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Abstract—In order to ensure the conventional adaptive wavet
neural network control systems’ stability, a compesator could
be designed to dispel the approximation error. The wst
frequently used of compensator is like a sliding-nae control
which maybe cause chattering phenomena to wear theearing
mechanism. To tackle this problem, this paper propaes a
chattering-free adaptive wavelet neural network cotrol

(CAWNNC) system. The proposed CAWINC system is
composed of a neural controller and a smooth compsator. The
neural control uses a fuzzy wavelet neural networko online
approximate an ideal controller and the smooth compnsator is
used to remove the chattering phenomena of conveatial
sliding-mode control completely. Then, the propose@AWNNC

approach is applied to two chaotic nonlinear system to
investigate its effectiveness. Through the simulatioresults, the
proposed CAWNNC scheme can achieve favorable tracig
performance and the convergence of the tracking ear and
control parameters can be accelerated by the devgled PI
adaptation learning algorithm.

Keywords—Adaptive control, neural control, chaotic system,
wavelet neural network.

I. INTRODUCTION

From the control point of view, if the exact modélthe
controlled system is well known, there exists arald
controller scheme to achieve favorable control grenfince
by canceling all the system dynamics [1]. Howeadradeoff
between system stability and model accuracy issseag for
the performance of ideal controller. To relax tieiguirement,
a sliding-mode control strategy offers a numbeattfactive
properties for the tracking control, such as ingitity to
parameter variations, external disturbance rejectiod fast
dynamic responses [1]. However, the chattering phrma
of the sliding mode control will wear the bearingahanism.

Many control systems in practice have either piytia
unknown or completely unknown nonlinearities. Tekia the
above problem,
adaptive control systems have been developed tavitbahe
control problems of such nonlinear uncertain systg2h[6].
Using optimization technique (gradient method),
parameters of neural network are tuned offline toimize
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the approximation error. A limitation of this appah is its
offline nature. In real time control, it would beard to
continuously tune neural network so as to imprdsesystem
performance. The most useful property is their igbibf

neural networks can approximate arbitrary lineananlinear
mapping through learning. By adequately choosingrale
network structures, training methods and sufficieput data,
the neural-network-based adaptive controllers apable to
compensate for the effects of nonlinearities andtesy
uncertainties [2].

Recently, to achieve better learning performanceeoiral
network, some researchers have combined the layered
structure of neural network and the wavelet fumido
construct the wavelet neural network (WNN) [7]-[@lnlike
the sigmoidal functions used in conventional nenegvorks,
wavelet functions are spatially localized, so tthat learning
capability of WNN is more efficient than the contienal
sigmoidal function neural network [7]. Wavelets bav
become a very active subject in many scientific and
engineering research areas. Especially, WNN indpbg
both the feedforward neural networks and wavelet
decompositions have received considerable atterdioc
become a popular tool for function approximatioh [9

There have been many considerable interests iroemgl
the applications of WNN to deal with unknown noelmity
control systems [10]-[14]. These WNN-based adaptive
controllers combine the capability of artificial ural
networks for learning ability and the capability wavelet
decomposition for identification ability. Though eth
WNN-based adaptive controller can achieve favorable
tracking performance [10]-[14], in order to ensutee
systems’ stability, a compensation controller couée
designed to dispel the approximation error. The tmos
frequently used of compensation controller is lile
sliding-mode control, which requires the bound bft
approximation error [11], [14]. If the bound of apgimation

some model-free neural-network-basé&dror is chosen too small, the system stabilizatian not

guarantee. However, if the bound of approximatimoreis
chosen too large, the control effort will cause ttgrang

th@henomena to wear the bearing mechanism.

To tackle this problem, an approximation error kbun
estimation mechanism is investigated to estimatdtiund of
approximation error so that the chattering phenamef the
control effort can be reduced [15]. However, themive law
for the estimation error bound will make it go tdimity.
Some researchers have proposed neural-network-based

adaptive control design methods based on Hiffe control
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scheme [16]-[18]. Combing theH" control, these external disturbance is added into the system, the controlled
neural-network-based robust adaptive control apgrescan system can be modified as
attenuate the effects of approximation error toresgribed X" =f (x)+Af(x)+u+d =f (X)+u+z (6)

level. However, it is a trade-off between the atode of \yhere d is the external disturbancaf(x) denotes the

contro.l effort and_ _the performance of tracking ertay system uncertainties, arzds called the lumped uncertainty
choosing the specified attenuation level.

