

Abstract—With the proliferation of multimedia data, there is

an increasing need to support the indexing and searching of
high-dimensional data. In this paper, we propose an efficient
indexing method for high-dimensional multimedia databases
using the filtering approach, known also as vector approximation
approach which supports the nearest neighbor search efficiently.
Our technique called RA+-Blocks (Region Approximation Blocks)
divides a high-dimensional feature vector space into compact and
disjoined regions. Each region will be approximated by two
bit-strings according to the RA-Blocks technique. RA+-Blocks
improves the division strategy of data space compared to the
RA-Blocks. From our experiment using high-dimensional feature
vectors, we show that RA+-Blocks achieves better performance on
the nearest neighbor search than VA-File and RA-Blocks on both
uniform and real data.

Index Terms—High-Dimensional space, indexing method,
multimedia database, nearest neighbor (NN) search.

I. INTRODUCTION
ne of the fundamental problems, in multimedia databases
domain, resides in the similarity search, i.e. the need to

retrieve a small set of objects which are similar or closest to a
given query object. Generally, the similarity is not measured on
the multimedia objects directly, but on their traditional
primitives (histograms of colours, signatures sound…). These
primitives appear as vectors of numeric values known as
feature vectors and constitute the indexes of these objects. This
way, similarity searching in multimedia database becomes a
K-nearest neighbor (K-NN) search in a high-dimensional
vector space. It consists to find in a space of great dimension
the nearest K vectors, in term of distance, to a query vector. For
applications where the vectors have low or medium
dimensionalities (e.g., less than ten), the conventional indexing

Manuscript received June 13, 2007.
I. Daoudi is with the GSCM, University Mohammed V, Faculty of Science,

Rabat, Morocco; (e-mail: imanedaoudi1@ yahoo.fr).
S. E. Ouatik, is with the laboratory of Computer science, Statistics, and

quality (LISQ), Faculty of Science Dhar Mahraz., Fez, Morocco (phone: +212
63 49 70 68; fax: +212 35 73 30 59; e-mail: s_ouatik@yahoo.com/
souatik@fsdmfes.ac.ma).

A. Elkharraz is with National School of Management, Tangier, Morocco
(e-mail: kharraz_2003@yahoo.fr).

K. Idrissi is with the LIRIS laboratory, INSA, Lyon, France; (email:
idrissi@insa-lyon.fr)

D. Aboutajdine is with the GSCM, University Mohammed V, Faculty of
Science, Rabat, Morocco; (e-mail: aboutaj@ fsr.ac.ma).

methods, such as R–Tree [1], R*-Tree[2], SR-Tree [3],
K-D-B-Tree [4], and X-Tree [5], can be adequately used to
solve the problem of K-NN search. However, there is no
effective solution to this problem for the applications with
vectors having high dimensionalities, e.g., dimension over 100.
In fact, for a high dimensionality, the performance of the
conventional methods degenerates to being worse than the
brute-force sequential scan comparing the query object to each
data object [7]-[8]. Therefore, the main issue is to overcome the
dimensionality curse [9]-[10] i.e. a phenomenon that the
performance of indexing methods degrades drastically as soon
as dimension becomes large. Several new methods based on the
filtering approach known also as vector-approximation are
proposed as a palliative solution for this problem (VA-File [8],
VA+-File [11], LPC-File [10], A-Tree [12], GC-Tree [13],
RA-Blocks [14]...). These methods divide the data space into
rectangular cells, allocate a unique bit-string of each cell, and
approximate the data vector that falls into a cell by this
bit-string. To search the K-NN of a query vector, they
sequentially read the relatively smaller approximations file
instead of the data file and try to filter the original vectors so
that only a small fraction of them can be read. Then a limited
access to the database of the real vectors is done just for those
which have been selected at the first stage.

In this paper, we propose an efficient indexing method for
high-dimensional spaces. Being based on the vector
approximation approach, it adopts a better strategy of
partitioning than that of K-D-B-Tree used by RA-Blocks. Thus,
it significantly reduces the number of regions to cross, at the
phase of filtering, by eliminating the trivial regions (empty). In
addition, all the regions generated by our method are dense i.e.
they contain a number of vectors close to their capacity
(capacity is the maximum number of objects which can be
accommodated in a disk page). Hence, a CPU time reduction
related to the computation of the distances between the regions
and the query vector is assured.

This paper is organized as follows. Section II presents the
major high-dimensional indexing methods in particular those
based on the filtering approach. Section III describes the
overall structure of our technique and presents its partitioning
strategy ant its nearest neighbor search algorithm. Section IV
describes our experimental evaluations and shows performance
results. We conclude with summary and further work.

