

The Communication in Intelligent Distributed
Fault Tolerant Systems

Arnulfo Alanis Garza

, Juan José Serrano, Rafael Ors Carot, José Mario García Valdez

Abstract— Intelligent Agents have originated a lot of discussion

about what they are, and how they are different from general
programs. We describe in this paper a new paradigm for intelligent
agents. This paradigm helped us deal with failures in an
independent and efficient way. We proposed three types of agents
to treat the system in a hierarchical way. A new method to visualize
fault tolerant systems (FTS) is proposed, in this paper with the
incorporation of intelligent agents, which as they grow and
specialized create the Multi-Agent System (MAS). The MAS
contains a diversified range of agents, which depending on the
perspective will be specialized or will be evolutionary (from our
initially proposal they will be specialized for the detection and
possible solution of errors that appear in an FTS). The initial
structure of the agent is proposed in [1] and it is called a reflected
agent with an internal state and in the Method MeCSMA [2].

Index Terms— Intelligent Agents, Fault Tolerance, Distributed
System.

I. INTRODUCTION
At the moment the approach using agents for real applications,
has worked with movable agents, which work at the level of the
client-server architecture. However, in systems where the
requirements are higher, as in the field of the architecture of
embedded industrial systems, the idea is to innovate in this area
by working with the paradigm of intelligent agents. Also, it is a
good idea in embedded fault tolerant systems, where it is a new
and good strategy for the detection and solution of errors.
To main goals of the present research work were the following:

1) To create a new visualization tool of the application of
intelligent agents, in the fault tolerant systems for
embedded systems.

Manuscript received December 15, 2005 and accepted April 5, 2006. A.Alanis

is with the Tijuana institute of technology, Division Graduate and studies
Reseach, Calzada Tecnologico, S/N, Tijuana, BC 22379 Mexico :664-682-72-79;
e-mail: alanis@ tectijuana.mx).

 J. Jose Serrano is with the Universidad Politécnica de Valencia (España), D.
Inf. de Sistemas y Computadoras, Camí de Vera, s/n, 46022 VALÈNCIA,
ESPAÑA, ,: 00+34 96387, email:jserrano@disca.upv.es.

R.Ors Carot is with the Universidad Politécnica de Valencia (España), D. Inf.
de Sistemas y Computadoras, Camí de Vera, s/n, 46022 VALÈNCIA, ESPAÑA,
:00+34 96387, email:rors@disca.upv.es.

J.Mario Garcia is with the Tijuana institute of technology, Division Graduate
and studies Reseach, Calzada Tecnologico, S/N, Tijuana, BC 22379 Mexico
:664-682-72-79; e-mail: mario@ tectijuana.mx.

2) To create a model, that will help the programmers to
create profiles in embedded circuits, according to
utility, by means of, Intelligent Agents

The reflected agent with an internal state sets out the general
structure of the recovery Intelligent Agent for Fault tolerant
Systems in Distributed Systems, with three types of intention
agents.

A. Where do Agents come from?

Agents have their origins in four different research areas:
robotics, artificial intelligence, distributed systems, and
computer graphics.
Agents working in robotics and artificial intelligence were
originally strongly interrelated. Robots such as SHAKEY were
programmed to exhibit autonomous behaviour in well-defined
environments, and laid the groundwork for AI planning systems
to this day. The first software agent was probably ELIZA [12], a
program which could engage in a conversation with a user.
Another influential program, SHRDLU [13], allowed a person to
have a conversation with a simulated robot.
The notion of multi-agent systems was brought to the fore-front
by Marvin Minsky in his work on the “Society of Mind” [14].
His vision was that a complex system such as the human mind
should be understood as a collection of relatively simple agents,
each of which was a specialist in a certain narrow domain.
Through structures called K-lines, agents would activate each
other whenever their context became relevant.
The work of Minsky showed remarkable vision, but was ahead
of its time, since software complexity had not yet reached the
level where the advantages of such structures would have a
practical impact.