This paper proposed a chattering-free adaptive ImaveWh'Ch defined asz = Af (x) +d with the assumpt|0||1z| =Z,
neural network control (CAWNNC) system. The progbsein which Z is a given positive constant. A sliding surface is
CAWNNC system consists of a neural controller and @efined as
smooth compensator. The neural contrpller gtili-aefmzz.y s=e" +ke"? +..+k e+ knJ. [e(r)dr. @
wavelet neural network (FWNN) to online mimic aread 0
controller using a Pl type adaptation learning ethm, and  The sliding-mode control law is given as [1]
the smooth compensator uses a fuzzy system to eethev U, =U, +U, (8)
chattering phenomena on conventional sliding-maaterol  \yhere the equivalent controller, is represented as
completely. In addition, the learning algorithm dsrived B o - _
based on the Lyapunov function to guaranteed system Y« =R+ X7 +ke™ otk et ke ©)
stability and the Taylor linearization techniqueisployed to and the hitting controlleu, is designed to guarantee the
increase the learning ability of FWNN. Finally, theoposed system stability as
CAWNNC approach is applied to two chaotic nonlinear u, =Zsgn@) (10)
systems to investigate the effectiveness. Some |aiion
results are provided to verify the effectiveness tbé
developed CAWNNC scheme.

where sgn()l is the sign function. Substituting (8), (9) an@)1
into (6) yields

e” +ke" +...+k é+ke=-z-ZsgnG)=$. (11)
Il. PROBLEM FORMULATION An important concept of sliding-mode control istiake the

Consider a class ofth order chaotic systems described b&yste.m satisfy the reaching C,O”d‘“‘)” and guaraa!ielt'ng
the following form condition. Consider the candidate Lyapunov funciiothe

X = f(x)+u 1) following form as
. § . _1,
where X =[x, X,...,x"?]" OR" is the state vector of the V =35s- (12)

system, which is assumed to be available for measemt, Differentiating (12) with respect to time and us{ig) obtain
f(x)UR is the nonlinear system dynamics which can be y; - g4 = —zs—Z|s|
1

unknown, andudR is the input of the system. The control <|z||s{ _ZH
objective of chaotic system is to find a contral lso that the -

state trajectoryx can track a trajectory commang . A =-(z-|9)d <0. (13)
tracking error is defined as In summary, the sliding-mode controller in (8) cararantee
e=x —X. (2) the stability in the sense of the Lyapunov theorfh
If the system dynamic function is well known, thesdts an However, large control gaid is often required in order to
ideal controller as [1] minimize time needed to reach the switching surfeam the
initial state. A conservative control law with largontrol
u =-f()+x" +ke" +.-+k e+ke (3)  gain Z is usually considered, but unnecessary jumping

. movement between the switching surface may yiettcause
wherek ,i =12,...,n are the non-zero constants. Apply the . .
) ] ] ] an outcome of large amount of chattering. The ehaty
ideal controller (3) into (1), it obtains that

phenomena in control efforts will wear the bearing

e +ke™ +..+k _e+ke=0. (4) mechanism and excite unmodelled dynamics.
If k,i =12,...,n are chosen to correspond to the coefficients Ill. CAWNNC SysTEM DESIGN
of a Hurwitz polynomial, that is a polynomial whas®ts lie | this paper, the chattering-free adaptive wavekairal

strictly in the open left half of the complex plartéen it  network control (CAWNNC) system is designed as shaw
implies thatlim e(t) = 0 [1]. However, the system dynamicsFig. 1, where the controller output is defined as

is always unknown; the ideal controller can not be U=t T . ) (14)
implemented. The neural controllefl,, uses a FWNN to approximate the

