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Abstract

Learning From People

by

Nihar Bhadresh Shah

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Martin J. Wainwright, Chair

Learning from people represents a new and expanding frontier for data science. Crowd-
sourcing, where data is collected from non-experts online, is now extensively employed in
academic research, industry, and also for many societal causes. Two critical challenges in
crowdsourcing and learning form people are that of (i) developing algorithms for maximally
accurate learning and estimation that operate under minimal modeling assumptions, and
(ii) designing incentive mechanisms to elicit high-quality data from people. In this thesis, we
addresses these fundamental challenges in the context of several canonical problem settings
that arise in learning from people.

For the challenge of estimation, there are various algorithms proposed in past literature,
but their reliance on strong parameter-based assumptions is severely limiting. In this the-
sis, we introduce a class of “permutation-based” models that are considerably richer than
classical parameter-based models. We present algorithms for estimation which we show are
both statistically optimal and significantly more robust than prior state-of-the-art methods.
We also prove that our estimators automatically adapt and are simultaneously optimal over
the classical parameter-based models as well, thereby enjoying a surprising win-win in the
statistical bias-variance tradeoff.

As for the second challenge of incentivizing people, we design a class of payment mech-
anisms that take a “multiplicative” form. For several common interfaces in crowdsourcing,
we show that these multiplicative mechanisms are surprisingly the only mechanisms that
can guarantee honest responses and satisfy a mild and natural requirement which we call
no-free-lunch. We show that our mechanisms have several additional desirable qualities. The
simplicity of our mechanisms imparts them with an additional practical appeal.
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Chapter 1

Introduction

Data from people arises in a variety of different domains. For instance, “crowdsourcing” –
where (non-expert) people online are asked to perform tasks that are too hard for machines
and too expensive and time consuming for experts – has gained tremendous popularity.
Crowdsourcing is used to collect scientific data in various fields of science and engineering
such as bioinformatics [29, 72, 93, 96, 124, 138, 142, 147, 162, 173, 262], astronomy [87,
128, 150, 165], psychology [97, 123, 152, 170], epidemiology [127], medicine [155, 242, 269],
radiology [179], ontology [214], environmental modeling [81], history [139], marketing and
business [55, 266], fashion [268], and computer science [101, 134, 148, 211, 273]. For instance,
the paper [142] employs crowdsourcing for cancer detection; the paper [134] surveys the use
of crowdsourcing to collect annotations for training machine learning algorithms to perform
computer vision tasks.

Crowdsourcing is also vastly popular in the industry. For instance, a recent survey [210]
estimates that 85 of the 100 “best global brands” employ crowdsourcing. Crowdsourcing
and learning from people helps in many societal causes, such as healthcare [167], detecting
cyberbullying [208], helping the blind [16], search and rescue [183], crisis mapping [180],
improving nutrition [181], and others. It is also the crowd that has been the key driver for
many innovative and disruptive technologies in the sharing economy such as Uber, Lyft, and
Airbnb, and in sharing experiences such as Yelp, TripAdvisor, and IMDB. Even in our day
to day academic lives, we need to learn from people in the form of personalized teaching
as well as peer grading in both conventional classrooms and massive open online courses
(MOOCs) [187, 225].

The prevalence of data from people can be attributed to the proliferation of the Internet
across the world and to the many platforms that have recently emerged to harness this
opportunity. For instance, there are many online crowdsourcing platforms such as Amazon
Mechanical Turk (mturk.com) and others (crowdflower.com, microtask.com, upwork.com)
on which any entity (called a “requester”) may put up a task along with a promised payment,
and then any person online (called a “worker”) may complete the task in exchange for
the promised payment. These crowdsourcing platforms have gained tremendous popularity
because they are usually much cheaper and the tasks are completed much faster as compared

mturk.com
crowdflower.com
microtask.com
upwork.com
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to enlisting experts, thereby making it a highly scalable process [243]. Furthermore, with
the current platforms for crowdsourcing, the initial overhead of setting up a crowdsourcing
task is minimal.

Data obtained from people is usually quite noisy. For instance, when workers on crowd-
sourcing platforms are asked objective binary-choice questions, it is not uncommon to have
an error as large as 40%; when people are asked for their personal preferences over a set of
items, the data obtained typically has many inconsistencies. There are various reasons for
this noise, ranging from the lack of expertise in objective tasks, differences in preferences
across people, absence of proper incentives, and sometimes due to inadequacies of the inter-
faces. These issues give rise to two fundamental challenges in crowdsourcing and learning
from people: (i) accurate estimation from noisy data obtained from people, and (ii) incen-
tivizing people to provide better data. These two challenges form the two main parts of this
thesis.

Except for this introductory chapter and the concluding chapter, each of the two parts
and all seven chapters are written in an (almost) independent fashion, allowing the reader
to jump to any chapter of interest with negligible loss in context.

Estimation: Permutation-based models and algorithms

A central challenge in learning from people is to draw inferences from the highly noisy data
from people, for instance, to estimate the correct answers to objective questions from workers’
erroneous responses or to estimate the preferences of the population from disparate individual
responses. These estimation tasks must be performed in a statistically and computationally
efficient manner while making minimal assumptions about how people behave.

In this thesis, we address this estimation challenge for several different settings such as
ranking and preference prediction, labeling and classification, and recommender systems and
matrix completion. We approach these problems from the lens of statistical learning theory
where we assume that the noise is stochastic and is governed by some underlying unknown
probabilities. Unsurprisingly, there is a substantial body of past literature for each of these
problems [23, 34, 35, 44, 46, 56, 84, 85, 88, 98, 112, 116, 117, 121, 122, 125, 133, 151, 177, 206,
220, 245, 248, 274]. These prior works operate largely under what we call parameter-based
modeling assumptions.

Definition 1. Parameter-based models (informal). Every entity is governed by one (or
few) unknown parameters. The probability of any event is a specific, known function of the
parameters associated to the entities involved in the event.

Let us illustrate the concept of parameter-based models with an example. Consider a
collection of items such as a set of movies, cars, or sports teams. In many applications, it is
required to perform a ranking or estimation task pertaining to these items based on noisy
comparisons between various pairs of items. The comparisons are stochastic, that is, for
each pair of items (i, j) there is some probability P(i beats j) that item i beats item j in any
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comparison between them. A “model” in this context is then a set of assumptions on these
probabilities. In this setting, a popular class of parameter-based models assumes that every
item i is associated to some real-valued parameter, say wi. The model then assumes that
there exists an increasing function, say F , such that the probability of any item i beating
any item j is exactly

P(i beats j) = F (wi − wj).

The function F is also assumed to be known. For instance, two popular choices of this
function F are the Gaussian CDF which leads to the Thurstone model [253] and the sigmoid
function which leads to the Bradley-Terry-Luce model [20, 154].

In various applications, parameter-based models are a popular modeling choice, some-
times because they are more intuitive to write down, and sometimes because they are more
amenable for analysis and algorithm design. However, for the applications of our interest, we
find such parameter-based models to be quite restrictive. For instance, the parameter-based
models assume that the entire behavior of any person or any item is governed by a single (or
a few) number. Moreover, the assumption that the data is governed by some specific func-
tion of these parameters, and further that this function is known, forms a severely restrictive
assumption.

In this thesis, we instead consider what we call permutation-based models that are strictly
and significantly more general than parameter-based models.

Definition 2. Permutation-based models (informal). The set of entities in the system
has some unknown total ordering and the probabilities of events are monotonic with respect
to this ordering.

For instance, the permutation-based model that we consider for the pairwise-comparison
setting assumes that the items have some underlying total ordering, and for any triplet of
items (i, j, `) such that i is higher than j in the ordering, it assumes that

P(i beats `) ≥ P(j beats `).

Observe that the permutation-based model includes all parameter-based models as special
cases and is considerably more general. Under this permutation-based model, the items are
not governed by any parameters, and the probabilities do not have to obey any restrictive
functional form, thereby imparting this model significant generality.

Our permutation-based models are inspired from empirical evidence in psychology and
economics (see, for instance, the papers [11, 59, 163, 255]). Experimental results in this
line of literature reveal that parameter-based models form a poor fit to the data, whereas
assumptions of the permutation-based form are much more representative of the data in the
applications considered therein.

In this thesis, we consider several problems pertaining to estimation from data from
people. In each of these problems, we design estimation algorithms and perform an associ-
ated statistical analysis. Under standard metrics of measuring the performance of estima-
tion algorithms, we establish upper bounds on the error incurred by our estimators under
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the permutation-based models. We complement these results with matching information-
theoretic lower bounds showing that our results are sharp, that is, no other estimation
algorithm can perform better (up to logarithmic factors) under the permutation-based mod-
els.

With these results one may naturally have the following question: The aforementioned
estimation algorithms and bounds address the quite general permutation-based model. Now
suppose that the data is guaranteed to be drawn from some parameter-based model. Then
if one were to design an estimator tailored specifically to this parameter-based model, then
can this estimator exploit the restrictive assumptions of this model to yield a (much) better
performance than the estimators based on permutation-based models? We show that, some-
what surprisingly, the answer is no – even if an estimator was handcrafted to incorporate
the restrictive assumptions of parameter-based models and if the data was always drawn
from this model, this estimator cannot perform any better (up to logarithmic factors) than
the much more generally applicable permutation-based estimators. This phenomenon is a
recurring theme of Part I of this thesis.

Permutation-based models enjoy a win-win in terms of the statistical
bias-variance tradeoff as compared to parameter-based models.

Please see Figure 1.1 for a pictorial illustration.
We now describe the contributions of Part I of this thesis in some more detail.
In Chapter 2 we consider data in the form of pairwise comparisons – there is a collection

of items and we have data of the form “item i is better than item j” for various pairs (i, j)
of these items. This form of data is motivated by the well known [13, 247] phenomenon
that for human beings, choosing one of two options requires far lesser time and effort as
compared to giving a cardinal score (numeric rating) for each item. Moreover empirical
evidence [220, Section 5] also suggests pairwise-comparison data is typically subject to a
lower noise than cardinal scores. In this chapter, we address the problem of estimating the
underlying probabilities of the pairwise comparisons – for any given pair of items (i, j), what
is the probability that item i will beat item j if they are compared? In contrast to prior
works [23, 46, 98, 112, 121, 177, 220] that consider restrictive parameter-based models for
analyzing pairwise-comparison data, we consider a significantly more general permutation-
based model which is also called the strong stochastic transitivity model in the literature. We
provide various algorithms for estimation under this model, establish associated statistical
guarantees, and show that making parameter-based assumptions offer little help. We also
show that our assumed model is a remarkable sweet spot: On one hand, our aforementioned
results imply that moving to more restrictive models do not help, and on the other hand we
also show that more general models are not very useful as they result in an estimation error
that is almost as high as when making no assumptions at all. This chapter is based on joint
works with S. Balakrishnan, M. J. Wainwright, and A. Guntuboyina [221, 223].

In Chapter 3 we continue with the setting of pairwise comparisons, with the goal of
identifying the top k items for some value of k, or alternatively, recovering a ranking of all
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Figure 1.1: A comparison of the performance of permutation-based estimators with parameter-
based estimators: (a) permutation-based estimators rely on strictly and significantly fewer assump-
tions; (b) when data follows a permutation-based model, the error incurred by permutation-based
estimators is an order of magnitude lower; and (c) when data follows a parameter-based model,
the error incurred by permutation-based estimators is no more (up to logarithmic factors) than the
error incurred by the respective parameter-based estimators.

the items. We consider requirements of both exact and approximate recovery. For the latter
requirement, we propose an abstract class of approximation metrics that is based on a simple
and natural motonicity condition and encapsulates many popular approximation metrics such
as the Hamming error. We analyze a simple counting algorithm that ranks the items in order
of the number of pairwise comparisons won, and show it has three attractive features: (i) its
computational efficiency leads to speed-ups of several orders of magnitude in computation
time as compared to prior work; (ii) it is robust in that theoretical guarantees impose very
mild (permutation-based) conditions on the underlying pairwise-comparison probabilities;
and (iii) it is an optimal method up to constant factors for all of the aforementioned metrics.
In contrast, prior works on this topic such as [46, 248] address only a few specific metrics
of recovery, and furthermore, restrict attention to the parameter-based BTL model. This
chapter is based on joint work with M. J. Wainwright [234].

In Chapter 4, we move to the problem of labeling (or classification) from the crowd.
The aggregation and denoising of crowd labeled data is a task that has gained increased
significance with the advent of crowdsourcing platforms and massive datasets. Here one has
access to the (noisy) answers of multiple workers to several binary-choice questions and the
goal is to estimate the true answers to each of the questions. In this chapter, we propose a
permutation-based model for crowd labeled data that is a significant generalization of the
parameter-based models of the Dawid-Skene [60] type, which are the focus of prior works [56,
84, 85, 88, 116, 117, 125, 151, 274]. We also introduce a new error metric by which to compare
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different estimators which is more suited for this problem as compared to the Hamming error
metric considered in all prior works. We design estimation algorithms for this problem and
show several associated strong statistical guarantees with respect to its performance on both
the permutation-based and the parameter-based models. This chapter is based on joint work
with S. Balakrishnan and M. J. Wainwright [222].

In Chapter 5, we consider the problem of noisy matrix completion, in which the goal is
to reconstruct a structured matrix whose entries are partially observed in noise. Standard
approaches to this problem are based on assuming that the underlying matrix has low rank, or
is well-approximated by a low-rank matrix. In this chapter, we advocate a rethinking of this
low-rank assumption, and propose a richer model based on what we term the “permutation-
rank” of a matrix. We describe how the classical non-negative rank model can be seen
to enforce restrictive and often undesirable parameter-based assumptions, and the richer
permutation-rank model avoids these strong assumptions. We again present estimation
algorithms and various associated statistical guarantees. These guarantees also include sharp
oracle inequalities – bounds on the error incurred by our estimator when data does not follow
the assumed models – that are also applicable to the problem settings of earlier chapters. We
also provide various structural results characterizing the uniqueness of the permutation-rank
decomposition, and characterizing convex approximations of the permutation-rank polytope.
This chapter is based on joint work with S. Balakrishnan and M. J. Wainwright [224].

We also mention in passing some other works on closely related topics that the author
contributed to during his PhD, but are excluded from this thesis for the purposes of brevity
and cohesiveness. We briefly outline these works here and provide relevant references for the
interested reader:
• Cardinal data is noisier in practice as compared to ordinal data [220, Section 5].
• Ranking from active pairwise comparisons: an efficient algorithm, sharp guarantees under

a general permutation-based model, and futility of parameter-based models [100].
• A case for ordinal (comparison-based) peer-grading in massive open online courses (MOOCs)

and an aggregation algorithm [225].
• Estimation from comparisons between arbitrary pairs of items, and error-bounds based on

on this comparison graph for parameter-based models [220].
• Adaptivity to local underlying smoothness when estimating pairwise comparison matrices:

sharp statistical and computational guarantees, and a surprising negative result about the
popular least squares estimator [223].
• Impossibility of reasonable models for crowdsourced-labeling that guarantee convex esti-

mation [236].
• An algorithm based on a regularized entropy approach for aggregating crowdsourced labels

and associated empirical evaluations [275].
• An analysis of the review data from the Neural Information Processing Systems (NIPS)

2016 conference [218].
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Incentives: Multiplicative payment mechanisms

The second fundamental challenge in learning from people is to collect higher-quality data
by incentivizing people to respond in a suitable manner. We consider incentives in the
form of performance-based monetary payments, which are applicable to the extensively
used crowdsoucing platforms such as Amazon Mechanical Turk (mturk.com) and others
(crowdflower.com,microtask.com, upwork.com). Alongside, we also consider the naturally
associated requirement of providing appropriate interfaces to people so that they can express
their knowledge in the best possible manner.

We consider a crowdsourcing setting where the requester possesses a collection of objective
questions and wishes to elicit the answers to these questions from the crowd. We further focus
on a standard setting in crowdsourcing where the requester has access to the correct answers
to a (small) subset of the questions; these questions are called gold standard questions and
are used to evaluate the workers’ performance and to make payments to them. The gold
standard questions are mixed uniformly at random among the actual questions, and the
worker does not know which of the questions are gold standard. On receiving any worker’s
responses to all the questions, for the purpose of determining the payment to the worker, we
retain only the responses to the gold standard questions.

Any payment mechanism employed must ensure that workers are incentivized to report
honestly, and that the system cannot be gamed. In order to formalize this requirement, we
employ the standard notion of incentive compatibility from game theory and decision theory.

Definition 3. Incentive compatibility (informal). The expected payment, from the worker’s
point of view, must be strictly maximized when the worker responds honestly.

As a toy example to understand the concept of incentive compatibility, consider a binary-
choice question with options A and B to which the requester knows the answer. The requester
wishes to ask this question to a worker on a crowdsourcing platform and incentivize the
worker to provide the answer that the worker believes is most likely to be correct. Now
suppose that the payment scheme is set as follows: pay an amount x > 0 when the worker’s
answer is correct and pay an amount y (x > y ≥ 0) when it is incorrect. The payment
scheme is made known to the worker. Now suppose that the worker believes that option
A is the correct answer with probability pA and that option B is the correct answer with
probability pB = 1 − pA. Then from the worker’s perspective, choosing option A will yield
a payment of x if A turns out to be correct (which happens with probability pA from the
worker’s perspective) and a payment of y if B is correct (with probability pB), thereby
yielding a payment of (xpA + ypB) in expectation. Similarly, choosing option B will yield
an expected payment of (ypA + xpB). Under the assumption that the worker wishes to
maximize his/her expected payment, one can verify that the worker is incentivized to report
option A if pA > pB and option B if pB > pA. The mechanism is thus incentive compatible.

The goal is to design payment mechanisms for crowdsourcing that are incentive compat-
ible. To this end, the framework of “strictly proper scoring rules” [24, 94, 216] provides a
general theory for eliciting information for settings where the responses can subsequently be

mturk.com
crowdflower.com
microtask.com
upwork.com
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Is this the Golden Gate Bridge?

Yes
No
I’m not sure

3 points ½ point 3 points
Final pay = 4	½

x x

Yes
No
I’m not sure
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No
I’m not sure

●
●

●

Figure 1.2: An illustration of a multiplicative payment mechanism. The three questions shown in
the figure are the gold standard questions. The depicted payment is the multiplicative part which
depends on the worker’s answers, and the fixed part of the payment is set as zero in this example.

verified by the requester. (Consequently, our mechanisms can also be called strictly proper
scoring rules for crowdsourcing.) Importantly, the framework of strictly proper scoring rules,
however, provides a large collection of possible mechanisms and does not guide the choice of
a specific mechanism from this collection [94].

Our approach towards this problem is to design mechanisms that can be used in prac-
tical crowdsourcing applications, and hence we must somehow choose one mechanism for
deployment. As a first step in this direction, in order to narrow down the possible choices
for mechanisms in a principled manner, we begin by imposing a very simple and natural
requirement that we call no-free-lunch.

Definition 4. No-free-lunch (informal). The payment should be minimum if all attempted
(gold standard) questions are answered incorrectly.

Observe that no-free-lunch is a very weak requirement. For instance, consider a task
where each question is of a binary-choice format. If a worker chooses answers uniformly at
random for every question, at least one answer will be correct with high probability. On
the other hand, the no-free-lunch requirement is invoked only when all attempted questions
are answered incorrectly, and hence there is an exponentially small (in the number of gold
standard questions) probability that the no-free-lunch requirement will be invoked.

In this thesis, we design mechanisms for various settings that satisfy the two natural
requirements of incentive compatibility and no-free-lunch. Interestingly, a common theme
across all our mechanisms is that they have a multiplicative form.

Definition 5. Multiplicative payment mechanism (informal). The payment mechanism
gives a certain number of points separately for each (gold standard) question depending on
the worker’s answer, and the final payment is a product of all of these points. This answer-
dependent payment may be augmented by adding a fixed (independent of worker’s answers)
payment to the computed product.

An example of such a multiplicative payment mechanism is illustrated in Figure 1.2.
We now return to our goal of choosing a mechanism using a principled approach, where

we had imposed the no-free-lunch requirement to reduce the number of possible mechanisms



CHAPTER 1. INTRODUCTION 9

from a massively large class to a possibly somewhat smaller set. It turns out that our no-free-
lunch requirement provides remarkable assistance on that front – we show that, surprisingly,
there is no other incentive-compatible mechanism that satisfies no-free-lunch.

Multiplicative incentive mechanisms are the only mechanisms that
are incentive compatible and satisfy no-free-lunch.

We also show that multiplicative mechanisms have additional appealing properties in the
context of crowdsourcing. The simplicity of our mechanisms is an added benefit ithat imparts
a significant practical appeal.

With this background, we now discuss the individual chapters of Part II of this thesis in
more detail.

In Chapter 6, we consider a crowdsourced data-collection setting with a goal of incentiviz-
ing workers to answer only the questions that they are sure about, and skip the questions
for which the worker is not confident enough. An interface of this form is illustrated in Fig-
ure 1.2 (note that our work is not restricted to only multiple choice questions). We design
multiplicative incentive mechanisms for this setting and show that they are are the only in-
centive compatible mechanisms to satisfy the no-free-lunch requirement. We also show that
among all incentive compatible mechanisms that may or may not satisfy no-free-lunch, our
mechanisms make the strictly smallest expected payment when a worker answers randomly.
This chapter is based on joint work with D. Zhou [235].

In Chapter 7, we consider an interface that additionally elicits a quantized confidence of
the worker. For example, for each attempted question the worker may be asked to indicate
whether he/she has a “low”, “moderate”, or “high” confidence. We consider an even weaker
notion of no-free-lunch that applies only when all attempted questions (in the gold standard)
are answered incorrectly and are indicated as the highest confidence level by the worker. We
then design a multiplicative payment mechanism and prove its uniqueness. This chapter is
based on joint work with D. Zhou [235].

In Chapter 8 we consider an “approval voting” interface [21, 51, 185] in which the worker
is allowed to select any number of options that he/she thinks could possibly be the correct
answer. We first show an impossibility result that no mechanism can be incentive compatible
in this setting. Then under an additional assumption on the granularity of peoples’ responses,
we design a multiplicative mechanism for which we prove strong guarantees of uniqueness
and optimality. This chapter is based on joint work with D. Zhou and Y. Peres [237].

Finally, we also mention in passing some other closely related works by the author during
his PhD that are omitted from this thesis. We also provide relevant references for the
interested reader.
• A new “self-correction” interface for crowdsourcing and associated incentive mechanisms [219].
• Mechanisms that operate without gold standard questions, and are simpler than all incentive-

compatible mechanisms in past literature [115].
• Mechanisms for parametric prediction from parametric agents [156].
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Notation

We now describe some notation that we employ throughout this thesis.
We use the notation c along with any subscripts or superscripts, such as c1, c′ etc., to

denote positive universal constants.
We use R to denote the set of all real numbers, and R+ to denote all non-negative real

numbers. For any vector or matrix, we use the superscript T to denote its transpose. For
any positive integer k, we use the notation [k] to represent the set {1, . . . , k}. The indicator
function is denoted by 1, that is, 1{z} = 1 if z is true, and 0 otherwise.

For any vector v ∈ Rn and any value p ≥ 1, we use ‖v‖p to denote the `p-norm of
vector v, that is, ‖v‖p = (

∑n
i=1 |vi|p)1/p. We also use ‖v‖∞ = maxni=1 |vi|. For any square

matrix M ∈ Rn×n, we use the notation trace(M) to denote the trace of matrix M , that is,
trace(M) =

∑n
i=1Mii. For any pair of matrices M1 ∈ Rn×d1 and M2 ∈ Rn×d2 , we use the

notation 〈〈M1, M2〉〉 to denote the trace inner product between the two matrices, that is,
〈〈M1, M2〉〉 = trace(MT

1 M2). For any matrixM ∈ Rn×d, we use |||M |||F to denote its Frobenius

norm and |||M |||op to denote its `2 operator norm, that is, |||M |||F =
√
〈〈M, M〉〉 =

√∑n
i=1

∑d
j=1 M

2
ij

and |||M |||op = supv∈Rd\{0} ‖Mv‖2/‖v‖2. For any matrixM ∈ Rn×d, we let σ1(M), . . . , σmax{n,d}(M)
denote its singular values (ordered from largest to smallest); if the rank of M equals r, then
we must have σr+1(M) = · · · = σmax{n,d}(M) = 0. For any symmetric matrix M ∈ Rn×n, we
let λ1(M), . . . , λn(M) denote its ordered eigenvalues.

We use the standard Landau order notation for asymptotics: we write an = O(bn) to
mean that there are universal constants C ≥ 0 and N ≥ 1 such that an ≤ Cbn for every
n ≥ N . Similarly, we write an = Ω(bn) to mean that an ≥ cbn for every n ≥ N , where
c > 0 and N ≥ 1 are some universal constants. We write an = Θ(bn) when an = O(bn) and
an = Ω(bn). We write an = o(bn) to mean that for every c > 0 there exists some N ≥ 1
(which may depend on c) such that an ≤ cbn for all n ≥ N . We augment the Landau order
notation with a tilde to mean the corresponding notation up to logarithmic factors.
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Part I

Statistical Learning:
Permutation-based Models and

Estimation Algorithms



12

Chapter 2

Estimating Pairwise Comparison
Probabilities

“Compare yourself with the best not to feel jealous but to
strive to become at least as good.”

– Albert Einstein

2.1 Introduction

Pairwise comparison data is ubiquitous and arises naturally in a variety of applications,
including tournament play, voting, online search rankings, and advertisement placement
problems. In rough terms, given a set of n objects along with a collection of possibly incon-
sistent comparisons between pairs of these objects, the goal is to aggregate these comparisons
in order to estimate underlying properties of the population. One property of interest is the
underlying matrix of pairwise comparison probabilities—that is, the matrix in which en-
try (i, j) corresponds to the probability that object i is preferred to object j in a pairwise
comparison. The Bradley-Terry-Luce [20, 154] and Thurstone [253] models are mainstays
in analyzing this type of pairwise comparison data. These models are parameter-based in
nature: more specifically, they assume the existence of an n-dimensional weight vector that
measures the quality or strength of each item. The pairwise comparison probabilities are
then determined via some fixed function of the qualities of the pair of objects. Estimation in
these models reduces to estimating the underlying weight vector, and a large body of prior
work has focused on these models (e.g., see the papers [98, 177, 220]). However, such models
enforce strong relationships on the pairwise comparison probabilities that often fail to hold
in real applications. Various papers [11, 59, 163, 255] have provided experimental results in
which these parameter-based modeling assumptions fail to hold.

Our focus in this chapter is on models that have their roots in social science and psychol-
ogy (e.g., see Fishburn [78] for an overview), in which the only coherence assumption imposed
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on the pairwise comparison probabilities is that of a permutation-based form and is known as
strong stochastic transitivity, or SST for short. These models include the parameter-based
models as special cases but are considerably more general. The permutation-based SST
model has been validated by several empirical analyses, including those in a long line of
work [11, 59, 163, 255]. The conclusion of Ballinger et al. [11] is especially strongly worded:

All of these parametric c.d.f.s are soundly rejected by our data. However, SST
usually survives scrutiny.

We are thus provided with strong empirical motivation for studying the fundamental proper-
ties of pairwise comparison probabilities satisfying the permutation-based SST assumptions.

In this chapter, we focus on the problem of estimating the matrix of pairwise comparison
probabilities—that is, the probability that an item i will beat a second item j in any given
comparison. Estimates of these comparison probabilities are useful in various applications.
For instance, when the items correspond to players or teams in a sport, the predicted odds
of one team beating the other are central to betting and bookmaking operations. In a
supermarket or an ad display, an accurate estimate of the probability of a customer preferring
one item over another, along with the respective profits for each item, can effectively guide
the choice of which product to display. Accurate estimates of the pairwise comparison
probabilities can also be used to infer partial or full rankings of the underlying items.

Our contributions: We begin by studying the performance of optimal methods for es-
timating matrices in the permutation-based SST class: our first main result (Theorem 1)
characterizes the minimax rate in squared Frobenius norm up to logarithmic factors. This
result reveals that even though the permutation-based SST class of matrices is considerably
larger than the classical parameter-based class, surprisingly, it is possible to estimate any
permutation-based SST matrix at nearly the same rate as the classical parameter-based fam-
ily. On the other hand, our achievability result is based on an estimator involving prohibitive
computation, as a brute force approach entails an exhaustive search over permutations. Ac-
cordingly, we turn to studying computationally tractable estimation procedures. Our second
main result (Theorem 2) applies to a polynomial-time estimator based on soft-thresholding
the singular values of the data matrix. An estimator based on hard-thresholding was studied
previously in this context by Chatterjee [44]. We sharpen and generalize this previous analy-
sis, and give a tight characterization of the rate achieved by both hard and soft-thresholding
estimators. Our third contribution is a polynomial-time computable estimator which we
term the CRL estimator that we show is consistent and is guaranteed to output a matrix in
the permutation-based SST class, and is also optimal over the parameter-based class (Theo-
rem 3). Our fourth contribution, formalized in Theorems 4 and 5, is to show how for certain
interesting subsets of the full permutation-based SST class, a combination of parameter-
based maximum likelihood [220] and noisy sorting algorithms [23] leads to a tractable two-
stage method that achieves the minimax rate. Our fifth contribution is to supplement our
minimax lower bound with lower bounds for various known estimators, including those based
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on thresholding singular values [44], noisy sorting [23], as well as parameter-based estima-
tors [98, 177, 220]. These lower bounds show that none of these tractable estimators achieve
the minimax rate uniformly over the entire class. The lower bounds also show that the min-
imax rates for any of these subclasses is no better than the full permutation-based SST class
(up to logarithmic factors). Finally we show (Proposition 2) that the permutation-based
SST class is a sweet spot: in addition to our aforementioned results showing that restricting
to smaller parameter-based classes does not help, we show that richer classes that are studied
in psychology and economics are so general that they prohibit any meaningful estimation.