However, the idea of decomposing a complex system into simple
agents found willing takers in robotics. Frustrated with the
complexity of robots built around general and thus large
homogeneous software systems, Rodney Brooks [18] proposed a
radically different design. In his view, intelligent and complex
behaviour would be emergent in the interplay of many simple
behaviours. Each behaviour is given a simple agent whose
activation is decided by a control architecture. Complex general
vision systems were replaced by simple detectors specialized in
particular situations, and actions were taken based on very

Engineering Letters, 13:2, EL_13_2_5 (Advance online publication: 4 August 2006)
__

simple rules. Brooks showed that using this approach, one could
very easily build robust autonomous robots which had not been
possible otherwise [9] [10] [11].

B. Agents

Let's first deal with the notion of intelligent agents. These are
generally defined as "software entities", which assist their users
and act on their behalf. Agents make your life easier, save you
time, and simplify the growing complexity of the world, acting
like a personal secretary, assistant, or personal advisor, who
learns what you like and can anticipate what you want or need.
The principle of such intelligence is practically the same of
human intelligence. Through a relation of
collaboration-interaction with its user, the agent is able to learn
from himself, from the external world and even from other
agents, and consequently act autonomously from the user, adapt
itself to the multiplicity of experiences and change its behaviour
according to them. The possibilities offered for humans, in a
world whose complexity is growing exponentially, are enormous
[1][4][5][6].

II. DISTRIBUTED ARTIFICIAL INTELLIGENCE

Distributed Artificial Intelligence (DAI) systems can be defined
as cooperative systems where a set of agents act together to solve
a given problem. These agents are often heterogeneous (e.g., in
Decision Support System, the interaction takes place between a
human and an artificial problem solver).

Its metaphor of intelligence is based upon social behaviour (as
opposed to the metaphor of individual human behavior in
classical AI) and its emphasis is on actions and interactions,
complementing knowledge representation and inference
methods in classical AI.

This approach is well suited to face and solve large and complex
problems, characterized by physically distributed reasoning,
knowledge and data managing. In DAI, there is no universal
definition of agent, but Ferber's definition is quite appropriate for
drawing a clear image of an agent: "An agent is a real or virtual
entity, which is emerged in an environment where it can take
some actions, which is able to perceive and represent partially
this environment, which is able to communicate with the other
agents and which possesses an autonomous behaviour that is a
consequence of its observations, its knowledge and its
interactions with the other agents".

DAI systems are based on different technologies like, e.g.,
distributed expert systems, planning systems or blackboard
systems. What is now new in the DAI community is the need for
methodology for helping in the development and the
maintenance of DAI systems. Part of the solution relies on the
use of more abstract formalisms for representing essential DAI

properties (in fact, in the software engineering community, the
same problem led to the definition of specification languages)
[7][8].

III FIPA (THE FOUNDATION OF INTELLIGENCE PHYSICAL
AGENTS)

FIPA specifications represent a collection of standards, which
are intended to promote the interoperation of heterogeneous
agents and the services that they can represent

The life cycle [9] of specifications details what stages a
specification can attain while it is part of the FIPA standards
process. Each specification is assigned a specification identifier
[10] as it enters the FIPA specification life cycle. The
specifications themselves can be found in the Repository [11]

The Foundation of Intelligent Physical Agents (FIPA) is now an
official IEEE Standards Committee.

II. FIPA ACL MESSAGE

A FIPA ACL message contains a set of one or more message
elements. Precisely which elements are needed for effective
agent communication will vary according to the situation; the
only element that is mandatory in all ACL messages is the
performative, although it is expected that most ACL messages
will also contain sender, receiver and content elements.

If an agent does not recognize or is unable to process one or more
of the elements or element values, it can reply with the
appropriate not-understood message.

Specific implementations are free to include user-defined
message elements other than the FIPA ACL message elements
specified in Table 1. The semantics of these user-defined
elements is not defined by FIPA, and FIPA compliance does not
require any particular interpretation of these elements.