Rewriting (1), the nominal model of the nonlinear dynamié€@l controlieru”, and the smooth compensata, is

system can be represented as follows utilized to compensate the approximation error leetw
%= f (x)+u (5) neural controller and ideal controller. The dedips of

where f (x) is a mapping that represents the nominaﬁIGSIgn steps are depicted as follows:

behavior of f (x) . If uncertainties occur, i.e., the parameters
of the system deviate from the nominal value and/or the
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! ' there is a FWNN of (18) that can uniformly approats an
1 | Sliding S Rule i ideal controller. There exists ideal weight vectawghat [9]
| | surface estimation law ' U =070 (8o ,C)+A (19)
i 1 ¢ i where @’ and ©@ are optimal parameter vectors efand
y : O , respectively;s’” andc are optimal parameter vectors of
; L Smooth Ug | ¢ and c, respectively; and\ is the approximation error.
! compensator ' However, the optimal parameter vectors are unknearit, is
E i necessary to estimate the values. Define an estimat
i function
| i S ATA(a A A
i N Parameter i U, =@ 0(ec,C) (20)
adaptive law i wherea and® are optimal parameter vectorsefand @ ,
i PP respectively; ands and ¢ are optimal parameter vectors of
i v pr G i o and c, respectively. Define the estimation error as
! o+ ~ oA T ATA

X L e 4, 1 u=u-0,=0a'0 -a'0+A

LN Neural controller [%n 15 % Y o = & N u~ A

i —0'0+3'0+a'O+A (21)

_____________________________________

chattering-free adaptive wavelet neural
network control

whered =o' -d and®=0 -0 . In order to deduce the
adaptive law for mean and variance later, it isesearily to

derive the value o® . To achieve this goal, the Taylor

Nonlinear expansion linearization technique is employed &mdform
system the nonlinear function into a partially linear farsuch that
11
Fig. 1. CAWNNC for a class of nonlinear system. [ -]~ ~ o=
®=A'c+B'c+h (22)

where 6 =6¢' -6, C=c -C, A=[a®1 aem}_& :

A. Description of FWNN 06 oo

The network structure of the proposed FWNN can be |90, 00,
considered as multi-layer feedforward neural nekwas “1oc T Tac
shown in Fig. 2. Assume that there areules in FWNN can expansion. Substitute (22) into (21), it can obthit

be described as et AT~ e — A
Rulei: If e is A andéis A ... ande™™ is A, U=a@+a (Ac+tBcth)+a ®@+A
Thenu,, is ay,(2) (15) =0'®+c¢'Aa+Cc'Ba+a'h+a'®@+A (23)
wheree = [ee...e" ] andu,_ are the input and output Where @'A'c =¢'Aa and @'B'C=C'Ba are used since
variables of FWNN, respectively, are the linguistic terms they are scalars. To speed up the convergence diNFW
characterized by their corresponding fuzzy membprsh'eaming- the optimal parameter vecior is decomposed into

functions of the fuzzy sets, angjy, (z) is the output weight. WO Parts as [19]*
o =770, +1],0, (24)

andh is the high order terms of

c=¢ !

¥.(2) = D (L-afz) is defined as the “Mexican hat"nerep andp, are positive constants, and and o are

mother wavelet function. Then, the FWNN performe ththe proportional and integral terms ef, respectively, and

mappings according to a = Ila; dr . The estimation parameter vectar is
m 0
Uy = ;ai‘/’i @¢(o lle-c ) (16)  decomposed into two parts as [19]
&:”P&P +/7|&| (25)

wheres, =[0, 0, ...0, ] andc, =[c, c, ...c, ]" are the
inverse of width and center vectors of the Gaussiadherea. anda, are the proportional and integral terms of
membership, respectively. The Gaussian memberghip

~ 1,\ _~
, respectively, anda, =japdr. Thus, @ can be
represents as °

n expressed as
W(Gi il €e-¢ D= |_J exp[_(e(jil) -G )za-jiz] (17) a =/7,E, —ﬂpap +/7P("; (26)
For ease of notatiojr—w, (16) can be expressed inngpact wherea, =0, - & . Substituting (26) into (23) obtains
vector form as u=na -0, +/7F.a;)T(:)
u,, =a’0(eo,.) (18) +6'AG+CBa+ah+a'®@+A
Where a:[al 0’2 ...am]T ) @Z[wlﬂ w2¢2 ..~wm¢m]T ’ =”|aré_ﬂpa;é+aTA&+ETBa+£ (27)
6=[6,06,...6.]" andc=][c,c,...c.]". This implies that
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where the uncertain term=7,a,' @ +6'"h+3'@ +A .

