

Abstract—Prototyping is a technique widely used in many

engineering fields. However, in software engineering, its usage is

limited to requirement elicitation. Little research has been done to

extend prototyping to other software development activities. In

this paper, we present a prototyping-based testing model and

describe how to apply prototyping to the testing activities in the

entire software development process. In this model, testing of the

product is performed against the prototype in every phase of

software development. This prototyping-based testing model is

then used in a case study to show how domain specific languages

can be used to support prototyping-based testing.

Index Terms—Domain specific language, prototyping, software

development, software testing.

I. INTRODUCTION

 It is widely agreed on that quality assurance is one of the

dominant factors in the determination of the success of the

software industry. One such process to support quality

assurance is testing. Testing is an activity performed throughout

the software development process. It generally includes unit

testing, integration testing, system testing, and acceptance

testing. Figure 1 shows the V-model [1], a widely used software

testing model. In this model, the activities on the left focus on

building an increasingly detailed product, whereas the activities

on the right focus on testing the product. The solid lines indicate

the software development process. The dashed lines denote the

testing of the product artifacts against the corresponding

description documents.

A prototype is an original type, form, or instance of some

thing serving as a typical basis or standard for other things of the

same category. It contains the most representative attributes of a

category and can accordingly be used as an example of all the

members of the same category [2].

Prototyping has been widely used in many engineering fields,

such as automobiles, domestic appliances, and consumer

electronics [3]. Consider manufacturing a new product. Because

in engineering, there is great uncertainty as to whether the new

product will actually do what is desired, the new product often

has unexpected problems. It is crucial to test the design before

manufacture the product. Generally, a prototype is used to test

Manuscript received October 31, 2006.

Liguo Yu is with the Computer Science and Informatics Department,

Indiana University South Bend, South Bend, IN 46615 USA (phone:

574-520-5067; fax: 574-520-6589; email: ligyu@iusb.edu).

the function of the new design, rather than building the full

product, detecting what the problems are, and building another

full product, and so on.

In prototyping-based engineering fields, only part, but not all,

of the complete product is implemented. This allows engineers

to rapidly and inexpensively test the parts of the product that are

most likely to have problems. After the problems in the

prototype are solved, the full product can be built following the

design of the prototype [4] [5].

In software engineering, prototyping is a technique widely

used in the early phases of software development [6]. A rapid

prototype is a quickly implemented version of the target

software that is going to be delivered to the client. A rapid

prototype is generally produced in requirement elicitation to

verify and validate the user requirement.

Conventionally, there are two approaches to reusing a rapid

prototype: it is either discarded early in the software

development process or converted into the final product [6]. We

call these two approaches the discard approach and the convert

approach; they are shown in Figure 2(a) and 2(b).

The discard approach is appropriate if minimal effort is

devoted to building the rapid prototype. It is usually adopted if

the rapid prototype is used solely to show report and screen

formats or to demonstrate the feasibility of the software design.

The disadvantage of the discard approach is that the effort

devoted to prototyping does not directly contribute to the final

product. The convert approach is to refine the rapid prototype

with the knowledge built into it and to convert it to the final

product. The convert approach is usually expensive, because

significant changes to the design and the implementation of the

rapid prototype may be needed.

In software engineering, prototyping has not been widely

used beyond requirement testing. However, studies have shown

that prototyping can be helpful in some specific application

domains, such as concurrent systems [7] [8] [9] [10] [11]. In this

paper, we extend prototyping to later phases of software testing

and present a prototyping-based testing model. This

prototyping-based testing model utilizes domain specific

languages to achieve objectives in reducing software

development costs.

The remainder of this paper is organized as follows. Section 2

introduces the prototyping-based testing model. Section 3

describes the domain-specific languages. Section 4 presents the

prototyping-based testing activities. Section 5 contains a case

study. Our conclusions are in Section 6.

Prototyping, Domain Specific Language, and

Testing

Liguo Yu

Engineering Letters, 16:1, EL_16_1_02
__

(Advance online publication: 19 February 2008)

Figure 1. The V-model of software testing [1]

Figure 2. Different approaches to reusing the rapid prototype: (a) convert approach; (b) discard approach; and (c)

evolve approach

II. PROTOTYPING-BASED TESTING MODEL

First, we introduce the concept of final prototype. A final

prototype is a replica of the final product that will be delivered

to the client. This terminology has been widely used in various

engineering fields. The final prototype may use different

materials and be made with different machines and follow

different manufacturing processes. But it functions exactly like

a final product, because it conforms to the same design that is

used to manufacture the final product. A primary reason to

create a final prototype is to insure that all of the parts fit

together as planned prior to finalizing production tooling [12].