Related work: The literature on ranking and estimation from pairwise comparisons is
vast and we refer the reader to various surveys [41, 79, 158] for a more detailed overview.
Here we focus our literature review on those papers that are most closely related to our
contributions. Some recent work [98, 177, 220] studies procedures and minimax rates for
estimating the latent quality vector that underlie parameter-based models. Theorem 5 in
this chapter provides an extension of these results, in particular by showing that an optimal
estimate of the latent quality vector can be used to construct an optimal estimate of the
pairwise comparison probabilities. Chatterjee [44] analyzed matrix estimation based on
singular value thresholding, and obtained results for the class of permutation-based SST
matrices. In Theorem 2, we provide a sharper analysis of this estimator, and show that our
upper bound is—in fact—unimprovable.

In past work, various authors [23, 121] have considered the noisy sorting problem, in
which the goal is to infer the underlying order under a so-called high signal-to-noise ratio
(SNR) condition. The high SNR condition means that each pairwise comparison has a
probability of agreeing with the underlying order that is bounded away from 1

2
by a fixed

constant. Under this high SNR condition, these authors provide polynomial-time algorithms
that, with high probability, return an estimate of true underlying order with a prescribed
accuracy. Part of our analysis leverages an algorithm from the paper [23]; in particular,
we extend their analysis in order to provide guarantees for estimating pairwise comparison
probabilities as opposed to estimating the underlying order.

As will be clarified in the sequel, the assumption of strong stochastic transitivity has
close connections to the statistical literature on shape constrained inference (e.g., [241]),
particularly to the problem of bivariate isotonic regression. In our analysis of the least-
squares estimator, we leverage metric entropy bounds from past work in this area (e.g., [42,
86]).

In Section 2.3.7, we study estimation under two popular models that are closely related
to the permutation-based SST class, and make even weaker assumptions. We show that
under these moderate stochastic transitivity (MST) and weak stochastic transitivity (WST)
models, the Frobenius norm error of any estimator, measured in a uniform sense over the
class, must be almost as bad as that incurred by making no assumptions whatsoever. Con-
sequently, from a statistical point of view, these assumptions are not strong enough to yield
reductions in estimation error.
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Organization: The remainder of the chapter is organized as follows. We begin by provid-
ing a background and a formal description of the problem in Section 2.2. In Section 2.3, we
present the main theoretical results of the chapter. We then present results from numerical
simulations in Section 2.4. We present a concluding discussion in Section 2.5. Finally, we
present proofs of our main results in Section 2.6.

2.2 Problem setting

Given a collection of n ≥ 2 items, suppose that we have access to noisy comparisons between
any pair i 6= j of distinct items. The full set of all possible pairwise comparisons can be
described by a probability matrix M∗ ∈ [0, 1]n×n, in which M∗

ij is the probability that item i
is preferred to item j. The upper and lower halves of the probability matrix M∗ are related
by the shifted-skew-symmetry condition1 M∗

ji = 1−M∗
ij for all i, j ∈ [n]. For concreteness,

we set M∗
ii = 1/2 for all i ∈ [n].

2.2.1 Estimation of pairwise comparison probabilities

For any matrix M∗ ∈ [0, 1]n×n with M∗
ij = 1−M∗

ji for every (i, j), suppose that we observe
a random matrix Y ∈ {0, 1}n×n with (upper-triangular) independent Bernoulli entries, in
particular, with P[Yij = 1] = M∗

ij for every 1 ≤ i ≤ j ≤ n and Yji = 1 − Yij. Based
on observing Y , our goal in this chapter is to recover an accurate estimate, in the squared
Frobenius norm, of the full matrix M∗.

Our primary focus in this chapter will be on the setting where for n items we observe the
outcome of a single pairwise comparison for each pair. We will subsequently (in Section 2.3.6)
also address the more general case when we have partial observations, that is, when each
pairwise comparison is observed with a fixed probability.

For future reference, note that we can always write the Bernoulli observation model in
the linear form

Y = M∗ +W, (2.1)

where W ∈ [−1, 1]n×n is a random matrix with independent zero-mean entries for every i ≥ j
given by

Wij ∼

{
1−M∗

ij with probability M∗
ij

−M∗
ij with probability 1−M∗

ij,
(2.2)

and Wji = −Wij for every i < j. This linearized form of the observation model is convenient
for subsequent analysis.

1In other words, the shifted matrix M∗ − 1
2 is skew-symmetric.
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2.2.2 Strong stochastic transitivity

Beyond the previously mentioned constraints on the matrix M∗—namely that M∗
ij ∈ [0, 1]

and M∗
ij = 1−M∗

ij—more structured and interesting models are obtained by imposing fur-
ther restrictions on the entries of M∗. We now turn to one such condition, known as strong
stochastic transitivity (SST), which is a permutation-based model that reflects the natural
transitivity of any complete ordering. Formally, suppose that the full collection of items [n]
is endowed with a complete ordering π∗. We use the notation π∗(i) < π∗(j) to convey that
item i is preferred to item j in the total ordering π∗. Consider some triple (i, j, k) such that
π∗(i) < π∗(j). A matrix M∗ satisfies the permutation-based SST condition if the inequality
M∗

ik ≥ M∗
jk holds for every such triple. The intuition underlying this constraint is the fol-

lowing: since i dominates j in the true underlying order, when we make noisy comparisons,
the probability that i is preferred to k should be at least as large as the probability that j is
preferred to k. The SST condition was first described2 in the psychology literature (e.g., [59,
78]).

The permutation-based SST condition is characterized by the existence of a permutation
such that the permuted matrix has entries that increase across rows and decrease down
columns. More precisely, for a given permutation π∗, let us say that a matrix M is π∗-
faithful if for every pair (i, j) such that π∗(i) < π∗(j), we have Mik ≥ Mjk for all k ∈ [n].
With this notion, the set of permutation-based SST matrices is given by

CSST =
{
M ∈ [0, 1]n×n | Mba = 1−Mab ∀ (a, b), and ∃ perm. π∗ s.t. M is π∗-faithful

}
.

(2.3)

Note that the stated inequalities also guarantee that for any pair with π∗(i) < π∗(j), we
have Mki ≤Mkj for all k, which corresponds to a form of column ordering. The class CSST is
our primary focus in this chapter.

2.2.3 Classical parameter-based models

Let us now describe a family of classical parameter-based models, one which includes Bradley-
Terry-Luce and Thurstone (Case V) models [20, 154, 253]. In the sequel, we show that these
parameter-based models induce a relatively small subclass of the permutation-based SST
matrices CSST.

In more detail, parameter-based models are described by a weight vector w∗ ∈ Rn that
corresponds to the notional qualities of the n items. Moreover, consider any non-decreasing
function F : R 7→ [0, 1] such that F (t) = 1− F (−t) for all t ∈ R; we refer to any such
function F as being valid. Any such pair (F,w∗) induces a particular pairwise comparison
model in which

M∗
ij = F (w∗i − w∗j ) for all pairs (i, j). (2.4)

2We note that the psychology literature has also considered what are known as weak and moderate
stochastic transitivity conditions. From a statistical standpoint, pairwise comparison probabilities cannot be
consistently estimated in a minimax sense under these conditions. We establish this formally in Section 2.3.7.
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For each valid choice of F , we define

CPAR(F ) =
{
M ∈ [0, 1]n×n |M induced by Equation (2.4) for some w∗ ∈ Rn

}
. (2.5a)

For any choice of F , it is straightforward to verify that CPAR(F ) is a subset of CSST, meaning
that any matrix M induced by the relation (2.4) satisfies all the constraints defining the set
CSST. As particular important examples, we recover the Thurstone parameter-based model
by setting F (t) = Φ(t) where Φ is the Gaussian CDF, and the Bradley-Terry-Luce model by
setting F (t) = et

1+et
, corresponding to the sigmoid function.

Remark: Since the pairwise probabilities depend only on the differences w∗i − w∗j , we can
assume without loss of generality that 〈w∗, 1〉 = 0. Moreover, since the choice of F can
include rescaling its argument, we can also assume that ‖w∗‖∞ ≤ 1. Accordingly, we assume
in our subsequent analysis that w∗ belongs to the set

M∗ ∈
{
w ∈ Rn | such that 〈w, 1〉 = 0 and ‖w‖∞ ≤ 1

}
. (2.5b)

2.2.4 Inadequacies of parameter-based models

As noted in the introduction, a large body of past work (e.g., [11, 59, 163, 255]) has shown
that parameter-based models, of the form (2.5a) for some choice of F , often provide poor
fits to real-world data. What might be a reason for this phenomenon? Roughly, parameter-
based models impose the very restrictive assumption that the choice of an item depends
on the value of a single latent factor (as indexed by w∗)—e.g., that our preference for cars
depends only on their fuel economy, or that the probability that one hockey team beats
another depends only on the skills of the goalkeepers.

This intuition can be formalized to construct matrices M∗ ∈ CSST that are far away from
every valid parameter-based approximation as summarized in the following result:

Proposition 1. There exists a universal constant c > 0 such that for every n ≥ 4, there
exist matrices M∗ ∈ CSST for which

1

n2
inf

valid F
inf

M∈CPAR(F )
|||M −M∗|||2F ≥ c. (2.6)

Given that every entry of matrices in CSST lies in the interval [0, 1], the Frobenius norm
diameter of the class CSST is at most n2, so that the scaling of the lower bound (2.6) cannot
be sharpened.

What sort of matrices M∗ are “bad” in the sense of satisfying a lower bound of the
form (2.6)? Panel (a) of Figure 2.1 describes the construction of one “bad” matrix M∗. In
order to provide some intuition, let us return to the analogy of rating cars. A key property
of any parameter-based model is that if we prefer car 1 to car 2 more than we prefer car 3
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Figure 2.1: (a) Construction of a “bad” matrix: for n divisible by 4, form the matrix M∗ ∈ Rn×n
shown, where each block has dimensions n/4 × n/4. (b) Estimation for a class of permutation-
based SST matrices that are far from the parameter-based models. The parameter-based model
(Thurstone MLE) yields a poor fit, whereas fitting using the singular value thresholding (SVT)
estimator, which allows for estimates over the full permutation-based SST class, leads to consistent
estimation.

to car 4, then we must also prefer car 1 to car 3 more than we prefer car 2 to car 4.3 This
condition is potentially satisfied if there is a single determining factor across all cars—for
instance, their fuel economy.

This ordering condition is, however, violated by the pairwise comparison matrix M∗ from
Figure 2.1(a). In this example, we have M∗

12 = 6
8
> 5

8
= M∗

34 and M∗
13 = 7

8
< 8

8
= M∗

24. Such
an occurrence can be explained by a simple two-factor model: suppose the fuel economies
of cars 1, 2, 3 and 4 are 20, 18, 12 and 6 kilometers per liter respectively, and the comfort
levels of the four cars are also ordered 1 � 2 � 3 � 4, with i � j meaning that i is more
comfortable than j. Suppose that in a pairwise comparison of two cars, if one car is more
fuel efficient by at least 10 kilometers per liter, it is always chosen. Otherwise the choice
is governed by a parameter-based choice model acting on the respective comfort levels of
the two cars. Observe that while the comparisons between the pairs (1, 2), (3, 4) and (1, 3)
of cars can be explained by this parameter-based model acting on their respective comfort
levels, the preference between cars 1 and 4, as well as between cars 2 and 4, is governed by
their fuel economies. This two-factor model accounts for the said values of M∗

12, M∗
34, M∗

24

and M∗
13, which violate parameter-based requirements.

While this was a simple hypothetical example, there is a more ubiquitous phenomenon
underlying our example. It is often the case that our preferences are decided by comparing
items on a multitude of dimensions. In any situation where a single (latent) parameter per

3This condition follows from the proof of Proposition 1.
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item does not adequately explain our preferences, one can expect that the class of parameter-
based models to provide a poor fit to the pairwise preference probabilities.

The lower bound on approximation quality guaranteed by Proposition 1 means that any
parameter-based estimator of the matrix M∗ should perform poorly. This expectation is
confirmed by the simulation results in panel (b) of Figure 2.1. After generating observations
from a “bad matrix” over a range of n, we fit the data set using either the maximum likelihood
estimate in the Thurstone parameter-based model, or the singular value thresholding (SVT)

estimator, to be discussed in Section 2.3.2. For each estimator M̂ , we plot the rescaled

Frobenius norm error
|||M̂−M∗|||2

F
n2 versus the sample size. Consistent with the lower bound (2.6),

the error in the Thurstone-based estimator stays bounded above a universal constant. In
contrast, the SVT error goes to zero with n, and as our theory in the sequel shows, the rate
at which the error decays is at least as fast as 1/

√
n.

2.3 Main results

Thus far, we have introduced two classes of models for matrices of pairwise comparison
probabilities. Our main results characterize the rates of estimation associated with different
subsets of these classes, using either optimal estimators (that we suspect are not polynomial-
time computable in certain cases), or more computationally efficient estimators that can be
computed in polynomial-time.

2.3.1 Characterization of the minimax risk

We begin by providing a result that characterizes the minimax risk in squared Frobenius
norm over the class CSST of permutation-based SST matrices. The minimax risk is defined
by taking an infimum over the set of all possible estimators, which are measurable functions
Y 7→ M̃ ∈ [0, 1]n×n. Here the data matrix Y ∈ {0, 1}n×n is drawn from the observation
model (2.1).

Theorem 1. There are universal constants 0 < c2 < c1 such that

c2

n
≤ inf

M̃

sup
M∗∈CSST

1

n2
E[|||M̃ −M∗|||2F] ≤ c1

log2(n)

n
, (2.7)

where the infimum ranges over all measurable functions M̃ of the observed matrix Y .

We prove this theorem in Section 2.6.2. The proof of the lower bound is based on
extracting a particular subset of the class CSST such that any matrix in this subset has at
least n positions that are unconstrained, apart from having to belong to the interval [1

2
, 1].

We can thus conclude that estimation of the full matrix is at least as hard as estimating
n Bernoulli parameters belonging to the interval [1

2
, 1] based on a single observation per

number. This reduction leads to an Ω(n−1) lower bound, as stated.
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Proving an upper bound requires substantially more effort. In particular, we establish it
via careful analysis of the constrained least-squares estimator

M̂ ∈ arg min
M∈CSST

|||Y −M |||2F. (2.8a)

In particular, we prove that there are universal constants (c0, c1, c2) such that, for any matrix
M∗ ∈ CSST, this estimator satisfies the high probability bound

P
[ 1

n2
|||M̂ −M∗|||2F ≥ c0

log2(n)

n

]
≤ c1e

−c2n. (2.8b)

Since the entries of M̂ and M∗ all lie in the interval [0, 1], integrating this tail bound leads
to the stated upper bound (2.7) on the expected mean-squared error. Proving the high
probability bound (2.8b) requires sharp control on a quantity known as the localized Gaussian
complexity of the class CSST. We use Dudley’s entropy integral (e.g., [256, Corollary 2.2.8])
in order to derive an upper bound that is sharp up to a logarithmic factor; doing so in turn
requires deriving upper bounds on the metric entropy of the class CSST for which we leverage
the prior work of Gao and Wellner [86].

We do not know whether the constrained least-squares estimator (2.8a) is computable
in time polynomial in n, but we suspect not. This complexity is a consequence of the fact
that the set CSST is not convex, but is a union of n! convex sets. Given this issue, it becomes
interesting to consider the performance of alternative estimators that can be computed in
polynomial-time.

2.3.2 Sharp analysis of singular value thresholding (SVT)

The first polynomial-time estimator that we consider is a simple estimator based on thresh-
olding singular values of the observed matrix Y , and reconstructing its truncated singular
value decomposition. For the full class CSST, Chatterjee [44] analyzed the performance of

such an estimator and proved that the squared Frobenius error decays as O(n−
1
4 ) uniformly

over CSST. In this section, we prove that its error decays as O(n−
1
2 ), again uniformly over

CSST, and moreover, that this upper bound is unimprovable.
Let us begin by describing the estimator. Given the observation matrix Y ∈ Rn×n, we

can write its singular value decomposition as Y = UDV T , where the (n × n) matrix D is
diagonal, whereas the (n × n) matrices U and V are orthonormal. Given a threshold level
λn > 0, the soft-thresholded version of a diagonal matrix D is the diagonal matrix Tλn(D)
with values

[Tλn(D)]jj = max{0, Djj − λn} for every integer j ∈ [n]. (2.9)

With this notation, the soft singular-value-thresholded (soft-SVT) version of Y is given by
Tλn(Y ) = UTλn(D)V T . The following theorem provides a bound on its squared Frobenius
error:
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Theorem 2. There are universal positive constants (c1, c0, c1) such that the soft-SVT esti-

mator M̂λn = Tλn(Y ) with λn = 2.1
√
n satisfies the bound

P
[ 1

n2
|||M̂λn −M∗|||2F ≥

c1√
n

]
≤ c0e

−c1n (2.10a)

for any M∗ ∈ CSST. Moreover, there is a universal constant c2 > 0 such that for any choice
of λn, we have

sup
M∗∈CSST

1

n2
|||M̂λn −M∗|||2F ≥

c2√
n
. (2.10b)

A few comments on this result are in order. Since the matrices M̂λn and M∗ have

entries in the unit interval [0, 1], the normalized squared error 1
n2 |||M̂λn −M∗|||2F is at most 1.

Consequently, by integrating the the tail bound (2.10a), we find that

sup
M∗∈CSST

E[
1

n2
|||M̂λn −M∗|||2F] ≤ c1√

n
+ c0e

−c1n ≤ c′1√
n
.

On the other hand, the matching lower bound (2.10b) holds with probability one, mean-
ing that the soft-SVT estimator has squared error of the order 1/

√
n, irrespective of the

realization of the noise.
To be clear, Chatterjee [44] actually analyzed the hard-SVT estimator, which is based

on the hard-thresholding operator

[Hλn(D)]jj = Djj 1{Djj ≥ λn}.

Here 1{·} denotes the 0-1-valued indicator function. In this setting, the hard-SVT estimator
is simply, Hλn(Y ) = UHλn(D)V T . With essentially the same choice of λn as above, Chat-
terjee showed that the estimate Hλn(Y ) has a mean-squared error of O(n−1/4). One can
verify that the proof of Theorem 2 in this chapter goes through for the hard-SVT estimator
as well. Consequently the performance of the hard-SVT estimator is of the order Θ(n−1/2),
and is identical to that of the soft-thresholded version up to universal constants.

Together the upper and lower bounds of Theorem 2 provide a sharp characterization
of the behavior of the soft/hard SVT estimators. On the positive side, these are easily
implementable estimators that achieve a mean-squared error bounded byO(1/

√
n) uniformly

over the entire class CSST. On the negative side, this rate is slower than the O(log2 n/n) rate
achieved by the least-squares estimator, as in Theorem 1.

Note that the hard and soft-SVT estimators return matrices that may not lie in the
permutation-based SST class CSST. In Section 2.3.3, we provide an alternate polynomial-
time computable estimator with similar statistical guarantees that is guaranteed to return a
matrix in the permutation-based SST class.
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2.3.3 A polynomial-time computable proper learning estimator

In this section, we propose an estimator that is computable in polynomial time, which we
term the Count-Randomize-Least-Squares (CRL) estimator, and show that it incurs an error

of at most Õ(1/
√
n). This upper bound on the error of the CRL estimator matches (up to

logarithmic factors) the error of the SVT estimator discussed earlier, thereby imparting CRL
with the best known error guarantees for polynomial-time estimation of permutation-based
SST matrices. Moreover, unlike the SVT estimator, the CRL estimator is guaranteed to out-
put a matrix that lies in the permutation-based SST class. This property is known as ‘proper
learning’. It follows from our results that the CRL estimator is the first known polynomial-
time, proper learning estimator that is consistent over the permutation-based SST class.
Moreover, we also show that the CRL estimator yields a minimax-optimal estimate for every
parameter-based classes.

In order to define the CRL estimator, we require some additional notation. For any
permutation π on n items, let CSST(π) ⊆ CSST denote the set of all permutation-based SST
matrices that are faithful to the permutation π—that is

CSST(π) : =
{
M ∈[0, 1]n×n | Mba = 1−Mab ∀ (a, b),Mik ≥Mjk ∀ i, j, k ∈ [n] s.t. π(i) < π(j)

}
.

(2.11)

One can verify that the sets {CSST(π)} for all permutations π on n items together comprise
the permutation-based SST class CSST.

The CRL estimator acts on the observed matrix Y and outputs an estimate M̂CRL ∈ CSST

via a three-step procedure:
Step 1 (Count): For each i ∈ [n], compute the total number Ni =

∑n
j=1 Yij of pairwise

comparisons that it wins. Order the n items in terms of {Ni}ni=1, with ties broken arbitrarily.
Step 2 (Randomize): Find the largest subset of items S such that |Ni − Nj| ≤

√
n log n for

all i, j ∈ S. Taking the ordering computed in Step 1, permute this (contiguous) subset of
items uniformly at random within the subset. Denote the resulting permutation as πCRL.
Step 3 (Least squares): Compute the least squares estimate assuming that the permutation
πCRL is the true permutation of the items:

M̂CRL ∈ arg min
M∈CSST(πCRL)

|||Y −M |||2F. (2.12)

It is not hard to see that computing the first two steps of the algorithm requires at most
an order n2 computational complexity. The optimization problem (2.12) in the third step
corresponds to a projection onto the polytope of bi-isotone matrices contained within the
hypercube [0, 1]n×n, along with skew symmetry constraints. Problems of the form (2.12) have

been studied in past work [25, 44, 135, 209], and the estimator M̂CRL is indeed computable
in polynomial time.

The second step involving randomization serves to discard “non-robust” information
from the ordering computed in Step 1. To clarify our choice of threshold T =

√
n log n,
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the factor
√
n corresponds to the standard deviation of a typical win count Ni (as a sum

of Bernoulli variables), whereas the log n serves to control fluctuations in a union bound.
An ordering of the items whose counts are within this threshold is likely to arise from the
noise due to the Bernoulli sampling process, as opposed to structural information about the
matrix. If we do not perform this second step—effectively retaining considerable bias from
Step 1—then isotonic regression procedure in Step 3 may amplify it, leading to a poorly
performing estimator. In particular, the randomization step helps the estimator adapt to
the situation when there is a large indifference set of size at least n

2
. Such situations arise in

various practical applications, for instance, in depth recognition via crowdsourcing. In this
application, the n items are pixels of an image, and workers in crowdsourcing compare pairs
of points (pixels) and choose the one that seems closer.

The following theorem provides upper bounds on the risk of the CRL estimator for the
permutation-based SST model as well as for parameter-based models.

Theorem 3. (a) For every M∗ in the permutation-based SST model CSST, the CRL estimator
has mean-squared Frobenius error at most

1

n2
E[|||M̂CRL −M∗|||2F] ≤ c1

(log n)3

√
n

, (2.13)

where c1 is a universal constant.
(b) For every matrix M∗ in any parameter-based model (2.5), the risk of the CRL estimator

M̂CRL is upper bounded as

1

n2
E[|||M̂CRL −M∗|||2F] ≤ cF

1

n
log2 n,

where the cF is a constant that depends only on F .

A few remarks are in order. In comparison to any estimator tailored to any parameter-
based model, there are two key benefits offered by the CRL estimator. First, unlike the
parameter-based estimators, the CRL estimator does not need to know the function F .
Second, the CRL estimator is more robust to model misspecification, with an error at most
Õ( 1√

n
) over the richer permutation-based SST model. This guarantee is significantly superior

to the Ω(1) error incurred by the estimators that fit some parameter-based model (shown in
Theorem 5 to follow).

We show in a companion paper [223] that the CRL estimator has an additional appealing
property that it can automatically adapt to smoothness in the true matrix M∗ and provides
better rates of estimation. The primary purpose of the randomization step in the CRL
estimator is to facilitate is adaptivity and improved rates. If one is concerned only about
attaining the upper bound (2.13) on the worst case error, then the randomization step in
the CRL estimator is unnecessary and the count and the l east-squares steps alone suffice to
achieve this bound.
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An implication of part (b) of this theorem is that for parameter-based models, up to log-
arithmic factors in n, the CRL estimator is minimax optimal and matches the lower bounds
for parameter-based models derived subsequently in Section 2.3.5 of this chapter. In an in-
dependent piece of work concurrent with our paper [223] on the CRL estimator, Chatterjee
and Mukherjee [43] also investigate adaptivity of a similar estimator to parameter-based

models, and show that it attains an error of order Õ( 1
n
). The proof techniques employed in

the paper [43] are however markedly different from our proof techniques.
In conjunction, Theorem 1, Theorem 2, and Theorem 3 raise a natural open question: is

there a polynomial-time estimator that achieves the minimax rate uniformly over the family
CSST? We do not know the answer to this question, but the following subsections provide
some partial answers by analyzing some polynomial-time estimators that (up to logarithmic
factors) achieve the optimal Õ(1/n)-rate over some interesting sub-classes of CSST. In the
next two sections, we turn to results of this type.

2.3.4 Optimal rates for high SNR subclass

In this section, we describe a multi-step polynomial-time estimator that (up to logarithmic
factors) can achieve the optimal Õ(1/n) rate over an interesting subclass of CSST. This subset
corresponds to matrices M that have a relatively high signal-to-noise ratio (SNR), meaning
that no entries of M fall within a certain window of 1/2. More formally, for some γ ∈ (0, 1

2
),

we define the class

CHIGH(γ) =
{
M ∈ CSST | max(Mij,Mji) ≥ 1/2 + γ ∀ i 6= j

}
. (2.14)

By construction, for any matrix CHIGH(γ), the amount of information contained in each ob-
servation is bounded away from zero uniformly in n, as opposed to matrices in which some
large subset of entries have values equal (or arbitrarily close) to 1

2
. In terms of estimation

difficulty, this SNR restriction does not make the problem substantially easier: as the follow-
ing theorem shows, the minimax mean-squared error remains lower bounded by a constant
multiple of 1/n. Moreover, we can demonstrate a polynomial-time algorithm that achieves
this optimal mean squared error up to logarithmic factors.

The following theorem applies to any fixed γ ∈ (0, 1
2
] independent of n, and involves

constants (c2, c1, c) that may depend on γ but are independent of n.

Theorem 4. There is a constant c2 > 0 such that

inf
M̃

sup
M∗∈CHIGH(γ)

1

n2
E
[
|||M̃ −M∗|||2F] ≥ c2

n
, (2.15a)

where the infimum ranges over all estimators. Moreover, there is a two-stage estimator M̂ ,
computable in polynomial-time, for which

P
[ 1

n2
|||M̂ −M∗|||2F ≥

c1 log2(n)

n

]
≤ c

n2
, (2.15b)

valid for any M∗ ∈ CHIGH(γ).
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As before, since the ratio 1
n2 |||M̂ −M∗|||2F is at most 1, so the tail bound (2.15b) implies that

sup
M∗∈CHIGH(γ)

1

n2
E[|||M̂ −M∗|||2F] ≤ c1 log2(n)

n
+

c

n2
≤ c′1 log2(n)

n
. (2.16)

As with our proof of the lower bound in Theorem 1, we prove the lower bound by considering
the sub-class of matrices that are free only on the two diagonals just above and below the
main diagonal. We now provide a brief sketch for the proof of the upper bound (2.15b). It
is based on analyzing the following two-step procedure:

1. In the first step of algorithm, we find a permutation π̂FAS of the n items that minimizes
the total number of disagreements with the observations. (For a given ordering, we
say that any pair of items (i, j) are in disagreement with the observation if either i
is rated higher than j in the ordering and Yij = 0, or if i is rated lower than j in
the ordering and Yij = 1.) The problem of finding such a disagreement-minimizing
permutation π̂FAS is commonly known as the minimum feedback arc set (FAS) problem. It
is known to be NP-hard in the worst-case [1, 2], but our set-up has additional probabilistic
structure that allows for polynomial-time solutions with high probability. In particular,
we call upon a polynomial-time algorithm due to Braverman and Mossel [23] that, under
the model (2.14), is guaranteed to find the exact solution to the FAS problem with
high probability. Viewing the FAS permutation π̂FAS as an approximation to the true
permutation π∗, the novel technical work in this first step is show that π̂FAS is “good
enough” for Frobenius norm estimation, in the sense that for any matrix M∗ ∈ CHIGH(γ),
it satisfies the bound

1

n2
|||π∗(M∗)− π̂FAS(M∗)|||2F ≤

c log n

n
(2.17a)

with high probability. In this statement, for any given permutation π, we have used
π(M∗) to denote the matrix obtained by permuting the rows and columns of M∗ by π.
The term 1

n2 |||π∗(M∗)− π̂FAS(M∗)|||2F can be viewed in some sense as the bias in estimation
incurred from using π̂FAS in place of π∗.

2. Next we define CBISO as the class of “bivariate isotonic” matrices, that is, matrices M ∈
[0, 1]n×n that satisfy the linear constraintsMij = 1−Mji for all (i, j) ∈ [n]2, andMk` ≥Mij

whenever k ≤ i and ` ≥ j. This class corresponds to the subset of matrices CSST that are
faithful with respect to the identity permutation. Letting π̂FAS(CBISO) = {π̂FAS(M), M ∈ CBISO}
denote the image of this set under π̂FAS, the second step involves computing the con-
strained least-squares estimate

M̂ ∈ arg min
M∈π̂FAS(CBISO)

|||Y −M |||2F. (2.17b)

Since the set π̂FAS(CBISO) is a convex polytope, with a number of facets that grows polyno-
mially in n, the constrained quadratic program (2.17b) can be solved in polynomial-time.
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The final step in the proof of Theorem 4 is to show that the estimator M̂ also has mean-

squared error that is upper bounded by a constant multiple of log2(n)
n

.