Some elements of the message might be omitted when their
value can be deduced by the context of the conversation.
However, FIPA does not specify any mechanism to handle such
conditions, therefore those implementations that omit some
message elements are not guaranteed to interoperate with each
other

The full set of FIPA ACL message elements is shown in Table 1
without regard to their specific encodings in an implementation.
FIPA-approved encodings and element orderings for ACL
messages are given in other specifications. Each ACL message
representation specification contains precise syntax descriptions
for ACL message encodings based on XML, text strings and
several other schemes.

A FIPA ACL message corresponds to the abstract element
message payload identified in the [15]

Table 1: FIPA ACL Message Elements

Element Category of Elements
performative Type of communicative

acts
sender Participant in

communication
receiver Participant in

communication
reply-to Participant in

communication
content Content of message
language Description of Content
encoding Description of Content
ontology Description of Content
protocol Control of conversation
conversation-id Control of conversation
reply-with Control of conversation
in-reply-to Control of conversation
reply-by Control of conversation

.

The following terms are used to define the ontology and the
abstract syntax of the FIPA ACL message structure:

Frame. This is the mandatory name of this entity, that must be
used to represent each instance of this class.

Ontology. This is the name of the ontology, whose domain of
discourse includes their elements described in the table.

Element. This identifies each component within the frame. The
type of the element is defined relative to a particular encoding.
Encoding specifications for ACL messages are given in their
respective specifications.

Description. This is a natural language description of the
semantics of each element. Notes are included to clarify typical
usage.

Reserved Values. This is a list of FIPA-defined constants
associated with each element. This list is typically defined in the
specification referenced.

All of the FIPA message elements share the frame and ontology
shown in Table 2.

Table 2: FIPA ACL Message Frame and Ontology

Frame FIPA-ACL-Message
Ontology FIPA-ACL

V THE KQML LANGUAGE

Communication takes place on several levels. The content of the
message is only a part of the communication. Begin able to
locate and engage the attention of someone you want to
communicate with is apart of the process. Pack-aging your
message in a way which makes your purpose in communicating
clear is another.

When using KQML, a software agent transmits content
messages, composed in a language of its own choice, wrapped
inside of a KQML message. The content message can be
expressed in any representation language and written in either
ASCII strings or one of many binary notations (e.g. network
independent XDR representations). All KQML implementations
ignore the content portion of the message except to the extent
that they need to recognize where it begin sand ends.

The syntax of KQML is based on a balanced parenthesis list. The
initial element of the list is the performative and the remaining
elements are the performative's arguments as keyword/value
pairs. Because the language is relatively simple, the actual
syntax is not significant and can be changed if necessary in the
future. The syntax reveals the roots of the initial
implementations, which were done in Common Lisp, but has
turned out to be quite flexible

KQML is expected to be supported by an software substrate
which makes it possible for agents to locate one another in a
distributed environment. Most current implementations come
with custom environments of this type; these are commonly
based on helper programs called routers or facilitators. These
environments are not a specified part of KQML. They are not
standardized and most of the current KQML environments will
evolve to use some of the emerging commercial frameworks,
such as OMG's CORBA or Microsoft's OLE2, as they become
more widely used.

The KQML language supports these implementations by
allowing the KQML messages to carry information which is
useful to them, such as the names and addresses of the sending
and receiving agents, a unique message identifier, and notations
by any intervening agents. There are also optional features of the
KQML language which contain descriptions of the content: its
language, the ontology it assumes, and some type of more
general description, such as a descriptor naming a topic within
the ontology. These optional features make it possible for the
supporting environments to analyze, route and deliver messages
based on their content, even though the content itself is
inaccessible [17].

VI KQML SOFTWARE ARCHITECTURES

KQML was not defined by a single research group for a
particular project. It was created by a committee of
representatives from different projects, all of which were
concerned with managing distributed implementations of
systems. One was a distributed collaboration of expert systems in
the planning and scheduling domain. Another was concerned
with problem decomposition and distribution in the CAD/CAM
domain. A common concern was the management of a collection
of cooperating processes and the simplification of the
programming requirements for implementing a system of this
type. However, the groups did not share a common
communication architecture. As a result, KQML does not dictate
a particular system architecture, and several different systems
have evolved [19].

