
 
Abstract—This paper describes the design and

implementation of an inference engine for the execution of Fuzzy
Inference Systems (FIS), the architecture of the system is
presented, and the object-oriented design of the main modules is
also discussed. The engine is implemented as a component to be
referenced by other applications locally or remotely as a web
service. This engine is needed by our research group for the
implementation of other projects, which are Internet and Web
based. The distinctive characteristic of this component is the
ability to define fuzzy objects and attributes.

Index Terms—Fuzzy Control Systems, Fuzzy Ruled Based
Systems.

I. INTRODUCTION
Fuzzy Inference Systems have been successfully used in

industrial control systems that have numerous input variables
and are nonlinear. These controllers have the advantage of not
needing precise information to work. FLCs are a special kind
of Production Systems where the rules model a dynamic
system and provide an input-output relationship. Unlike
production systems in a FIS there is no need for various cycles
of activation of the rules because there is only a disjoint set of
input and output variables, as an advantage the inference
process can be executed in parallel [5]. There are several
implementations of production systems that use fuzzy logic,
there is FuzzyCLIPS [11], which is an extension of CLIPS a C
language production system shell, the last updated version is
dated in 2004 [11], also based on Jess there is FuzzyJ [12].
Another expert system shell based fuzzy logic is FLOPS [1].
There are also many implementations of fuzzy inference
engines for control systems, there is AFUZ [10], and the
Fuzzy Logic Toolbox™ for use with MATLAB™ [2] and also
Xfuzzy 3.0 [15] is a complete development environment for
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fuzzy-inference-based systems and is implemented in Java.
Our proposed fuzzy inference engine is mainly used in control
systems, but we plan to also use it for other applications, for
example for modeling fuzzy attributes in a user model for an
adaptive hypermedia system, these applications are Internet
and Web based. The inference engine is implemented as a
.NET framework component to be referenced by other
applications locally or remotely via Web Services. The rest of
this paper is organized as follows: In section 2 we present a
review of production systems and their fuzzy extensions, and
also we focus on fuzzy inference systems for control,  in
section 3 the functional requirements and the overall
architecture are explained, in section 4 the object oriented
design of the system is presented.  A case study is presented in
section 5, to conclude with a summary and future work which
is presented in section 6.

II. PRODUCTION SYSTEMS AND FUZZY MODELS

A. Traditional Production Systems
Production Systems represent knowledge in form of IF-

THEN rules, which specify actions that will be executed when
certain conditions are met. Also known as rule based systems
many implementations consist mainly of these three
components [4][5]:
1) Production Rules (PR). A set of production rules (also

known as IF-THEN rules) having a two part structure;
the antecedent, conformed by a set of conditions and a
consequent set of actions.

2) Working Memory (WM). Represents the current
knowledge or facts that are known to be true so far.
These facts are tested by the antecedent conditions of the
rules and the consequent part can change them.

3) I Inference Engine (IE). This interpreter matches the
conditions in the production rules with the
data/instantiations found in the WM, deriving new
consequences.

The basic operation of these systems is described as a cycle
of three steps [4]:
1) Recognize: Find which rules are satisfied by the current

state of the WM. The antecedent part of the productions
consists of a set of clauses connected by AND operators,
when all these clauses have matching data on the WM
the production has a chance of firing.

2) Conflict Resolution: Only one production can be fired at
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a time, so when two or more rules can be fired
concurrently a conflict occurs. Among the production
rules found in the first step, choose which rules should
fire.

3) A ctions: Change the working memory by performing
the actions specified in the consequent part of all the
rules selected in the second step. Changes occur by
adding or deleting elements of the WM.

This cycle continues until no further production rules can
be fired. This control strategy is data driven because whenever
the antecedent part is satisfied the rule is recognized, this
strategy is also named chain-forward. The other strategy is
chain-backward in this case the work is done from the
conclusion to the facts, to chain-backward; goals in working
memory are match against consequents of the production
rules.

A drawback that has been recognized in these traditional
productions systems is that some times rules are not fired in
the Recognize step because no appropriate match exists in the
WM. Partial matching of rules is not possible and this can be a
limitation in some systems because premature termination of
the cycle is not desired. An approach to handle partial
matching is using fuzzy logic [5].  In the next section we
present a review of the extension of production systems with
fuzzy logic.