Our analysis in Theorem 4 shows that for any fixed γ ∈ (0, 1
2
], the proposed two-step

estimator works well for any matrix M∗ ∈ CHIGH(γ). Since this two-step estimator is based on
finding a minimum feedback arc set (FAS) in the first step, it is natural to wonder whether an
FAS-based estimator works well over the full class CSST. Somewhat surprisingly the answer
to this question turns out to be negative.

Minimizing feedback arc set over entire permutation-based SST class The two-
step estimator analyzed in Theorem 4 for the High-SNR subclass, CHIGH(γ) ⊆ CSST for a fixed
γ, is based on finding a minimum feedback arc set (FAS) in the first step. We now show
that minimizing the FAS, however, does not work well over the full class CSST. The intuition
is that although minimizing the feedback arc set appears to minimize disagreements at a
global scale, it makes only local decisions: if it is known that items i and j are in adjacent
positions, the order among these two items is decided based solely on the outcome of the
comparison between items i and j, and is independent of the outcome of the comparisons of
i and j with all other items.

Here is a concrete example to illustrate this property. Suppose n is divisible by 3, and
consider the following (n× n) block matrix M ∈ CSST:

M =


1
2

1
2

1
1
2

1
2

3
4

0 1
4

1
2

 ,
where each block is of size (n

3
× n

3
). Let π1 be the identity permutation, and let π2 be the

permutation [n
3

+ 1, . . . , 2n
3
, 1, . . . , n

3
, 2n

3
+ 1, . . . , n], that is, π2 swaps the second block of n

3

items with the first block. For any permutation π of the n items and any M ∈ CSST, let π(M)
denote the (n× n) matrix resulting from permuting both the rows and the columns by π.

One can verify that |||π1(M) − π2(M)|||2F ≥ cn2, for some universal constant c > 0.
Now suppose an observation Y is generated from π1(M) as per the model (2.1). Then the
probability distribution of the size of the feedback arc set of π1 is identical to the probability
distribution of the size of the feedback arc set of π2. Minimizing FAS cannot distinguish
between π1(M) and π2(M) at least 50% of the time, and consequently, any estimator based
on the minimum FAS output cannot perform well over the permutation-based SST class.

2.3.5 Optimal rates for parameter-based subclasses

Let us now return to the class of parameter-based models CPAR(F ) introduced earlier in
Section 2.2.3. As shown previously in Proposition 1, this class is much smaller than the class
CSST, in the sense that there are models in CSST that cannot be well-approximated by any
parameter-based model. Nonetheless, in terms of minimax rates of estimation, these classes
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differ only by logarithmic factors. An advantage of the parameter-based class is that it is
possible to achieve the 1/n minimax rate by using a simple, polynomial-time estimator. In
particular, for any log concave function F , the maximum likelihood estimate ŵML can be
obtained by solving a convex program. This MLE induces a matrix estimate M(ŵML) via
Equation (2.4), and the following result shows that this estimator is minimax-optimal up to
constant factors.

Theorem 5. Suppose that F is strictly increasing, strongly log-concave and twice differen-
tiable. Then there is a constant c2 > 0, depending only on F , such that the minimax risk
over CPAR(F ) is lower bounded as

inf
M̃

sup
M∗∈CPAR(F )

1

n2
E[|||M̃ −M∗|||2F] ≥ c2

n
, (2.18a)

Conversely, there is a constant c1 ≥ c2, depending only on F , such that the matrix estimate
M(ŵML) induced by the MLE satisfies the bound

sup
M∗∈CPAR(F )

1

n2
E[|||M(ŵML)−M∗|||2F] ≤ c1

n
. (2.18b)

To be clear, the constants (c2, c1) in this theorem are independent of n, but they do depend
on the specific properties of the given function F . We note that the stated conditions on F
are true for many popular parameter-based models, including (for instance) the Thurstone
and BTL models.

The lower bound (2.18a) is, in fact, stronger than the the lower bound in Theorem 1,
since the supremum is taken over a smaller class. The proof of the lower bound in Theorem 1
relies on matrices that cannot be realized by any parameter-based model, so that we pursue
a different route to establish the bound (2.18a). On the other hand, in order to prove the
upper bound (2.18b), we make use of bounds on the accuracy of the MLE ŵML from our
own past work [220].

2.3.6 Extension to partial observations

We now consider the extension of our results to the setting in which not all entries of Y are
observed. Suppose instead that every entry of Y is observed independently with probability
pobs. In other words, the set of pairs compared is the set of edges of an Erdős-Rényi graph
G(n, pobs) that has the n items as its vertices.

In this setting, we obtain an upper bound on the minimax risk of estimation by first
setting Yij = 1

2
whenever the pair (i, j) is not compared, then forming a new (n× n) matrix

Y ′ as

Y ′ : =
1

pobs

Y − 1− pobs

2pobs

11T , (2.19a)
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and finally computing the least squares solution

M̂ ∈ arg min
M∈CSST

|||Y ′ −M |||2F. (2.19b)

The intuition behind the transformation (2.19a) is provided following the statement of The-
orem 6.

Likewise, the computationally-efficient singular value thresholding estimator is also ob-

tained by thresholding the singular values of Y ′ with a threshold λn = 3
√

n
pobs

. See our

discussion following Theorem 6 for the motivation underlying the transformed matrix Y ′.
The parameter-based estimators continue to operate on the original (partial) obser-

vations, first computing a maximum likelihood estimate ŵML of M∗ using the observed
data, and then computing the associated pairwise-comparison-probability matrix M(ŵML)
via (2.4).

Theorem 6. In the setting where each pair is observed with a probability pobs, there are
positive universal constants c2, c1 and c4 such that:

(a) The minimax risk is sandwiched as

c2

pobsn
≤ inf

M̃

sup
M∗∈CSST

1

n2
E[|||M̃ −M∗|||2F] ≤ c1(log n)2

pobsn
, (2.20a)

when pobs ≥ c4

n
.

(b) The soft-SVT estimator, M̂λn with λn = 3
√

n
pobs

, satisfies the bound

sup
M∗∈CSST

1

n2
E[|||M̂λn −M∗|||2F] ≤ c1√

npobs

, (2.20b)

when pobs ≥ c4 log7 n

n
.

(c) For a parameter-based sub-class based on a strongly log-concave and smooth F , the
estimator M(ŵML) induced by the maximum likelihood estimate ŵML of the parameter
vector w∗ has mean-squared error upper bounded as

sup
M∗∈CPAR(F )

1

n2
E[|||M(ŵML)−M∗|||2F] ≤ c1

pobsn
, (2.20c)

when pobs ≥ c4 log2 n

n
.

The intuition behind the transformation (2.19a) is that the matrix Y ′ can equivalently
be written in a linearized form as

Y ′ = M∗ +
1

pobs

W ′, (2.21a)



CHAPTER 2. ESTIMATING PAIRWISE COMPARISON PROBABILITIES 29

where W ′ has entries that are independent on and above the diagonal, satisfy skew-symmetry,
and are distributed as

[W ′]ij =


pobs(

1
2
− [M∗]ij) + 1

2
with probability pobs[M

∗]ij

pobs(
1
2
− [M∗]ij)− 1

2
with probability pobs(1− [M∗]ij)

pobs(
1
2
− [M∗]ij) with probability 1− pobs.

(2.21b)

The proofs of the upper bounds exploit the specific relation (2.21a) between the observations
Y ′ and the true matrix M∗, and the specific form of the additive noise (2.21b).

The result of Theorem 6(b) yields an affirmative answer to the question, originally posed
by Chatterjee [44], of whether or not the singular value thresholding estimator can yield a
vanishing error when pobs ≤ 1√

n
.

We note that we do not have an analogue of the high-SNR result in the partial observa-
tions case since having partial observations reduces the SNR. In general, we are interested
in scalings of pobs which allow pobs → 0 as n → ∞. The noisy-sorting algorithm of Braver-
man and Mossel [23] for the high-SNR case has computational complexity scaling as eγ

−4
,

and hence is not computable in time polynomial in n when γ < (log n)−
1
4 . This restriction

disallows most interesting scalings of pobs with n.

2.3.7 Relation to other models

In this section, we put the permutation-based SST model and the parameter-based models
that we studied earlier in perspective to other models considered in the literature. We begin
with two weaker versions of stochastic transitivity that are also investigated in the literature
on psychology and social science.

Moderate and weak stochastic transitivity

The model CSST that we consider is called strong stochastic transitivity in the literature on
psychology and social science [59, 78]. The two other popular (and weaker) models are those
of moderate stochastic transitivity CMST defined as

CMST : =
{
M ∈ [0, 1]n×n | Mik ≥ min{Mij,Mjk} for every (i, j, k) satisfying

Mij ≥ 1
2

and Mjk ≥ 1
2

}
,

and weak stochastic transitivity CWST defined as

CWST : =
{
M ∈ [0, 1]n×n | Mik ≥ 1

2
for every (i, j, k) satisfying Mij ≥ 1

2
and Mjk ≥ 1

2

}
.

Clearly, we have the inclusions CSST ⊆ CMST ⊆ CWST.
In Theorem 1, we prove that the minimax rates of estimation under the strong stochastic

transitivity assumption are Θ̃(n−1). It turns out, however, that the two weaker transitivity
conditions do not permit meaningful estimation.
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Proposition 2. There exists a universal constant c > 0 such that under the moderate CMST

stochastic transitivity model,

inf
M̃

sup
M∗∈CMST

1

n2
E[|||M̃ −M∗|||2F] > c.

where the infimum is taken over all measurable mappings from the observations Y to [0, 1]n×n.
Consequently, for the weak stochastic transitivity model CWST, we also have

inf
M̃

sup
M∗∈CWST

1

n2
E[|||M̃ −M∗|||2F] > c,

The minimax risk over these two classes is clearly the worst possible (up to a universal
constant) since for any two arbitrary matrices M and M ′ in [0, 1]n×n, we have 1

n2 |||M−M ′|||2F ≤
1. For this reason, in the chapter we restrict our analysis to the strong stochastic transitivity
condition.

Comparison with statistical models

Let us now investigate relationship of the strong stochastic transitivity model considered
in this chapter with two other popular models in the literature on statistical learning from
comparative data. Perhaps the most popular model in this regard is the class of parameter-
based models CPAR: recall that this class is defined as

CPAR : = {M |Mij = F (w∗i − w∗j ) for some non-decreasing function F : R→ [0, 1],

and vector w∗ ∈ Rn}.

The parameter-based class of models assumes that the function F is fixed and known. Statis-
tical estimation under the parameter-based class is studied in several recent papers [98, 177,
220]. The setting where the function F is fixed, but unknown leads to a semi-parameter-based
variant. The results presented in this section also readily apply to the semi-parameter-based
class.

The second class is that generated from distributions over complete rankings [63, 65, 76].
Specifically, every element in this class is generated as the pairwise marginal of an arbitrary
probability distribution over all possible permutations of the n items. We denote this class
as CFULL.

The following result characterizes the relation between the classes.

Proposition 3. Consider any value of n > 10. The parameter-based class CPAR is a strict
subset of the strong stochastic transitivity class CSST. The class CFULL of marginals of a
distribution on total rankings is neither a subset nor a superset of either of the classes CSST,
CPAR, and CSST\CPAR.



CHAPTER 2. ESTIMATING PAIRWISE COMPARISON PROBABILITIES 31
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construction 3 construction 2 

CPAR CSST CFULL 

Figure 2.2: Relations between various models of pairwise comparisons. The constructions proving
these relations are presented as a part of the proof of Proposition 3.

The various relationships in Proposition 3 are depicted pictorially in Figure 2.2. These
relations are derived by first establishing certain conditions that matrices in the classes
considered must satisfy, and then constructing matrices that satisfy or violate one or more
of these conditions. The conditions on CFULL arise from the observation that the class is the
convex hull of all permutation-based SST matrices that have their non-diagonal elements in
{0, 1}; we derive conditions on this convex hull that leads to properties of the CFULL class.
To handle the parameter-based class CPAR, we employ a necessary condition discussed earlier
in Section 2.2.4 and defined formally in Lemma 1. The permutation-based SST class CSST is
characterized using the insights derived throughout this chapter.

2.4 Simulations

In this section, we present results from simulations to gain a further understanding of the
problem at hand, in particular to understand the rates of estimation under specific generative
models. We investigate the performance of the soft-SVT estimator (Section 2.3.2) and the
maximum likelihood estimator under the Thurstone parameter-based model (Section 2.2.3)
which is optimal for the Thurstone parameter-based model.4 The output of the SVT estima-
tor need not lie in the set [0, 1]n×n of matrices; in our implementation, we take a projection
of the output of the SVT estimator on this set, which gives a constant factor reduction in
the error.

4We could not compare the algorithm that underlies Theorem 4, since it is not easily implementable.
In particular, it relies on the algorithm due to Braverman and Mossel [23] to compute the feedback arc set
minimizer. The computational complexity of this algorithm, though polynomial in n, has a large polynomial
degree which precludes it from being implemented for matrices of any reasonable size.

The simulations in this section add to the simulation results of Section 2.2.4 (Figure 2.1) demonstrating a
large class of matrices in the permutation-based SST class that cannot be represented by any parameter-based
class.
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In our simulations, we generate the ground truth M∗ in the following five ways:

• Uniform: The matrix M∗ is generated by drawing
(
n
2

)
values independently and uniformly

at random in [1
2
, 1] and sorting them in descending order. The values are then inserted

above the diagonal of an (n× n) matrix such that the entries decrease down a column or
left along a row. We then make the matrix skew-symmetric and permute the rows and
columns.

• Thurstone parameter-based model: The matrix M∗ ∈ [−1, 1]n is generated by first choos-
ing w∗ uniformly at random from the set satisfying 〈w∗, 1〉 = 0. The matrix M∗ is then
generated from w∗ via Equation (2.4) with F chosen as the CDF of the standard normal
distribution.

• Bradley-Terry-Luce (BTL) parameter-based model: Identical to the Thurstone case, ex-
cept that F is given by the sigmoid function.

• High SNR: A setting studied previously by Braverman and Mossel [23], in which the noise
is independent of the items being compared. Some global order is fixed over the n items,
and the comparison matrix M∗ takes the values M∗

ij = 0.9 = 1−M∗
ji for every pair (i, j)

where i is ranked above j in the underlying ordering. The entries on the diagonal are 0.5.

• Independent bands: The matrix M∗ is chosen with diagonal entries all equal to 1
2
. Entries

on diagonal band immediately above the diagonal itself are chosen i.i.d. and uniformly
at random from [1

2
, 1]. The band above is then chosen uniformly at random from the

allowable set, and so on. The choice of any entry in this process is only constrained to be
upper bounded by 1 and lower bounded by the entries to its left and below. The entries
below the diagonal are chosen to make the matrix skew-symmetric.

Figure 2.3 depicts the results of the simulations based on observations of the entire
matrix Y . Each point is an average across 20 trials. The error bars in most cases are too
small and hence not visible. We see that the uniform case (Figure 2.3a) is favorable for
both estimators, with the error scaling as O( 1√

n
). With data generated from the Thurstone

parameter-based model, both estimators continue to perform well, and the Thurstone MLE
yields an error of the order 1

n
(Figure 2.3b). Interestingly, the Thurstone parameter-based

model also fits relatively well when data is generated via the BTL parameter-based model
(Figure 2.3c). This behavior is likely a result of operating in the near-linear regime of the
logistic and the Gaussian CDF where the two curves are similar. In these two parameter-
based settings, the SVT estimator has squared error strictly worse than order 1

n
but better

than 1√
n
. The Thurstone parameter-based model, however, yields a poor fit for the model

in the high-SNR (Figure 2.3d) and the independent bands (Figure 2.3e) cases, incurring
a constant error as compared to an error scaling as O( 1√

n
) for the SVT estimator. We
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(d) High SNR
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(e) Independent bands

Figure 2.3: Errors of singular value thresholding (SVT) estimator and the optimal (maximum
likelihood) estimator for the Thurstone parameter-based model under different methods to generate
M∗. The error incurred by the CRL estimator is of the same order as that of the SVT.

recall that the poor performance of the Thurstone estimator was also described previously
in Proposition 1 and Figure 2.1.

In summary, we see that while the Thurstone maximum likelihood estimator gives min-
imax optimal rates of estimation when the underlying model is parameter-based, it can be
inconsistent when the parameter-based assumptions are violated. On the other hand, the
SVT estimator is robust to violations of parameter-based assumptions, and while it does not
necessarily give minimax-optimal rates, it remains consistent across the entire permutation-
based SST class. Finally, we remark that our theory predicts that the least squares estimator,
if implementable, would outperform both these estimators in terms of statistical error.



CHAPTER 2. ESTIMATING PAIRWISE COMPARISON PROBABILITIES 34

2.5 Discussion

In this chapter, we analyzed a flexible model for pairwise comparison data that includes
various parameter-based models, including the BTL and Thurstone models, as special cases.
We analyzed various estimators for this broader matrix family, ranging from optimal estima-
tors to various polynomial-time estimators, including forms of singular value thresholding,
the CRL estimator, as well as a multi-stage method based on a noisy sorting routine. We
show that this permutation-based SST model permits far more robust estimation as com-
pared to popular parameter-based models, while surprisingly, incurring little penalty for this
significant generality. We also show that under weaker notions of stochastic transitivity,
the pairwise-comparison probabilities are unestimable. Our results thus present a strong
motivation towards the use of such general permutation-based models.

In some applications, choices can be systematically intransitive, for instance when objects
have multiple features and different features dominate different pairwise comparisons. In
these situations, the permutation-based SST assumption may be weakened to one where the
underlying pairwise comparison matrix is a mixture of a small number of permutation-based
SST matrices. Later in Chapter 5 of this thesis, we analyze a seting that is equivalent to
such a general setting.

All of the results in this chapter focused on estimation of the matrix of pairwise compar-
ison probabilities in the Frobenius norm. Estimation of probabilities in other metrics, such
as the KL divergence or estimation of the ranking in the Spearman’s footrule or Kemeny
distance, follow as corollaries of our results; see Appendix 2.A. Establishing the best possible
rates for polynomial-time algorithms over the full class CSST is a challenging open problem.

2.6 Proofs

This section is devoted to the proofs of our theoretical results. Throughout these and other
proofs, we use the notation {c, c′, c0, C, C

′} and so on to denote positive constants whose
values may change from line to line. In addition, we assume throughout that n is lower
bounded by a universal constant so as to avoid degeneracies. For any square matrix A ∈
Rn×n, we let {σ1(A), . . . , σn(A)} denote its singular values (ordered from largest to smallest),
and similarly, for any symmetric matrix M ∈ Rn×n, we let {λ1(M), . . . , λn(M)} denote its
ordered eigenvalues. The identity permutation is one where item i is the ith most preferred
item, for every i ∈ [n].

Our lower bounds are based on a standard form of Fano’s inequality [54, 254] for lower
bounding the probability of error in an L-ary hypothesis testing problem. We state a ver-
sion here for future reference. For some integer L ≥ 2, fix some collection of distributions
{P1, . . . ,PL}. Suppose that we observe a random variable Y that is obtained by first sam-
pling an index A uniformly at random from [L] = {1, . . . , L}, and then drawing Y ∼ PA.
(As a result, the variable Y is marginally distributed according to the mixture distribution
P = 1

L

∑L
a=1 Pa.) Given the observation Y , our goal is to “decode” the value of A, corre-
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sponding to the index of the underlying mixture component. Using Y to denote the sample
space associated with the observation Y , Fano’s inequality asserts that any test function
φ : Y → [L] for this problem has error probability lower bounded as

P[φ(Y ) 6= A] ≥ 1− I(Y ;A) + log 2

logL
,

where I(Y ;A) denotes the mutual information between Y and A. A standard convexity
argument for the mutual information yields the weaker bound

P[φ(Y ) 6= A] ≥ 1−
max
a,b∈[L]

DKL(Pa‖Pb) + log 2

logL
, (2.22)

We make use of this weakened form of Fano’s inequality in several proofs.

2.6.1 Proof of Proposition 1: Parameter-based models are very
restrictive

We show that the matrix M∗ specified in Figure 2.1a satisfies the conditions required by
the proposition. It is easy to verify that M∗ ∈ CSST, so that it remains to prove the
approximation-theoretic lower bound (2.6). In order to do so, we require the following
auxiliary result:

Lemma 1. Consider any matrix M that belongs to CPAR(F ) for a valid function F . Suppose
for some collection of four distinct items {i1, . . . , i4}, the matrix M satisfies the inequality
Mi1i2 > Mi3i4. Then it must also satisfy the inequality Mi1i3 ≥Mi2i4.

We return to prove this lemma at the end of this section. Taking it as given, let us now
proceed to prove the lower bound (2.6). For any valid F , fix an arbitrary member M of a
class CPAR(F ), and let w ∈ Rn be the underlying weight vector (see the definition (2.4)).

Pick any item in the set of first n
4

items (corresponding to the first n
4

rows of M∗) and call
this item as “1”; pick an item from the next set of n

4
items (rows) and call it item “2”; item

“3” from the next set and item “4” from the final set. Our analysis proceeds by developing
some relations between the pairwise comparison probabilities for these four items that must
hold for every parametric model, that are strongly violated by M∗. We divide our analysis
into two possible relations between the entries of M .
Case I: First suppose that M12 ≤M34. Since M∗

12 = 6/8 and M∗
34 = 5/8 in our construction,

it follows that

(M12 −M∗
12)2 + (M34 −M∗

34)2 ≥ 1

256
.

Case II: Otherwise, we may assume thatM12 > M34. Then Lemma 1 implies thatM13 ≥M24.
Moreover, since M∗

13 = 7/8 and M∗
24 = 1 in our construction, it follows that

(M13 −M∗
13)2 + (M24 −M∗

24)2 ≥ 1

256
.



CHAPTER 2. ESTIMATING PAIRWISE COMPARISON PROBABILITIES 36

Aggregating across these two exhaustive cases, we find that∑
(u,v)∈{1,2,3,4}

(Muv −M∗
uv)

2 ≥ 1

256
.

Since this bound holds for any arbitrary selection of items from the four sets, we conclude
that 1

n2 |||M −M∗|||2F is lower bounded by a universal constant c > 0 as claimed.
Finally, it is easy to see that upon perturbation of any of the entries of M∗ by at most

1
32

—while still ensuring that the resulting matrix lies in CSST—the aforementioned results
continue to hold, albeit with a worse constant. Every matrix in this class satisfies the claim
of this proposition.

Proof of Lemma 1: It remains to prove Lemma 1. Since M belongs to the parametric
family, there must exist some valid function F and some vector w that induce M (see
Equation (2.4)). Since F is non-decreasing, the condition Mi1i2 > Mi3i4 implies that

wi1 − wi2 > wi3 − wi4 .

Adding wi2−wi3 to both sides of this inequality yields wi1−wi3 > wi2−wi4 . Finally, applying
the non-decreasing function F to both sides of this inequality gives yields Mi1i3 ≥ Mi2i4 as
claimed, thereby completing the proof.

2.6.2 Proof of Theorem 1: Minimax risk

This section is devoted to the proof of Theorem 1, including both the upper and lower bounds
on the minimax risk in squared Frobenius norm.

Proof of upper bound

Define the difference matrix ∆̂: =M̂ - M∗ between M∗ and the optimal solution M̂ to the
constrained least-squares problem. Since M̂ is optimal and M∗ is feasible, we must have
|||Y −M̂ |||2F ≤ |||Y −M∗|||2F, and hence following some algebra, we arrive at the basic inequality

1

2
|||∆̂|||2F ≤ 〈〈∆̂, W 〉〉, (2.23)

where W ∈ Rn×n is the noise matrix in the observation model (2.1), and 〈〈A, B〉〉 : =
trace(ATB) denotes the trace inner product.

We introduce some additional objects that are useful in our analysis. Recall from the
main text (2.11) that the class of bivariate isotonic matrices CBISO is defined as

CBISO : =
{
M ∈ [0, 1]n×n |Mk` ≥Mij whenever k ≤ i and ` ≥ j

}
. (2.24)
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For a given permutation π and matrix M , we let π(M) denote the matrix obtained by
applying π to its rows and columns. We then define the set

CDIFF : =
{
π1(M1)− π2(M2) | for some M1, M2 ∈ CBISO, and perm. π1 and π2

}
. (2.25)

corresponding to the set of difference matrices. Note that CDIFF ⊂ [−1, 1]n×n by construction.
One can verify that for any M∗ ∈ CSST, we are guaranteed the inclusion

{M −M∗ |M ∈ CSST, |||M −M∗|||F ≤ t} ⊂ CDIFF ∩ {|||D|||F ≤ t}.

Consequently, the error matrix ∆̂ must belong to CDIFF, and so must satisfy the properties
defining this set. Moreover, as we discuss below, the set CDIFF is star-shaped, and this property
plays an important role in our analysis.

For each choice of radius t > 0, define the random variable

Z(t) : = sup
D∈CDIFF,|||D|||F≤t

〈〈D, W 〉〉. (2.26)

Using our earlier basic inequality (2.23), the Frobenius norm error |||∆̂|||F then satisfies the
bound

1

2
|||∆̂|||2F ≤ 〈〈∆̂, W 〉〉 ≤ Z

(
|||∆̂|||F

)
. (2.27)

Thus, in order to obtain a high probability bound, we need to understand the behavior of
the random quantity Z(δ).

One can verify that the set CDIFF is star-shaped, meaning that αD ∈ CDIFF for every
α ∈ [0, 1] and every D ∈ CDIFF. Using this star-shaped property, we are guaranteed Z(t)
grows at most linearly in t, and hence there is a non-empty set of scalars δ0 > 0 satisfying
the critical inequality

E[Z(δ0)] ≤ δ2
0

2
. (2.28)

Our interest is in the smallest strictly positive solution δ0 to the critical inequality (2.28), and

moreover, our goal is to show that for every t ≥ δ0, we have |||∆̂|||F ≤ c
√
tδ0 with probability

at least 1− c1e
−c2ntδ0 .

For each t > 0, define the “bad” event At as

At =
{
∃∆ ∈ CDIFF | |||∆|||F ≥

√
tδ0 and 〈〈∆, W 〉〉 ≥ 2|||∆|||F

√
tδ0

}
. (2.29)

Now suppose the event At is true for some t ≥ δ0, and let ∆0 ∈ CDIFF be a matrix that
satisfies the two conditions required for At to occur. Then using the fact that Z(t) grows at
most linearly in t, and that |||∆0|||F ≥ δ0, we have that whenever event At is true,

Z(δ0) ≥ δ0

|||∆0|||F
Z(|||∆0|||F) ≥ δ0

|||∆0|||F
〈〈∆0, W 〉〉 ≥ 2δ0

√
tδ0,
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where the final inequality uses the second condition in the definition of event At. As a
consequence, we obtain the following bound on the probabilities of the associated events

P[At] ≤ P[Z(δ0) ≥ 2δ0

√
tδ0] for all t ≥ δ0.

The entries of W lie in [−1, 1], are i.i.d. on and above the diagonal, are zero-mean,
and satisfy skew-symmetry. Moreover, the function W 7→ Z(t) is convex and Lipschitz
with parameter t. Consequently, from known concentration bounds (e.g., [144, Theorem
5.9], [213]) for convex Lipschitz functions, we have

P
[
Z(δ0) ≥ E[Z(δ0)] +

√
tδ0δ0

]
≤ 2e−c1tδ0 for all t ≥ δ0. (2.30)

By the definition of δ0, we have E[Z(δ0)] ≤ δ2
0 ≤ δ0

√
tδ0 for any t ≥ δ0, and consequently

P[At] ≤ P[Z(δ0) ≥ 2δ0

√
tδ0

]
≤ 2e−c1tδ0 for all t ≥ δ0.

Consequently, either |||∆̂|||F ≤
√
tδ0, or we have |||∆̂|||F >

√
tδ0. In the latter case, conditioning

on the complement Act , our basic inequality implies that 1
2
|||∆̂|||2F ≤ 2|||∆̂|||F

√
tδ0, and hence

|||∆̂|||F ≤ 4
√
tδ0 with probability at least 1− 2e−c1tδ0 . Putting together the pieces yields that

|||∆̂|||F ≤ c0

√
tδ0 (2.31)

with probability at least 1− 2e−c1tδ0 for every t ≥ δ0.
In order to determine a feasible δ0 satisfying the critical inequality (2.28), we need to

bound the expectation E[Z(δ0)]. We do using Dudley’s entropy integral and bounding the
metric entropies of certain sub-classes of matrices. In particular, the remainder of this section
is devoted to proving the following claim:

Lemma 2. There is a universal constant C such that

E[Z(t)] ≤ C
{
n log2(n) + t

√
n log n

}
, (2.32)

for all t ∈ [0, 2n].

See the end of this section for a proof of this lemma.
Given this lemma, we see that the critical inequality (2.28) is satisfied with δ0 = C ′

√
n log n.

Consequently, from our bound (2.31), there are universal positive constants C ′′ and c1 such
that

|||∆̂|||2F
n2

≤ C ′′
log2(n)

n
,

with probability at least 1− 2e−c1n(logn)2 , which completes the proof.

Proof of Lemma 2: It remains to prove Lemma 2, and we do so by using Dudley’s
entropy integral, as well as some auxiliary results on metric entropy. We use the notation
logN(ε,C, ρ) to denote the ε metric entropy of the class C in the metric ρ. Our proof requires
the following auxiliary lemma:
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Lemma 3. For every ε > 0, we have the metric entropy bound

logN(ε,CDIFF, |||.|||F) ≤ 9
n2

ε2
(

log
n

ε

)2
+ 9n log n.