Vector Approximation based Indexing for
High-Dimensional Multimedia Databases

I. Daoudi, S.E. Ouatik, A. El Kharraz, K. Idrissi, and D. Aboutajdine

O

Engineering Letters, 16:2, EL_16_2_05
__

(Advance online publication: 20 May 2008)

II. RELATED WORK
The conventional indexing methods to supporting similarity

search in high-dimensional vector space can be broadly
classified into two categories. The first approach uses
data-partitioning methods, witch divide the data space
according to their distribution. Many index tree schemes have
been proposed. They include the R-Tree [1], R+-Tree [15],
R*-Tree [2], X-Tree [5], M-Tree [16], SS-Tree [17], and
SR-Tree [3]. Neighbor vectors are covered by MBRs
(Minimum Bounding Rectangles) or MBSs (Minimum
Bounding Spheres), which are organized in a hierarchical tree
structure. These methods can yield possible overlapping
regions. The second approach use space-partitioning methods
that divide the data space along predefined hyper planes
regardless of data distribution like Grid-File [18], K-D-B-Tree
[4], LSD-Tree [19], and LSDh-Tree [20]. The resulting regions
are mutually disjoint, with their union being the complete
space. Although such access methods generally work well for
low-dimensional spaces, their performance is known to
degrade as the number of dimensions increases.

New techniques based on the approximation vector approach
appeared to provide a solution to the dimensionality curse.
VA-file (Vector Approximation File) [8]-[21] is the first
method based on this approach. The basic idea of the VA-File
is to keep two files; one contains the exact representation
(original vectors), the other, relatively smaller, has geometrical
approximation for each vector. When searching vectors, the
entire approximations file is scanned to select candidate
vectors. Upper and lower bounds of the distance to the query
(dmax and dmin) are computed for each vector (see figure 1).
These bounds frequently suffice to filter most of the vectors.
Those candidates are then verified by visiting the original
vectors file. We note that the sequential scan is done on the
smaller approximations file; it is very fast and allows reading
just a few vectors from real database. This process decreases
the number of I/O operations and the CPU cost compared with
the sequential method that analyzes the totality of the database.

Like the VA-File, the LPC-File (Local Polar Coordinate
File) [10] is based on the approximate approach. Thus, the
vector space is partitioned into rectangular cells which are used
to generate bit-encoded approximations for each vector. Cha
[10] noticed that the performances of the VA-File can be
improved only by increasing the number of bits for
approximations.

However, the performance of the VA-File converges to that
of the sequential scan or degenerates to being worse than the
number of bits used for approximations increases.

Cha proposes, to overcome this problem, by adding polar
coordinate information of the vector to the approximation. It
increases the filtering rate of the filter-based approach.

Berchtold, et al. also used the idea of vector quantization,
and proposed the IQ-Tree (Independent Quantization Tree) [6],
a multilevel indexing structure specially designed to perform
fast nearest neighbor searches over high-dimensional data sets
[6]. The IQ-tree is derived from the X-tree [5], and uses the
partitioning strategy proposed with the X-tree bulk-loading
algorithm. The structure has three levels: Directory Pages,
Vector Approximation Pages and Vector Pages. For each entry
of the directory, there is a page containing Vector
Approximations (VAs) in the second level, and multiple pages
containing vectors in the third level (represented all together by
a circle). The number of vector pages associated with a
directory entry is variable, and depends on the capacity of the
associated VA page. Each directory entry contains the
coordinates of the minimum bounding rectangles that encloses
all the vectors corresponding to that entry. The VAs contained
in a page of the second level are computed with respect to the
MBR of the corresponding directory entry, and each page can
use a different number of bits per dimension for the
approximations. Given a list of pages to be read, the nearest
neighbor search strategy for the IQ-Tree involves ordering the
list of pages by their position in the file, and then performing a
single read request for any contiguous (or even nearly
contiguous) sequence of pages in the list. This optimization
reduces the number of (expensive) positioning at the cost of a
few extra (cheap) page transfers.

In the IQ-tree context, it is not known initially exactly which
pages hold the K nearest neighbors, but Berchtold et al. propose
a probabilistic model for estimating the probability that each
page will eventually have to be read in order to satisfy the
query. The model specifies the set of pages that should be read
in order to minimize the expected overall I/O cost.