B. Fuzzy Production Rules
Fuzzy production rules use fuzzy logic sets to characterize

the variables and terms used in the propositions of the rules.
Fuzzy production rules or fuzzy IF-THEN rules are
expressions of the form IF antecedent THEN consequent,
where the antecedent is a proposition of the form “x is A”
where x is a linguistic variable and A is a linguistic term. The
truth value of this proposition is based on the matching degree
between x and A. Propositions are connected by AND, OR
operators and also can be negated with the NOT operator.
Some implementations of fuzzy rule-based systems also
include other kinds of data types in their propositions, for
example the FLOPS system includes fuzzy numbers, hedges,
and non fuzzy data types (integers, strings and float) [1].
Depending on the form of the consequent, two main types of
fuzzy production systems are distinguished [3]:
• Linguistic fuzzy model: where both the antecedent and

consequent are fuzzy propositions.
• Takagi-Sugeno fuzzy model: the antecedent is a fuzzy

proposition; the consequent is a crisp function.
As before, other non-fuzzy consequents can also be

implemented, or also the consequent can be an action for
instance the execution of a method or the addition of new data
to a system state.

Linguistic Variables (LVs) are variables that can be
assigned linguistic terms as values, i.e. if we define a
linguistic variable SPEED we can assign it the linguistic terms
SLOW, MEDIUM or FAST. The meaning of these linguistic
terms is defined by their membership functions (MFs). LVs
can be defined as a 5-tuple LV=<v,T,X,g,m> where v is the

name of the variable, T is the set of linguistic terms of v, X is
the domain (universe) of v, g is a syntactic rule to generate
linguistic terms, m is a semantic rule that assigns to each term
t its meaning m(t), which is a fuzzy set defined in X.

C. Fuzzy Inference Systems
Fuzzy Inference Systems (FISs) also called Fuzzy Models

are fuzzy production systems used for modeling input-output
relationships. From this input-output view, Babuŝka [3]
describes that these systems as “flexible mathematical
functions which can approximate other functions or just data
(measurements) with a desired accuracy”. Fuzzy Production
Rules define the relationship between input and output
variables. Input variables are defined in the antecedent part of
the rule and the consequent part defines the output variables.

These FIS are used mainly in control systems, and are
basically composed of five modules Fig.1 [3]:
1) Rule Base. The set of fuzzy production rules.
2) Database. Where the membership functions are defined.
3) Fuzzy Inference Engine. This module executes the fuzzy

inference operations.
4) Fuzzifier. This interface transforms the inputs of the

systems (numerical data) into linguistic values.
5) Defuzzifier. This interface transforms the fuzzy results

into numerical data.

Fig.1 Main components of a Fuzzy Inference System

Usually the Rule Base and Data Base modules are collectively
called the Knowledge Base module, this Knowledge Base is
different to the WM, because output variables can not be input
variables so the inference process is not a cycle. The steps
involved in fuzzy inference in a FIS are [7]:
1) Compare the input variables with the membership

functions in the antecedent, to obtain the membership
values of each linguistic term. This step is frequently
called fuzzification.

2) Compose through a specific T-Norm operator (mainly
max-min or max-product) the membership values to
obtain the degree of support of each rule.

3) Generate the qualified consequence (fuzzy or numeric) of
each rule depending on the degrees of support. These
outputs are then aggregated to form a unified output.

4) Then the output fuzzy set is resolved or defuzzified to a
single numeric value.

Three main types of fuzzy inference systems can be described:
Tsakumoto: The output is the average of the output weight of
each rule, induced by the degree of support of each rule, the
min-max or min-product with the antecedent and the
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membership functions of the output. The membership
functions used in this method must be non-decrease
monotonic. Mamdani: The output is calculated by applying
the min-max operator to the fuzzy output (each equal to the
minimum support degree and the membership function of the
rule). Several schemes have been proposed to choose the
numeric output based on the fuzzy output; these include the
centroid area method, area bisection, maximum mean and
maximum criteria.
Sugeno: The output of each rule is a linear combination of the
input variables plus a constant term, and the output is the
average of the support degree of each rule.
This project focuses in the implementation of an engine for
Fuzzy Inference Systems, but in the future can be extended to
a more general Fuzzy Production Rules Inference Engine.