B. Smooth compensator

Assume that the smooth compensator has 3 fuzzy ke
rule base as given in the following form [20]

Rule 1: If s is PE, theru_ is P (28)
Rule 2: If s is ZO, thenu_ is Z (29)
Rule 3: If s is NE, thenu_ is N (30)

where the triangular-typed functions and singletares used
to define the membership functions of IF-part aktEN-part,
which are depicted in Figs. 3(a) and 3(b), respelti The
defuzzification of the output is accomplished bg thethod
of center-of-gravity

er

u —_ |—1
ZW
where 0sw <1, O0sw,<1 andO<w,<1 are the firing
strengths of rules 1, 2, and 3, respectively; dredrelation

=W LW, + W, (31)

w +w, +w, =1 is valid according to the special case of ©, =50

triangular membership function-based fuzzy systenorder
to reduce the computation loading, let=r , r,=0 and
r,=-f . Hence, for any value of inpwt, only one of four
conditions will occur according to Fig. 3(a) as]21
Conditionl: Only rule 1 is triggered X>x , w, =1 ,
w, =w, =0)

u,=r=F (32)
Condition2: Rules 1 and 2 are triggered simultasgou
(0O<xsx, 0<w,w, <1, w,=0)

U, =nw, =fw, (33)
Condition3: Rules 2 and 3 are triggered simultasgou
(x,<x<0,w=0, 0<w,,w,<1)

U, =rw, =—fw, (34)
Condition 4: Only rule 3 is triggeredx& x,, w,=w, =0,
w,=1)

u,=r,=-r (35)
Then, the (31)-(34) can be rewritten as

u, =r(w, —w,) (36)
Moreover, it can see that [21]

s(w, —w) = |gf|(w;, ~w)[ 2 0 (37)

NE Z0 PE N 7 =)

?<0><; T, r, I ax

(@) (b)

Fig. 3. (a) input fuzzy sets. (b) output fuzzy sets

C. On-line learning algorithm

Substituting (14) into (1) and using (3), yields
u -a, -u,=$ (38)
By using the approximation property (27), (38) cha
rewritten as

$=0a'©®-7.0'0+6 Ad+C'Ba+e-u_. (39)
To proof the stability of the CAWNNC system, defiae
Lyapunov function candidate in the following form

V, _ES +,7—2'a a, +i0 c+ic c (40)

g c

where 17, and 77, are the learning rates with positive

constants. Differentiating (40) with respect todiand using
(39), it is obtained that

V, =ss+n,a'd, +Losrlet
ur 7.
=I7,E,T(s(:)+E|)+ET(SA&+,7£)+ET(SB&+£)
- snpalé) +s(e-u,) (41)
If the parameter adaptive laws are selected as

i, = 90 (42)
@ =0, =0 (43)
6=-6=10,5Aa (44)
¢=-C=n.Ba (45)

and the smooth compensator is design as (36),(#Bncan
be rewritten as

V, = -n,000, +s(e-u,)
< 7,50, +|5&] ~ Fs(w, - w,)

<|sfel = 7lgw. - w|

-l
=—sw, —w,|(r - 46
S U g (46)
If the following inequality
P> 1A (47)
[ = w

holds, then the sliding conditiod, <0 can be satisfied.