See the end of this section for the proof of this claim. Letting BF (t) denote the Frobenius
norm ball of radius t, the truncated form of Dudley’s entropy integral inequality (e.g., [256,
Corollary 2.2.8]) yields that the mean E[Z(t)] is upper bounded as

E[Z(t)]] ≤ c inf
δ∈[0,n]

{
nδ +

∫ t

δ
2

√
logN(ε,CDIFF ∩ BF (t), |||.|||F)dε

}
≤ c

{
n−8 +

∫ t

1
2
n−9

√
logN(ε,CDIFF, |||.|||F)dε

}
, (2.33)

where the second step follows by setting δ = n−9, and making use of the set inclusion
(CDIFF ∩ BF (t)) ⊆ CDIFF. For any ε ≥ 1

2
n−9, applying Lemma 3 yields the upper bound√

logN(ε,CDIFF, |||.|||F) ≤ c
{n
ε

log
n

ε
+
√
n log n

}
.

Over the range ε ≥ n−9/2, we have log n
ε
≤ c log n, and hence√

logN(ε,CDIFF, |||.|||F) ≤ c
{n
ε

log n+
√
n log n

}
.

Substituting this bound into our earlier inequality (2.33) yields

E[Z(t)] ≤ c
{
n−8 +

(
n log n

)
log(nt) + t

√
n log n

}
(i)

≤ c
{(
n log n

)
log(n2) + t

√
n log n

}
≤ c
{
n log2(n) + t

√
n log n

}
,

where step (i) uses the upper bound t ≤ 2n.

The only remaining detail is to prove Lemma 3.

Proof of Lemma 3: We first derive an upper bound on the metric entropy of the class
CBISO defined previously in equation (2.24). In particular, we do so by relating it to the set
of all bivariate monotonic functions on the square [0, 1]× [0, 1]. Denoting this function class
by F , for any matrix M ∈ CBISO, we define a function gM ∈ F via

gM(x, y) = Mdn(1−x)e,dnye.
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In order to handle corner conditions, we set M0,i = M1,i and Mi,0 = Mi,1 for all i. With this
definition, we have

‖gM‖2
2 =

∫ 1

x=0

∫ 1

y=0

(gM(x, y))2dxdy =
1

n2

n∑
i=1

n∑
j=1

M2
i,j =

1

n2
|||M |||2F.

As a consequence, the metric entropy can be upper bounded as

logN(ε,CBISO, |||.|||F) ≤ logN
( ε
n
,F , ‖.‖2

)
(i)

≤ n2

ε2
(

log
n

ε

)2
, (2.34)

where inequality (i) follows from Theorem 1.1 of Gao and Wellner [86].
We now bound the metric entropy of CDIFF in terms of the metric entropy of CBISO. For any

ε > 0, let Cε
BISO denote an ε-covering set in CBISO that satisfies the inequality (2.34). Consider

the set

Cε
DIFF : = {π1(M1)− π2(M2) | for some permutations π1, π2 and some M1,M2 ∈ Cε/2

BISO}.

For any D ∈ CDIFF, we can write D = π1(M ′
1) − π2(M ′

2) for some permutations π1 and

π2 and some matrices M ′
1 and M ′

2 ∈ CBISO. We know there exist matrices M1,M2 ∈ Cε/2
BISO

such that |||M ′
1 − M1|||F ≤ ε/2 and |||M ′

2 − M2|||F ≤ ε/2. With these choices, we have
π1(M1)− π2(M2) ∈ Cε

DIFF, and moreover

|||D − (π1(M1)− π2(M2))|||2F ≤ 2|||π1(M1)− π1(M ′
1)|||2F + 2|||π2(M2)− π1(M ′

2)|||2F
≤ ε2.

Thus the set Cε
DIFF forms an ε-covering set for the class CDIFF. One can now count the number

of elements in this set to find that

N(ε,CDIFF, |||.|||F) ≤
(
n!N(ε/2,CBISO, |||.|||F)

)2
.

Some straightforward algebraic manipulations yield the claimed result.

Proof of lower bound

We now turn to the proof of the lower bound in Theorem 1. We may assume that the correct
row/column ordering is fixed and known to be the identity permutation. Here we are using
the fact that revealing the knowledge of this ordering cannot make the estimation problem
any harder. Recalling the definition (2.24) of the bivariate isotonic class CBISO, consider the
subclass

C′SST : = {M ∈ CBISO |Mi,j = 1 when j > i+ 1 and Mi,j = 1−Mj,i when j ≤ i}
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Any matrix M is this subclass can be identified with the vector q = q(M) ∈ Rn−1 with
elements qi : = Mi,i+1. The only constraint imposed on q(M) by the inclusion M ∈ CSST is
that qi ∈ [1

2
, 1] for all i = 1, . . . , n− 1.

In this way, we have shown that the difficulty of estimating M∗ ∈ C′SST is at least as
hard as that of estimating a vector q ∈ [1

2
, 1]n−1 based on observing the random vector

Y = {Y1,2, . . . , Yn−1,n} with independent coordinates, and such that each Yi,i+1 ∼ Ber(qi).
For this problem, it is easy to show that there is a universal constant c2 > 0 such that

inf
q̂

sup
q∈[ 1

2
,1]n−1

E
[
‖q̂ − q‖2

2

]
≥ c2

2
n,

where the infimum is taken over all measurable functions Y 7→ q̂. Putting together the
pieces, we have shown that

inf
M̂

sup
M∗∈CSST

1

n2
E[|||M̂ −M∗|||2F] ≥ 2

n2
inf
q̂

sup
q∈[0.5,1]n−1

E[‖q̂ − q‖2
2] ≥ c2

n
,

as claimed.

2.6.3 Proof of Theorem 2: Singular Value Thresholding

Recall from equation (2.1) that we can write our observation model as Y = M∗ +W , where
W ∈ Rn×n is a zero-mean matrix with entries that are drawn independently (except for the
skew-symmetry condition) from the interval [−1, 1].

Proof of upper bound

Our proof of the upper bound hinges upon the following two lemmas.

Lemma 4. If λn ≥ 1.01|||W |||op, then

|||Tλn(Y )−M∗|||2F ≤ c
n∑
j=1

min
{
λ2
n, σ

2
j (M

∗)
}
,

where c is a positive universal constant.

Our second lemma is an approximation-theoretic result:

Lemma 5. For any matrix M∗ ∈ CSST and any s ∈ {1, 2, . . . , n− 1}, we have

1

n2

n∑
j=s+1

σ2
j (M

∗) ≤ 1

s
.
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See the end of this section for the proofs of these two auxiliary results.
Based on these two lemmas, it is easy to complete the proof of the theorem. The entries

of W are zero-mean with entries in the interval [−1, 1], are i.i.d. on and above the diagonal,
and satisfy skew-symmetry. Consequently, we may apply Theorem 3.4 of Chatterjee [44],
which guarantees that

P
[
|||W |||op > (2 + t)

√
n
]
≤ ce−f(t)n,

where c is a universal constant, and the quantity f(t) is strictly positive for each t > 0. Thus,
the choice λn = 2.1

√
n guarantees that λn ≥ 1.01|||W |||op with probability at least 1− ce−cn,

as is required for applying Lemma 4. Applying this lemma guarantees that the upper bound

|||Tλn(Y )−M∗|||2F ≤ c
n∑
j=1

min
{
n, σ2

j (M
∗)
}

hold with probability at least 1−c1e
−c2n. From Lemma 5, with probability at least 1−c1e

−c2n,
we have

1

n2
|||Tλn(Y )−M∗|||2F ≤ c

{ s
n

+
1

s

}
for all s ∈ {1, . . . , n}. Setting s = d

√
ne and performing some algebra shows that

P
[ 1

n2
|||Tλn(Y )−M∗|||2F >

c1√
n

]
≤ c1e

−c2n,

as claimed. Since 1
n2 |||Tλn(Y )−M∗|||2F ≤ 1, we are also guaranteed that

1

n2
E[|||Tλn(Y )−M∗|||2F] ≤ c1√

n
+ c1e

−c2n ≤ c′1√
n
.

Proof of Lemma 4 Fix δ = 0.01. Let b be the number of singular values of M∗ above
δ

1+δ
λn, and let M∗

b be the version of M∗ truncated to its top b singular values. We then have

|||Tλn(Y )−M∗|||2F ≤ 2|||Tλn(Y )−M∗
b |||2F + 2|||M∗

b −M∗|||2F

≤ 2 rank(Tλn(Y )−M∗
b )|||Tλn(Y )−M∗

b |||2op + 2
n∑

j=b+1

σ2
j (M

∗).

We claim that Tλn(Y ) has rank at most b. Indeed, for any j ≥ b+ 1, we have

σj(Y ) ≤ σj(M
∗) + |||W |||op ≤ λn,
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where we have used the facts that σj(M
∗) ≤ δ

1+δ
λn for every j ≥ b+1 and λn ≥ (1+δ)|||W |||op.

As a consequence we have σj(Tλn(Y )) = 0, and hence rank(Tλn(Y ) −M∗
b ) ≤ 2b. Moreover,

we have

|||Tλn(Y )−M∗
b |||op ≤ |||Tλn(Y )− Y |||op + |||Y −M∗|||op + |||M∗ −M∗

b |||op

≤ λn + |||W |||op +
δ

1 + δ
λn

≤ 2λn.

Putting together the pieces, we conclude that

|||Tλn(Y )−M∗|||2F ≤ 16bλ2
n + 2

n∑
j=b+1

σ2
j (M

∗)
(i)

≤ C

n∑
j=1

min{σ2
j (M

∗), λ2
n},

for some constant5 C. Here inequality (i) follows since σj(M
∗) ≤ δ

1+δ
λn whenever j ≥ b+ 1

and σj(M
∗) > δ

1+δ
λn whenever j ≤ b.

Proof of Lemma 5 In this proof, we make use of a construction due to Chatterjee [44].
For a given matrix M∗, we can define the vector t ∈ Rn of row sums—namely, with entries
ti =

∑n
j=1M

∗
ij for i ∈ [n]. Using this vector, we can define a rank s approximation M to the

original matrix M∗ by grouping the rows according to the vector t according to the following
procedure:

• Observing that each ti ∈ [0, n], let us divide the full interval [0, n] into s groups—say of
the form [0, n/s), [n/s, 2n/s), . . . [(s− 1)n/s, n]. If ti falls into the interval α for some
α ∈ [s], we then map row i to the group Gα of indices.

• For each group Gα, we choose a particular row index k = k(α) ∈ Gα in an arbitrary
fashion. For every other row index i ∈ Gα, we set Mij = Mkj for all j ∈ [n].

By construction, the matrix M has at most s distinct rows, and hence rank at most
s. Let us now bound the Frobenius norm error in this rank s approximation. Fixing an
arbitrary group index α ∈ [s] and an arbitrary row in i ∈ Gα, we then have

n∑
j=1

(M∗
ij −Mij)

2 ≤
n∑
j=1

|M∗
ij −Mij|.

By construction, we either have M∗
ij ≥Mij for every j ∈ [n], or M∗

ij ≤Mij for every j ∈ [n].
Thus, letting k ∈ Gα denote the chosen row, we are guaranteed that

n∑
j=1

|M∗
ij −Mij| ≤ |ti − tk| ≤

n

s
,

where we have used the fact the pair (ti, tk) must lie in an interval of length at most n/s.
Putting together the pieces yields the claim.

5To be clear, the precise value of the constant C is determined by δ, which has been fixed as δ = 0.01.
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Proof of lower bound

We now turn to the proof of the lower bound in Theorem 2. We split our analysis into two
cases, depending on the magnitude of λn.

Case 1: First suppose that λn ≤
√
n

3
. In this case, we consider the matrix M∗ : = 1

2
11T in

which all items are equally good, so any comparison is simply a fair coin flip. Let the obser-
vation matrix Y ∈ {0, 1}n×n be arbitrary. By definition of the singular value thresholding

operation, we have |||Y − Tλn(Y )|||op ≤ λn, and hence the SVT estimator M̂λn = Tλn(Y ) has
Frobenius norm at most

|||Y − M̂λn|||2F ≤ nλ2
n ≤

n2

9
.

Since M∗ ∈ {1
2
}n×n and Y ∈ {0, 1}n×n, we are guaranteed that |||M∗ − Y |||F = n

2
. Applying

the triangle inequality yields the lower bound

|||M̂λn −M∗|||F ≥ |||M∗ − Y |||F − |||M̂λn − Y |||F ≥
n

2
− n

3
=

n

6
.

Case 2: Otherwise, we may assume that λn >
√
n

3
. Consider the matrix M∗ ∈ Rn×n with

entries

[M∗]ij =


1 if i > j
1
2

if i = j

0 if i < j.

(2.35)

By construction, the matrix M∗ corresponds to the degenerate case of noiseless comparisons.
Consider the matrix Y ∈ Rn×n generated according to the observation model (2.1). (To

be clear, all of its off-diagonal entries are deterministic, whereas the diagonal is population
with i.i.d. Bernoulli variates.) Our proof requires the following auxiliary result regarding
the singular values of Y :

Lemma 6. The singular values of the observation matrix Y ∈ Rn×n generated by the noise-
less comparison matrix M∗ satisfy the bounds

n

4π(i+ 1)
− 1

2
≤ σn−i−1(Y ) ≤ n

π(i− 1)
+

1

2
for all integers i ∈ [1, n

6
− 1].

We prove this lemma at the end of this section.
Taking it as given, we get that σn−i−1(Y ) ≤

√
n

3
for every integer i ≥ 2

√
n, and σn−i(Y ) ≥

n
50i

for every integer i ∈ [1, n
25

]. It follows that

n∑
i=1

(σi(Y ))21{σi(Y ) ≤
√
n

3
} ≥ n2

2500

n
25∑

i=2
√
n

1

i2
≥ cn

3
2 ,



CHAPTER 2. ESTIMATING PAIRWISE COMPARISON PROBABILITIES 45

for some universal constant c > 0. Recalling that λn ≥
√
n

3
, we have the lower bound

|||Y − M̂λn|||2F ≥ cn
3
2 . Furthermore, since the observations (apart from the diagonal entries)

are noiseless, we have |||Y −M∗|||2F ≤ n
4
. Putting the pieces together yields the lower bound

|||M̂λn −M∗|||F ≥ |||M̂λn − Y |||F − |||M∗ − Y |||F ≥ cn
3
4 −
√
n

2
≥ c′n

3
4 ,

where the final step holds when n is large enough (i.e., larger than a universal constant).

Proof of Lemma 6: Instead of working with the original observation matrix Y , it is
convenient to work with a transformed version. Define the matrix Ȳ : = Y − diag(Y ) + In,
so that the matrix Ȳ is identical to Y except that all its diagonal entries are set to 1. Using
this intermediate object, define the (n× n) matrix

Ỹ : = (Ȳ (Ȳ )T )−1 − eneTn , (2.36)

where en denotes the nth standard basis vector. One can verify that this matrix has entries

[Ỹ ]ij =


1 if i = j = 1 or i = j = n

2 if 1 < i = j < n

−1 if i = j + 1 or i = j − 1

0 otherwise.

Consequently, it is equal to the graph Laplacian6 of an undirected chain graph on n nodes.
Consequently, from standard results in spectral graph theory [26], the eigenvalues of Ỹ are
given by {4 sin2(πi

n
)}n−1
i=0 . Recall the elementary sandwich relationship x

2
≤ sinx ≤ x, valid

for every x ∈ [0, π
6
]. Using this fact, we are guaranteed that

π2i2

n2
≤ λi+1(Ỹ ) ≤ 4π2i2

n2
for all integers i ∈ [1, n

6
]. (2.37)

We now use this intermediate result to establish the claimed bounds on the singular values
of Y . Observe that the matrices Ỹ and (Ȳ (Ȳ )T )−1 differ only by the rank one matrix ene

T
n .

Standard results in matrix perturbation theory [252] guarantee that a rank-one perturbation
can shift the position (in the large-to-small ordering) of any eigenvalue by at most one.
Consequently, the eigenvalues of the matrix (Ȳ (Ȳ )T )−1 must be sandwiched as

π2(i− 1)2

n2
≤ λi+1((Ȳ (Ȳ )T )−1) ≤ 4π2(i+ 1)2

n2
for all integers i ∈ [1, n

6
− 1].

6In particular, the Laplacian of a graph is given by L = D−A, where A is the graph adjacency matrix,
and D is the diagonal degree matrix.
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It follows that the singular values of Ȳ are sandwiched as

n

4π(i+ 1)
≤ σn−i−1(Ȳ ) ≤ n

π(i− 1)
for all integers i ∈ [1, n

6
− 1].

Observe that Ȳ − Y is a {0, 1
2
}-valued diagonal matrix, and hence |||Ȳ − Y |||op ≤ 1

2
. Con-

sequently, we have maxi=1,...,n |σi(Y )− σi(Ȳ )| ≤ 1
2
, from which it follows that

n

4π(i+ 1)
− 1

2
≤ σn−i−1(Y ) ≤ n

π(i− 1)
+

1

2

as claimed.

2.6.4 Proof of Theorem 3: CRL estimator

We now prove the upper bound for the CRL estimator, as stated in Theorem 3. In order to
simplify the presentation, we assume without loss of generality that the true permutation of
the n items is the identity permutation πid. Let πCRL = (π1, . . . , πn) denote the permutation
obtained at the end of the second step of the CRL estimator. The following lemma proves
a useful property of the outcomes of the first two steps.

Lemma 7. With probability at least 1− n−20, the permutation πCRL obtained at the end of
the second step of the estimator satisfies:

max
i∈[n]

n∑
`=1

|M∗
i` −M∗

πCRL(i)`| ≤ 2
√
n(log n)2.

See the end of this section for a proof of this lemma.
Given Lemma 7, let us complete the proof of the theorem. Let Π̂ denote the set of all

permutations on n items which satisfy the condition in the statement of Lemma 7. Given
that every entry of M∗ lies in the interval [0, 1], any permutation π̂ ∈ Π̂ satisfies

|||M∗ − π̂(M∗)|||2F =
∑
i∈[n]

∑
`∈[n]

(M∗
i` −M∗

π̂(i)π̂(`))
2 ≤

∑
i∈[n]

∑
`∈[n]

|M∗
i` −M∗

π̂(i)π̂(`) |

≤
∑
i∈[n]

∑
`∈[n]

|M∗
i` −M∗

π̂(i)` | +
∑
i∈[n]

∑
`∈[n]

|M∗
π̂(i)` −M∗

π̂(i)π̂(`) |,

where the final expression is a result of the triangle inequality. Since M∗ satisfies shifted
skew-symmetry, we obtain

|||M∗ − π̂(M∗)|||2F ≤ 2
∑
i∈[n]

∑
`∈[n]

|M∗
i` −M∗

π̂(i)` | . (2.38)
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From Lemma 7, each item contributes at most 2
√
n(log n)2 to the error. As a consequence,

we have the upper bound

|||M∗ − π̂(M∗)|||2F ≤ 8n
√
n(log n)2. (2.39)

Let us now analyze the third step of the CRL estimator. The problem of bivariate
isotonic regression refers to estimation of the matrix M∗ ∈ CSST when the true underlying
permutation of the items is known a priori. In our case, the permutation is known only
approximately, so that we need also to track the associated approximation error.

Consider any (fixed) permutation π̂ ∈ Π̂. For clarity, we use M̂L(Y, π̂) to represent the
least squares estimator under the permutation π̂ for the observation matrix Y , that is,

M̂L(Y, π̂) : = arg min
M∈CSST(π̂)

|||M − Y |||2F. (2.40)

With this definition, we have the relation M̂CRL = M̂L(Y, πCRL). We cannot bound the
error of this estimate directly since the permutation πCRL is not fixed, but dependent on
the observed data Y . In order to derive the desired result, we first bound the error of the
estimator M̂L(Y, π̂) when the permutation π̂ is fixed.

Consider any matrix M∗ ∈ CSST(πid) under the identity permutation. We can then write

|||M̂L(M
∗ +W, π̂)−M∗|||2F

= |||M̂L(M
∗ +W, π̂)− M̂L(π̂(M∗) +W, π̂) + M̂L(π̂(M∗) +W, π̂)−M∗|||2F

≤ 2|||M̂L(M
∗ +W, π̂)− M̂L(π̂(M∗) +W, π̂)|||2F + 2|||M̂L(π̂(M∗) +W, π̂)−M∗|||2F. (2.41)

We separately bound the two terms on the right hand side of expression (2.41). First observe

that the least squares step of the estimator M̂L (for a given permutation π̂ in its second
argument) is a projection onto the convex set CSST(π̂), and hence we have the deterministic
bound

|||M̂L(M
∗ +W, π̂)− M̂L(π̂(M∗) +W, π̂)|||2F ≤ |||M∗ − π̂(M∗)|||2F. (2.42a)

In addition, we have

|||M̂L(π̂(M∗) +W, π̂)−M∗|||2F ≤ 2|||M̂L(π̂(M∗) +W, π̂)− π̂(M∗)|||2F + 2|||π̂(M∗)−M∗|||2F.
(2.42b)

At this point, recall the proof of Theorem 1. It follows as a corollary of Theorem 1 that

|||M̂L(M
∗ +W,πid)−M∗|||2F ≤ cn(log n)3,

with probability at least 1 − e−3n(logn). There are three properties of the noise matrix W
that are required for the proof of this bound in Theorem 1: (a) E[W ] = 0, (b) | Wij |≤ 1 for
every pair i, j ∈ [n], and (c) the entries above the diagonal of W are independent (and those
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below are governed by skew-symmetry). For any fixed permutation π̂, the matrix π̂−1(W )
also satisfies each of these properties. As a result, the same bound applies when the noise
matrix is π̂−1(W ) instead of W :

P
(
|||M̂L(M

∗ + π̂−1(W ), πid)−M∗|||2F ≤ c1n(log n)3
)
≥ 1− e−3n(logn).

Applying permutation π̂ to each of the matrices in the above inequality then yields the bound

P
(
|||M̂L(π̂(M∗) +W, π̂)− π̂(M∗)|||2F ≤ c1n(log n)3

)
≥ 1− e−3n logn. (2.43)

In conjunction, the bounds (2.41), (2.42), and (2.43) imply that for any fixed π̂ ∈ Π̂,

P
(
|||M̂L(M

∗ +W, π̂)−M∗|||2F ≤ 9n
√
n(log n)2

)
≥ 1− e−3n logn. (2.44)

Although we are guaranteed that πCRL ∈ Π̂, we cannot apply the bound (2.44) directly to
it, since πCRL is a data-dependent quantity. In order to circumvent this issue, we need to
obtain a uniform version of the bound (2.44). We do so by applying the union bound over

all possible permutations in the set Π̂. Since the total number of permutations is at most
n!, we obtain the bound

P
[
|||M̂CRL −M∗|||2F ≤ 9n

√
n(log n)2 | πCRL ∈ Π̂

]
≥ 1− e− logn.

Recalling that Lemma 7 ensures that P
[
πCRL ∈ Π̂

]
≥ 1−n−20, we have established the claim.

It remains to prove the auxiliary lemma stated above.

Proof of Lemma 7

We first prove that for any fixed item i ∈ [n], the inequality holds with probability at least
1− n−22. The claimed result then follows via a union bound over all items.

Consider any item j > i such that

n∑
`=1

M∗
i` −

n∑
`=1

M∗
j` > 2

√
n(log n)2. (2.45)

An application of Bernstein’s inequality then gives (see the proof of Theorem 7 in Chapter 3
for a detailed derivation) that

P
( n∑
`=1

Yj` ≥
n∑
`=1

Yi` −
√
n log n

)
≤ 1

n23
. (2.46)

Likewise, for any item j < i such that
∑n

`=1M
∗
j` −

∑n
`=1M

∗
i` > 2

√
n(log n)2, we have

P
(∑n

`=1 Yi` ≥
∑n

`=1 Yj` −
√
n log n

)
≤ 1

n23 .
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Now consider any j ≥ i. In order for item i to be located in position j in the total
order given by the count and randomize steps of the CRL estimator, there must be at least
(j − i) items in the set {i+ 1, . . . , n} whose row sums are at least (

∑n
`=1 Yi` −

√
n log n). In

particular, there must be at least one item in the set {j, . . . , n} such that its row sum is at
least (

∑n
`=1 Yi`−

√
n log n). It follows from our results above that under the condition (2.45),

this event occurs with probability no more than 1
n21 . Likewise when j ≤ i, thereby proving

the claim.

2.6.5 Proof of Theorem 4: High SNR Subclass

We now prove our results on the high SNR subclass of CSST, in particular establishing a lower
bound and then analyzing the two-stage estimator described in Section 2.3.4 so as to obtain
the upper bound.

Proof of lower bound

In order to prove the lower bound, we follow the proof of the lower bound of Theorem 1,
with the only difference being that the vector q ∈ Rn−1 is restricted to lie in the interval
[1
2

+ γ, 1]n−1.

Proof of upper bound

Without loss of generality, assume that the true matrix M∗ is associated to the identity
permutation. Recall that the second step of our procedure involves performing constrained
regression over the set CBISO(π̂FAS). The error in such an estimate is necessarily of two types:
the usual estimation error induced by the noise in our samples, and in addition, some form of
approximation error that is induced by the difference between π̂FAS and the correct identity
permutation.

In order to formalize this notion, for any fixed permutation π, consider the constrained
least-squares estimator

M̂π ∈ arg min
M∈CBISO(π)

|||Y −M |||2F. (2.47)

Our first result provides an upper bound on the error matrix M̂π −M∗ that involves both
approximation and estimation error terms.

Lemma 8. There is a universal constant c0 > 0 such that error in the constrained LS
estimate (2.47) satisfies the upper bound

|||M̂π −M∗|||2F
c0

≤ |||M∗ − π(M∗)|||2F︸ ︷︷ ︸
Approx. error

+ n log2(n)︸ ︷︷ ︸
Estimation error

(2.48)

with probability at least 1− c1e
−c2n.
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There are two remaining challenges in the proof. Since the second step of our estima-
tor involves the FAS-minimizing permutation π̂FAS, we cannot simply apply Lemma 8 to it
directly. (The permutation π̂FAS is random, whereas this lemma applies to any fixed permu-
tation). Consequently, we first need to extend the bound (2.48) to one that is uniform over
a set that includes π̂FAS with high probability. Our second challenge is to upper bound the
approximation error term |||M∗− π̂FAS(M∗)|||2F that is induced by using the permutation π̂FAS

instead of the correct identity permutation.
In order to address these challenges, for any constant c > 0, define the set

Π̂(c) : = {π | max
i∈[n]
|i− π(i)| ≤ c log n}.

This set corresponds to permutations that are relatively close to the identity permutation in
the sup-norm sense. Our second lemma shows that any permutation in Π̂(c) is “good enough”
in the sense that the approximation error term in the upper bound (2.48) is well-controlled:

Lemma 9. For any M∗ ∈ CBISO and any permutation π ∈ Π̂(c), we have

|||M∗ − π(M∗)|||2F ≤ 2c′′n log n, (2.49)

where c′′ is a positive constant that may depend only on c.

Taking these two lemmas as given, let us now complete the proof of Theorem 4. (We
return to prove these lemmas at the end of this section.) Braverman and Mossel [23] showed
that for the class CHIGH(γ), there exists a positive constant c—depending on γ but independent
of n—such that

P
[
π̂FAS ∈ Π̂(c)

]
≥ 1− c3

n2
. (2.50)

From the definition of class Π̂(c), there is a positive constant c′ (whose value may depend
only on c) such that its cardinality is upper bounded as

card(Π̂(c)) ≤ n2c′ logn
(i)

≤ e.5c2n,

where the inequality (i) is valid once the number of items n is larger than some universal
constant. Consequently, by combining the union bound with Lemma 8 we conclude that,
with probability at least 1− c′1e−c

′
2n− c3

n2 , the error matrix ∆̂FAS : = M̂π̂FAS
−M∗ satisfies the

upper bound (2.48). Combined with the approximation-theoretic guarantee from Lemma 9,
we find that

|||∆̂FAS|||2F
c0

≤ |||M∗ − π̂FAS(M∗)|||2F + n log2(n)

≤ c′′n log n+ +n log2(n),

from which the claim follows.

It remains to prove the two auxiliary lemmas, and we do so in the following subsections.
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Proof of Lemma 8: The proof of this lemma involves a slight generalization of the proof of
the upper bound in Theorem 1 (see Section 2.6.2 for this proof). From the optimality of M̂π

and feasibility of π(M∗) for the constrained least-squares program (2.47), we are guaranteed

that |||Y − M̂π|||2F ≤ |||Y − π(M∗)|||2F. Introducing the error matrix ∆̂π : = M̂π −M∗, some
algebraic manipulations yield the modified basic inequality

|||∆̂π|||2F ≤ |||M∗ − π(M∗)|||2F + 2〈〈W, M̂π − π(M∗)〉〉.

Let us define ∆̂ : = M̂π−π(M∗). Further, for each choice of radius t > 0, recall the definitions
of the random variable Z(t) and eventAt from equations (2.26) and (2.29), respectively. With
these definitions, we have the upper bound

|||∆̂π|||2F ≤ |||M∗ − π(M∗)|||2F + 2Z
(
|||∆̂|||F

)
. (2.51)

Lemma 3 proved earlier shows that the inequality E[Z(δ0)] ≤ δ20
2

is satisfied by δ0 = c
√
n log n.

In a manner identical to the proof in Section 2.6.2, one can show that

P[At] ≤ P[Z(δ0) ≥ 2δ0

√
tδ0

]
≤ 2e−c1tδ0 for all t ≥ δ0.

Given these results, we break the next step into two cases depending on the magnitude of
∆̂. Case I: Suppose |||∆̂|||F ≤

√
tδ0. In this case, we have

|||∆̂π|||2F ≤ 2|||M∗ − π(M∗)|||2F + 2|||∆̂|||2F
≤ 2|||M∗ − π(M∗)|||2F + tδ0.

Case II: Otherwise, we must have |||∆̂|||F >
√
tδ0. Conditioning on the complement Act , our

basic inequality (2.51) implies that

|||∆̂π|||2F ≤ |||M∗ − π(M∗)|||2F + 4|||∆̂|||F
√
tδ0

≤ |||M∗ − π(M∗)|||2F +
|||∆̂|||2F

8
+ 32tδ0,

≤ |||M∗ − π(M∗)|||2F +
2|||∆̂π|||2F + 2|||M∗ − π(M∗)|||2F

8
+ 32tδ0,

with probability at least 1− 2e−c1tδ0 .
Finally, setting t = δ0 = c

√
n log(n) in either case and re-arranging yields the bound (2.48).