In this study, the concept of a final prototype is introduced for

software engineering. The final prototype is a replica of the

target software product. It may be implemented using a different

language and run on a different platform, but its architecture and

functionalities are identical to those of the final software

product.

Next, we introduce a third approach to reusing a rapid

prototype, the evolve approach, which is shown in Figure 2(c).

In the evolve approach, the rapid prototype is refined to the

final prototype in the process of software development. This

process is performed in parallel with the development of the

final product. Both the final prototype and the final product

need to follow the same design specification.

The difference between the evolve approach and convert

approach is that in convert approach, the rapid prototype is

modified to the final product, whereas in the evolve approach,

the rapid prototype is modified to the final prototype. In this

study, a prototype is used beyond the early phases of the

software process. Therefore, the IEEE definition of prototyping,

“A type of development in which emphasis is placed on

developing prototypes early in the development process to

permit early feedback and analysis in support of the

development process” [13] is extended to the entire software

life cycle.

Engineering Letters, 16:1, EL_16_1_02
__

(Advance online publication: 19 February 2008)

Figure 3. Prototyping-based testing model

Based on the evolve approach, we introduce the

prototyping-based testing model, which is shown in Figure 3.

As shown in Figure 3, in this modified V-model, prototyping

is performed during the entire software development process,

starting with requirements elicitation. The prototype is refined

during the architectural design, detailed design, and

implementation phases. Testing of the prototype is performed

against the corresponding description documents, such as

requirement specification, design specification, while testing of

the product is performed against the corresponding prototype in

every phase of software development.

We remark that (1) the unit testing, integration testing, and

system testing are performed against the final prototype. The

acceptance testing should be performed again the requirement

specification, which is agreed on by both the developers and the

clients and is possibly used as the contract; (2) the refinement of

rapid prototype to final prototype is an iterative process. There

are intermediate prototypes between rapid prototype and final

prototype and they are used to test the architecture design and

the detail design.

III. DOMAIN SPECIFIC LANGUAGE

The biggest challenge facing prototyping-based testing is

cost. Because building a final prototype is time-consuming. The

decision as to whether to use this model should be made upon

the basis of cost–benefit analysis. Therefore, this model may not

be applicable to all software projects. However, the introduction

of domain-specific languages in many application areas makes

it possible to widely use this model.

A domain-specific language [14] is designed to solve a

particular kind of problem, in contrast to general-purpose

programming languages. Domain-specific languages can be

used to enhance software productivity and reliability in various

areas such as graphics, finance, robot control, and so on.

Because a domain-specific language has well defined

abstractions and notations, it is more concise and readable. The

development time is shortened. Therefore, programming in

domain-specific language is much easier than in

general-purpose language counterpart.

Domain-specific languages also enable more properties

about programs to be checked. Their semantics are restricted to

make decidable properties that are critical to a domain.

Therefore, testing of a program written in a domain-specific

language is much easier than testing the same program written in

a general-purpose language.

Besides the advantages, domain-specific languages also have

limitations. Due to the predefined formulations, software

written in a domain-specific language is less efficient compared

to hand-coded software using a general purpose programming

language.

Based on these properties, domain-specific languages can be

used to support prototyping-based testing in specific domains.

For example, consider a software system for breast cancer

research. The program first accesses patient database and

extracts relevant data. Then it studies the patterns of the data

and builds a model to represent the data. Finally, the model is

validated and reported to the user. This application belongs to

the area of data mining, in which Mathematica [15] is a

domain-specific language. The target software needs to process

huge amount of data and efficiency is an important issue for this

application. Therefore, the final product is required to be coded

in Fortran, a general-purpose language to achieve high

efficiency. However, the algorithms and models used in this

application are complicated and difficult to implement and

verify in Fortran. Therefore, Mathematica can be used to

implement the prototype and test the product implemented in

Fortran.

Engineering Letters, 16:1, EL_16_1_02
__

(Advance online publication: 19 February 2008)

IV. PROTOTYPING-BASED TESTING ACTIVITIES

Now we describe various prototyping-based testing

activities. These activities are based on the assumptions that the

prototype has been exclusively tested against the specification

documents.