VII AGENT COMMUNICATION PROTOCOLS

There are a variety of interprocess information exchange
protocols. In the simplest, one agent acts as a client and sends a
query to another agent acting as a server and then waits for a
reply, as is shown between agents A and B in Figure 1. The
server's reply might consist of a single answer or a collection or
set of answers. In another common case, shown between agents
A and C, the server's reply is not the complete answer but a
handle which allows the client to ask for the components of the
reply, one at a time. A common example of this exchange occurs
when a client queries a relational database or a reasoner which
produces a sequence of instantiations in response. Although this
exchange requires that the server maintain some internal state,
the individual transactions are as before - involving a
synchronous communication between the agents. A somewhat
different case occurs when the client subscribes to a server's
output and an indefinite number of asynchronous replies arrive
at irregular intervals, as between agents A and D in Figure 1. The
client does not know when each reply message will be arriving
and may be busy performing some other task when they do.
There are other variations of these protocols. Messages might
not be addressed to specific hosts, but broadcast to a number of
them. The replies, arriving synchronously or asynchronously
have to be collated and, optionally, associated with the query that
they are replying to [18].

Figure 1: Several basic communication protocols are supported
in KQML

VIII PROPOSED METHOD

Let DS denote a distributed system made up of a set of Nodes
N = { Ni }, where each Ni can be formed by several Devices (De)
[Di, z]. On the other hand, a DS also contains a set of Tasks to
execute, T = { Tj }.

Definition 1: N = {Ni}, where i is the number of nodes of the
distributed system.
Definition 2: T = {Tj}, where j is the number of tasks that are
executed in the system.
Definition 3: De = [Di, z], where z is the number of devices that
will be monitored by Ni from these definitions, it can be made
the following one:
Definition 4: Let a distributed system DS be pair <N, T>

This is where we equiped this DS with certain characteristics of
failure tolerance.
This is where the use of the DAI paradigm, applied to the Fault
Tolerant System (FTS) as a DS can represent a new approach
with the implementation of Intelligent Agents.

IAFT = {ANi,AT j,AS} will now define the Fault tolerant
Agents, that work a DS.
The Node Agent (ANi) € Ni, whose mission is related to the
tolerance to failures at node level (What works and what not
within the node).

The Task Agent (ATj) € ATj, whose mission is related to the
tolerance to failures at task level (like recovering the tasks of the
possible errors that can suffer)
System Agent (AS) € DS, whose mission is the related to the
tolerance to failures at the system level (what tasks must be
executed in the system and on what nodes)

With it a fault tolerant DS is defined as:
Definition 5: A Distributed Fault Tolerant System DFTS is the
pair <DS, IAFT>, DSTF is defined as {DS, IAFT}

IX CONTROL OF CONVERSATION

In this section we describe the control of conversation between
agents. In table 3 we show the protocol. In this table 4 we show
the conversation identifier of the node agent. In table 5 we show
the reply of an agent.

Table 3 Protocol

Element Description Reserved
Values

Protocol
TCP/IP

Denotes the interaction
protocol that the sending
agent is employing with this
ACL message

See [16]

Table 4 Conversation Identifier of Node Agent (ANi)

Element Description Reserved
Values

• (ANi).Phase.Det
ection y
(ANi).{Input-Err
or (i,j).Error}

• (ANi).Phase.Loc

ation y
(ANi).Input-Erro
r(i,j).Error

• (ANi).Phase.Isol
ation y
(ANi).Device[Di
,m].Incorrect

• (ANi).Phase.Rec
unfiguration

(ANi).Phase.Recunfigurat
ion y ANiTj. Recovered

Introduces an
expression (a
conversation
identifier)
which is used
to identify the
ongoing
sequence of
communicativ
e acts that
together form a
conversation.