Proof of Lemma 9: For any matrix M and any value i, let Mi denote its ith row. Also
define the clipping function b : Z → [n] via b(x) = min{max{1, x}, n}. Using this notation,
we have

|||M∗ − π(M∗)|||2F =
n∑
i=1

‖M∗
i −M∗

π−1(i)‖2
2

≤
n∑
i=1

max
0≤j≤c logn

{‖M∗
i −M∗

b(i−j)‖2
2, ‖M∗

i −M∗
b(i+j)‖2

2},
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where we have used the definition of the set Π̂(c) to obtain the final inequality. Since
M∗ corresponds to the identity permutation, we have M∗

1 ≥ M∗
2 ≥ · · · ≥ M∗

n, where the
inequalities are in the pointwise sense. Consequently, we have

|||M∗ − π(M∗)|||2F ≤
n∑
i=1

max
{
‖M∗

i −M∗
b(i−c logn)‖2

2, ‖M∗
i −M∗

b(i+c logn)‖2
2

}
≤ 2

n−c logn∑
i=1

‖M∗
i −M∗

i+c logn‖2
2.

One can verify that the inequality
∑k−1

i=1 (ai − ai+1)2 ≤ (a1 − ak)2 holds for all ordered se-
quences of real numbers a1 ≥ a2 ≥ · · · ≥ ak. As stated earlier, the rows of M∗ dominate
each other pointwise, and hence we conclude that

|||M∗ − π(M∗)|||2F ≤ 2c log n‖M∗
1 −M∗

n‖2
2 ≤ 2cn log n,

which establishes the claim (2.49).

2.6.6 Proof of Theorem 5: Parameter-based models

We now turn to our theorem giving upper and lower bounds on estimating pairwise proba-
bility matrices for parameter-based models. Let us begin with a proof of the claimed lower
bound.

Lower bound

We prove our lower bound by constructing a set of matrices that are well-separated in
Frobenius norm. Using this set, we then use an argument based on Fano’s inequality (2.22)
to lower bound the minimax risk. Underlying our construction of the matrix collection is
a collection of Boolean vectors. For any two Boolean vectors b, b′ ∈ {0, 1}n, let DH(b, b′) =∑n

j=1 1[bj 6= b′j] denote the Hamming distance between them.

Lemma 10. For any fixed ζ ∈ (0, 1/4), there is a collection of Boolean vectors {b1, . . . , bη}
such that

min
{
DH(bj, bk), DH(bj, 0)

}
≥ dζne for all distinct j 6= k ∈ {1, . . . , η}, and (2.52a)

η ≡ η(ζ) ≥ exp
{

(n− 1)DKL(2α‖1

2
)
}
− 1. (2.52b)

See the end of this section for a proof of this lemma.
Given the collection {bj, j ∈ [η(ζ)]} guaranteed by this lemma, we then define the collec-

tion of real vectors {wj, j ∈ [η(ζ)]} via

wj = δ
(
I − 1

n
11T
)
bj for each j ∈ [η(ζ)],
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where δ ∈ (0, 1) is a parameter to be specified later in the proof. By construction, for each
index j ∈ [η(ζ)], we have 〈1, wj〉 = 0 and ‖wj‖∞ ≤ δ. Based on these vectors, we then define
the collection of matrices

{
M j, j ∈ [η(ζ)]

}
via

[Mk]ij : = F ([wk]i − [wk]j).

By construction, this collection of matrices is contained within our parameter-based family.
We also claim that they are well-separated in Frobenius norm:

Lemma 11. For any distinct pair j, k ∈ [η(ζ)], we have

|||M j −Mk|||2F
n2

≥ ζ2

4
(F (δ)− F (0))2. (2.53)

See the end of this section for a proof of this lemma.
In order to apply Fano’s inequality, our second requirement is an upper bound on the

mutual information I(Y ; J), where J is a random index uniformly distributed over the index
set [η] = {1, . . . , η}. By Jensen’s inequality, we have I(Y ; J) ≤ 1

(η2)

∑
j 6=kDKL(Pj‖Pk), where

Pj denotes the distribution of Y when the true underlying matrix is M j. Let us upper bound
these KL divergences.

For any pair of distinct indices u, v ∈ [n]2, let xuv be a differencing vector—that is, a
vector whose components u and v are set as 1 and −1, respectively, with all remaining
components equal to 0. We are then guaranteed that

〈xuv, wj〉 = δ〈xuv, bj〉, and F (〈xuv, wj〉) ∈
{
F (−δ), F (0), F (δ)

}
,

where F (δ) ≥ F (0) ≥ F (−δ) by construction. Using these facts, we have

DKL(Pj‖Pk)
(i)

≤ 2
∑
u,v∈[n]

(
F (〈xuv, wj〉)− F (〈xuv, wk〉)

)2

min{F (〈xuv, wk〉), 1− F (〈xuv, wk〉)}

≤ 2n2 (F (δ)− F (−δ))2

F (−δ)

≤ 8n2 (F (δ)− F (0))2

F (−δ)
, (2.54)

where the bound (i) follows from the elementary inequality a log a
b
≤ (a − b)a

b
for any two

numbers a, b ∈ (0, 1).
This upper bound on the KL divergence (2.54) and lower bound on the Frobenius

norm (2.53), when combined with Fano’s inequality (2.22), imply that any estimator M̂
has its worst-case risk over our family lower bounded as

sup
j∈[η(ζ)]

1

n2
E
[
|||M̂ −M(wj)|||2F

]
≥ 1

8
ζ2(F (δ)− F (0))2

(
1−

8
F (−δ)n

2(F (δ)− F (0))2 + log 2

n

)
.
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Choosing a value of δ > 0 such that (F (δ)− F (0))2 = F (−δ)
80n

gives the claimed result. (Such
a value of δ is guaranteed to exist with F (−δ) ∈ [1

4
, 1

2
] given our assumption that F is con-

tinuous and strictly increasing.)

The only remaining details are to prove Lemmas 10 and 11.

Proof of Lemma 10: The Gilbert-Varshamov bound [90, 258] guarantees the existence
of a collection of vectors {b0, . . . , bT̄−1} contained with the Boolean hypercube {0, 1}n such
that

T̄ ≥ 2n−1
( dζne−1∑

`=0

(
n− 1

`

))−1
, and

DH(bj, bk) ≥ dζne for all j 6= k, j, k ∈ [T̄ − 1].

Moreover, their construction allows loss of generality that the all-zeros vector is a member of
the set—say b0 = 0. We are thus guaranteed that DH(bj, 0) ≥ dζne for all j ∈ {1, . . . , T̄ −1}.

Since n ≥ 2 and α ∈ (0, 1
4
), we have dαne−1

n−1
≤ 2α ≤ 1

2
. Applying standard bounds on the

tail of the binomial distribution yields

1

2n−1

dζne−1∑
`=0

(
n− 1

`

)
≤ exp

(
− (n− 1)DKL(

dαne − 1

n− 1
‖1

2
)
)
≤ exp

(
− (n− 1)DKL(2α‖1

2
)
)
.

Consequently, the number of non-zero code words η : = T̄ − 1 is at least

η(ζ) : = exp
(

(n− 1)DKL(2α‖1

2
)
)
− 1.

Thus, the collection {b1, . . . , bη} has the desired properties.

Proof of Lemma 11: By definition of the matrix ensemble, we have

|||M(wj)−M(wk)|||2F =
∑
u,v∈[n]

(F (〈xuv, wj〉)− F (〈xuv, wk〉))2. (2.55)

By construction, the Hamming distances between the triplet of vectors {wj, wk, 0} are lower
bounded DH(wj, 0) ≥ ζn, DH(wk, 0) ≥ ζn and DH(wj, wk) ≥ ζn. We claim that this implies
that

card
{
u 6= v ∈ [n]2 | 〈xuv, wj〉 6= 〈xuv, wk〉

}
≥ ζ2

4
n2. (2.56)

Taking this auxiliary claim as given for the moment, applying it to Equation (2.55) yields
the lower bound |||M(w1)−M(w2)|||2F ≥ 1

4
ζ2n2(F (δ)− F (0))2, as claimed.
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It remains to prove the auxiliary claim (2.56). We relabel j = 1 and k = 2 for simplicity
in notation. For (y, z) ∈ {0, 1} × {0, 1}, let set Iyz ⊆ [n] denote the set of indices on which
w1 takes value y and w2 takes value z. We then split the proof into two cases:

Case 1: Suppose | I00 ∪ I11 |≥ ζn
2

. The minimum distance condition DH(w1, w2) ≥ ζn im-
plies that | I01 ∪ I10 |≥ ζn. For any i ∈ I00 ∪ I11 and any j ∈ I01 ∪ I10, it must be that

〈xuv, w1〉 6= 〈xuv, w2〉. Thus there are at least ζ2

2
n2 such pairs of indices.

Case 2: Otherwise, we may assume that | I00 ∪ I11 |< ζn
2

. This condition, along with the

minimum Hamming weight conditions DH(w1, 0) ≥ ζn and DH(w2, 0) ≥ ζn, gives I10 ≥ ζn
2

and I01 ≥ ζn
2

. For any i ∈ I01 and any j ∈ I10, it must be that 〈xuv, w1〉 6= 〈xuv, w2〉. Thus

there are at least ζ2

4
n2 such pairs of indices.

Upper bound

In our earlier work [220, Theorem 2b] we prove that when F is strongly log-concave and
twice differentiable, then there is a universal constant c1 such that the maximum likelihood
estimator ŵML has mean squared error at most

sup
w∗∈[−1,1]n,〈w∗, 1〉=0

E[‖ŵML − w∗‖2
2] ≤ c1. (2.57)

Moreover, given the log-concavity assumption, the MLE is computable in polynomial-time.
LetM(ŵML) andM(w∗) denote the pairwise comparison matrices induced, via Equation (2.4),
by ŵML and w∗. It suffices to bound the Frobenius norm |||M(ŵML)−M(w∗)|||F.

Consider any pair of vectors w1 and w2 that lie in the hypercube [−1, 1]n. For any pair
of indices (i, j) ∈ [n]2, we have

((M(w1))ij − (M(w2))ij)
2 = (F (w1

i − w1
j )− F (w2

i − w2
j ))

2 ≤ ζ2((w1
i − w1

j )− (w2
i − w2

j ))
2,

where we have defined ζ : = max
z∈[−1,1]

F ′(z). Putting together the pieces yields

|||M(w1)−M(w2)|||2F ≤ ζ2(w1 − w2)T (nI − 11T )(w1 − w2) = nζ2‖w1 − w2‖2
2. (2.58)

Applying this bound with w1 = ŵML and w2 = w∗ and combining with the bound (2.57)
yields the claim.

2.6.7 Proof of Theorem 6: Partial observations

We now turn to the proof of Theorem 6, which characterizes the behavior of different esti-
mators for the partially observed case.

Proof of part (a)

In this section, we prove the lower and upper bounds stated in part (a).
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Proof of lower bound: We begin by proving the lower bound in equation (2.20a). The
Gilbert-Varshamov bound [90, 258] guarantees the existence of a set of vectors {b1, . . . , bη}
in the Boolean cube {0, 1}n2 with cardinality at least η : = 2cn such that

DH(bj, bk) ≥ d0.1ne for all distinct pairs j, k ∈ [η] : = {1, . . . , η}.

Fixing some δ ∈ (0, 1
4
) whose value is to be specified later, for each k ∈ [η], we define a

matrix Mk ∈ CSST with entries

[Mk]uv =

{
1
2

+ δ if u ≤ n
2
, [bk]u = 1 and v ≥ n

2
1
2

otherwise,

for every pair of indices u ≤ v. We complete the matrix by setting [Mk]vu = 1− [Mk]uv for
all indices u > v.

By construction, for each distinct pair j, k ∈ [η], we have the lower bound

|||M j −Mk|||2F = nδ2‖bj − bk‖2
2 ≥ c0n

2δ2.

Let Pj and Pjuv denote (respectively) the distributions of the matrix Y and entry Yuv when
the underlying matrix is M j. Since the entries of Y are generated independently, we have
DKL(Pj‖Pk) =

∑
1≤u<v≤n

DKL(Pjuv‖Pkuv). The matrix entry Yuv is generated according to the

model

Yuv =


1 w.p. pobsM

∗
uv

0 w.p. pobs(1−M∗
uv)

not observed w.p. 1− pobs.

Consequently, the KL divergence can be upper bounded as

DKL(Pjuv‖Pkuv)

= pobs

(
M j

uv log
M j

uv

Mk
uv

+ (1−M j
uv) log

(1−M j
uv)

(1−Mk
uv)

)
≤pobs

{
M j

uv

(M j
uv −Mk

uv

Mk
uv

)
+ (1−M j

uv)
(Mk

uv −M j
uv

1−Mk
uv

)}
(2.59a)

= pobs
(M j

uv −Mk
uv)

2

Mk
uv(1−Mk

uv)
(2.59b)

≤16pobs (M j
uv −Mk

uv)
2, (2.59c)

where inequality (2.59a) follows from the fact that log(t) ≤ t − 1 for all t > 0; and in-
equality (2.59c) follows since the numbers {M j

uv,M
k
uv} both lie in the interval [1

4
, 3

4
]. Putting

together the pieces, we conclude that

DKL(Pj‖Pk) ≤ c1pobs|||M j −Mk|||2F ≤ c′1pobsn
2δ2.
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Thus, applying Fano’s inequality (2.22) to the packing set {M1, . . . ,Mη} yields that any

estimator M̂ has mean squared error lower bounded by

sup
k∈[η]

1

n2
E[|||M̂ −Mk|||2F] ≥ c0δ

2
(

1− c′1pobsn
2δ2 + log 2

cn

)
.

Finally, choosing δ2 = c2
2c1pobsn

yields the lower bound supk∈[η]
1
n2E[|||M̂ −Mk|||2F] ≥ c3

1
npobs

.

Note that in order to satisfy the condition δ ≤ 1
4
, we must have pobs ≥ 16c2

2c1n
.

Proof of upper bound: For this proof, recall the linearized form of the observation model
given in equations (2.19a), (2.21a), and (2.21b). We begin by introducing some additional
notation. Letting Π denote the set of all permutations of n items. For each π ∈ Π, we define
the set

π(CBISO) : =
{
M ∈ [0, 1]n×n |Mk` ≥Mij whenever π(k) ≤ π(i) and π(`) ≥ π(j)

}
,

corresponding to the subset of permutation-based SST matrices that are faithful to the
permutation π. We then define the estimator Mπ ∈ arg min

M∈π(CBISO)

|||Y ′ −M |||2F, in terms of which

the least squares estimator (2.19b) can be rewritten as

M̂ ∈ arg min
π∈Π

|||Y ′ −Mπ|||2F.

Define a set of permutations Π′ ⊆ Π as

Π′ : = {π ∈ Π | |||Y ′ −Mπ|||2F ≤ |||Y ′ −M∗|||2F}.

Note that the set Π′ is guaranteed to be non-empty since the permutation corresponding to
M̂ always lies in Π′. We claim that for any π ∈ Π′, we have

P
(
|||Mπ −M∗|||2F ≤ c1

n

pobs

log2 n
)
≥ 1− e−3n logn, (2.60)

for some positive universal constant c1. Given this bound, since there are at most en logn

permutations in the set Π′, a union bound over all these permutations applied to (2.60)
yields

P
(

max
π∈Π′
|||Mπ −M∗|||2F > c1

n

pobs

log2 n
)
≤ e−2n logn.

Since M̂ is equal to Mπ for some π ∈ Π′, this tail bound yields the claimed result.
The remainder of our proof is devoted to proving the bound (2.60). By definition, any

permutation π ∈ Π′ must satisfy the inequality

|||Y −Mπ|||2F ≤ |||Y −M∗|||2F.
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Letting ∆̂π : = Mπ −M∗ denote the error matrix, and using the linearized form (2.21a) of
the observation model, some algebraic manipulations yield the basic inequality

1

2
|||∆̂π|||2F ≤

1

pobs

〈〈W ′, ∆̂π〉〉. (2.61)

Now consider the set of matrices

CDIFF(π) : =
{
α(M −M∗) | M ∈ π(CBISO), α ∈ [0, 1]

}
, (2.62)

and note that CDIFF(π) ⊆ [−1, 1]n×n. (To be clear, the set CDIFF(π) also depends on the value
of M∗, but considering M∗ as fixed, we omit this dependence from the notation for brevity.)
For each choice of radius t > 0, define the random variable

Zπ(t) : = sup
D∈CDIFF(π),
|||D|||F≤t

1

pobs

〈〈D, W ′〉〉. (2.63)

Using the basic inequality (2.61), the Frobenius norm error |||∆̂π|||F then satisfies the bound

1

2
|||∆̂π|||2F ≤

1

pobs

〈〈W ′, ∆̂π〉〉 ≤ Zπ
(
|||∆̂π|||F

)
. (2.64)

Thus, in order to obtain a high probability bound, we need to understand the behavior of
the random quantity Zπ(t).

One can verify that the set CDIFF(π) is star-shaped, meaning that αD ∈ CDIFF(π) for every
α ∈ [0, 1] and every D ∈ CDIFF(π). Using this star-shaped property, we are guaranteed that
there is a non-empty set of scalars δ0 > 0 satisfying the critical inequality

E[Zπ(δ0)] ≤ δ2
0

2
. (2.65)

Our interest is in an upper bound to the smallest (strictly) positive solution δ0 to the critical

inequality (2.65), and moreover, our goal is to show that for every t ≥ δ0, we have |||∆̂|||F ≤
c
√
tδ0 with high probability.
For each t > 0, define the “bad” event

At =
{
∃∆ ∈ CDIFF(π) | |||∆|||F ≥

√
tδ0 and

1

pobs

〈〈∆, W ′〉〉 ≥ 2|||∆|||F
√
tδ0

}
. (2.66)

Using the star-shaped property of CDIFF(π), it follows by a rescaling argument that

P[At] ≤ P[Zπ(δ0) ≥ 2δ0

√
tδ0] for all t ≥ δ0.

The following lemma helps control the behavior of the random variable Zπ(δ0).
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Lemma 12. For any δ > 0, the mean of Zπ(δ) is bounded as

E[Zπ(δ)] ≤ c1

n

pobs

log2 n,

and for every u > 0, its tail probability is bounded as

P
(
Zπ(δ) > E[Zπ(δ)] + u

)
≤ exp

( −c0u
2pobs

δ2 + E[Zπ(δ)] + u

)
,

where c1 and c0 are positive universal constants.

See the end of this section for a proof of this lemma.
From this lemma, we have the tail bound

P
(
Zπ(δ0) > E[Zπ(δ0)] + δ0

√
tδ0

)
≤ exp

( −c0(δ0

√
tδ0)2pobs

δ2
0 + E[Zπ(δ0)] + (δ0

√
tδ0)

)
, for all t ≥ δ0.

By the definition of δ0 in equation (2.65), we have E[Z(δ0)] ≤ δ2
0 ≤ δ0

√
tδ0 for any t ≥ δ0,

and consequently

P[At] ≤ P[Z(δ0) ≥ 2δ0

√
tδ0

]
≤ exp

(−c0(δ0

√
tδ0)2pobs

3δ0

√
tδ0

)
, for all t ≥ δ0.

Consequently, either |||∆̂π|||F ≤
√
tδ0, or we have |||∆̂π|||F >

√
tδ0. In the latter case, condi-

tioning on the complement Act , our basic inequality implies that 1
2
|||∆̂π|||2F ≤ 2|||∆̂π|||F

√
tδ0 and

hence |||∆̂π|||F ≤ 4
√
tδ0. Putting together the pieces yields that

P
(
|||∆̂π|||F ≤ 4

√
tδ0

)
≥ 1− exp

(
− c′0δ0

√
tδ0pobs

)
, for all t ≥ δ0. (2.67)

Finally, from the bound on the expected value of Zπ(t) in Lemma 12, we see that the

critical inequality (2.65) is satisfied for δ0 =
√

c1n
pobs

log n. Setting t = δ0 =
√

c1n
pobs

log n

in (2.67) yields

P
(
|||∆̂π|||F ≤ 4

c1n

pobs

log2 n
)
≥ 1− exp

(
− 3n log n

)
, (2.68)

for some universal constant c1 > 0, thus proving the bound (2.60).

It remains to prove Lemma 12.
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Proof of Lemma 12 Bounding E[Zπ(δ)]: We establish an upper bound on E[Zπ(δ)] by
using Dudley’s entropy integral, as well as some auxiliary results on metric entropy. We use
the notation logN(ε,C, ρ) to denote the ε metric entropy of the class C in the metric ρ.

Introducing the random variable Z̃π : = sup
D∈CDIFF(π)

〈〈D, W ′〉〉, note that we have E[Zπ(δ)] ≤

1
pobs

E[Z̃π]. The truncated form of Dudley’s entropy integral inequality yields

E[Z̃π] ≤ c
{
n−8 +

∫ 2n

1
2
n−9

√
logN(ε,CDIFF(π), |||.|||F)dε

}
, (2.69)

where we have used the fact that the diameter of the set CDIFF(π) is at most 2n in the
Frobenius norm.

From our earlier bound (2.34), we are guaranteed that for each ε > 0, the metric entropy
is upper bounded as

logN
(
ε, {αM |M ∈ CBISO, α ∈ [0, 1]}, ||| · |||F

)
≤ 8

n2

ε2
(

log
n

ε

)2
.

Consequently, we have

logN(ε,CDIFF(π), |||.|||F) ≤ 16
n2

ε2
(

log
n

ε

)2
.

Substituting this bound on the metric entropy of CDIFF(π) and the inequality ε ≥ 1
2
n−9 into

the Dudley bound (2.69) yields

E[Z̃π] ≤ cn(log n)2.

The inequality E[Zπ(δ)] ≤ 1
pobs

E[Z̃π] then yields the claimed result.

Bounding the tail probability of Zπ(δ): In order to establish the claimed tail bound,
we use a Bernstein-type bound on the supremum of empirical processes due to Klein and
Rio [129, Theorem 1.1c], which we state in a simplified form here.

Lemma 13. Let X : = (X1, . . . , Xm) be any sequence of zero-mean, independent random
variables, each taking values in [−1, 1]. Let V ⊂ [−1, 1]m be any measurable set of m-length
vectors. Then for any u > 0, the supremum X† = supv∈V〈X, v〉 satisfies the upper tail bound

P
(
X† > E[X†] + u

)
≤ exp

( −u2

2 supv∈V E[〈v, X〉2] + 4E[X†] + 3u

)
.

We now invoke Lemma 13 with the choices V = CDIFF(π) ∩ B(δ), m = (n× n), X = W ′,
and X† = pobsZπ(δ). The matrix W ′ has zero-mean entries belonging to the interval [−1,+1],
and are independent on and above the diagonal (with the entries below determined by the
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skew-symmetry condition). Then we have E[X†] ≤ pobsE[Zπ(δ)] and E[〈〈D, W ′〉〉2] ≤ 4pobs|||D|||2F ≤ 4pobsδ
2

for every D ∈ V . With these assignments, and some algebraic manipulations, we obtain that
for every u > 0,

P
[
Zπ(δ) > E[Zπ(δ)] + u

]
≤ exp

( −u2pobs

8δ2 + 4E[Zπ(δ)] + 3u

)
,

as claimed.

Proof of part (b)

In order to prove the bound (2.20b), we analyze the SVT estimator Tλn(Y ′) with the threshold

λn = 3
√

n
pobs

. Naturally then, our analysis is similar to that of complete observations case

from Section 2.6.3. Recall our formulation of the problem in terms of the observation matrix
Y ′ along with the noise matrix W ′ from equations (2.19a), (2.21a) and (2.21b). The result
of Lemma 4 continues to hold in this case of partial observations, translated to this setting.
In particular, if λn ≥ 1.01

pobs
|||W ′|||op, then

|||Tλn(Y ′)−M∗|||2F ≤ c1

n∑
j=1

min
{
λ2
n, σ

2
j (M

∗)
}
,

where c1 > 0 is a universal constant.
We now upper bound the operator norm of the noise matrix W ′. Define a (2n × 2n)

matrix

W ′′ =
1
√
pobs

[
0 W ′

(W ′)T 0

]
.

From equation (2.21b) and the construction above, we have that the matrix W ′′ is symmetric,
with mutually independent entries above the diagonal that have a mean of zero, a variance
upper bounded by 1, and entries bounded in absolute value by

√
n√

c4 log3.5 n
. Consequently,

known results in random matrix theory (e.g., see [44, Theorem 3.4] or [250, Theorem 2.3.21])
yield the bound |||W ′′|||op ≤ 2.01

√
2n with probability at least 1 − n−c2 , for some universal

constant c2 > 1. One can also verify that |||W ′′|||op = 1√
pobs
|||W ′|||op, thereby yielding the bound

P
[
|||W ′|||op > 2.01

√
2npobs

]
≤ n−c2 .

With our choice λn = 3
√

n
pobs

, the event {λn ≥ 1.01
pobs
|||W ′|||op} holds with probability at

least 1−n−c2 . Conditioned on this event, the approximation-theoretic result from Lemma 5
gives

1

n2
|||Tλn(Y ′)−M∗|||2F ≤ c

(sλ2
n

n2
+

1

s

)
with probability at least 1 − n−c2 . Substituting λn = 3

√
n
pobs

in this bound and setting

s =
√
pobsn yields the claimed result.
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Proof of part (c)

As in our of proof of the fully observed case from Section 2.6.6, we consider the two-stage
estimator based on first computing the MLE ŵML of w∗ from the observed data, and then
constructing the matrix estimate M(ŵML) via Equation (2.4). Let us now upper bound the
mean-squared error associated with this estimator.

Our observation model can be (re)described in the following way. Consider an Erdős-
Rényi graph on n vertices with each edge drawn independently with a probability pobs. For
each edge in this graph, we obtain one observation of the pair of vertices at the end-points
of that edge. Let L be the (random) Laplacian matrix of this graph, that is, L = D − A
where D is an (n × n) diagonal matrix with [D]ii being the degree of item i in the graph
(equivalently, the number of pairwise comparison observations that involve item i) and A is
the (n×n) adjacency matrix of the graph. Let λ2(L) denote the second largest eigenvalue of
L. From Theorem 2(b) of our paper [220] on estimating parameter-based models,7 for this
graph, there is a universal constant c1 such that the maximum likelihood estimator ŵML has
mean squared error upper bounded as

E[‖ŵML − w∗‖2
2 | L] ≤ c1

n

λ2(L)
.

The estimator ŵML is computable in a time polynomial in n.

Since pobs ≥ c0
(logn)2

n
, known results on the eigenvalues of random graphs [48, 131, 184]

imply that

P
[
λ2(L) ≥ c2npobs

]
≥ 1− 1

n4
(2.70)

for a universal constant c2 (that may depend on c0). As shown earlier in Equation (2.58),
for any valid score vectors w1, w2, we have |||M(w1) −M(w2)|||2F ≤ nζ2‖w1 − w2‖2

2 where
ζ : = maxz∈[−1,1] F

′(z) is a constant independent of n and pobs. Putting these results together
and performing some simple algebraic manipulations leads to the upper bound

1

n2
E
[
|||M(ŵML)−M∗|||2F

]
≤ c3ζ

2

npobs

,

which establishes the claim.

2.6.8 Proof of Proposition 2: MST and WST models

We will derive an order one lower bound under the moderate stochastic transitivity condition.
This result automatically implies the order one lower bound for weak stochastic transitivity.

7Note that the Laplacian matrix used in the statement of [220, Theorem 2(b)] is a scaled version of the
matrix L introduced here, with each entry of L divided by the total number of observations.
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The proof imposes a certain structure on a subset of the entries of M∗ in a manner that
Θ(n2) remaining entries are free to take arbitrary values within the interval [1

2
, 1]. This

flexibility then establishes a minimax error of Θ(1) as claimed.
Let us suppose M∗ corresponds to the identity permutation of the n items, and that this

information is public knowledge. Set the entries of M∗ above the diagonal in the following
manner. For every i ∈ [n] and every odd j ∈ [n], set M∗

ij = 1
2
. For every i ∈ [n] and every

even j ∈ [n], set M∗
ji = 1

2
. This information is also assumed to be public knowledge. Let

S ⊂ [n]2 denote the set of all entries of M∗ above the diagonal whose values were not assigned
in the previous step. Let |S| denote the size of set S. The entries below the diagonal are
governed by the skew-symmetry constraints.

We first argue that every entry in S can take arbitrary values in the interval [1
2
, 1], and

are not constrained by each other under the moderate stochastic transitivity condition. To
this end, consider any entry (i, k) ∈ S. Recall that the moderate stochastic transitivity
condition imposes the following set of restrictions in M∗

ik: for every j, M∗
ik ≥ min{M∗

ij,M
∗
jk}.

From our earlier construction we have that for every odd value of j, M∗
ij = 1

2
and hence the

restriction simply reduces to M∗
ik ≥ 1

2
. On the other hand, for every even value of j, our

construction gives M∗
jk = 1

2
, and hence the restriction again reduces to M∗

ik ≥ 1
2
. Given the

absence of any additional restrictions, the error E[|||M̂ −M∗|||2F] ≥ c|S|. Finally, observe that
every entry (i, k) where i < k, i is odd and k is even belongs to the set S. It follows that
|S| ≥ n2

8
, thus proving our claim.

2.6.9 Proof of Proposition 3: Other statistical models

The constructions governing the claimed relations are enumerated in Figure 2.2 and the
details are provided below.