 
Fig.2 Application Functional Layers

III. ARCHITECTURE

The functional requirements for this project are briefly
described next. We need a component for the .NET
framework [8] to be used in future projects which are Internet
based; in addition we need control over the code to implement
new extensions. The language selected for the implementation
is C# [13], an object oriented language based on C++ and
Java.  For the first version of the engine we focused on a
Fuzzy Inference Engine (FIE) that is going to be used to
implement Fuzzy Controllers, Fuzzy Inference Systems need
to be stored as XML [9] files, to be stored in a repository of
Fuzzy Inference Systems. An Application Programming
Interface (API) is implemented. At this moment a Graphical
User Interface (GUI) is not yet implemented Fig. 2 shows the
functional layers of the architecture. There are two core
modules:

Inference Engine. C# Interfaces have been defined so
different inference methods can be implemented. For instance
a FuzzyLogicOperator Interface can be implemented with
different classes; in this case a MamdaniOperator has been
defined.

FIS Module. This module manages the knowledge base, it
has I/O functions to store or read from file (XML) the
definition of the FIS. The FIS component can also be
referenced from a program as a component.

IV. DESIGN
The main UML [14] Class Diagram is shown in Fig. 3, this

diagram is an abstraction of the Fuzzy Inference System
described in section II.C. The FIS has three collections: Fuzzy
Rules, Linguistic Variables (LVs) and Composition this is the
collection of qualified member functions given as the output
of each rule in the inference process. The FIS class also has
attributes to describe and identify the system, Name,
Description, Owner, Status, and also methods to save and load
the FIS from an XML file. The FIS data components are
mainly static but some values change at runtime, this attributes
have the current prefix and normally are not saved to file. In
the next subsections FIS components are described with more
detail.

Fig. 3  Main UML class diagram.

A. Linguistic Variables
As defined in section II.C each LV can be assigned one or
more Linguistic Terms each defined by a Membership
Function. The MembershipFunction class is defined as an
abstract class with an abstract method eval(), subclasses
must implement this method appropriately. Subclasses
implemented so far are: Trapezoidal, Triangular, Gaussian
and Bell, other membership functions can be defined as
subclases of MembershipFunction. The LinguisticVariable
class has a currentCrispValue attribute used in the inference
process. Lingustic Variables can be of input or output type.

B. Fuzzy Rules
Fuzzy rules have one FuzzyPropositon instance as
consequent, and they can have a composite
FuzzyProposition as antecedent, this is explained in the next
section. Fuzzy Propositions where described earlier in section
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II.B as having the form “x is A” where x is a linguistic
variable and A is a linguistic term. Following this, each
FuzzyProposition instance is associated with an instance of
LinguisticVariable and an instance of MembershipFunction
which in turn has a corresponding LinguistcTerm. There are
two important methods of Fuzzy Rules:
CalcDegreeOfSupport() this method evaluates the
antecedent:FuzzyProposition for the current crisp value of
the Linguistic Variables  returning the degree of support.
CalcQualifiedConsequence() this method also calculates the
degree of support of the antecedent but also returns a
QualifiedConsequence instance, this class has a reference to
the FuzzyProposition and the Current Degree of Support.
This is nedded for the final compostion of the output member
functions.

C. Antecedent
The antecedent part of a Rule can include a composite

Fuzzy Proposition, as seen in Fig. 4 the antecedent of a
FuzzyRule is a FuzzyTerm Interface, There are two classes
implementing this interface, FuzzyProposition and
MamdaniOperator;  The MamdaniOperator class relates two
FuzzyTerm instances this means other MamdaniOperator or
other  FuzzyProposition. This pattern implements a
collection of Fuzzy Propositions associated with their
corresponding operators.

Fig. 4  FuzzyRule class diagram.

D. Inference
Next we describe the implementation of each of the fuzzy
inference steps defined in section II.C. , we assume that fuzzy
rules have been defined with their corresponding propositions.
Also input linguistic variables have a current value defined.
Compare: Each Fuzzy Proposition has an associated
Membership Function. Each Membership Function has an
eval() method that takes an input linguistic variable and
returns the corresponding membership value.
Compose: As described in section IV.C the antecedent part of
the rule can be a composite FuzzyProposition, each
FuzzyTerm implementation has a eval() method, for instance a
MamdaniOperator instance uses  max-min operator to
compose the values of  the two FuzzyTerms it includes. This

is done recursively until the Degree of support for the fuzzy
rule is returned.
Generate: In our implementation Compare, Compose and
Generate are done in a single step. This process is exposed in
Fig. 5 with the Sequence diagram of the method
calcQualifiedConsequence(), it starts with an empty
Composition collection, and adds the Qualified Consequence
of each rule to the collection, for example:
Composition.Add(Rule[i].calcQualifiedConsequence());