Requirement testing: Domain-specific language enables the

fast implementation of the rapid prototype. In the early phases

of software development, a rapid prototype could be hurriedly

built to test the requirement of the customer. After demonstrate

the rapid prototype, which includes the key functionalities of the

target software, to the customer, the requirement can be

finalized.

Design testing: A rapid prototype usually reflects selected

functionalities of the product. To continually use

prototyping-based testing, it needs to be refined to reflect

technical design issues. A domain-specific language enables

fast implementation and testing of complicated algorithms,

models, and tentative solutions.

Unit testing: The prototype is continually to be refined to the

final prototype with the development of the final product.

Because the final product and the final prototype follow the

same architectural design and detailed design, and some

development environments support the integration of

domain-specific language with general-purpose language, we

can use the units in the final prototype as the testing drivers of

the units in the final product. To test a unit of the final product,

we replace the corresponding unit in the final prototype. The

behavior difference between the two units indicates faults in the

unit of the final product.

Integration testing: If the development environment

supports the integration of domain-specific language with

general-purpose language, it provides more flexible integration

approaches for testing the final product, such as a hybrid

approach. A set of units of the final product can be integrated

gradually in the final prototype environment and tested.

System testing: System testing is used to help identify the

correctness, completeness and quality of the entire software

system. The same data could be submitted to both the final

prototype and the final product. The difference in the output

indicates faults in the final product. The final prototype can also

be used for comparative testing of the nonfunctional

requirements of the final product, such as performance and

usability. In this case, the selected nonfunctional requirements

should be implemented in both the final prototype and the final

product for comparison.

V. CASE STUDY

A. Description of the Target Software

The internet has increasingly become a primary source of

information for industry, education, and research. Known sites,

such as the ACM Digital Library and IEEE, provide rich content

that is almost always of some value. However, if one were

inclined to search outside domain specific sites using search

engine tools such as Google, the results would be far from useful

in their raw form. They are littered with blogs, mailing lists,

discussion groups, dead links, and spam. Recent technological

advances have made it easier for the layman to publish pages

filled with speculation, conjecture, and examples that are not

representative of any industry standard. A human user often has

to click through many useless pages before finding an article of

value. On the other hand, the same keyword search might return

many different types of useful documents. It is important to

categorize the retrieved documents to serve the user needs.

Considering the vast amount of documents and library

collections, this process is almost impossible for humans to do

in a quick and efficient manner. Therefore, it is desirable to have

a system which can automatically select and categorize useful

documents, and provide valuable information to the user.

Intelligent Document Selector and Categorizer is a

semester-long (16 weeks) course project in Software

Engineering class at Tennessee Technological University, taken

by students majoring in Computer Science. The objective of the

project is to produce a C# program under .NET environment so

that it can be integrated with an online search engine to select

useful documents, extract metadata, and categorize the

documents.

Figure 4 shows the data flow of the target program. The

students are required to use the pipe-and-filter architectural

style for easy integration. The entire data flow can be divided

into two processes, document selection process and document

categorization process. In the document selection process, the

program first uses a web service provided by a search engine to

retrieve online documents based on the search criteria. The

program then rejects all “obviously bad” documents based on

size, link count and other features in the Spam Filter Module.

The documents are then rejected / accepted by the predefined

rules or blacklist in the Feedback Rejection Module. Finally, the

documents are filtered by the specific words frequency in the

Supervised Learning Rejection Module and passed to the

categorization process.

In the document categorization process, first the Metadata

Extraction and Manipulation Module will extract metadata from

the documents and divide it into two sets, training data and

testing data. The module will then manipulate the training data

and use it to train the decision tree. The Data Evaluation Module

will test the resulting tree against the testing data set. The results

will be printed out to a file and the process will be repeated.

Once the process has ended, a human will be able to evaluate the

results.

Because data mining techniques are inevitably needed in this

application, to help the students understand the problem, an

offline Matlab [16] program was provided to show the

functions of four modules: Feedback Rejection, Supervised

Learning Rejection, Metadata Extraction and Manipulation, and

Data Evaluation. The Matlab program takes offline data instead

of real-time data as required.

Engineering Letters, 16:1, EL_16_1_02
__

(Advance online publication: 19 February 2008)

Figure 4. The data flow of the Intelligent Document Selector and Categorizer.