It is easy to see that since F is non-decreasing, the parameter-based class CPAR is contained
in the strong stochastic transitivity class CSST. We provide a formal proof of this statement
for the sake of completeness. Suppose without loss of generality that w1 ≥ · · · ≥ wn. Then
we claim that the distribution of pairwise comparisons generated through this model result
in a matrix, say M , that lies in the permutation-based SST model with the ordering following
the identity permutation. This is because for any i > j > k,

wi − wk ≥ wi − wj
F (wi − wk) ≥ F (wi − wj)

Mik ≥Mij.

We now show the remaining relations with the four constructions indicated in Figure 2.2.
While these constructions target some specific value of n, the results hold for any value n
greater than that specific value. To see this, suppose we construct a matrix M for some
n = n0, and show that it lies inside (or outside) one of these classes. Consider any n > n0,
and define a (n×n) matrix M ′ as having M as the top-left (n0×n0) block, 1

2
on the remaining

diagonal entries, 1 on the remaining entries above the diagonal and 0 on the remaining entries
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below the diagonal. This matrix M ′ will retain the properties of M in terms of lying inside
(or outside, respectively) the claimed class.

In this proof, we use the notation i � j to represent a greater preference for i as compared
to j.

Construction 1

We construct a matrix M such that M ∈ CFULL but M /∈ CSST. Let n = 3. Consider the
following distribution over permutations of 3 items (1, 2, 3):

P(1 � 2 � 3) = 2
5
,

P(3 � 1 � 2) = 1
5
,

P(2 � 3 � 1) = 2
5
.

This distribution induces the pairwise marginals

P(1 � 2) = 3
5
,

P(2 � 3) = 4
5
,

P(3 � 1) = 3
5
.

Set Mij = P(i � j) for every pair. By definition of the class CFULL, we have M ∈ CFULL.
A necessary condition for a matrix M to belong to the class CSST is that there must exist

at least one item, say item i, such that Mij ≥ 1
2

for every item j. One can verify that the
pairwise marginals enumerated above do not satisfy this condition, and hence M /∈ CSST.

Construction 2

We construct a matrix M such that M ∈ CSST ∩CFULL but M /∈ CPAR. Let n = 4 and consider
the following distribution over permutations of 4 items (1, 2, 3, 4):

P(3 � 1 � 2 � 4) =
1

8
, P(1 � 2 � 4 � 3) =

1

8

P(2 � 1 � 4 � 3) =
2

8
and P(1 � 2 � 3 � 4) =

4

8
.

One can verify that this distribution leads to the following pairwise comparison matrix M
(with the ordering of the rows and columns respecting the permutation 1 � 2 � 3 � 4):

M : =
1

8


4 6 7 8
2 4 7 8
1 1 4 5
0 0 3 4

 .
It is easy to see that this matrix M ∈ CSST, and by construction M ∈ CFULL. Finally, the
proof of Proposition 2 shows that M /∈ CPAR, thereby completing the proof.
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Construction 3

We construct a matrix M such that M ∈ CPAR (and hence M ∈ CSST) but M /∈ CFULL. First
observe that any total ordering on n items can be represented as an (n × n) matrix in the
permutation-based SST class such that all its off-diagonal entries take values in {0, 1}. The
class CFULL is precisely the convex hull of all such binary permutation-based SST matrices.

Let B1, . . . , Bn! denote all (n × n) matrices in CSST whose off-diagonal elements are re-
stricted to take values in the set {0, 1}. The following lemma derives a property that any
matrix in the convex hull of B1, . . . , Bn! must satisfy.

Lemma 14. Consider any M ∈ CSST, and consider three items i, j, k ∈ [n] such that M
respects the ordering i � j � k. Suppose Mij = Mjk = 1

2
and Mik = 1. Further suppose that

M can be written as

M =
∑
`∈[n!]

α`B`, (2.71)

where α` ≥ 0 ∀ ` and
∑n!

`=1 α
` = 1. Then for any ` ∈ [n!] such that α` > 0, it must be that

B`
ij 6= B`

jk.

The proof of the lemma is provided at the end of this section.
Now consider the following (7× 7) matrix M ∈ CSST:

M : =



1
2

1
2

1 1 1 1 1
1
2

1
2

1
2

1
2

1 1 1

0 1
2

1
2

1
2

1
2

1 1

0 1
2

1
2

1
2

1
2

1
2

1

0 0 1
2

1
2

1
2

1
2

1

0 0 0 1
2

1
2

1
2

1
2

0 0 0 0 0 1
2

1
2


. (2.72)

We will now show via proof by contradiction that M cannot be represented as a convex
combination of the matrices B1, . . . , Bn!. We will then show that M ∈ CPAR.

Suppose one can representM as a convex combinationM =
∑

`∈[n!] α
`B`, where α1, . . . , αn!

are non-negative scalars that sum to one. Consider any ` such that α` 6= 0. Let B`
12 = b ∈

{0, 1}. Let us derive some more constraints on B`. Successively applying Lemma 14 for the
following values of i, j, k implies that B` must necessarily have the form (2.73) shown below.
Here b̄ : = 1 − b and ‘∗’ denotes some arbitrary value that is irrelevant to the discussion at
hand.

• i = 1, j = 2, k = 3 gives B`
23 = b̄

• i = 1, j = 2, k = 4 gives B`
24 = b̄
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• i = 2, j = 3, k = 5 gives B`
35 = b

• i = 2, j = 4, k = 6 gives B`
46 = b

• i = 3, j = 5, k = 6 gives B`
56 = b̄

• i = 4, j = 6, k = 7 gives B`
67 = b̄.

Thus B` must be of the form

B` =



1
2

b 1 1 1 1 1
1
2

1
2

b̄ b̄ 1 1 1

0 b 1
2
∗ b 1 1

0 b ∗ 1
2
∗ b 1

0 0 b̄ ∗ 1
2

b̄ 1

0 0 0 b̄ b 1
2

b̄

0 0 0 0 0 b 1
2


. (2.73)

Finally, applying Lemma 14 with i = 5, j = 6 and k = 7 implies that B`
67 = b, which

contradicts the necessary condition in equation (2.73). We have thus shown that M /∈ CFULL.
We now show that the matrix M constructed in equation (2.72) is contained in the class

CPAR. Consider the following function F : [−1, 1] → [0, 1] in the definition of a parameter-
based class:

F (x) =


0 if x < −0.25
1
2

if −0.25 ≤ x ≤ 0.25

1 if x > 0.25.

Let n = 7 with w1 = .9, w2 = .7, w3 = .6, w4 = .5, w5 = .4, w6 = .3 and w7 = .1. One can
verify that under this construction, the matrix of pairwise comparisons is identical to that
in equation (2.72).

Proof of Lemma 14 In what follows, we show that
∑

`:B`ij=1,B`jk=1 α
` =

∑
`:B`ij=1,B`jk=1 α

` =

0. The result then follows immediately.
Consider some `′ ∈ [n!] such that α`

′
> 0 and B`′

ij = 0. Since Mik = 1, we must

have B`′

ik = 1. Given that B`′ represents a total ordering of the n items, that is, B`′ is a
permutation-based SST matrix with boolean-valued its off-diagonal elements, B`′

ij = 0 and

B`′

ik = 1 imply that B`′

jk = 1. We have thus shown that B`′

jk = 1 whenever B`′
ij = 0. This

result has two consequences. The first consequence is that
∑

`:B`ij=0,B`jk=0 α
` = 0. The second

consequence employs the additional fact that Mij = 1
2

and hence
∑

`:B`ij=0 α
` = 1

2
, and then
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gives
∑

`:B`ij=0,B`jk=1 α
` = 1

2
. Building on, we have

1

2
= Mjk =

∑
`:B`ij=0,B`jk=1

α` +
∑

`:B`ij=1,B`jk=1

α`,

and hence we have
∑

`:B`ij=1,B`jk=1 α
` = 0, thus completing the proof.

Construction 4

We construct a matrix M such that M ∈ CSST but M /∈ CFULL and M /∈ CPAR. Consider
n = 11. Let M2 denote the (4× 4) matrix of Construction 2 and let M3 denote the (7× 7)
matrix of construction 3. Consider the (11× 11) matrix M of the form

M : =

[
M2 1
0 M3

]
.

Since M2 ∈ CSST and M3 ∈ CSST, it is easy to see that M ∈ CSST. Since M2 /∈ CPAR and
M /∈ CFULL, it follows that M /∈ CPAR and M /∈ CFULL. This construction completes the proof
of Proposition 3.

2.A Appendix: Relation to other error metrics

In this section, we show how estimation of the pairwise-comparison-probability matrix M∗

under the squared Frobenius norm implies estimates and bounds under other error metrics.
In particular, we investigate relations between estimation of the true underlying ordering
under the Spearman’s footrule and the Kemeny metrics, and estimation of the matrix M∗

under the Kullback-Leibler divergence metric.

2.A.1 Recovering the true ordering

Recall that the permutation-based SST class assumes the existence of some true ordering of
the n items. The pairwise-comparison probabilities are then assumed to be faithful to this
ordering. In this section, we investigate the problem of estimating this underlying ordering.

In order to simplify notation, we assume without loss of generality that this true underly-
ing ordering is the identity permutation of the n items, and denote the identity permutation
as πid. Recall the set CBISO of bivariate isotonic matrices, that is, permutation-based SST
matrices that are faithful to the identity permutation:

CBISO = {M ∈ [0, 1]n×n |Mij = 1−Mji for all (i, j) ∈ [n]2, and Mi` ≥Mj` whenever i < j.}

Then we have that M∗ ∈ CBISO. Let π be any permutation of the n items. For any matrix
M ∈ Rn×n and any integer i ∈ [n] we let Mi denote the ith row of M .
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Two of the most popular metrics of measuring the error between two such orderings
are the Spearman’s footrule and the Kemeny (or Kendall tau) distance, defined as follows.
Spearman’s footrule measures the total displacement of all items in π as compared to πid,
namely

Spearman’s footrule(π, πid) : =
n∑
i=1

| π(i)− i | .

On the other hand, the Kemeny distance equals the total number of pairs whose relative
positions are different in the two orderings, namely,

Kemeny(π, πid) : =
∑

1≤i<j≤n

1{sign(π(i)− π(j)) 6= sign(i− j)},

where “sign” denotes the sign function, that is, sign(x) = 1 if x > 0, sign(x) = −1 if x < 0
and sign(x) = 0 if x = 0. The Kemeny distance is also known as the Kendall tau metric.

Before investigating the two aforementioned metrics, we remark on one important as-
pect of the problem of estimating the order of the items. Observe that if the rows of M∗

corresponding to some pair of items (i, j) are very close to each other (say, in a pointwise
sense), then it is hard to estimate the relative position of item i with respect to item j.
On the other hand, if the two rows are far apart then differentiating between the two items
is easier. Consequently, it is reasonable to consider a metric that penalizes errors in the
inferred permutation based on the relative values of the rows of M∗. To this end, we define
a reweighted version of Spearman’s footrule as

Matrix-reweighted Spearman’s footruleM∗(π, πid) : = |||π(M∗)−M∗|||2F =
n∑
i=1

‖M∗
π(i) −M∗

i ‖2
2.

Given these definitions, the following proposition now relates the squared Frobenius norm
metric to the other aforementioned metrics.

Proposition 2.A. Any two matrices M∗ ∈ CBISO, and M ∈ CSST with π as its underlying
permutation, must satisfy the following bound on the matrix-reweighted Spearman’s footrule:

|||M∗ − π(M∗)|||2F ≤ 4|||M∗ −M |||2F.

Proposition 2.B. Consider any matrix M∗ ∈ CBISO that satisfies ‖M∗
i −M∗

i+1‖2
2 ≥ γ2 for

some constant γ > 0 and for every i ∈ [n− 1]. Then for any permutation π, the Spearman’s
footrule distance from the identity permutation is upper bounded as

n∑
i=1

| i− π(i) |≤ 1

γ2
|||M∗ − π(M∗)|||2F.
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Conversely, there exists a matrix M∗ ∈ CBISO that satisfies ‖M∗
i −M∗

i+1‖2
2 = γ2 for every

i ∈ [n − 1] such that for every permutation π, the Spearman’s footrule distance from the
identity permutation is lower bounded as

n∑
i=1

| i− π(i) |≥ 1

4γ2
|||M∗ − π(M∗)|||2F.

Proposition 2.C ([64]). The Kemeny distance of any permutation π from the identity
permutation πid is sandwiched as

1

2

n∑
i=1

| i− π(i) |≤
∑

1≤i<j≤n

1{sign(π(i)− π(j)) 6= sign(i− j)} ≤
n∑
i=1

| i− π(i) | .

As a consequence of this proposition, an upper bound on the error in estimation of M∗

under the squared Frobenius norm yields identical upper bounds (with some constant factors)
under the other three metrics.
A few remarks are in order:

(a) Treating M∗ as the true pairwise comparison probability matrix and M as its estimate,
Proposition 2.A assumes that M also lies in the matrix class CSST. This set-up is known
as proper learning in some of the machine learning literature.

(b) The γ-separation condition of Proposition 2.B is satisfied in the models assumed in several
earlier works [23, 263].

The remainder of this subsection is devoted to the proof of these claims.

Proof of Proposition 2.A

For any matrix M and any permutation π of n items, let π(M) denote the matrix resulting
from permuting the rows of M by π. With this notation, we have

|||π(M∗)−M∗|||2F ≤ 2|||π(M∗)−M |||2F + 2|||M −M∗|||2F = 2|||M∗ − π−1(M)|||2F + 2|||M −M∗|||2F.

We now show that

|||M∗ − π−1(M)|||2F ≤ |||M∗ −M |||2F, (2.74)

which would then imply the claimed result. As shown below, the inequality (2.74) is a

consequence of the fact that M∗ and π−1(M̂) both lie in the permutation-based SST class
and have the same underlying ordering of the rows. More generally, we claim that for any
two matrices M ∈ CBISO and M ′ ∈ CBISO,

πid ∈ arg min
π̃

|||M − π̃(M ′)|||2F, (2.75)
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where the minimization is carried out over all permutations of n items. To see this, consider
any two matrices M and M ′ in CBISO and let π′ be a minimizer of |||M −π(M ′)|||2F. If π′ 6= πid,
then there must exist some item i ∈ [n− 1] such that item (i+ 1) is ranked higher than item
i in π′. Consequently,

‖Mi −M ′
i+1‖2

2 + ‖Mi+1 −M ′
i‖2

2 − ‖Mi −M ′
i‖2

2 − ‖Mi+1 −M ′
i+1‖2

2

= 2〈〈Mi −Mi+1, M
′
i −M ′

i+1〉〉 ≥ 0,

where the final inequality follows from the fact that M ∈ CBISO and M ′ ∈ CBISO. It follows
that the new permutation obtained by swapping the positions of items i and (i + 1) in π′

(which now ranks item i higher than item (i+ 1)) is also a minimizer of |||M − π(M ′)|||2F. A
recursive application of this argument yields that πid is also a minimizer of |||M − π(M ′)|||2F.

Proof of Proposition 2.B

We first prove the upper bound on the Spearman’s footrule metric. Due to the monotonicity
of the rows and the columns of M∗, we have the lower bound

|||M∗ − π(M∗)|||2F ≥
n∑
`=1

‖M∗
` −M∗

π(`)‖2
2.

Now consider any ` ∈ [n] such that π(`) > `. Then we have

‖M∗
` −M∗

π(`)‖2
2 = ‖

π(`)−1∑
i=`

(M∗
i −M∗

i+1)‖2
2

(i)

≥
π(`)−1∑
i=`

‖M∗
i −M∗

i+1‖2
2

(ii)

≥ γ2|π(i)− i|,

where the inequality (i) is a consequence of the fact that for every i ∈ [n − 1], every entry
of the vector (M∗

i −M∗
i+1) is non-negative, and the inequality (ii) results from the assumed

γ-separation condition on the rows of M∗. An identical argument holds when π(`) < `. This
argument completes the proof of the upper bound.

We now move on to the lower bound on Spearman’s footrule. To this end, consider the
matrix M∗ ∈ CBISO with its entries given as:

[M∗]ij =


1
2

+ γ√
2

if i < j
1
2

if i = j
1
2
− γ√

2
if i > j.

One can verify that this matrix M∗ satisfies the required condition ‖M∗
i − M∗

i+1‖2
2 = γ2

for every i ∈ [n − 1]. One can also compute that this matrix also satisfies the condition
|||M∗ − π(M∗)|||F = 4γ2

∑n
`=1 |`− π(`)|, thereby yielding the claim.

Proof of Proposition 2.C

It is well known [64] that the Kemeny distance and Spearman’s footrule distance between
two permutation lie within a factor of 2 of each other.
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2.A.2 Estimating comparison probabilities under
Kullback-Leibler divergence

Let PM denote the probability distribution of the observation matrix Y ∼ {0, 1}n×n obtained
by independently sampling entry Yij from a Bernoulli distribution with parameter Mij. The
Kullback-Leibler (KL) divergence between PM and PM ′ is given by

DKL(PM‖PM ′) = Mij log
Mij

M ′
ij

+ (1−Mij) log
1−Mij

1−M ′
ij

.

Before we establish the connection with the squared Frobenius norm, we make one as-
sumption on the pairwise comparison probabilities that is standard in the literature on esti-
mation from pairwise comparisons [46, 98, 177, 220]. We assume that every entry of M∗ is
bounded away from {0, 1}. In other words, we assume the existence of some known constant-
valued parameter ε ∈ (0, 1

2
] whose value is independent of n, such that M∗

ij ∈ (ε, 1 − ε) for
every pair (i, j). Given this assumption, for any estimator M of M∗, we clip each of its
entries and force them to lie in the interval (ε, 1− ε).8 The following proposition then relates
the Kullback-Leibler divergence metric to estimation under the squared Frobenius norm.

Proposition 3. The probability distributions induced by any two probability matrices M∗

and M must satisfy the sandwich inequalities:

|||M −M∗|||2F ≤ DKL(PM‖PM∗) ≤
1

ε(1− ε)
|||M −M∗|||2F,

where for the upper bound we have assumed that every entry of the matrices lies in (ε, 1− ε).

The proof of the proposition follows from standard upper and lower bounds on the natural
logarithm (2.59b). As a consequence of this result, any upper or lower bound on |||M−M∗|||2F
therefore automatically implies an identical upper or lower bound on DKL(PM‖PM∗) up to
constant factors.

8This clipping step does not increase the estimation error.
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Chapter 3

Ranking and Top-k Recovery

“Find the five premier citizenry for the job. Make them
work together for an outcome par excellence.”

– Nikola Tesla

3.1 Introduction

Ranking problems involve a collection of n items, and some unknown underlying total or-
dering of these items. In many applications, one may observe (noisy) comparisons between
various pairs of items. Examples include matches between football teams in tournament
play; consumer’s preference ratings in marketing; and certain types of voting systems in
politics. Given a set of such noisy comparisons between items, it is often of interest to find
the true underlying ordering of all n items, or alternatively, given some given positive integer
k < n, to find the subset of k most highly rated items. These two problems are the focus of
this chapter.

There is a substantial body of literature on the problem of finding approximate rankings
based on noisy pairwise comparisons. A number of papers (e.g., [23, 71, 121]) consider
models in which the probability of a pairwise comparison agreeing with the underlying order
is identical across all pairs. These results break down when for one or more pairs, the
probability of agreeing with the underlying ranking is either comes close to or is exactly
equal to 1

2
. Another set of papers [98, 105, 177, 220, 244] work using parameter-based models

of pairwise comparisons, and address the problem of recovering the parameters associated
to every individual item. The works [3, 65, 107, 172] consider mixture models, in which
every pairwise comparison is associated to a certain individual making the comparison, and
it is assumed that the preferences across individuals can be described by a low-dimensional
model.

Most related to our work are the papers [46, 192, 193, 263], which we discuss in more detail
here. Wauthier et al. [263] analyze a weighted counting algorithm to recover approximate
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rankings; their analysis applies to a specific model in which the pairwise comparison between
any pair of items remains faithful to their relative positions in the true ranking with a
probability common across all pairs. They consider recovery of an approximate ranking
(under Kendall’s tau and maximum displacement metrics), but do not provide results on
exact recovery. As the analysis of this chapter shows, their bounds are quite loose: their
results are tight only when there are a total of at least Θ(n2) comparisons. The pair of
papers [192, 193] by Rajkumar et al. consider ranking under several models and several
metrics. In the part that is common with our setting, they show that the counting algorithm
is consistent in terms of recovering the full ranking, which automatically implies consistency
in exactly recovering the top k items. They obtain upper bounds on the sample complexity
in terms of a separation threshold that is identical to a parameter ∆k defined subsequently
in this chapter (see Section 3.3). However, as our analysis shows, their bounds are loose
by at least an order of magnitude. They also assume a certain high-SNR condition on the
probabilities, an assumption that is not imposed in our analysis.

Finally, in very recent work on this problem, Chen and Suh [46] proposed an algorithm
called the Spectral MLE for exact recovery of the top k items. They showed that, if the
pairwise observations are assumed to drawn according to the parameter-based Bradley-Terry-
Luce (BTL) model [20, 154], the Spectral MLE algorithm recovers the k items correctly
with high probability under certain regularity conditions. In addition, they also show, via
matching lower bounds, that their regularity conditions are tight up to constant factors.
While these guarantees are attractive, it is natural to ask how such an algorithm behaves
when the data is not drawn from the BTL model. In real-world instances of pairwise ranking
data, it is often found that parameter-based models, such as the BTL model and its variants,
fail to provide accurate fits (for instance, see the papers [11, 59, 163, 255] and references
therein).

With this context, the main contribution of this chapter is to analyze a classical counting-
based method for ranking, often called the Copeland method [53], and to show that it is
simple, optimal and robust. Our analysis does not require that the data-generating mech-
anism follow either the BTL or other parameter-based assumptions, nor other regularity
conditions such as stochastic transitivity. We show that the Copeland counting algorithm
has the following properties:

• Simplicity: The algorithm is simple, as it just orders the items by the number of pair-
wise comparisons won. As we will subsequently see, the execution time of this counting
algorithm is several orders of magnitude lower as compared to prior work.

• Optimality: We derive conditions under which the counting algorithm achieves the stated
goals, and by means of matching information-theoretic lower bounds, show that these
conditions are tight.

• Robustness: The guarantees that we prove do not require any assumptions on the pairwise-
comparison probabilities, and the counting algorithm performs well for various classes of
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data sets. In contrast, we find that the spectral MLE algorithm performs poorly when the
data is not drawn from the BTL model.

In doing so, we consider three different instantiations of the problem of set-based recovery:
(i) Recovering the top k items perfectly; (ii) Recovering the top k items allowing for a certain
Hamming error tolerance; and (iii) a more general recovery problem for set families that
satisfy a natural “set-monotonicity” condition. In order to tackle this third problem, we
introduce a general framework that allows us to treat a variety of problems in the literature
in an unified manner.

The remainder of this chapter is organized as follows. We begin in Section 3.2 with a more
precise formulation of the problem. Section 3.3 presents our main theoretical results. Sec-
tion 3.4 provides the results of experiments on both simulated and real-world data sets. We
present a concluding discussion in Section 3.5. Finally, we provide all proofs in Section 3.6.

3.2 Problem setting

In this section, we provide a more formal statement of the problem along with background
on various types of ranking models.

3.2.1 Problem statement

Given an integer n ≥ 2, we consider a collection of n items, indexed by the set [n] : = {1, . . . , n}.
For each pair i 6= j, we let Mij denote the probability that item i wins the comparison with
item j. We assume that that each comparison necessarily results in one winner, meaning
that

Mij +Mji = 1, and Mii =
1

2
,

where we set the diagonal for concreteness.
For any item i ∈ [n], we define an associated score τi as

τi : =
1

n

n∑
j=1

Mij. (3.1)

In words, the score τi of any item i ∈ [n] corresponds to the probability that item i beats an
item chosen uniformly at random from all n items.

Given a set of noisy pairwise comparisons, our goals are (a) to recover the k items with
the maximum values of their scores; and (b) to recover the full ordering of all the items as
defined by the score vector. The notion of ranking items via their scores (3.1) generalizes the
explicit rankings under popular models in the literature. Indeed, as we discuss shortly, most
models of pairwise comparisons considered in the literature either implicitly or explicitly
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assume that the items are ranked according to their scores. Note that neither the scores
{τi}i∈[n] nor the matrix M : = {Mij}i,j∈[n] of probabilities is assumed to be known.

More concretely, we consider a random-design observation model defined as follows. Each
pair is associated with a random number of noisy comparisons, following a binomial distri-
bution with parameters (r, pobs), where r ≥ 1 is the number of trials and pobs ∈ (0, 1] is the
probability of making a comparison on any given trial. Thus, each pair (i, j) is associated
with a binomial random variable with parameters (r, pobs) that governs the number of com-
parisons between the pair of items. We assume that the observation sequences for different
pairs are independent. Note that in the special case pobs = 1, this random binomial model
reduces to the case in which we observe exactly r observations of each pair; in the special
case r = 1, the set of pairs compared form an (n, pobs) Erdős-Rényi random graph.

In this chapter, we begin in Section 3.3.2 by analyzing the problem of exact recovery.
More precisely, for a given matrix M of pairwise probabilities, suppose that we let S∗k denote
the (unknown) set of k items with the largest values of their respective scores, assumed to
be unique for concreteness.

Given noisy observations specified by the pairwise probabilities M , our goal is to establish
conditions under which there exists some algorithm Ŝk that identifies k items based on the
outcomes of various comparisons such that the probability PM(Ŝk = S∗k) is very close to one.
In the case of recovering the full ranking, our goal is to identify conditions that ensure that
the probability PM

(
∩

k∈[n]
(Ŝk = S∗k)

)
is close to one.

In Section 3.3.3, we consider the problem of recovering a set of k items that approximates
S∗k with a minimal Hamming error For any two subsets of [n], we define their Hamming
distance DH, also referred to as their Hamming error, to be the number of items that belong
to exactly one of the two sets—that is

DH(A,B) = card
(
{A ∪B}\{A ∩B}

)
. (3.2)

For a given user-defined tolerance parameter h ≥ 0, we derive conditions that ensure that
DH(Ŝk,S∗k) ≤ 2h with high probability.

Finally, we generalize our results to the problem of satisfying any a general class of
requirements on set families. These requirement are specified in terms of which k-sized
subsets of the items are allowed, and is required to satisfy only one natural condition, that
of set-monotonicity, meaning that replacing an item in an allowed set with a higher rank
item should also be allowed. See Section 3.3.4 for more details on this general framework.

3.2.2 A range of pairwise comparison models

To be clear, our work makes no assumptions on the form of the pairwise comparison prob-
abilities. However, so as to put our work in context of the literature, let us briefly review
some standard models uesd for pairwise comparison data.



CHAPTER 3. RANKING AND TOP-K RECOVERY 76

Parameter-based models: A broad class of parameter-based models, including the Bradley-
Terry-Luce (BTL) model as a special case [20, 154], are based on assuming the existence of
“quality” parameter wi ∈ R for each item i, and requiring that the probability of an item
beating another is a specific function of the difference between their values. In the BTL
model, the probability Mij that i beats j is given by the logistic model

Mij =
1

1 + e−(wi−wj)
. (3.3a)

More generally, parameter-based models assume that the pairwise comparison probabilities
take the form

Mij = F (wi − wj), (3.3b)

where F : R→ [0, 1] is some strictly increasing cumulative distribution function.
By construction, any parameter-based model has the following property: if wi > wj for

some pair of items (i, j), then we are also guaranteed that Mi` > Mj` for every item `. As
a consequence, we are guaranteed that τi > τj, which implies that ordering of the items in
terms of their quality vector w ∈ Rn is identical to their ordering in terms of the score vector
τ ∈ Rn. Consequently, if the data is actually drawn from a parameter-based model, then
recovering the top k items according to their scores is the same as recovering the top k items
according their respective quality parameters.

Strong Stochastic Transitivity (SST) class: The class of strong stochastic transitivity
(SST) models, studied in more detail in Chapter 2, is a superset of parameter-based models.
It does not assume the existence of a quality vector, nor does it assume any specific form of
the probabilities as in equation (3.3a). Instead, the SST class is defined by assuming the ex-
istence of a total ordering of the n items, and imposing the inequality constraints Mi` ≥Mj`

for every pair of items (i, j) where i is ranked above j in the ordering, and every item `.
One can verify that an ordering by the scores {τi}i∈[n] of the items lead to an ordering of the
items that is consistent with that defined by the SST class.

A very general permutation-based model: From the discussion above, we see that in a
broad class of models for pairwise ranking, the total ordering defined by the scores (3.1) coin-
cides with the underlying ordering used to define the models. In this chapter, we analyze the
performance of a counting algorithm with a focus on a very general permutation-based model
that imposes very little conditions on the family of pairwise probabilities. Our permutation-
based model assumes that there exists an unknown permutation of the items which is the
ranking to be recovered, and that the scores (3.1) associated to the n items are ordered
according to this permutation. Formally, denoting the unknown underlying permutation
as π∗, our permutation-based model is governed by the assumption that τi ≥ τj whenever
π∗(i) < π∗(j).
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The next three sections establish theoretical guarantees on the recovery of the top k items
under various requirements.

3.3 Main results

In this section, we present our main theoretical results on top-k recovery under the three
settings described earlier. Note that the three settings are ordered in terms of increasing
generality, with the advantage that the least general setting leads to the simplest form of
theoretical claim. We begin with a formal description of the counting algorithm that we
analyze in this chapter.

3.3.1 Copeland counting algorithm

The analysis of this chapter focuses on a simple counting-based algorithm, often called the
Copeland method [53]. It can be also be viewed as a special case of the Borda count
method [18], which applies more generally to observations that consist of rankings of two
or more items. Here we describe how this method applies to the random-design observation
model introduced earlier.