Sakurai et al. also make use of the idea of quantization in
proposing the A-tree (Approximation Tree) [12]. The A-tree
structure and construction algorithm are derived primarily from
the SR-tree [3]. The A-tree design introduces the concept of
virtual bounding rectangle (VBR), which a compressed
approximation is using only a few bits per dimension of a
minimum bounding rectangle (MBR). In a more general form
of quantization, VBRs approximate MBRs in a manner

Fig.1 Construction of VA-File

Vectors in database

Approximations

Engineering Letters, 16:2, EL_16_2_05
__

(Advance online publication: 20 May 2008)

analogous to how VAs approximates vectors. That is, the VBR
defines a hyper-rectangle guaranteed to fully enclose the
corresponding MBR. The use of VBRs, which are smaller than
MBRs, increases the fanout of the nodes, which in turn reduces
the height of the index tree and speeds up the search. An A-tree
is a hierarchical index, with three levels: Internal Nodes, Leaf
Nodes, and Vector Pages. Each of these levels has its own type
of node. Internal nodes and leaf nodes together form a
hierarchical index. Vector nodes contain a cluster of
neighboring vectors. Both internal and leaf nodes contain a
header and multiple entries. The headers include an MBR that
encloses all the vectors of the subtree rooted at the node. The
entries of each internal node contain a VBR that bounds the
MBR of the corresponding child node. The entries of a leaf
node are VAs of the vectors in the associated vector pages.
Each node entry includes the centroïd of the vectors within the
associated MBR. The centroïd is used only by the insertion
algorithm and not by the search algorithm.

We note that the performance of the VA-File decreases when

the capacity of database becomes very large. Thereafter, the
approximations file cannot be placed entirely in the memory.
Thus, the RA-Blocks technique (Region Approximated
Blocks) [14] is proposed. It divides the vectors space into
regions containing each one a set of cells, in order to
approximate each region by two string-bits. This reduces the
computation time of the VA-File and also optimizes the page
replacement to further reduce the number of I/O access as well.
Moreover, the bounds dmin and dmax are calculated for each
region and not for each vector in order to reduce the CPU cost.
Despite these advantages, RA-Blocks presents some
limitations. Indeed, the strategy of partitioning, used according
to the algorithm K-D-B-Tree [4], generates empty regions
together with regions containing few vectors compared to their
capacity. This involves a significant number of regions to be
treated during the filtering step (approximations file relatively
large). Also, the CPU time due to the calculation of the dmin and
dmax of these regions increases.

III. RA+-BLOCKS (REGION APPROXIMATION BLOCKS)
Our method is inspired of the RA-Blocks method for the

quantification of the data space; it improves the partitioning
strategy of the data space compared to the RA-Blocks method.

 For the quantification step, each dimension di is split into 2bi
intervals where each interval is encoded with bi bits. Then,
data space is subdivided into compact and disjoined regions
having practically the same capacity. Each region will be
approximated by two bit -string corresponding to the

beginning (left low cell) and the ending (right high cell)
position of this region (see figure 2). Our method is divided in
tow phases: the first one focus on data indexing, while the
second aims at interrogation of the database.

A. Data indexing
This phase consists in splitting the data space in regions

containing each one a number of vectors lower or equal to the
capacity, then to approximate them by two bit-strings. These
approximations will constitute the index file.

1) Subdivision of the data space: After having subdivided the
data space into hyper-rectangular cells, this stage consists of
partitioning space in disjoined regions having practically the
same number of vectors. Almost the whole of the obtained
regions contain a number of vectors great than the half of the
capacity (capacity/2). Our partitioning method is inspired by
the K-D-B-Tree algorithm. It uses the same strategy for
searching the side to be divided (dimension of subdivision),
and the calculation of the subdivision value according to this
dimension.

The Dimension of subdivision and the Value of subdivision
are defined as follows:

- Dimension of subdivision: the subdivision is carried out
according to the dimension having the maximum of data
dissemination, i.e. the dimension that corresponds to the
greatest difference between the vectors components.

- Value of subdivision: it is the value of quantification
nearest to the median value according to the dimension of
subdivision.

First, the split algorithm defines the dimension of
subdivision, and then determines its value. The subdivision of
the mother region is carried out according to the hyper plane
passing by the value of subdivision, it, thus, results in two
regions containing practically the same number of vectors.
Each one of the obtained regions will be approximated by two
bit-strings corresponding to the left low and right high cells,
forming the approximations file. Figure 2 describes region
approximations in a two dimensional vector space of 14
vectors. The capacity of regions is chosen to be 5, bi is fixed
equal to 3. It results in 3 regions; each one coded by two
bit-strings. Let us note that our splitting algorithm is based on
the elimination of the internal nodes partitioning (downward
subdivision) of the K-D-B-Tree structure. The main drawback
of this structure is the fact that it produces important
reorganizations of the totality of the tree in order to preserve