Table 5 Reply With

Element Description Reserved
Values

• (ANi).State.Suspec
t

• (ANi).{Test[Di k]}
• (ANi).{Device[Di,

m].
 Incorrect}

• (ANi).{Test [Di,l]}
 (ANiS). low y
 (ANi).State.low

• (ANi).Actions-Isol
ation-Device(m)

• ANiTj.A-to
Recover y
(ANi).Phase.
recovery

• (ANi).Phase.Detect
ion y
(ANi).State.Correct
o.

Introduces
an
expression
that will be
used by the
responding
agent to
identify this
message.

X CONCLUSION

The agent counts on a AID, which is "intelligent Agents as a new
paradigm of Distributed Fault tolerant Systems for industrial
control" to as Architecture of Reference fipa/Data minimum of
an agent is specified in the norms of Fipa (, says: Aid- the agent
must have a unique name globally).
The agent contains descriptions of transport in the development
of his documentation, which fulfills the specifications of fipa
(Architecture of Reference fipa/Data minimum of an agent, says:
Localizer one or but descriptions of the transport that as well,
contains the type of transport by ej. Protocol), but does not
specify the protocol that uses like type of transport, this this in
phase of analysis.
It concerns the communication and cooperation between agents,
the document "intelligent Agents as New Paradigm of
Distributed Fault tolerant Systems for Industrial Control" says to
us that the communication between the agents occurs of
ascending or descendent form depending on the type of agent. A
a little superficial explanation occurs, without specifying for
example that type of language of communication between agents
uses, or KQML or the Fipa-acl.

XI CONSIDERATIONS

We described in this paper our approach for building
multi-agents system for achieving fault tolerant control system in
industry. The use of the paradigm of intelligent agents has
enabled the profile generation of each of the possible failures in
an embedded industrial system. In our approach, each of the
intelligent agents is able to deal with a failure and stabilize. It is
observed the models and forms to make the communication
between the agents’ efficient using tools of efficient handling.
The system in an independent way, and that the system has a
behavior that is transparent for the use application as well as for
the user.

REFERENCES
[1]. Stuart Russell and Peter Norvig, Artificial Intelligence to
Modern Aproach, Pretence artificial Hall series in intelligence,
Chapter Intelligent Agent, pages. 31-52.
[2]. A.Alanis, Of Architectures for Systems Multi-Agentes, (
Master Degree thesis in computer sciences), Tijuana Institute of
Technology, November, 1996.
[3]. Michael J. woodridge, Nicholas R. Jennings. (Eds.),
Intelligence Agents, Artificial Lecture Notes in 890 Subseries of
Lectures Notes in Computer Science, Amsterdam, Ecai-94
Workshop on Agent Theories, Architectures, and languages, The
Netherland, Agust 1994 Proceedings, ed. Springer-Verlag, págs.
2-21.