More precisely, for each distinct i, j ∈ [n] and every integer ` ∈ [r], let Y `
ij ∈ {−1, 0,+1}

represent the outcome of the `th comparison between the pair i and j, defined as

Y `
ij =


0 no comparison between (i.j) in trial `

+1 if comparison is made and item i beats j

−1 if comparison is made and item j beats i.

(3.4)

Note that this definition ensures that Y `
ij = −Y `

ji. For i ∈ [n], the quantity

Ni : =
∑
j∈[n]

∑
`∈[r]

1{Y `
ij = 1} (3.5)

corresponds to the number of pairwise comparisons won by item i. Here we use 1{·} to
denote the indicator function that takes the value 1 if its argument is true, and the value
0 otherwise. For each integer k, the vector {Ni}ni=1 of number of pairwise wins defines a
k-sized subset

S̃k =
{
i ∈ [n] | Ni is among the k highest number of pairwise wins

}
, (3.6)

corresponding to the set of k items with the largest values of Ni. Otherwise stated, the set
S̃k corresponds to the rank statistics of the top k-items in the pairwise win ordering. (If
there are any ties, we resolve them by choosing the indices with the smallest value of i.)
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3.3.2 Thresholds for exact recovery of the top k items

We begin with the goal of exactly recovering the k top-ranked items. As one might expect,
the difficulty of this problem turns out to depend on the degree of separation between the
top k items and the remaining items. More precisely, let us use (k) and (k + 1) to denote
the indices of the items that are ranked kth and (k + 1)th respectively. With this notation,
the k-separation threshold ∆k is given by

∆k : = τ(k) − τ(k+1) =
1

n

n∑
i=1

M(k)i −
1

n

n∑
i=1

M(k+1)i. (3.7)

In words, the quantity ∆k is the difference in the probability of item (k) beating another
item chosen uniformly at random, versus the same probability for item (k + 1).

As shown by the following theorem, success or failure in recovering the top k entries is
determined by the size of ∆k relative to the number of items n, observation probability pobs

and number of repetitions r. In particular, consider the family of matrices

Fk(α;n, pobs, r) : =

{
M ∈ [0, 1]n×n | M +MT = 11T , and ∆k ≥ α

√
log n

npobsr

}
. (3.8)

To simplify notation, we often adopt Fk(α) as a convenient shorthand for this set, where its
dependence on (n, pobs, r) should be understood implicitly.

With this notation, the achievable result in part (a) of the following theorem is based on

the estimator that returns the set S̃k of the the k items defined by the number of pairwise
comparisons won, as defined in equation (3.6). On the other hand, the information theo-
retic lower bound established in part (b) applies to any estimator, meaning any measurable
function of the observations.

Theorem 7. (a) For any α ≥ 8, the maximum pairwise win estimator S̃k from equa-
tion (3.6) satisfies

sup
M∈Fk(α)

PM
[
S̃k 6= S∗k

]
≤ 1

n14
. (3.9a)

(b) Conversely, suppose that n ≥ 7 and pobs ≥ logn
2nr

. Then for any α ≤ 1
7
, the error

probability of any estimator Ŝk is lower bounded as

sup
M∈Fk(α)

PM
[
Ŝk 6= S∗k

]
≥ 1

7
. (3.9b)

Remarks: First, it is important to note that the negative result in part (b) holds even if the
supremum is further restricted to a particular parameter-based sub-class of Fk(α), such as
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the pairwise comparison matrices generated by the BTL model, or by the SST model. Our
proof of the lower bound for exact recovery is based on a generalization of a construction
introduced by Chen and Suh [46], one adapted to the general definition (3.7) of the separation
threshold ∆k.

Second, we note that in the regime pobs <
logn
2nr

, standard results from random graph
theory [70] can be used to show that there are at least

√
n items (in expectation) that are

never compared to any other item. Of course, estimating the rank is impossible in this
pathological case, so we omit it from consideration.

Third, the two parts of the theorem in conjunction show that the counting algorithm is
essentially optimal. The only room for improvement is in the difference between the value 8
of α in the achievable result, and the value 1

7
in the lower bound.

Theorem 7 can also be used to derive guarantees for recovery of other functions of the
underlying ranking. Here we consider the problem of identifying the ranking of all n items,
say denoted by the permutation π∗. In this case, we require that each of the separations
{∆j}n−1

j=1 are suitably lower bounded: more precisely, we study models M that belong to the

intersection ∩n−1
j=1Fj(γ).

Corollary 1. Let π̃ be the permutation of the items specified by the number of pairwise
comparisons won. Then for any α ≥ 8, we have

sup
M∈∩n−1

j=1 Fj(α)

PM
[
π̃ 6= π∗

]
≤ 1

n13
.

Moreover, the separation condition on {∆j}n−1
j=1 that defines the set ∩n−1

j=1Fj(α) is unimprov-
able beyond constant factors.

This corollary follows from the equivalence between correct recovery of the ranking and
recovering the top k items for every value of k ∈ [n].

Detailed comparison to related work: In the remainder of this subsection, we make a
detailed comparison to the related works [46, 192, 193, 263] that we briefly discussed earlier
in Section 3.1.

Wauthier et al. [263] analyze a weighted counting algorithm for approximate recovery of
rankings; they work under a model in which Mij = 1

2
+γ whenever item i is ranked above item

j in an assumed underlying ordering. Here the parameter γ ∈ (0, 1
2
] is independent of (i, j),

and as a consequence, the best ranked item is assumed to be as likely to meet the worst item
as it is to beat the second ranked item, for instance. They analyze approximate ranking under
Kendall tau and maximum displacement metrics. In order to have a displacement upper
bounded by by some δ > 0, their bounds require the order of n5

δ2γ2
pairwise comparisons.

In comparison, our model is more general in that we do not impose the γ-condition on
the pairwise probabiltiies. When specialized to the γ-model, the quantities {∆j}nj=1 in our
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analysis takes the form ∆j = 2γ
n

, and Corollary 1 shows that n logn
minj∈[n] ∆2

j
= n3 logn

γ2
observations

are sufficient to recover the exact total ordering. Thus, for any constant δ, Corollary 1
guarantees recover with a multiplicative factor of order n2

logn
smaller than that established

by Wauthier et al. [263].
The pair of papers [192, 193] by Rajkumar et al. consider ranking under several mod-

els and several metrics. For the subset of their models common with our setting—namely,
Bradley-Terry-Luce and the so-called low noise models—they show that the counting algo-
rithm is consistent in terms of recovering the full ranking or the top subset of items. The
guarantees are obtained under a low-noise assumpotion: namely, that the probability of any
item i beating j is at least 1

2
+γ whenever item i is ranked higher than item j in an assumed

underlying ordering. Their guarantees are based on a sample size of at least logn
γ2µ2

, where µ

is a parameter lower bounded as µ ≥ 1
n2 . Once again, our setting allows for the parameter γ

to be arbitrarily close to zero, and furthermore as one can see from the discussion above, our
bounds are much stronger. Moreover, while Rajkumar et al. focus on upper bounds alone,
we also prove matching lower bounds on sample complexity showing that our results are
unimprovable beyond constant factors. It should be noted that Rajkumar et al. also provide
results for other types of ranking problems that lie outside the class of models treated in the
current chapter.

Most recently, Chen and Suh [46] show that if the pairwise observations are assumed to
drawn according to the parameter-based Bradley-Terry-Luce (BTL) model (3.3a), then their
proposed Spectral MLE algorithm recovers the k items correctly with high probability when
a certain separation condition on the parameters {wi}ni=1 of the BTL model is satisfied. In
addition, they also show, via matching lower bounds, that this separation condition are tight
up to constant factors. In real-world instances of pairwise ranking data, it is often found that
parameter-based models, such as the BTL model and its variants, fail to provide accurate
fits [11, 59, 163, 255]. Our results make no such assumptions on the noise, and furthermore,
our notion of the ordering of the items in terms of their scores (3.1) strictly generalizes
the notion of the ordering with respect to the BTL parameters. In empirical evaluations
presented subsequently, we see that the counting algorithm is significantly more robust to
various kinds of noise, and takes several orders of magnitude lesser time to compute.

Finally, in addition to the notion of exact recovery considered so far, in the next two
subsections we also derive tight guarantees for the Hamming error metric and more general
metrics inspired by the requirements of many relevant applications [8, 73, 106, 126, 166,
168].

3.3.3 Approximate recovery under Hamming error

In the previous section, we analyzed performance in terms of exactly recovering the k-ranked
subset. Although exact recovery is suitable for some applications (e.g., a setting with high
stakes, in which any single error has a large price), there are other settings in which it may
be acceptable to return a subset that is “close” to the correct k-ranked subset. In this
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section, we analyze this problem of approximate recovery when closeness is measured under
the Hamming error. More precisely, for a given threshold h ∈ [0, k), suppose that our goal

is to output a set k-sized set Ŝk such that its Hamming distance to the set S∗k of the true
top k items, as defined in equation (3.2), is bounded as

DH(Ŝk,S∗k) ≤ 2h. (3.10)

Our goal is to establish conditions under which it is possible (or impossible) to return an

estimate Ŝk satisfying the bound (3.10) with high probability.1

As before, we use (1), . . . , (n) to denote the permutation of the n items in decreasing
order of their scores. With this notation, the following quantity plays a central role in our
analysis:

∆k, h : = τ(k−h) − τ(k+h+1). (3.11a)

Observe that ∆k, h is a generalization of the quantity ∆k defined previously in equation (3.7);
more precisely, the quantity ∆k corresponds to ∆k, h with h = 0. We then define a general-
ization of the family Fk(α;n, pobs, r), namely

Fk,h(α;n, pobs, r) : =

{
M ∈ [0, 1]n×n | M +MT = 11T , and ∆k, h ≥ α

√
log n

npobsr

}
. (3.11b)

As before, we frequently adopt the shorthand Fk,h(α), with the dependence on (n, pobs, r)
being understood implicitly.

Theorem 8. (a) For any α ≥ 8, the maximum pairwise win set S̃k satisfies

sup
M∈Fk,h(α)

PM
[
DH(S̃k,S∗k) > 2h

]
≤ 1

n14
. (3.12a)

(b) Conversely, in the regime pobs ≥ logn
2nr

and for given constants ν1, ν2 ∈ (0, 1), suppose

that 2h ≤ 1
1+ν2

min{n1−ν1 , k, n − k}. Then for any α ≤
√
ν1ν2
14

, any estimator Ŝk has
error at least

sup
M∈Fk,h(α)

PM
[
DH(Ŝk,S∗k) > 2h

]
≥ 1

7
, (3.12b)

for all n larger than a constant c(ν1, ν2).

1The requirement h < k is sensible because if h ≥ k, the problem is trivial: any two k-sized sets Ŝk and
S∗k satisfy the bound DH(Ŝk,S∗k) ≤ 2k ≤ 2h.
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This result is similar to that of Theorem 7, except that the relaxation of the exact recovery
condition allows for a less constrained definition of the separation threshold ∆k, h. As with
Theorem 7, the lower bound in part (b) applies even if probability matrix M is restricted
to lie in a parameter-based model (such as the BTL model), or the more general SST class.
The counting algorithm is thus optimal for estimation under the relaxed Hamming metric
as well.

Finally, it is worth making a few comments about the constants appearing in these claims.
We can weaken the lower bound on ∆k required in Theorem 8(a) at the expense of a lower
probability of success; for instance, if we instead require that α ≥ 4, then the probability of
error is guaranteed to be at most n−2. Subsequently in the chapter, we provide the results
of simulations with n = 500 items and α = 4. On the other hand, in Theorem 8(b), if we
impose the stronger upper bound α = O(1/

√
h log n), then we can remove the condition

h ≤ n1−ν1 .

3.3.4 An abstract form of k-set recovery

In earlier sections, we investigated recovery of the top k items either exactly or under a
Hamming error. Exact recovery may be quite strict for certain applications, whereas the
property of Hamming error allowing for a few of the top k items to be replaced by arbitrary
items may be undesirable. Indeed, many applications have requirements that go beyond
these metrics; for instance, see the papers [8, 73, 106, 126, 166, 168] and references therein
for some examples. In this section, we generalize the notion of exact or Hamming-error
recovery in order to accommodate a fairly general class of requirements.

Both the exact and approximate Hamming recovery settings require the estimator to
output a set of k items that are either exactly or approximately equal the true set of top k
items. When is the estimate deemed successful? One way to think about the problem is as
follows. The specified requirement of exact or approximate Hamming recovery is associated
to a set of k-sized subsets of the n possible ranks. The estimator is deemed successful if the
true ranks of the chosen k items equals one of these subsets. In our notion of generalized
recovery, we refer to such sets as allowed sets. For example, in the case k = 3, we might say
that the set {1, 4, 10} is allowed, meaning that an output consisting of the “first”, “fourth”
and “tenth” ranked items is considered correct.

In more generality, let S denote a family of k-sized subsets of [n], which we refer to as
family of allowed sets. Notice that any allowed set is defined by the positions of the items in
the true ordering and not the items themselves.2 Once some true underlying ordering of the
n items is fixed, each element of the family S then specifies a set of the items themselves.
We use these two interpretations depending on the context — the definition in terms of
positions to specify the requirements, and the definition in terms of the items to evaluate an
estimator for a given underlying probability matrix M .

2In case of two or more items with identical scores, the choice of any of these items is considered valid.
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We let S†k denote a k-set estimate, meaning a function that given a set of observations
as input, returns a k-sized subset of [n] as output.

Definition 6 (S-respecting estimators). For any family S of allowed sets, a k-set estimate
S†k respects its structure if the set of k positions of the items in S†k belongs to the set family S.

Our goal is to determine conditions on the set family S under which there exist estimators S†k
that respect its structure. In order to illustrate this definition, let us return to the examples
treated thus far:

Example 1 (Exact and approximate Hamming recovery). The requirement of exact recovery
of the top k items has S consisting of exactly one set, the set of the top k positions S = {[k]}.
In the case of recovery with a Hamming error at most 2h, the set S of all allowed sets consists
all k-sized subsets of [n] that contain at least (k − h) positions in the top k positions. For
instance, in the case h = 1, k = 2 and n = 4, we have

S =
{
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}

}
.

Apart from these two requirements, there are several other requirements for top-k recovery
popular in the literature [8, 39, 73, 106, 126, 166, 168]. Let us illustrate them with another
example:

Example 2. Let π∗ : [n] → [n] denote the true underlying ordering of the n items. The
following are four popular requirements on the set S†k for top-k identification, with respect to
the true permutation π∗, for a pre-specified parameter ε ≥ 0.

(i) All items in the set S†k must be contained contained within the top (1 + ε)k entries:

max
i∈S†k

π∗(i) ≤ (1 + ε)k. (3.13a)

(ii) The rank of any item in the set S†k must lie within a multiplicative factor (1 + ε) of the

rank of any item not in the set S†k:

max
i∈S†k

π∗(i) ≤ (1 + ε) min
j∈[n]\S†k

π(j). (3.13b)

(iii) The rank of any item in the set S†k must lie within an additive factor ε of the rank of

any item not in the set S†k:

max
i∈S†k

π∗(i) ≤ min
j∈[n]\S†k

π∗(j) + ε. (3.13c)
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(iv) The sum of the ranks of the items in the set S†k must be contained within a factor (1+ε)
of the sums of ranks of the top k entries:∑

i∈S†k

π∗(i) ≤ (1 + ε)
1

2
k(k + 1). (3.13d)

Note that each of these requirements reduces to the exact recovery requirement when ε = 0.
Moreover, each of these requirements can be rephrased in terms of families of allowed sets.
For instance, if we focus on requirement (i), then any k-sized subset of the top (1 + ε)k
positions is an allowable set.

In this chapter, we derive conditions that govern k-set recovery for allowable set systems
that satisfy a natural “monotonicity” condition. Informally, the monotonicity condition
requires that the set of k items resulting from replacing an item in an allowed set with a
higher ranked item must also be an allowed set. More precisely, for any set {t1, . . . , tk} ⊆ [n],
let Λ({t1, . . . , tk}) ⊆ 2[n] be the set defined by all of its monotone transformations—that is

Λ({t1, . . . , tk}) : =
{
{t′1, . . . , t′k} ⊆ [n] | t′j ≤ tj for every j ∈ [k]

}
.

Using this notation, we have the following:

Definition 7 (Monotonic set systems). The set S of allowed sets is a monotonic set system
if

Λ(T ) ⊆ S for every T ∈ S. (3.14)

One can verify that condition (3.14) is satisfied by the settings of exact and Hamming-error
recovery, as discussed in Example 1. The condition is also satisfied by all four requirements
discussed in Example 2.

The following theorem establishes conditions under which one can (or cannot) produce
an estimator that respects an allowable set requirement. In order to state it, recall the score
τi : = 1

n

∑n
j=1Mij, as previously defined in equation (3.1) for each i ∈ [n]. For notational

convenience, we also define τi : = −∞ for every i > n. Consider any monotonic family of
allowed sets S, and for some integer β ≥ 1, let T 1, . . . , T β ∈ S such that S = ∪

b∈[β]
Λ(T b).

For every b ∈ [β], let tb1 < · · · < tbk denote the entries of T b. We then define the critical
threshold based on the scores:

∆S : = max
b∈[β]

min
j∈[k]

(τ(j) − τ(k+tbj−j+1)). (3.15)

The term ∆S is a further generalization of the quantities ∆k and ∆k, h defined in earlier
sections. We also define a generalization FS(·) of the families Fk(·) and Fk(·) as

FS(α;n, pobs, r) : =

{
M ∈ [0, 1]n×n | M +MT = 11T and ∆S ≥ α

√
log n

npobsr

}
. (3.16)
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As before, we use the shorthand FS(α), with the dependence on (n, pobs, r) being understood
implicitly.

Theorem 9. Consider any allowable set requirement specified by a monotonic set class S.

(a) For any α ≥ 8, the maximum pairwise win set S̃k satisfies

sup
M∈FS(α)

PM
[
S̃k /∈ S

]
≤ 1

n13
.

(b) Conversely, in the regime pobs ≥ logn
2nr

, and for given constants µ1 ∈ (0, 1), µ2 ∈ (3
4
, 1],

suppose that maxb∈[β] t
b
dµ2ke ≤

n
2

and 8(1− µ2)k ≤ n1−µ1. Then for any α smaller than

a constant c1(µ1, µ2) > 0, any estimator Ŝk has error at least

sup
M∈FS(α)

PM
[
S̃k /∈ S

]
≥ 1

15
, (3.17)

for all n larger than a constant c4(µ1, µ2).

A few remarks on the lower bound are in order. First, the lower bound continues to
hold even if the probability matrix M is restricted to follow a parameter-based model such
as BTL or restricted to lie in the SST class. Second, in terms of the threshold for α, the

lower bound holds with c1(µ1, µ2) = 1
15

√
µ1 min

{
1

4(1−µ2)−1
, 1

2

}
. Third, it is worth noting that

one must necessarily impose some conditions for the lower bound, along the lines of those
required in Theorem 9(b) for the allowable sets to be “interesting” enough.

As a concrete illustration, consider the requirement defined by the parameters b = 1,
k = 1 and S = Λ({n −

√
n}). For µ1 = µ2 = 9

10
, this requirement satisfies the condition

8(1 − µ2)k ≤ n1−µ1 but violates the condition tdµ2ke ≤ n
2
. Now, a selection of k = 1 item

made uniformly at random (independent of the data) satisfies this allowable set requirement
with probability 1 − 1√

n
. Given the success of such a random selection algorithm in this

parameter regime, we see that the lower bounds therefore cannot be universal, but must
require some conditions on the allowable sets.

3.4 Simulations and experiments

In this section, we empirically evaluate the performance of the counting algorithm and com-
pare it with the Spectral MLE algorithm via simulations on synthetic data, as well as on
datasets from the Amazon Mechanical Turk crowdsourcing platform.
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Figure 3.1: Simulation results comparing Spectral MLE and the counting algorithm in terms of
error rates for exact recovery of the top k items, and computation time. (a) Histogram of fraction
of instances where the algorithm failed to recover the k items correctly, with each bar being the
average value across 50 trials. The counting algorithm has 0% error across all problems, while
the spectral MLE is accurate for parameter-based models (BTL, Thurstone), but increasingly
inaccurate for other models. (b) Histogram plots of the maximum computation time taken by
the counting algorithm and the minimum computation time taken by Spectral MLE across all
trials. Even though this maximum-to-minimum comparison is unfair to the counting algorithm, it
involves five or more orders of magnitude less computation.

3.4.1 Simulations

We begin with simulations using synthetically generated data with n = 500 items and
observation probability pobs = 1, and with pairwise comparison models ranging over six
possible types. Panel (a) in Figure 3.1 provides a histogram plot of the associated error
rates (with a bar for each one of these six models) in recovering the k = n/4 = 125 items
for the counting algorithm versus the Spectral MLE algorithm. Each bar corresponds to the
average over 50 trials. Panel (b) compares the CPU times of the two algorithms. The value
of α (and in turn, the value of r) in the first five models is as derived in Section 3.3.2. In
more detail, the six model types are given by:

(I) Bradley-Terry-Luce (BTL) model: Recall that the theoretical guarantees for the Spectral
MLE algorithm [46] are applicable to data that is generated from the BTL model (3.3a),
and as guaranteed, the Spectral MLE algorithm gives a 100% accuracy under this model.
The counting algorithm also obtains a 100% accuracy, but importantly, the counting
algorithm requires a computational time that is five orders of magnitude lower than that
of Spectral MLE.

(II) Thurstone model: The Thurstone model [253] is another parameter-based model, with



CHAPTER 3. RANKING AND TOP-K RECOVERY 87

the function F in equation (3.3b) set as the cumulative distribution function of the stan-
dard Gaussian distribution. Both Spectral MLE and the counting algorithm gave 100%
accuracy under this model.

(III) BTL parameter-based model with one (non-transitive) outlier: This model is identical to
BTL, with one modification. Comparisons among (n − 1) of the items follow the BTL
parameter-based model as before, but the remaining item always beats the first n

4
items

and always loses to each of the other items. We see that the counting algorithm continues
to achieve an accuracy of 100% as guaranteed by Theorem 7. The departure from the
BTL model however prevents the Spectral MLE algorithm from identifying the top k
items.

(IV) Strong stochastic transitivity (SST) model: We simulate the “independent bands” con-
struction of Section 2.4 (from Chapter 2) in the SST class. Spectral MLE is often unsuc-
cessful in recovering the top k items, while the counting algorithm always succeeds.

(V) Mixture of BTL models: Consider two sets of people with opposing preferences. The first
set of people have a certain ordering of the items in their mind and their preferences follow
a BTL parameter-based model under this ordering. The second set of people have the
opposite ordering, and their preferences also follow the BTL model under this opposite
ordering. The overall preference probabilities is a mixture between these two sets of
people. In the simulations, we observe that the counting algorithm is always successful
while the Spectral MLE method often fails.

(VI) BTL with violation of separation condition: We simulate the BTL parameter-based model,
but with a choice of parameter r small enough that the value of α is about one-tenth of
its recommended value in Section 3.3.2. We observe that the counting algorithm incurs
lower errors than the Spectral MLE algorithm, thereby demonstrating its robustness.

To summarize, the performance of the two algorithms can be contrasted in the following
way. When our stated lower bounds on α are satisfied, then consistent with our theoretical
claims, the Copeland counting algorithm succeeds irrespective of the form of the pairwise
probability distributions. The Spectral MLE algorithm performs well when the pairwise
comparison probabilities are faithful to parameter-based models, but is often unsuccessful
otherwise. Even when the condition on α is violated, the performance of the counting algo-
rithm remains superior to that of the Spectral MLE.3 In terms of computational complexity,
for every instance we simulated, the counting algorithm took several orders of magnitude
less time as compared to Spectral MLE.

3Note that part (b) of Theorem 7 is a minimax converse meaning that it appeals to the worst case
scenario.
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3.4.2 Experiments

In this section, we describe experiments on real world datasets from the Amazon Mechanical
Turk commercial crowdsourcing platform.

The first experiment we consider is using data from a cell-counting experiment where we
use the ground truth from [40] and crowdsourced data from [234]. In this experiment, there
are n = 23 images containing a number of cells, and workers are asked to compare randomly
chosen pairs of images and indicate the image they think has a fewer number of cells. There
are a total of 704 pairwise comparisons in this dataset, and the fraction of incorrect pairwise
comparisons as compared to the ground truth is 10%. For three other experiments, we used
the “cardinal versus ordinal” dataset from [220]; three of the experiments performed in that
paper are suitable for the evaluations here—namely, ones in which each question has a ground
truth, and the pairs of items are chosen uniformly at random. The three experiments tested
the workers’ general knowledge, audio, and visual understanding, and the respective tasks
involved: (i) identifying the pair of cities with a greater geographical distance, (ii) identifying
the higher frequency key of a piano, and (iii) identifying spelling mistakes in a paragraph of
text. The number of items n in the three experiments were 16, 10 and 8 respectively. The
total number of pairwise comparisons were 408, 265 and 184 respectively. The fraction of
pairwise comparisons whose outcomes were incorrect (as compared to the ground truth) in
the raw data are 17%, 20% and 40% respectively.

We compared the performance of the counting algorithm with that of the Spectral MLE
algorithm for these four experiments under various metrics. Figure 3.2 shows the results
of the experiments – the error bars are produced via 50 iterations of subsampling the data
and executing the estimators on this subsampled data. We see that the counting algorithm
almost always outperforms Spectral MLE. Moreover, the Spectral MLE algorithm required
about 5 orders of magnitude more computation time as compared to counting. The counting
algorithm thus performs well on simulated as well as real data. It outperforms Spectral MLE
not only when the number of items is large (as in the simulations) but also when the problem
sizes are small as seen in these experiments.

3.5 Discussion

In this chapter, we analyzed the problem of recovering the k most highly ranked items based
on observing noisy comparisons. We proved that an algorithm that simply selects the items
that win the maximum number of comparisons is, up to constant factors, an information-
theoretically optimal procedure. Our results also extend to recovering the entire ranking
of the items as a corollary. In empirical evaluations, this algorithm takes several orders of
magnitude lower computation time while providing higher accuracy as compared to prior
work. The results of this chapter thus underscore the philosophy of Occam’s razor that the
simplest answer is often correct.
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Figure 3.2: Evaluation of Spectral MLE and the counting algorithm on four datasets from Amazon
Mechanical Turk. (a) Cell-counting experiment example, Hamming error for top 50%-recovery, and
computation time; (b) Other requirements and metrics for the cell-counting experiment; (c) Four
other experiments.

We conclude this chapter by discussing an interesting and practically useful open problem
that arises from our work. The notion of allowable sets introduced in this chapter apply to
recovery of k-sized subsets of the items; such a formulation and associated results may apply
to recovery of partial or total orderings of the items. A parallel line of literature (e.g., [30, 100,
110, 118]) studies settings in which the pairs to be compared can be chosen sequentially in
a data-dependent manner, but to the best of our knowledge, this line of literature considers
only the metric of exact recovery of the top k items. It is of interest to investigate the
Hamming and allowable set recovery problems in such an active setting.

3.6 Proofs

We now turn to the proofs of our main results. We continue to use the notation [i] to denote
the set {1, . . . , i} for any integer i ≥ 1. We ignore floor and ceiling conditions unless critical
to the proof.
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3.6.1 Proof of Theorem 7: Exact recovery of top k items

We begin with the proof of Theorem 7, dividing our argument into two parts.

Proof of part (a)

For any pair of items (i, j), let us encode the outcomes of the r trials by an i.i.d. sequence

V
(`)
ij = [X

(`)
ij X

(`)
ji ]T of random vectors, indexed by ` ∈ [r]. Each random vector follows the

distribution

P
[
x

(`)
ij , x

(`)
ji

]
=


1− pobs if (x

(`)
ij , x

(`)
ji ) = (0, 0)

pobsMij if (x
(`)
ij , x

(`)
ji ) = (1, 0)

pobs(1−Mij) if (x
(`)
ij , x

(`)
ji ) = (0, 1)

0 otherwise.

With this encoding, the variable Wa : =
∑

`∈[r]

∑
z∈[n]\{a}X

(r)
aj encodes the number of wins

for item a.
Consider any item a ∈ S∗k which ranks among the top k in the true underlying ordering,

and any item b ∈ [n]\S∗k which ranks outside the top k. We claim that with high probability,
item a will win more pairwise comparisons than item b. More precisely, let Eba denote the
event that item b wins at least as many pairwise comparisons than a. We claim that

P(Eba)
(i)

≤ exp

(
−

1
2
(rpobsn∆k)

2

rpobsn(2−∆k) + 2
3
rpobsn∆k

)
(ii)

≤ 1

n16
. (3.18)

Given this bound, the probability that the counting algorithm will rank item b above a is
no more than n−16. Applying the union bound over all pairs of items a ∈ S∗k and b ∈ [n]\S∗k
yields P

[
S̃k 6= S∗k

]
≤ n−14 as claimed.

We note that inequality (ii) in equation (3.18) follows from inequality (i) combined with
the condition on ∆k that arises by setting α ≥ 8 as assumed in the hypothesis of the theorem.
Thus, it remains to prove inequality (i) in equation (3.18). By definition of Eba, we have

P(Eba) = P
(∑
`∈[r]

∑
z∈[n]\{b}

X
(`)
bz︸ ︷︷ ︸

Wb

−
∑
`∈[r]

∑
z∈[n]\{a}

X(`)
az︸ ︷︷ ︸

Wa

≥ 0
)
. (3.19)

It is convenient to recenter the random variables. For every ` ∈ [r] and z ∈ [n]\{a, b}, define
the zero-mean random variables

X
(`)

az = X(`)
az − E[X(`)

az ] = X(`)
az − pobsMaz and X

(`)

bz = X
(`)
bz − E[X

(`)
bz ] = X

(`)
bz − pobsMbz.