Owing to the unknown lumped uncertainties, the ealu
cannot be exactly obtained in advance for practical
applications. According to (47), there exists agridvaluer”

as follows to achieve minimum value and match ticing
condition:
¢

r'=
[w, —

+K

(48)

where x is a positive constant. Thus, a simple adaptive
algorithm is utilized in this study to estimate tdeal value of

r’, and its estimated error is defined as
F=r-f (49)
wheref is the estimated value of the optimal valuer of

Then, define a new Lyapunov function candidate he t
following form

’gaTa P P R

g c r

V,=2s (50)

(Advance online publication:1 August 2009)
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where 77, is the learning rate with a positive constantwherex =[xX]" is the state vector of the systers the time

Differentiating (50) with respect to time and usif®p) and variable; w is the frequency,p , p,, p, and q are real

(42)-(45), itis obtained that constants,f (x) = —px - p,x— p,x* + qcost) is the system

V., =ss+n,a'a, +iET&' +iETE +iFF dynamic function, and is the control effort. Depending on
o 1. M the choices of these constants, the solutions stesy (54)
may display complex phenomena, including variousopé
orbits behaviors and some chaotic behaviors. Tceervbs
A 1. these complex phenomena, the open-loop system ioehav
S se—rs(w —w,) +—rr with u=0 was simulated withp= 04, p,=-11, p,=10
' and « =1.8. The phase plane plots with an initial condition
<[] - Fs(w, —w) + " s(w, =) =" s(w, —w) +L7F (0, 0) are shown in Figs. 4(a) and 4(b) tp= 2.1 (chaotic)
" and q=7.0 (period 1), respectively. It is shown that the

PN X 1_-
=-n.0,a, +SE—FS(W, —W,) +—TT

r

:|S||g|+FS(\,\,1_\,\,3)_r*s(\,\,l_\,\,3)+if"~ uncontrolled chaotic dynamic system has differdmaotic
1, trajectories for different values af .
~ 1. . The control parameters of the proposed CAWNNC sehem
=r[s(w,—-w,)+—r]+|d|e—r|gw, —w, 51
[sw, ~w) n. 1[5l r'[sw - w] (1) are selected ask, =2 , k,=1, 5, =17,=20 and
Choose the rule estimation laws as n,=n.=n =1. These parameters are selected through
F=-1 =n.sw, —w,) (52) trails. All the gains in the CAWNNC are chosen thiave

good transient control performance in the simutatio

and using (48), (51) becomes e X - :
considering the requirement of stability and pdssib

Ve = |S”€| _|S|(|€| +K|Wl _W3|) operating conditions. The simulation results of CAMC for
= —K|gw, ~w,| <0 (53) g=21andq= 70 are shown in Figs. 5 and 6, respectively.
As a result, the stability of the proposed CAWNN@Gtem The tracking responses of stateare shown in Figs. 5(a) and
can be guaranteed [1]. 6(a); the tracking responses of stateare shown in Figs. 5(b)

In the following, the design steps of CAWNNC areand 6(b); and the associated control efforts acsvehFigs.
summarized as follows: 5(c) and 6(c) forg= 21 and q= 7.0, respectively. From
Step 1: The tracking errcg and the sliding surface are  hese simulation results, it can be seen that tolpasking

given in (2) and (7), respectively. performance can be achieved without any knowledfie o

Step 2:0,, is given asa'0(e,6,8) , whered is estimated by system dynamic functions.
(42) and (43), simultaneously, ansl and C are
estimated by (44) and (45), respectively.

Step 3:u_ is given asf(w, —w,), wherer is estimated by
(52). !

Step 4: The control law is given as=0,, +u,_ . X o

Step 5: Return to Step 1. "

IV. SIMULATION RESULTS 3

In this section, the proposed CAWNNC system is iaplpl 4
to control two chaotic nonlinear systems to verifg
effectiveness. Chaotic nonlinear systems have sastied
and known to exhibit complex dynamical behavior.eTh
interest in chaotic systems lies mostly upon tleeimplex,
unpredictable behavior, and extreme sensitivityiriial
conditions as well as parameter variations [22].[2Hor
control engineers, control of a chaotic systemfesome a
significant research topic in physics, mathematarsd
engineering communities. It should be emphasized ttie
development of the CAWNNC does not need to know the
system dynamics of the controlled system. For pralct

implementation, the controller parameters of CAWNDBERD B4 = b > i 5
be online tuned by the proposed adaptive laws. X
Example 1: Consider a second-order chaotic system such as (b)
the Duffing’s equation describing a special nordineircuit
or a pendulum moving in a viscous medium [22] Fig. 4. Phase plane of uncontrolled chaotic dynamic system.

