method based on experience 
and/or common sense knowledge. Secondly, to find 
input-output relations in the form of if-then rules. In a fuzzy 
model, the structure identification of this kind is stated in a 

different way. A fuzzy model consists of a number of if-then 
rules. The number of rules, N, in a fuzzy model corresponds to 
the order of the model in a conventional method. There are two 
parts in an if-then rule: the antecedent part and consequent part. 
The antecedent of a fuzzy rule defines a local fuzzy region, 
while the consequent describes the behaviour within the region 
via various constituents. The Takagi-Sugeno & Kang (TSK) 
model structure strategy with linear function as consequent and 
a non-linear function estimator was selected by fuzzy rules. The 
antecedents are similar to the Mamdani fuzzy system and the 
consequents can be any. Fig. 14 shows a schematic 
representation of such a network with three inputs, one output 
and three rules. The rules are in the following form: 
 
R1: if x is A1 and y is B1 and z is C1 then f1 
R2: if x is A2 and y is B2 and z is C2 then f2 
R3: if x is A3 and y is B3 and z is C3 then f3 
 
where ( A1, A2…An, B1, B2…Bn, C1, C2… Cn ) represent the 
input fuzzy sets (i.e. low, medium and high speed data 
respectively) and (f1, f2…fn) represent the output fuzzy sets. 
The nodes in the first layer compute the membership degree of 
the inputs in the antecedent fuzzy sets. The product nodes   in 
the second layer represent the antecedent conjunction operator. 
In the consequent part, the fuzzy mean, the normalization node 
N and the summation operator realise. By using smooth 
antecedent membership functions, such as the Gaussian 
functions, the following relationship can be applied: 
 

2
j ij

ij j ij ij
ij

x c )
uA (x ;c , ) exp ( )

2
 −

σ = −  σ 
  (20) 

 
The cij and σ ij  parameters can be adjusted by gradient-descent 
learning algorithms, such as back-propagation. This allows for 
a fine-tuning of fuzzy model to the available data for 
optimisation and prediction accuracy as shown in Fig. 14.  
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Figure 14 TSK-ANFIS structure 

 
The fuzzy output can be expressed as: 
 

1 1 2 2 3 3
1 1 2 2 3 3
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where 1f , 2f  and 3f  are the outputs of the three sub-models,  
for the low speed, medium speed and high speed, of the air 
motor respectively. For training purposes, the input patterns 
(collected data) were normalized to unit length to ensure they 
fell within the required range of -1 to 1. Each network was 
trained on the profile of a normal event data set, split into 
training, verification and test set, to allow precise network 
prediction accuracy. Subsequently the networks were given a 
series of dataset that they have never seen before, to determine 
their arbitrary pattern generalization and their ability to track 
the desired output. . The first layer is designed to receive a set 
of input data for the first 500 data points (training data). The 
second layer receives inputs for data points ranging from 501 to 
1000 data points (testing data). The first layer has tangsig 
output in the hidden layer and the second layer has a logsig 
transfer function in the hidden layer output. 
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Figure 15 Adaptation using ANFIS 

 
Fig. 15 shows the prediction capability of the ANFIS network 
in representing the system output. In this exercise a sampling 
interval of 55 milliseconds was selected. The input was chosen 
to be a PRBS shifting between -850 and -650 counts. These 
limits define boundaries of low speed region. Parameters of 
ANFIS network were: number of data points; 500, type of 
membership function; Gbell, number of membership functions 
20 and number of epochs were up to 500. 
 

IV.  PI CONTROL OF THE AIR MOTOR 
In this section a preliminary design of a PI controller for the air 
motor at low speed region is considered. The approach is 
adopted for more sophisticated control strategies in the future.  
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Figure 16 PI-ANFIS control system scheme 

 

Fig. 16 shows the control structure utilised, where for reasons 
of simplicity, the ANFIS model of the air motor developed in 
the previous section is used as a test bed simulating the system 
in the low-speed region. In Fig. 16, no mathematical model for 
the air motor system is available. The input-output data of the 
system is measured and the error and change in error derived, 
from which the integral sum of errors obtained: 
 

( ) ( )d ae k H H k= −   (22) 
 

( ) ( ) ( )1e k e k e k∆ = − −   (23) 
 

( ) ( )
1

k

i

e k e i
=

=∑ ∑   (24) 

 
where: dH represents the desired speed,  e  represents the 

error, e∆ represents the change in error and e∑ represents the 

sum error of speed. 
 
Fig. 17 shows the step response of the system and 
corresponding control signal achieved with and without 
anti-windup action. It is observed that the overshoot magnitude 
for the without anti-windup is 44%, the overshoot magnitude 
for ‘with anti-wind up’ is 11%. It is noted that response 
overshoot reduces significantly with anti-windup action. 
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Figure 17 System response 
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Figure 18 Control signal 



 
 

 

As depicted in Fig. 18, in case of ‘without anti-wind up, a limit 
of 33% is imposed in the control signal. When an integral 
action is used in a system with saturation the phenomenon of 
wind up will happen. When the integrator output is greater than 
the saturation level, then the system output is also limited and 
the error signal that is driving the controller cannot reduce. The 
integrator thinks it needs to do more and continues for a long 
time and cause the controller to behave badly. Thus, 
precautions have to be taken to limit the control signal so that. 
The actuator is not damaged. 

V.  CONCLUSION 
In this paper, nonlinear neuro-modelling approaches and a 
preliminary control system design for the low-speed region of 
an air motor have been presented. Three types of neural 
networks, namely, MLP with Levenberg-Marquardt back 
propagation, Elman network and ANFIS have been used to 
model the system. The developed models have been validated 
with various tests including OSA, MPO, estimation and test 
and correlation tests. Good dynamic prediction capability has 
been demonstrated with each of these model types, 
demonstrating the suitability of neural works in modelling the 
air motor in the low speed region. A preliminary design of a PI 
controller for the system has been carried out and tested within 
a simulation environment of the system. It has been 
demonstrated that the system can be controlled well within this 
speed region. However, precaution has to be taken against 
control signal not to go excessively high. The control approach 
adopted will be used for design of more sophisticated 
controllers in future. 
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