• •
• •

•
♦
♦

♦♦
♦

♣
♣

♣
♣ ♣

000 001 010 011 100 101 110 111
000
001
010

011
100
101
110
111

•

♣

♦
100 101
111 111 end
000 000 begin
011 111 end
100 000 begin
111 100 end

Approximation

Fig. 2. Partitioning of the data space and approximation of the regions

Engineering Letters, 16:2, EL_16_2_05
__

(Advance online publication: 20 May 2008)

the properties of the K-D-B-Tree structure. These structuring
often cause the creation of a large number of empty leafs or
almost empty, which cannot guarantee an optimal rate of
allocated space use, and thereafter increases the search time of
K nearest neighbor. Hence, the basic idea of our method is to
partition only the overflowed point pages setting a difference to
the K-D-B-Tree method which divides a priori all region pages
having an intersection with the hyper plane of subdivision. In
our case, only the nonempty point pages are generated by the
splitting algorithm. This way, we can eliminate the internal
nodes partitioning by transforming the tree structure into a list
of regions. Thereafter, each overflowed region will be split and
replaced by two new regions (left region and right region)
having each one a size less than a half size of the capacity (size
<capacity/2).

It allows eliminating the empty regions. Furthermore, all the
generated regions are dense (i.e. number of

vectors>capacity/2). On the one hand, this guaranteed, in the
majority of the cases, the existence of the K-NN in the same
disk page, and on the other hand, reduced the total number of
the obtained regions and thereafter reduced the I/O time.
Figures 3 and 4 present an example of a 2d-space splitting using
the K-D-B-Tree method and our method. The regions capacity
is fixed at 3. According to the K-D-B-Tree (fig. 3), all the
regions having an intersection with the subdivision element are
split into two sub regions, including those which are not
overflowed (region 3). Thereafter, resulting point pages are not
very dense and sometimes empty (e.g. regions 3.1 and 3.2).
However, according to our method (fig. 4), the subdivision
element partition only overflowed regions (e.g. region 2).
Therefore, the number of obtained points pages (4) is lower
than that of figure 3 (5).

The construction of the regions is carried out by successive
insertions of the data vectors. The construction algorithm is

a. Before spliting

1

2

3

1 2 3

♣ ♣
♣

♣ ♣
♣ ♣

♣ ♣

Subdivision element

Data space

Our structure

1

2.1

3

1 2.1 3

♣ ♣
♣

♣ ♣ ♣ ♣

b. After spliting

2.2

♣ ♣

2.2

Fig. 4. Example of regions splitting according to our method

Fig. 3. Example of regions splitting according to K-D-B-Tree

♣ ♣
♣

1

 ♣ ♣

2.1 2.2

3.1 3.2

1

2.1

2.2

3.2

♣ ♣ ♣ ♣

b. After spliting

3.1

 Root

 Subdivision element

1

2

3

1

2

3

♣ ♣
♣

♣ ♣

♣ ♣
♣ ♣

a. Before spliting

♣

Leaf
node

Internal
node

Subdivision directionality

Engineering Letters, 16:2, EL_16_2_05
__

(Advance online publication: 20 May 2008)

described in figure 5.
Input :
data : set of real vectors in the database.
Output :
ListReg : list of regions containing the splitting result.
Function RegionsConstruction(vector data[], integer N)
{
// data : the vectors in database scanned per block
// N : the number of vectors per block
//Pos : integer
 //ListReg : this list of regions is initialised by one region

which is the root region
//Region R_left, R_right : regions resulting from the splitting

an old region
1. For i=1 to N do{
1.1. Pos= GetIdRegion(data[i]) // return index of region in

which must be inserted the vector data[i]
1.2. Let Reg be the region having as index pos
1.3. Insert(data[i], Reg) // allow to insert data[i] in Reg
1.4. If (overflow(Reg)) {
 // number of vectors in the region Reg is greater

than capacity, then this region is overflow.
 1.4.1. split(Reg, R_left, R_right) // Reg is split into 2 sub

regions
 1.4.2. If (nbredata(R_left)!=0) and

(nbredata(R_right)!=0) {
// both the number of vectors in R_left and R_right are not

equal to 0
 a. Replace(ListReg, Reg, R_left) // replace the

region Reg by R_left in ListReg
 b. InsertToEnd(listReg, R_right) // insert R_right

into the end of ListReg.
}// End If
} // End If
}// End For
}// End

2) Index structure: The index structure is similar to

RA-Blocks. Thus, we record data in two levels. In the first
level, we use a small file containing the region approximations
coded in bits. This approximations file is very small, hence, in
most cases, it can be kept in the main memory and we don’t
have to access the disk in the first phase. In the second level, we
record in a file the real vectors.