%= - px— px—pxX° +qoos@) +u = F()+u  (54)
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statex

8]
o

o

_control effort
g o

traj'ectory

1, 15 ZID 25
time (sec)

(a)

state’
trajectory

10, 15 0 25
time (sec)

(b)

BN N N N N

2DD 5I 10 158 2ID 25
time (sec)
(c)
Fig. 5. Simulation results of CAWNNC fay = 2.1.
2 —
trajectory
1 command
x
Q0
@
-
0 -1
2 L L L
u] 10 158 20 25
time (sec)
(a)
2 .
trajectory
1 command
£
L o} |
@
=
O 1 tstate 1
trajectory
“o 5 20 245

control effort
]

-20
u]

Fig. 6

Example 2: A third-order Chua’s chaotic circuit, as shown
in Fig. 7, is a simple electronic system that cstissof one
linear resistor R), two capacitors C,, C,), one inductor

(L), and one nonlinear resistod §. It has been shown to

10, 5
time (secB

(b)

AVAVAVAVAVAVAY

10, 15 2ID 25
time (sec)

(c)
. Simulation results of CAWNNC fay = 7.0.

Ve = o (R ) ~A0 ) (54)
1,1

ch - Cz (R(VcJ VCQ) +||_) (55)
=2 (v ~Ri) (56)

where the voltages/; , V., and currenti, are state

variables, R, is a constant, and denotes the nonlinear

resistor, which is a function of the voltage acrtss two
terminals ofC,. The A is defined as a cubic function as
Alv,)=av, +cv; (a<0,c>0). (57)
The state equations in (54)~(56) are not in thedsted
canonical form in (1). Therefore, a linear transfation is
needed to transform them into the form of (1). Tyaamic

equations of transformed Chua’s circuit can be iteawr as
[26]

x® =f(x)+u (58)
wherex =[xxX]" is the state vector of the system, the system
dynamic function

f(x) = 14 X— 168 )'(+i5€—£(§x+l>'<+5<)3 is

180 902t 38 45361 95
the system dynamic function andis the control effort.

The control parameters of the proposed CAWNNC sehem
are selected ak, =3, k, =3, k, =1, 5, =1, =10 and
n,=n.=n =1. These parameters are selected through
trails. All the gains in the CAWNNC are chosen thiave
good transient control performance in the simutatio
considering the requirement of stability and pdssib
operating conditions. Ag, =0, the learning algorithm of
the proposed method is the same as conventional V¢ d
adaptive control such as [11]. The simulation rssaf the
CAWNNC to track a periodic sinusoidal command with
1, =0 ands, =10 are shown in Figs. 8 and 9, respectively.
The tracking responses of stateare shown in Figs. 8(a) and
9(a); the tracking responses of stateare shown in Figs. 8(b)
and 9(b); the tracking responses of statare shown in Figs.
8(c) and 9(c); and the associated control efforés shown
Figs. 8(d) and 9(d) for;, =0 and s, =10, respectively.
From the simulation results, it shows the convecgeof
controller parameter and tracking error converge be
accelerated by the developed PI adaptation learning
algorithm.

own very rich nonlinear dynamics such as chaos arkg. 7. Chua’s chaotic circuit.

bifurcations. The dynamic equations of Chua’s dtreue

written as [26]
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X | trajectory T
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g F,. command 4
I ) V. CONCLUSIONS
T A chattering-free adaptive wavelet neural netwashtool
ol tsrta_fcto | (CAWNNC) with a PI type learning algorithm is proyeal.
1n Ay ‘ . . . The stability is proven by Lyapunov function wittetonline
. . e timejs(sec) el e el parameter tuning laws are given to adjust the ¢otemection
© weights, dilation and translation parameters of eletv
40 , , , , , functions. The effectiveness of the CAWNNC systesn i

verified by some simulations. The main contribusiarf this
paper are: (1) a learning algorithm with Pl adaptalearning
algorithm can achieve better tracking performarared (2)
the smooth compensator design uses a simple fyzstgns

0r b

control effor
-

2 can remove completely the chattering phenomena.
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