B. Applying Domain Specific Language and Prototyping on

Software Development

Two teams took part in this project. Each team contained the

same number of programmers. All teams were required to work

independently. Teams 1 decided to follow the standard software

development life-cycle model as shown in Figure 1. Team 2

decided to follow the prototyping-based development model as

shown in Figure 3, that is, they decided to produce a

Matlab-based version followed by a C# version. Team 2 chose

Matlab because they had been told that Matlab has tool-boxes

that could support the fast integration of the software. They

made this decision notwithstanding the fact that none of the

team members had had any prior Matlab programming

experience. The prototyping-based testing is further described

below.

Unit testing: Because both the prototype and the product had

the same architectural design and because .NET can be

integrated with the Matlab program, it was possible to use the

modules of the Matlab version as the test drivers of the classes

in the C# version. Each time a unit (class) of the C# version was

tested, it replaced the corresponding unit (module) in the

Matlab version. Differences in behavior between the two units

led to the finding of faults in the corresponding unit of the C#

version.

Integration testing: Because the Matlab prototype was an

integrated system, it provided flexible integrating approaches

for testing the C# product. A set of units of Matlab modules was

integrated in the .NET environment. Depending on the

circumstances, the team used either a top-down approach, a

bottom-up approach, a sandwich approach, or a hybrid

approach to integrate the C# version.

System testing: System testing tests all the components

together. The same data were submitted to both the Matlab

prototype and the C# product. Differences in the output

indicated faults in the C# product.

C. Results and Experiences

The result of the experiment was that Team 2, which used

prototyping-based development, finished the C# version two

weeks earlier than Team 1, which had followed the standard

software life-cycle model, despite the fact that the members of

Team 2 needed additional time to learn Matlab programming

first. All two teams passed their acceptance test (product

demonstration).

During the course the project, students were required to

record their effort (represented as person-hours) spent on the

project. Table 1 summarizes the effort of each team. It worth

noting that the implementation effort spent by Team 2 contains

two parts, the effort to implement the final prototype (32

person-hours) and the effort to implement the final product

(24 person-hours). The fourth column shows the percentage

effort that is saved by using the prototyping-based development

instead of the traditional development. The effort spent on

system analysis and system design is considered irrelevant to the

testing techniques and the corresponding savings are marked as

NA (not applicable). It can be seen that the effort saved on

implementation is about 13% and the effort saved on testing is

about 17%. The savings of the entire effort is about 5.6%.

Table 1. The effort spent by the two teams (represented in

person-hours)

 Team 1 Team 2 Saving

System analysis 44 45 NA

System design 72 68 NA

Implementation 64 56 13%

Testing 18 15 17%

 Future systematic experiments and more quantitative data

are needed to show that the prototyping-based testing technique

is a worthwhile approach. With regard to the restricted

experiment we conducted, we believe that the following factors

contributed to the success of using this technique:

1. Matlab is a domain-specific language for the application.

Engineering Letters, 16:1, EL_16_1_02
__

(Advance online publication: 19 February 2008)

It incorporates well-designed tool-boxes that make it easy

to implement the prototype. The implementation of the

product was easier because of the knowledge gained

during the implementation of the prototype;

2. Like most domain specific languages, Matlab is easy to

learn;

3. The detailed design contained complicated algorithms that

had to be coded, debugged, and fixed many times before

they could be implemented correctly. These algorithms

were easy to implement and debug in Matlab. Again, the

experience gained performing the implementation in

Matlab facilitated the subsequent C# implementation; and

4. The .NET development platform supported the integration

of the Matlab modules, which made it possible to integrate

C# classes and Matlab modules to perform the unit testing

and the integration testing.

Our experience is that prototyping-based testing has the

following strengths, if used appropriately:

1. It can be used to test the feasibility of the architectural

design, detailed design, and complex algorithms;

2. It can obviate the need of test drivers for unit testing;

3. It can provide more flexibility for integration testing; and

4. It can provide comparative system testing. In this project,

the Matlab prototype was used for the comparative testing

of functional requirements such as the correctness of the

C# product. In addition, it could have been used for the

comparative testing of the nonfunctional requirements of

the C# product, such as performance, security, and

usability. The selected nonfunctional requirements could

have been implemented in both the Matlab version and the

C# version for the purpose of later comparative testing.