For each rule, the calcQualifiedConsequence() returns a
QualifiedConsequence object which has the
DegreeOfSupport of each rule and the LinguisticVariable
of the consequent.  For this each rule calls the eval() method
of his antecedent. The antecedent instance is an
implementation of the FuzzyTerm interface. After this cycle,
the Composition collection contains the aggregated output of
each rule; in the next step a single value is calculated.
Deffuzzyfication. In this step the centroid area for the
composition of Qualified Outputs is calculated using:

When the area of the composition is calculated for each x in
the domain only the maximum value is considered, this is
done so overlapped membership functions don’t conflict with
each other. This method returns a single crisp value as a result
of the inference process.

Fig. 5.  Sequence diagram for calcQualifiedConsequence().

V. CASE STUDY

As a case study of the FIS component we implemented the
“Diner for Two” example found in [2], in this system a tip
between 5% and 25% is calculated with two input variables
service and food. This example uses the classes described in
previous sections. First we have to create the
LinguisticVariables and their corresponding membership
functions, only the service Linguistic Variable is shown, also
the name of the classes are abbreviated to limit the space
needed:

//Service
LV service = new LV("Service", new Range(0, 10), new
Range(0, 10), LVType.In);

xCOA = ∫x µA (x) x dx

∫x µA (x) dx
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//Membership Functions
MF poor    = new Gaussian(new Double[] { 1.5, 0 },
"test", new LTerm("Poor"));
MF good    = new Gaussian(new Double[] { 1.5, 5 },
"test", new LTerm("Good"));
MF excelent = new Gaussian(new Double[] { 1.5, 10 },
"test", new LTerm("Excelent"));
//Asign Membership Functions to the LV
service.addMF(poor);
service.addMF(good);
service.addMF(excelent);

Next the rules are defined:

FRule r1 = new FRule("active");
r1.addAntecedent(
new MamdaniOperator( LogicOperator.OR,

new FProposition(service,poor,true),
new FProposition(food   , rancid, true)));

r1.addConsequent( new FProposition(tip,cheap,
true));

FRule r2 = new FRule("active");
r2.addAntecedent( new FProposition(service, good,
false));
r2.addConsequent( new FuzzyProposition(tip,average,
false));

FRule rule3 = new FuzzyRule("active");
r3.addAntecedent(
new MamdaniOperator(LogicOperator.OR,
  new FuzzyProposition(service, excelent, false),
  new FuzzyProposition(food, delicious, false)));
r3.addConsequent( new FuzzyProposition(tip,generous,
false));

The rule.addAntecedent() method takes a FuzzyTerm as imput
in r1 this is a Mamdani OR operator, and r2 only takes a simple
FuzzyProposition. The FuzzyProposition constructor takes
three arguments, first a LinguisticVariable then a
MembershipFunction, the third argument indicates if this
proposition is negated, that is, if the NOT operator is assigned. This is
the basic definition of the FIS, at this point we can save or load this
structure. The next step is to give some values to the input Linguistic
Variables;

service.CurrentCrispValue = 2;
food.CurrentCrispValue = 5;

For this example we make the Composition collection explicit, so the
functionality is better exhibited;

ArrayList Composition = new ArrayList();

Composition.Add(rule1.calcQualifiedConsequence());
Composition.Add(rule2.calcQualifiedConsequence());
Composition.Add(rule3.calcQualifiedConsequence());

With the Composition collection we can deffuzify the output:

Double num   = 0;
Double denom = 0;
Single delta = 0.1F;

for
(Single x = tip.Rge.Min; x <= tip.Rge.Max; x +=
delta){

Double m = 0;
  foreach (QualifiedConsequent q in Composition){
     Double mtest = q.eval(x);
       if (mtest > m)
           m = mtest;

}
  num += x * m;
  denom += m;
  }
Double result;
if (denom == 0)
  result = (tip.Rge.Min + tip.ge.Max) / 2;
else
  result =  num / denom;

As explained earlier only the maximum value of the
collection QualifiedConsequent is considered. In the variable
result is the Deffuzyfied output.

VI. SUMMARY AND FURTHER WORK

In this work we have presented the design of an inference
engine, which can be used to implement FIS systems. Our
future work will focus on the implementation of different
inference mechanisms. Also the definition of other types of
Membership Functions is also needed. The object oriented
approach of this project is well suited for the better
understanding of the FIS components; the practical use of this
system is for academic implementations so the students can
manipulate the components more easily.
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