To insert a new vector into the database, we find the region in
which the data should be placed and we insert this vector. If the
disk page recording this region is full, i.e. the number of its
vectors exceeds the capacity; we split it into two regions having
practically the same number of vectors based on the split
algorithm. In this case, the approximations of these regions are
calculated and inserted in the approximations file, and then the
first region is removed.

Deleting a vector consists in finding the region that contains
this vector. If the number of vectors remaining after the
suppression is lower than half capacity (capacity/2), then a
reorganization of the region is carried out.

B K-nearest neighbor algorithm
Our K-nearest neighbor queries algorithm is inspired of the

VA-NOA search algorithm in the VA-File [8]. The research
algorithm for K-NN is divided into two phases. In the first stage
(filtering step), the approximations file is scanned sequentially,
and the candidates regions are selected. During the second
phase (access to original vectors), we determine the K-NN by
calculating the real distance from vectors of candidates regions
to the query vector.

1) Filtering phase: To search the K-NN, the approximations
file is entirely scanned, and each region’s upper bound dmax
and lower bound dmin compared to the query vector are
calculated (see Figure. 6). We initialize the list of candidates
LC by k/2 regions having the smallest dmax. This list is sorted
out by the ascending distance dmax. The approximations file is
scanned: if an approximation is found such as its dmin is less
than the biggest upper bound dmax of the list, the
corresponding region is inserted in LC by keeping the sorted
list.

2) Access to real vectors: We initialize the list of the results
LR by K first vectors of the LC regions. This list is then sorted
according to the real distance to the query vector. Then, we
scan the retained regions in LC according to an ascending order
of their dmin and we calculate the real distance between its
vectors and the query vector. We suppose that Dm is the current
maximum real distance. If a region is found, and its dmin is less
than Dm, the vectors of this region are examined: if the real
distance which separates a vector from this region and the
query vector is less than Dm, then the vector is inserted in LR
and we remove the last LR vector. However, if a region of LC
has a dmin higher than Dm then we should stop.

IV. EXPÉRIMENTAL EVALUATIONS
In order to demonstrate the applicability and the advantages

of our technique, the experimental evaluations of our method
compared to RA-Blocks, and VA-File are presented in this
section.

All the experiments are conducted on a Microsoft Windows
XP machine with 3.2 GHZ CPU, 1 Go RAM, 160 GB local
disk. The following two data sets were used for the
performance test: (1) random data set, (2) real data set.

Let d, be the dimensionality of the vectors, and S, the number
of vectors in the database (database size).

The random data set is a random data which consists of
S = 18000 vectors distributed uniformly in range [0 0.01392],

dmax

dmin
 q

Fig. 6. Upper bound dmax and lower bound dmin using Euclidean

Fig. 5. Regions construction algorithm

Engineering Letters, 16:2, EL_16_2_05
__

(Advance online publication: 20 May 2008)

with d = 100. The real data set consists of the histograms of
colors extracted from a real image database, with d=256 and
S=18000.

Three experimental evaluations were conducted. In the first
one, the index structures size of both the RA-Blocks and
RA+-Blocks methods with various dimensions and with
different database size are compared. In the second experiment,
we compare the filling rate for both the RA-Blocks and the
RA+-Blocks index. Finally, the third experiment, evaluate the
CPU time of RA+-Blocks, RA-Blocks, and VA-File.

A. Index structure size study
Figure 7 shows the results of our experiments and illustrates

the K-NN search performance of both RA-Blocks and
RA+-Blocks methods. These experiments are conduct on both
real and random image database; we show only the results for
real data. In (fig.7a), the dimensionality of data space is ranged
from 10 to 100 and the database size is fixed to 10000
descriptors. While in the (fig.7b), the dimensionality of vectors
is fixed to 12 and the size database ranged from 2000 to 18000
vectors. Similarly to the experiments reported in [22], the
K-NN search performance of RA-Blocks and RA+-Blocks
index was measured in term of number of the obtained regions
with two index structures by fixing : K-NN=5, number bit per
dimension=8, disk page size=16 KB, and capacity=7.