[4]. P.R. Cohen ET al.An Open Agent Architecture, working
Notes of the AAAI Spring symp.: Software Agent, AAAI Press,
Cambridge, Mass., 1994 págs. 1-8.
[5]. Bratko I. Prolog for Programming Artificial Intelligence,
Reding, Ma. Addison-Wesley, 1986.
[6]. Or Etzioni, N. Lesh, and R. Segal Bulding for Softbots
UNIX? (preliminary report). Tech. Report 93-09-01. Univ. of
Washington, Seattle, 1993.
[7]. Elaine Rich, Kevin Knight, Artificial intelligence,
SecondEdition, Ed. Mc Graw-Hill, págs. 476-478.
N. Jennings, M. Wooldridge: Intelligent agents: Theory and
practice. The Knowledge Engineering Review 10, 2 (1995),
115– [10] Durfee et al. 89
[8]. E. H. Durfee, V. R. Lesser, D. D. Corkill: Trends in
cooperative distributed problem solving. IEEE Transactions on
Knowledge and Data Engineering KDE-1, 1(March 1989),
63–83.
[9]. http://www.fipa.org/specifications/lifecycle.html
[10]. http://www.fipa.org/specifications/identifiers.html
[11].http://www.fipa.org/specifications/index.html
[12]. M. Yokoo, T. Ishida, K. Kuwabara: Distributed constraint
satis-faction for DAI problems. In Proceedings of the 1990
Distributed AI Workshop (Bandara, TX, Oct. 1990).
[13]. J. Weizenbaum: ELIZA – a computer program for the study
of natural language communication between man and machine.
Communications of the Association for Computing Machinery
9, 1(Jan. 1965), 36–45.
[14]. T. Winograd: A procedural model of language
understanding. In Computer Models of Thought and Language,
R.Schank and K. Colby, Eds. W.H.Freeman, New York, 1973,
pp. 152–186.
[15] FIPA Abstract Architecture Specification. Foundation for
Intelligent Physical Agents, 2000.
http://www.fipa.org/specs/fipa00001/
[16] FIPA Interaction Protocol Library Specification.
Foundation for Intelligent Physical Agents, 2000.
http://www.fipa.org/specs/fipa00025/
[17] External Interfaces Working Group ARPA Knowledge
Sharing Initiative. Specification of the KQML
agent-communication language Working .
[18] Yannis Labrou and Tim Finin. A semantics approach for
KQML
{ a general purpose communication language for software
agents. In Third International Conference on Information and
Knowledge Management, November 1994.
[19] Tim Finin, Don McKay, Rich Fritzson, and Robin
McEntire. KQML: an information and knowledge exchange
protocol. In International Conference on Building and Sharing of
Very Large-Scale Knowledge Bases, December 1993.(Ed.),
"Knowledge Building and Knowledge Sharing", Ohmsha and
IOS Press, 1994.

Arnulfo Alanis Garza, Bachelor in Computer Engineering Systems from
Technological Institute of San Luis Potosi. Candidate to the Phd Degree in
Computer Science from Polytechinical University of Valencia,. Full time
Researcher of Tijuana Institute of Technology since 1995. Current areas of
interest include: Intelligent Agents, Expert System, Robotics and Networks, Fault
Tolerance System. Published more 20 papers in conference proceedings and
journals.

Juan Jose Serrano, Bachelor in Industrial Engineering from Polytechinical
University of Valencia. Phd Degree in Computer Science form Polytechinical
University of Valencia, Full time Researcher of Polytechinical University of
Valencia since 1999. Current areas of interest include: Intelligent Fault
Tolerance System, Real-time systems, microcontroller. Published more 40 papers
in conference proceedings and journals.
.

Rafael Ors Carot, Bachelor in Industrial Engineering from Polytechinical
University of Valencia.. Phd Degree in Computer Science form Polytechinical
University of Valencia. Full time Researcher of Polytechinical University of
Valencia since 1999. Current areas of interest include: Intelligent Faul Tolerance
System, Realtime systems, microcontroller. Published more 40 papers in
conference proceedings and journals.

Jose Mario Garcia Valdez, Bachelor in Computer Engineering System from
Technological Institute of Tijuana. Full time Researcher of Tijuana Institute of
Technology Since 1994. Current areas of interest include: data base, objects of
learning. Published more 10 papers in conference proceedings and journals.

http://www.fipa.org/specifications/lifecycle.html
http://www.fipa.org/specifications/identifiers.html
http://www.fipa.org/specifications/index.html
http://www.fipa.org/specs/fipa00001/
http://www.fipa.org/specs/fipa00025/

	I. INTRODUCTION
	A. Where do Agents come from?
	B. Agents
	II. Distributed Artificial Intelligence
	III FIPA (The Foundation of Intelligence Physical Agents)
	II. FIPA ACL message
	V The KQML Language
	VI KQML Software Architectures
	VII Agent Communication Protocols
	VIII Proposed Method
	IX Control of Conversation
	
	X Conclusion
	XI Considerations