On the other hand, our experience shows that

prototyping-based testing has the following limitations:

1. Prototyping-based testing cannot be used as the sole

testing technique, because the final prototype may not have

been implemented correctly. Testing of the final product

against the corresponding specifications is also required;

2. Building two versions of a product usually takes longer

than just one. The decision as to whether to use

prototyping-based testing should be made upon the basis

of cost–benefit analysis. This is a project management

issue, and involves the nature of the software product to be

built, the requirements, the personnel involved, and so on;

3. If the design and implementation are straightforward, the

additional overhead of prototyping-based testing may not

be needed. Prototyping-based testing is best for complex

and mission-critical system development and testing; and

4. For prototyping-based testing, the prototype and the

product should be implemented in different languages,

preferably a domain specific language (for speed in

development) and a general purpose language (for

execution speed). If, for some reason, the same language

has to be used for both versions, they should be

implemented by different teams.

VI. CONCLUSIONS

In this paper, we have presented a prototyping-based testing

model to be supported by domain-specific languages. This

model is shown to be cost efficient in a course project.

Prototyping-based testing can be extended to the entire

software-lifecycle including both the development process and

the maintenance process. In this case, the final prototype should

be updated with the evolution of the final product. Therefore,

prototyping can also be used for regression testing in software

maintenance.

REFERENCES

[1] B. Bruegge and A.H.Dutoit, Object-Oriented Software Engineering

Using UML, Patterns, and Java, Pearson Prentice Hall, Upper Saddle

River, NJ, 2004.

[2] C.K. Chua, K.F. Leong, and C.S. Lim, Rapid Prototyping; Principles and

Applications, World Scientific, 2003.

[3] K.G. Cooper, Rapid Prototyping Technology; Selection and Application,

Marcel Dekker Publisher; January 2001.

[4] P.. Hilton and P. Jacobs, eds Rapid Tooling; Technologies and Industrial

Applications, Marcel Dekker Inc., 2000.

[5] D.T. Pham and S.S. Dimov; Rapid Manufacturing: the Technologies and

Applications of Rapid Prototyping and Rapid Tooling, Springer Verlag

Publishing, January 2001.

[6] F. Kordon and Luqi, “An Introduction to Rapid System Prototyping”,

IEEE Transactions on Software Engineering, vol. 28, no. 9, 2002, pp.

817–821.

[7] W. Hasselbring, “Programming Languages and Systems for Prototyping

Concurrent Applications”, ACM Computing Surveys, vol. 32, no. 1,

2000, pp. 43–79.

[8] B. Meyer, “Systematic Concurrent Object-Oriented Programming”,

Communications of the ACM, vol. 36, no. 9, 1993, pp. 56–80.

[9] J. Schaeffer, D. Szafron, G. Lobe, and I. Parsons, “The Enterprise Model

for Developing Distributed Applications”, IEEE Parallel Distrib.

Technol. Vol. 1, no. , 1993, pp. 85–96.

[10] E. Shapiro, “The Family of Concurrent Logic Programming Languages”,

ACM Computing Surveys, vol. 21, no. 3, 1989, 413–510.

[11] D.R. Smith, “KIDS: a Semiautomatic Program Development System”,

IEEE Transactions on Software Engineering, vol. 16, no. 9, 1990, pp.

1024–1043.

[12] Invention City, 2006, http://www.inventioncity.com/prototypes.html

[13] C.J. Booth and G.P. Kurpis, The new IEEE Standard Dictionary of

Electrical and Electronics Terms, fifth edition, New York: IEEE, 1993.

[14] A.V. Deursen, P. Klint, and J. Visser, “Domain-Specific Languages: an

Annotated Bibliography”, ACM SIGPLAN Notices, vol. 35, no. 6, 2000,

pp. 26–36.

[15] Wolfram Research, 2006, http://www.wolfram.com/products-

/mathematica/index.html

[16] The MathWorks, 2006, http://www.mathworks.com/

Liguo Yu received the PhD degree in computer science from Vanderbilt

University. He is an assistant professor of Computer and Information Sciences

Department at Indiana University South Bend. Before joining IUSB, he was a

visiting assistant professor at Tennessee Technological University. His

research concentrates on software coupling, software maintenance, software

reuse, software testing, software management, and open-source software

development.

Engineering Letters, 16:1, EL_16_1_02
__

(Advance online publication: 19 February 2008)