As we can see from figure 7, the number of the obtained
regions using K-D-B-Tree strategy for space partitioning
adopted by RA-Blocks is higher than the one obtained using
RA+-Blocks. Note that the number of the obtained regions with
RA-Blocks index grows with the dimensionality and with the
database size. This will increase the size of the RA-Bocks'
index structure, and will also require more space allocation for
its regions. Thus, the storage utilization for the RA-Blocks is
lower than that one of the RA+-Blocks index. Consequently, the
performance of the RA-Blocks is lower than that of the
RA+-blocks

To explain the reasons behind this degeneration of
RA-Blocks index, consider an RA-Blocks index when it has
only one region page R. Let assume that R is completely full
and the split of a point page P has just begun. Splitting the point
page P will trigger the split of the parent page R. Then, all
nodes (MBRs) in R that intersect with the dividing hyperplane
selected during the split of P will also be partitioned, and the
splits will propagate into the corresponding child nodes of R.
Since the node (MBRs) that full extension along the split i axis
intersect with the dividing plane, a large number of regions will
be created in the structure. This will increase the size of the
structure and decrease the average utilization of its regions
compared to RA+-Blocks index which divide only full regions.

Moreover, due to the splits of many subregions in R, the

resulting regions R' and R'' instantly become occupied to nearly
full capacity. Fairly soon, both R' and R'' will be split again,
most likely along the dimension i+1. As before, one can expect
that many nodes (MBRs) in R' and R'' will have full extension
along the split dimension. Thus, the splits of R' and R'' would
also create a large number of new regions, further increasing
the size of structure. Figure 8 shows an example of forced
splitting of regions in a K-D-B-Tree index used by RA-Blocks
with d=2.
Finally, when the dimensionality or the database size increases,
the RA-Blocks index requires an important

Fig.7. Number of the regions obtained with both RA-Blocks and RA+-Blocks
index according to the number of dimensions and the database size

0

200

400

600

800

1000

1200

100
0

200
0

400
0

500
0

150
00

250
00

300
00

b. Database size

O
bt

ai
ne

d
re

gi
on

s
RA-Blocks

RA+-Blocks

0

100

200

300

400

500

600

10 13 20 26 28 64

a. Number of dimensions

O
bt

ai
ne

d
re

gi
on

s

RA-Blocks

RA+-Blocks

Engineering Letters, 16:2, EL_16_2_05
__

(Advance online publication: 20 May 2008)

reorganization of the totality of the index which often causes
a forced splitting of the empty regions, and thus creates a large
number of empty point pages.

In RA+-Blocks approach, the partitioning strategy eliminates
the forced splitting. When a region page R is completely full,
the split of a point page P will trigger the split of only the region
in the parent page R that contains the page point P. Thus, the
split propagation is stopped at this level. From a certain number
of dimensions or number of vectors, the split of regions cannot
take place due to their low bounds, so the vectors are inserted
without splitting. Consequently, the obtained regions with
RA+-Blocks are few and mostly dense compared to those
obtained with RA-Blocks.

As we can see in figure 7. when dimension (Fig 7.a) and
database size (Fig 7.b) increase, the number of the obtained
regions varies slowly then remains practically constant. This
will increase the filling rate of the RA+-blocks, and reduce the
number of calculation of upper and lower bound, and thus the
CPU time.

B. Filling rate comparison
These experiments present a comparison between the

RA+-Blocks and RA-Blocks, in term of the filling rate for both
random and real image databases. The filling rate is the ratio
between the number of the vectors in the database and the total
capacity of the index structure (capacity of the index structure
is the total capacity of all the obtained regions). This ratio is a
good performance estimator because the multidimensional
index structure’s performance depends largely on their ability
to support the “scalability problems” associated with large
amounts of data. A high value (near 100%) of this parameter
guarantees an optimal use of disk pages, and decreases the
number of I/O.

As can be seen from figure 9, the filling rate of RA-Blocks is
less than the one in the RA+-Blocks for both random and real
data. Thus, the RA+-Blocks index generates a low number of
dense regions, while the RA-Blocks index generates a great
number of sparse regions, which decrease storage utilization of
the RA-Block index. The low storage utilization problem in the
RA-Blocks index is caused by its imperfect splitting strategy
described previously; it deteriorates directly the retrieval
performance.

CPU time study.
In figures 10 and 11, we compared the K-NN search

performance for RA-Blocks, VA-File, and RA+-Blocks on both
random and real image database with various dimensions and
various number of vectors.

In the figure 10, S=10000 and the dimensionality varies from
10 to 100 for both the random and real data. In the figure 11, the
number of vectors varies from 2000 to 18000, while the
dimensionality is fixed to 12.

From these experiments, we note that the CPU time of the

K-NN search of the RA-Blocks method is higher than that of
the RA+-blocks method. As the dimensionality or the number
of vectors increases, the RA+-Blocks becomes better and better,
compared to the RA-Blocks. Our method reduces the search
time to be satisfactory. This can be explained by the optimized
strategy of subdivision used in the RA+-Blocks, that allows us
to reduce the index structure size compared to the RA-Blocks
by eliminating the forced splitting used in K-D-B-tree method
adopted by RA-Blocks. The subdivision strategy of
RA+-Blocks reduces the number of the candidates regions to be
selected in the filtering phase and thus the number of
calculation of upper and lower bounds. The K-NN search time
of the RA+-Blocks is reduced compared to the RA-Blocks
method.

In the figure 12, we also compare the CPU time of
RA+-Blocks, RA-Blocks, and VA-File using the parameters:

Fig.8. Forced splitting of regions in an RA-Blocks

Splitting hyperplane

Fig. 9. Storage capacity comparison between the RA-Blocks and
+

0

0,2

0,4

0,6

0,8

1

1,2

1 2

St
or

ag
e

ca
pa

ci
ty

RA+-Blocks

RA-Blocks

Real data,
S=15000, d=16,

Capacity =10,K-NN=5

Random data,
S=10000, d=10,

Capacity=10, K-NN=5

Engineering Letters, 16:2, EL_16_2_05
__

(Advance online publication: 20 May 2008)

d=60, K-NN=5, capacity=5, S=10000.

Fig.10. CPU time according to dimensionality

Fig.12. CPU time, d=60, K-NN=5, capacity=5, S=10000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4 10 20 40 60 80 10
0

20
0

Number of dimensions (Random data)

CP
U

 T
im

e
(m

s)

RA-Blocks

RA+ Blocks

0

100

200

300

400

500

600

100 700
200

0
450

0
800

0
150

00
600

00

Database size

CP
U

 T
im

e
(m

s)

RA-Blocks

RA+ Blocks

0
100
200
300
400
500
600
700
800
900

1000

10
00

40
00

10
00

0
25

00
0

Database size (Real data)

CP
U

 T
im

e
(m

s)

RA-Blocks

RA+-Blocks

Fig.11. CPU time according to the database size

Database size (Random data)

0

50

100

150

200

250

300

350

400

10 13 20 26 28 64

Number of dimensions (Real data)

CP
U

 T
im

e
(m

s) RA-Blocks

RA+-Blocks

0

1000

2000

3000

4000

5000

6000

7000

Real Random

CP
U

 T
im

e
(m

s) VA-File

RA-Blocks

RA+-Blocks

Engineering Letters, 16:2, EL_16_2_05
__

(Advance online publication: 20 May 2008)

We note that our method outperforms also the VA-File. In
fact, like RA-Blocks, the RA+-Blocks method is based on
regions filtering approach to calculate the K-NN of the query
request. Then, the computation time in the filtering phase
and the access phase has been reduced, compared to the
VA-file method. This, because in one hand, the lower and
upper bounds in the filtering phase are calculated for each
region and not for each point; In the other hand, the
neighboring vectors in RA+-Blocks structure are more likely
to be in the same physical page or consecutives pages.
Therefore, the CPU time is reduced compared to the
VA-File.

Finally, we illustrate the performance of RA+-Blocks on
both real and random image database. RA+-Blocks
outperforms VA-File and RA-Blocks in high dimensional
data space and in large image databases. This is one of the
best solution to solve the problem of the “dimensionality
curse” and to index a very large image databases, currently
employed in different area such as geographic information
systems (GIS), medical imaging systems, documents
systems, military, biomedicine…

V. CONCLUSION
In this paper, we propose a new indexing method based on

the filtering approach, to enhance the nearest neighbor
search in multimedia databases. The RA+-Blocks
outperforms other current methods especially with large
amount of data or with very high dimensionality. With
RA+-Blocks method, the partitioning strategy of data space
reduces the K-NN search time by eliminating the empty and
not very dense regions. This strategy of subdivision
guarantees that the entire index structure has almost 100%
storage utilization, and reduces the size of the RA+-Blocks
index structure. In addition, RA+-Blocks index generated a
very small approximations file which can be kept in the main
memory in most cases; then the system doesn't have to access
the disk. Another advantage of this technique is the optimal
use of the disk pages since the close points are often stored
either in the same, or on neighboring disk pages.

Our method outperforms both RA-Blocks and VA-File
especially in large multimedia databases and even for a very
high dimensionality.

Among further works, we propose to introduce,
“relevance feedback” to interactively refine the search or to
fit the user's special preferences.

REFERENCES
[1] A. Guttman. R-trees: A dynamic index structure for spatial searching.

In Proc. of the ACM SIGMOD Int. Conf. on Management of Data,
pages 47-57, Boston, MA, June 1984.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. ’’The
R*-tree: An efficient and robust access method for points and
rectangles’’ In Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, pages 322-331, Atlantic City,
NJ, 23-25 May 1990.

[3] Katayama, N. & Satoh, S. The SR-Tree: An index structure for
high-dimensional nearest neighbour queries. In proceedings of the

ACM SIGMOD Intl. Conf. on Management of Data, Tucson, Arizona,
USA pages 369-380. 1997.

[4] J.T. Robinson, The K-D-B-Tree: A search structure for Large
Multidimensional Dynamic Indexes. In Proceedings of the ACM
SIGMOD, 1981.

[5] S. Berchtold, D. Keim, H.-P. Kriegel, The X-tree: An index structure
for high-dimensional data. In Proc. Of the Int. Conference on Very
Large Databases, pages 28-39, 1996.

[6] S. Berchtold, C. Bohm, H. V. Jagadish, H.-P. Kriegel, and J. Sander.
Independent quantization: An index compression technique for
high-dimensional data spaces. In Proc. of the 16th ICDE, pages
577-588, 2000.

[7] P. Indyk and R. Motwani, “Approximate nearest neighbours: Toward
removing the curse of dimensionality”, in Proc. ACM symp. Theory of
computing, 1998

[8] R. Weber, H.-J. Schek, S. Blott, A Quantitative Analysis and
Performance Study for Similarity-Search Methods in
High-Dimensional Space. Proceedings of the 24th VLDB Conference,
USA, 1998.

[9] M. Verleysen, “Learning high-dimensional data”, In V. T Piuri, M.
Gory, S. A. &Goras, L., editors, Limitations and future trends in
neural computation, pp 141-162, IOS Press, 2003.

[10] G.–H. Cha, X. Zhu, D. Petrovic, "An Efficient Indexing Method for
Nearest neighbor searches in High-Dimensional Image Databases,”
IEEE transactions On Mutimedia, Vol 4, N°1, pp 76-87, March 2002.

[11] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Abbadi.
“Vector Approximation based indexing for non-uniform hgh
dimensional data sets. In Proceedings of the 9th ACM International
Conference on Information and Knowledge Management, McLen, VA,
USA, pp 202-209, 2000.

[12] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, “The A-tree: An
Index Structure for High-Dimensional Spaces Using Relative
Approximation”. Proceedings of the 26th VLDB Conference, Egypt,
2000.

[13] Guang –Ho Cha, Chin-Wan Chung. ’’The GC-Tree: A
High-Dimensional Index Structure for Similarity Search in Image
Databases’’ IEEE Transactions On Mutimedia Vol 4, N°2 June 2002.

[14] T. Chen, M. Nakazato, T. S. Huang, Speeding up the Similarity Search
in Multimedia Database. In Proceedings of IEEE ICME, 2002.

[15] T.K. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A
dynamic index for multidimensional object. In Proceeddings of the 13h
VLDB International Conference, pages 507-578, Brighton, England,
September 1987.

[16] Ciaccia and al. Indexing metric space with M-tree. In SEBD’97, pp
67-86, 1997.

[17] D. A. White, R. Jain, Similarity indexing with the SS-tree. In
Proceedings of the 12th International Conference on Data
Engineering, New Orleans, louisiana, USA, pages 516-523, 1996.

[18] J. Nievergelt, H. Hinterberger, K. Sevcik, “The grid file: An adaptable
symmetric multikey files structure.” ACM Transactions on Database
Systems, 9(1):38-71, Mar. 1984.

[19] A. Herich, H.-W. Six, and P. Widmayer. The LSD-Tree: Spatial access
to multidimensional point and non point object. In Apers, P.M.G. and
Wiederhold, G. editors. Proceedings of the 15th International
Conference on Very Large Databases, Amsterdam, The Netherlands,
pp 45-53: Morgan Kaufmann, 1989.

[20] C. Harris, M. Stephens, A combined corner and edge detector. In
Alvey Vision Conference, pages 147-151, 1998.

[21] D. R. Heisterkamp and J. Peng, “Kernel Vector Approximation Files
for Relevance Feedback Retrieval in Large Image Databases,”
Multimedia Tools and Applications, vol 25., N° 2, pp. 175-189, June,
2005.

[22] Hung-Yi , Lin and P. Huang, "Perfect KDB-Tree Structure for
Indexing Multidimensional Data", hired International Conference on
Information technology and applications (ICITA 2005), 4-7 July 2005,
Sydney, Australia.

Engineering Letters, 16:2, EL_16_2_05
__

(Advance online publication: 20 May 2008)