Also, let

X
(`)

ab = (X
(`)
ab −X

(`)
ba )− E[X

(`)
ab −X

(`)
ba ] = (X

(`)
ab −X

(`)
ba )− (pobsMab − pobsMba).
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We then have

P(Eba) = P

(∑
`∈[r]

( ∑
z∈[n]\{a,b}

X
(`)

bz −
∑

z∈[n]\{a,b}

X
(`)

az −X
(`)

ab

)
≥ rpobs

∑
z∈[n]

(
Maz −Mbz

))
.

Since a ∈ S∗k and b ∈ [n]\S∗k , from the definition of ∆k, we have n∆k ≤
∑
z∈[n]

(Maz −Mbz),

and consequently

P (Eba) ≤ P

∑
`∈[r]

( ∑
z∈[n]\{a,b}

X
(`)

bz −
∑

z∈[n]\{a,b}

X
(`)

az −X
(`)

ab

)
≥ rpobsn∆k

 . (3.20)

By construction, all the random variables in the above inequality are zero-mean, mutually
independent, and bounded in absolute value by 2. These properties alone would allow us
to obtain a tail bound by Hoeffding’s inequality; however, in order to obtain the stated
result (3.18), we need the more refined result afforded by Bernstein’s inequality (e.g., [19]).
In order to derive a bound of Bernstein type, the only remaining step is to bound the second
moments of the random variables at hand. Some straightforward calculations yield

E[(−X(`)

az )2] ≤ pobsMaz, E[(X
(`)

bz )2] ≤ pobsMbz, and E[(X
(`)

ab )2] ≤ pobsMab + pobsMba.

It follows that∑
z∈[n]\{a,b}

E[(−X(`)

az )2]+
∑

z∈[n]\{a,b}

E[(X
(`)

bz )2] + E[(X
(`)

ab )2]

≤ pobs

 ∑
z∈[n]\{a,b}

(Maz +Mbz) +Mab +Mba


(iii)

≤ pobs

2
∑
z∈[n]

Maz − n∆k


(iv)
< pobsn(2−∆k),

where the inequality (iii) follows from the definition of ∆k, and step (iv) follows because
Maz ≤ 1 for every z and Maa = 1

2
. Applying the Bernstein inequality now yields the stated

bound (3.18)(i).

Proof of part (b)

The symmetry of the problem allows us to assume, without loss of generality, that k ≤ n
2
.

We prove a lower bound by first constructing a ensemble of n − k + 1 different problems,
and considering the problem of distinguishing between them. For each a ∈ {k− 1, k, . . . , n},
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let us define the k-sized subset S∗[a] : = {1, . . . , k − 1} ∪ {a}, and the associated matrix of
pairwise probabilities

Ma
ij : =


1
2

if i, j ∈ S∗[a], or i, j /∈ S∗[a]
1
2

+ δ if i ∈ S∗[a] and j /∈ S∗[a]
1
2
− δ if i /∈ S∗[a] and j ∈ S∗[a],

where δ ∈ (0, 1
2
) is a parameter to be chosen. We use Pa to denote probabilities taken under

pairwise comparisons drawn according to the model Ma.
One can verify that the construction above falls in the intersection of parameter-based

models and the SST model. In the case of parameter-based models, this construction
amounts to having the parameters associated to every item in S∗k to have the same value,
and those associated to every item in [n]\S∗k to have the same value. Also observe that for
every such distribution Pa, the associated k-separation threshold ∆k = δ.

Any given set of observations can be described by the collection of random variables
Y = {Y (`)

ij , j > i ∈ [n], ` ∈ [r]}. When the true underlying model is Pa, the random variable

Y
(`)
ij follows the distribution

Y
(`)
ij =


0 with probability 1− pobs

i with probability pobsM
a
ij

j with probability pobs(1−Ma
ij).

The random variables {Y (`)
ij }i,j∈[n],i<j,`∈[r] are mutually independent, and the distribution Pa

is a product distribution across pairs {i > j} and repetitions ` ∈ [r].
Let A ∈ {k, . . . , n} follow a uniform distribution over the index set, and suppose that

given A = a, our observations Y has components drawn according to the model Pa. Con-
sequently, the marginal distribution of Y is the mixture distribution 1

L

∑L
a=1 Pa over all

L = n− k+ 1 models. Based on observing Y , our goal is to recover the correct index A = a
of the underlying model, which is equivalent to recovering the planted subset S∗[a]. We
use the Fano bound (2.22) to lower bound the error bound associated with any test for this
problem. In order to apply Fano’s inequality, the following result provides control over the
Kullback-Leibler divergence between any pair of probabilities involved.

Lemma 15. For any distinct pair a, b ∈ {k, . . . , n}, we have

DKL(Pa‖Pb) ≤ 2npobsr
1

4δ2
− 1

. (3.21)

See the end of this section for the proof of this claim.
Given this bound on the Kullback-Leibler divergence, Fano’s inequality (2.22) implies

that any estimator φ of A has error probability lower bounded as

P[φ(Y ) 6= A] ≥ 1−
2npobsr

1
4δ2
−1

+ log 2

log(n− k + 1)
≥ 1

7
.
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Here the final inequality holds whenever δ ≤ 1
7

√
logn
npobsr

, pobs ≥ logn
2nr

, n ≥ 7 and k ≤ n
2
. The

condition pobs ≥ logn
2nr

also ensures that δ < 1
2

thereby ensuring that our construction is valid.
It only remains to prove Lemma 15.

Proof of Lemma 15

Since the distributions Pa and Pb are formed by components that are independent across
edges i > j and repetitions ` ∈ [r], we have

DKL(Pa‖Pb) =
∑
`∈[r]

∑
1≤i<j≤n

DKL(Pa(X(`)
ij )‖Pb(X(`)

ij )) = r
∑

1≤i<j≤n

DKL(Pa(X(1)
ij )‖Pb(X(1)

ij )),

where the second equality follows since the r trials are all independent and identically dis-
tributed.

We now evaluate each individual term in right hand side of the above equation. Consider
any i, j ∈ [n]. We divide our analysis into three disjoint cases:

Case I: Suppose that i, j ∈ [n]\{a, b}. The distribution of X
(1)
ij is identical across the

distributions Pa and Pb. As a result, we find that

DKL(Pa(X(1)
ij )‖Pb(X(1)

ij )) = 0.

Case II: Suppose that i = a, j ∈ [n]\{a, b} or i = b, j ∈ [n]\{a, b}. We then have

DKL(Pa(X(1)
ij )‖Pb(X(1)

ij )) ≤ pobs
δ2

(1
2
− δ)(1

2
+ δ)

.

Case III: Suppose that i = a, j = b. We then have

DKL(Pa(X(1)
ij )‖Pb(X(1)

ij )) ≤ pobs
(2δ)2

(1
2
− δ)(1

2
+ δ)

.

Combining the bounds from all three cases, we find that the KL divergence is upper bounded
as

1

r
DKL(Pa‖Pb) ≤ 2(n− 2)pobs

δ2

(1
2
− δ)(1

2
+ δ)

+ pobs
(2δ)2

(1
2
− δ)(1

2
+ δ)

.

Some simple algebraic manipulations yield the claimed result.
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3.6.2 Proof of Corollary 1: Ranking

We now turn to the proof of Corollary 1. Beginning with the claim of sufficiency, it is easy to
see that the ranking is correctly recovered whenever the top k items are correctly recovered
for every value of k ∈ [n]. Consequently, one can apply the union bound to (3.9a) over all
values of k ∈ [n] and this gives the desired upper bound.

Now turning to the claim of necessity, we first introduce some notation to aid in subse-
quent discussion. Defining the parameter ∆0 : = minj∈[n−1](τ(j)−τ(j+1)), we have shown that
the lower bound

∆0 ≥ 8

√
log n

npobsr

is sufficient to guarantee exact recovery of the full ranking. Further, one must also have

∆0 ≤
1

n− 1

n−1∑
j=1

(τ(j) − τ(j+1)) =
1

n− 1
(τ(1) − τ(n)) ≤

1

n− 1
.

Here we show that these two requirements are tight up to constant factors, meaning that

for any value of ∆0 satisfying ∆0 ≤ 1
9

√
logn
npobsr

and ∆0 ≤ 1
9

1
n−1

, there are instances where

recovery of the underlying ranking fails with probability at least 1
70

for any estimator.
Consider the following ensemble of (n − 1) different problems, indexed by a ∈ [n − 1].

For every value of a ∈ [n− 1], define a permutation πa of the n items as

πa(i) =


i+ 1 if i = a

i− 1 if i = a+ 1

i otherwise.

In words, the permutation πa equals the identity permutation except for the swapping of
items a and (a+ 1). Define an associated matrix of pairwise-comparison probabilities Ma as

Ma
ij =

1

2
− (πa(i)− πa(j))∆0,

and Ma
ji = 1−Ma

ij. Let Pa denote the probabilities taken under pairwise comparisons drawn
according to the model Ma. The condition ∆0 ≤ 1

9
1

n−1
ensures that this construction is a

valid probability distribution. One can then compute that under distribution Pa, the score
τai of any item i equals

τai =
1

2
−
(
πa(i)− n+ 1

2

)
∆0.

One can also verify that for any a ∈ [n− 1], and any i ∈ [n− 1], we have

τaπa(i) − τaπa(i+1) = ∆0,
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where we have used the fact that πa(πa(i)) = i. The requirement imposed by the hypothesis
is thus satisfied.

We now use Fano’s inequality (2.22) obtain the claimed lower bound. In order to apply
this result, we first obtain an upper bound on the Kullback-Leibler divergence between the
probability distributions of the observed data under any pair of problems constructed above.

Lemma 16. For any distinct pair a, b ∈ [n− 1], we have

DKL(Pa‖Pb) ≤ 50npobsr∆
2
0.

See the end of this section for the proof of this claim.
Given this bound on the Kullback-Leibler divergence, the Fano bound (2.22) implies that

any method φ for identifying the true ranking has error probability

P[φ(Y ) 6= A] ≥ 1− 50npobsr∆
2
0 + log 2

log(n− 1)
≥ 1

70
,

where the final inequality holds whenever ∆0 ≤ 1
9

√
logn
npobsr

and n ≥ 9.

The only remaining detail is the proof of Lemma 16.

Proof of Lemma 16

Since the distributions Pa and Pb are formed by components that are independent across
edges i > j and repetitions ` ∈ [r], we have

DKL(Pa‖Pb) =
∑
`∈[r]

∑
1≤i<j≤n

DKL(Pa(X(`)
ij )‖Pb(X(`)

ij )) = r
∑

1≤i<j≤n

DKL(Pa(X(1)
ij )‖Pb(X(1)

ij )),

where the second equality follows since the r trials are all independent and identically dis-
tributed.

We now evaluate each individual term in right hand side of the above equation. Consider
any i, j ∈ [n]. We divide our analysis into three disjoint cases:

Case I: Suppose that i, j ∈ [n]\{a, a+ 1, b, b+ 1}. The distribution of X
(1)
ij is identical across

the distributions Pa and Pb. As a result, we find that

DKL(Pa(X(1)
ij )‖Pb(X(1)

ij )) = 0.

Case II: Alternatively, suppose i ∈ {a, a + 1, b, b + 1} and j ∈ [n]\{a, a + 1, b, b + 1} or if
j ∈ {a, a+ 1, b, b+ 1} and i ∈ [n]\{a, a+ 1, b, b+ 1}. Then we have

DKL(Pa(X(1)
ij )‖Pb(X(1)

ij )) ≤ 5pobs∆
2
0,
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where we have used the fact that Pa(X(1)
ij ) and Pb(X(1)

ij ) both take values in [ 7
18
, 11

18
] since

∆0 ≤ 1
9

1
n−1

.
Case III: Otherwise, suppose that both i, j ∈ {a, a+ 1, b, b+ 1}. Then we have

DKL(Pa(X(1)
ij )‖Pb(X(1)

ij )) ≤ 20pobs∆
2
0.

Combining the bounds from the three cases, we find that the KL divergence is upper bounded
as

1

r
DKL(Pa‖Pb) ≤ 40(n− 4)pobs∆

2
0 + 240pobs∆

2
0 ≤ 50npobs∆

2
0,

where we have used the assumption n ≥ 9 to obtain the final inequality.

3.6.3 Proof of Theorem 8: Hamming error

We now turn to the proof of Theorem 8, beginning with part (a).

Proof of part (a)

Without loss of generality, we can assume that the true underlying ranking is the identity
ranking, that is, item i is ranked at position i for every i ∈ [n]. Given the the lower
bound α ≥ 8 is satisfied, Theorem 7 ensures that with probability at least 1 − n−16, the
counting estimator S̃k ranks every item in {1, . . . , k − h} higher than every item in the set

{k + h + 1, . . . , n}. Thus, we are guaranteed that either S̃k ⊆ [k + h] and/or [k − h] ⊆ S̃k.
One can verify either case leads to |S̃k ∩ [k]| ≥ k − h, thereby proving the claimed result.

Proof of part (b)

We assume without loss of generality that k ≤ n
2
. (Otherwise, one can equivalently study

the problem of recovering the last k items.) Since the case h = 0 is already covered by
Theorem 7(b), we may also assume that h ≥ 1.

The proof involves construction of η ≥ 1 sets of probability matrices {Ma}a∈[η] of the
pairwise comparisons with the following two properties:

(i) For every a ∈ [η], let Sak ⊆ [n] denote the set of the top k items under the ath set of
distributions. Then for every k-sized set S ∈ [n],

η∑
a=1

1{DH(S, Sak) ≤ 2h} ≤ 1.

(ii) If the underlying distribution a is chosen uniformly at random from this set of η
distributions, then any estimator that attempts to identify the underlying distribution
a ∈ [η] errs with probability at least 1

7
.
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Now consider any estimator Ŝk for identifying the top k items S∗k . Given property (i),

whenever the estimator is successful under the Hamming error requirement DH(Ŝk,S∗k) ≤ 2h,
it must be able to uniquely identify the index a ∈ [η] of the underlying distribution of pairwise
comparison probabilities. However, property (ii) mandates that any estimator for identifying
the underlying distribution errs with a probability at least 1

7
. Assuming that such sets of

probability distributions satisfying these two properties exist, putting these results together
yields the claimed result.

We now proceed to construct probability distributions satisfying the two aforementioned
properties. Consider any positive number ∆0 satisfying the upper bound

∆0 ≤
1

14

√
ν1ν2 log n

npobsr
. (3.22)

The η matrices {Ma}a∈[η] of probability distributions we construct differ only in a permu-
tation of their rows and columns, and modulo this permutation, have identical values. In
other words, these η distributions differ only in the identities of the n items and the values
of the pairwise-comparison probabilities Ma

(i)(j) among the ordered sequence of the n items

are identical across all distributions a ∈ [η].
For any ordering (1), . . . , (n) of the n items, for every a ∈ [η], set

Ma
(i)(j) =


1
2

+ ∆0 if i ∈ [k] and j /∈ [k]
1
2
−∆0 if i /∈ [k] and j ∈ [k]

1
2

otherwise.

(3.23)

Note that the upper bound (3.22) on ∆0, coupled with the assumption pobs ≥
√

logn
2nr

, ensures

that ∆0 <
1
3

and hence that our definition (3.23) leads to a valid set of probabilities. Given
this construction, the scores of the n items are τ(1) = · · · = τ(k) = τ(k+1)+∆0 = · · · = τ(n)+∆0.

The bound (3.22) ensures that the condition α ≤
√
ν1ν2
14

required by the hypothesis of the
theorem is satisfied.

It remains to specify the ordering of the n items in each set of probability distributions.
This specification relies on the following lemma, that in turn uses a coding-theoretic result
due to Levenshtein [149]. It applies in the regime 2h ≤ 1

1+ν2
min{n1−ν1 , k, n − k} for some

constants ν1 ∈ (0, 1) and ν2 ∈ (0, 1), and when n is larger than a (ν1, ν2)-dependent constant.

Lemma 17. Under the previously given conditions, there exists a subset {b1, . . . , bL} ⊆
{0, 1}n/2 with cardinality L ≥ e

9
10
ν1ν2h logn, and such that

DH(bj,0) = 2(1 + ν2)h, and DH(bj, bk) > 4h for all j 6= k ∈ [L].

We prove this lemma at the end of this section. Given this lemma, we now complete the
proof of the theorem. Map the n

2
items {n

2
+ 1, . . . , n} to the n

2
bits in each of the strings
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given by Lemma 17. For each ` ∈ [e
9
10
ν1ν2h logn], let B` denote the 2(1 + ν2)h-sized subset

of {n
2

+ 1, . . . , n} corresponding to the 2(1 + ν2)h positions equalling 1 in the `th string.
Also define sets A` = {1, . . . , k − 2(1 + ν2)h} and C` = [n]\(A` ∪ B`). We note that this
construction is valid since 2h ≤ 1

1+ν2
k.

We now construct η = e
9
10
ν1ν2h logn sets of pairwise comparison probability distributions

M1, . . . ,Mη and show that these sets satisfy the two required properties. As mentioned
earlier, each matrix of comparison-probabilities M ` takes values as given in (3.23), but
differs in the underlying ordering of the n items. In particular, associate the set ` ∈ [η] of
distributions to any ordering of the n items that ranks every item in A` higher than every
item in B`, and every item in B` in turn higher than every item in C`. Then for any `, the
set of top k items is given by A` ∪B`. From the guarantees provided by Lemma 17, for any
distinct `,m ∈ [η], we have DH(A` ∪B`, Am ∪Bm) ≥ 4h+ 1. This construction consequently
satisfies the first required property.

We now show that the construction also satisfies the second property: namely, it is
difficult to identify the true index. We do so using Fano’s inequality (2.22), for which we
denote the probability distribution of the observations due to any matrix M `, ` ∈ [η], as P`.

We first derive an upper bound on the Kullback-Leibler divergence between any two
distributions P` and Pm of the observations. Observe that P`(i � j) 6= Pm(i � j) only if

i ∈ B` ∪ Bm or j ∈ B` ∪ Bm. In this case, we have DKL(P`(i � j)‖Pm(i � j)) ≤ 4∆2
0

1
4
−∆2

0
.

Since both sets B` and Bm have a cardinality of 2(1 + ν2)h, aggregating over all possible
observations across all pairs, we obtain that

DKL(P`‖Pm) ≤ 4(1 + ν2)hnpobsr
4∆2

0
1
4
−∆2

0

. (3.24)

In the regime pobs ≥ logn
2nr

and ∆0 ≤ 1
14

√
ν1ν2 logn
npobsr

, we have ∆0 ≤ 1
14
√

2
. Substituting the

inequality ∆0 ≤ 1
14

√
ν1 logn
npobsr

in the numerator and 1
4
−∆2

0 ≥ 1
4
−
(

1
14
√

2

)2
in the denominator

of the right hand side of the bound (3.24), we find that

DKL(P`‖Pm) ≤ 3

4
ν1ν2h log n.

Now suppose that we drawn Y from some distribution chosen uniformly at random from
{P1, . . . ,Pη}. Applying Fano’s inequality (2.22) ensures that any test φ for estimating the
index A of the chosen distribution must have error probability lower bounded as

P
[
φ(Y ) 6= A] ≥

(
1−

3
4
ν1ν2h log n+ log 2

9
10
ν1ν2h log n

)
≥ 1

7
.

Here the final inequality holds as long as n is larger than some universal constant.
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Proof of Lemma 17

We divide the proof into two cases depending on the value of h.
Case I: h ≥ 1

2ν1ν2
: Let L denote the number of binary strings of length m0 such that

each has a Hamming weight w0 and each pair has a Hamming distance at least d0. It is
known [111, 149] that L can be lower bounded as:

η ≥
(
m0

w0

)
∑b d0−1

2
c

i=0

(
w0

j

)(
m0−w0

j

) ≥
(
m0

w0

)w0

d0+1
2

(
ew0

min{d0,w0}/2

)min{d0,w0}/2( em0

min{d0,m0}/2

)min{d0,m0}/2
.

Note that for the setting at hand, we have m0 = n
2
, w0 = 2(1 + ν2)h and d0 = 4h+ 1. Since

ν1 ∈ (0, 1) and ν2 ∈ (0, 1), we have the chain of inequalities

w0 < d0 ≤ 4n1−ν1
(i)
<
n

2
= m0,

where the inequality (i) holds when n is large enough. These relations allow for the simpli-
fication:

log η ≥ log


(
m0

w0

)w0

d0+1
2

(
ew0

w0/2

)w0/2( em0

d0/2

)d0/2


= (w0 − d0/2) logm0 − w0 logw0 +
d0

2
log d0 −

d0 + w0

2
log(2e)− log((d0 + 1)/2).

Substituting the values of w0, d0 and m0 and then simplifying yields

log η ≥ (2ν2h−
1

2
) log

n

2
− 2(1 + ν2)h log(2(1 + ν2)h) + (2h+

1

2
) log(4h+ 1)

− (((3 + ν2)h) +
1

2
) log(2e)− log(2h+ 1)

≥ (2ν2h−
1

2
) log

n

2
− 2ν2h log(2(1 + ν2)h)− c′1h,

where c′1 is a constant whose value depends only on (ν1, ν2). In the regime 1
ν1ν2
≤ 2h ≤ n1−ν1

1+ν2
,

some algebraic manipulations then yield

log η ≥ (2ν1ν2h−
1

2
) log

n

2
− c′1h ≥ ν1ν2h(log n− log 2− c′1) ≥ 9

10
ν1ν2h log n,

where the final inequality holds when n is large enough.

Case II: h < 1
2ν1ν2

Consider a partition of the n
2

bits into n
4(1+ν2)h

sets of size 2(1 + ν2)h

each. Define an associated set of n
4(1+ν2)h

sets of binary strings, each of length n
2
, with the
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ith string having ones in the positions corresponding to the ith set in the partition and zeros
elsewhere. Then each of these strings have a Hamming weight of 2(1 + ν2)h, and every pair
has a Hamming distance at least 4(1 + ν2)h > 4h. The total number of such strings equals

exp
(

log
n

4(1 + ν2)h

) (i)

≥ exp
(

log n− log(
2(1 + ν2)

ν1ν2

)
) (ii)

≥ exp
( 9

10
log n)

(iii)
> exp

(
1.8ν1ν2h log n

)
,

where the inequalities (i) and (iii) are a result of operating in the regime h < 1
2ν1ν2

and the
inequality (ii) assumes that n is greater than a (ν1, ν2)-dependent constant.

3.6.4 Proof of Theorem 9: General error

We now turn to the proof of Theorem 9.

Proof of part (a)

For every i ∈ [n], let (i) denote the item ranked i according to their latent scores, as defined
in equation (3.1). Recall from the proof of Theorem 7 that for any u < v ∈ [n], the condition

τ(u) − τ(v) ≥ 8

√
log n

npobsr

ensures that with probability at least 1 − n−14, every item in the set {(1), . . . , (u)} wins

more comparisons than every item in the set {(v), . . . , (n)}. Consequently, if the set S̃k
contains any item in {(v), . . . , (n)}, then it must contain the entire set {(1), . . . , (u)}. In

other words, at least one of the following must be true: either {(1), . . . , (u)} ⊆ S̃k or S̃k ⊆
{(1), . . . , (v − 1)}. Consequently, in the regime v = k + t − u + 1 for any 1 ≤ u ≤ k and
u ≤ t ≤ n, we have that

|S̃k ∩ {(1), . . . , (t)}| ≥ u. (3.25)

Now consider any b ∈ [β] that satisfies the condition

min
j∈[k]

(τ(j) − τ(k+tbj−j+1)) ≥ 8

√
log n

npobsr
.

For any j ∈ [k], setting u = j and v = (k + tbj − j + 1) in (3.25), and applying the union
bound over all values of j ∈ [k] yields that

|S̃k ∩ {(1), . . . , (tbj)}| ≥ j for every j ∈ [k],

with probability at least 1− n−13. Consequently, we have that

P
(
S̃k ∈ Λ(Tb)

)
≥ 1− n−13,

completing the proof of the claim.
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Proof of part (b)

In the regime tbµ2k ≤
n
2

for every b ∈ [β], it suffices to show that any estimator Ŝk will incur
an error lower bounded as

P
(
|Ŝk ∩ {(1), . . . , (n/2)}| < µ2k

)
≥ 1

15
,

where (i) denotes the item ranked i according to their latent scores according to equa-
tion (3.1).

Our proof relies on the result and proof of the Hamming error case analyzed in Theo-
rem 8(b). To this end, let us set the parameter h of Theorem 8(b) as h = 2(1 − µ2)k. We
claim that this value of h lies in the regime h ≤ 1

2(1+ν2)
min{k, n− k, n1−ν1} for some values

ν1 ∈ (0, 1) and ν2 ∈ (0, 1), as required by Theorem 8(b). This claim follows from the fact
that

h = 2(1− µ2)k ≤ 1

2(1 + ν2)
k,

for ν2 = min{ 1
4(1−µ2)

− 1, 1
2
} ∈ (0, 1). Furthermore,

h = 2(1− µ2)k
(i)

≤ n1−µ1

4

(ii)

≤ 1

2(1 + ν2)
n1−ν1

for ν1 = 9
10
µ1 ∈ (0, 1), where (i) is a result of our assumption 8(1 − µ2)k ≤ n1−µ1 and (ii)

holds when n is large enough. This assumption also implies that k ≤ n−k for a large enough
value of n. We have now verified operation in the regime required by Theorem 8(b).

The construction in the proof of Theorem 8 is based on setting

τ(1) = · · · τ(k) = τ(k+1) + ∆0 = · · · = τ(n) + ∆0,

for any real number ∆0 in the interval
(

0, 1
14

√
ν1ν2 logn
npobsr

]
. This condition is also satisfied

in our construction due to the assumed upper bound α ≤ 1
15

√
µ1 min

{
1

4(1−µ2)−1
, 1

2

}
. Conse-

quently, the result of Theorem 8(b) implies that in this setting, any estimator Ŝk will incur
a Hamming error greater than h = 2(1− ν2)k with probability at least 1

7
, or equivalently,

P
(
|Ŝk ∩ {(1), . . . , (k)}| < (2µ2 − 1)k

)
≥ 1

7
.

Under this event, the estimator Ŝk contains at most (2µ2− 1)k− 1 items from the set of top
k items. In order to ensure it gets at least µ2k items from {(1), . . . , (n/2)}, the remaining
2(1−µ2)k+ 1 chosen items must have at least (1−µ2)k+ 1 items from {(k+ 1), . . . , (n/2)}.
However, in the construction, items (k + 1), . . . , (n) are indistinguishable from each other,
and hence by symmetry these 2(1−µ2)k+1 chosen items must contain at least (1−µ2)k+1
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items from the set {(n/2 + 1), . . . , (n)} with probability at least 1
2
. Putting these arguments

together, we obtain that under this construction, any estimator Ŝk has error probability
lower bounded as

P
(
|Ŝk ∩ {(1), . . . , (n/2)}| < µ2k

)
≥ 1

14
. (3.26)

It remains to deal with a subtle technicality. The construction above involves items
(k + 1), . . . , (n) with identical scores. Recall that in the definition of the user-defined re-
quirement, in case of multiple items with identical scores, we considered the choice of either
of such items as valid. The following lemma helps overcome this issue. In order to state the
lemma, we define |||M |||∞ : = max(i,j)∈[n]2 |Mij| for a matrix M ∈ Rn×n.

Lemma 18. Consider any two (n × n) matrices Ma and M b of pairwise probabilities such
that

|||Ma −M b|||∞ ≤ ε, |||Ma|||∞ ≥ ε, and |||M b|||∞ ≥ ε (3.27a)

for some ε ∈ [0, 1]. Then for any k-sized sets of items T1, . . . , Tβ ⊆ [n], and any estimator

Ŝk, we have

| PMa(Ŝk ∈ {T1, . . . , Tβ})− PMb(Ŝk ∈ {T1, . . . , Tβ}) |≤ 6n
2rε. (3.27b)

See Section 3.6.4 for the proof of this claim.

Now consider an (n× n) pairwise probability matrix M ′ whose entries takes values

M ′
(i)(j) =


1
2

+ ∆0 + ε if i ∈ [k] and j ∈ [n]\[n/2]
1
2

+ ∆0 if i ∈ [k] and j ∈ [n/2]\[k]
1
2

+ ε if i ∈ [n/2]\[k] and j ∈ [n]\[n/2]
1
2

otherwise,

and M ′
ji = 1−M ′

ij, whenever i ≤ j. Set ε = 7−n
2r.

One can verify that under the probability matrix M ′, the scores of the n items satisfy
the relations

τ(1) = · · · = τ(k) = τ(k+1) + ∆0 = · · · = τ(n/2) + ∆0 = τ(n/2+1) + ∆0 + ε = · · · = τ(n) + ∆0 + ε.

The set of items {(1), . . . , (n/2)} are thus explicitly distinguished from the items {(n/2 +
1), . . . , (n)}. We now call upon Lemma 18 with Ma = M ′, and M b as the matrix of proba-
bilities constructed in the proof of Theorem 8, where both sets have the same ordering of the
items. This assignment is valid given that ∆0 <

1
3

and ε = 7−n
2r. Lemma 18 then implies

that any estimator that is S-respecting with probability at least 1− 1
15

under M b must also
be S-respectiin with probability at least 1 − 1

14.5
under Ma. But by equation (3.26), the

latter condition is impossible, which implies our claimed lower bound.
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Proof of Lemma 18

Let Pa and Pb denote the probabilities induced by the matrices Ma and M b respectively.
Consider any fixed observation Y1 ⊆ {0, 1, φ}r(n×n), where φ denotes the absence of an
observation. Given the bounds (3.27a), some algebra leads to

| Pa(Y = Y1)− Pb(Y = Y1) |≤ 2n
2rε, (3.28)

where Pa(Y = Y1) and Pb(Y = Y1) denote the probabilities of observing Y1 under Pa and Pb,
respectively.

Now consider any estimator Ŝk, which is permitted to be randomized. Let η ≤ 3n
2r denote

the total number of possible values of the observation Y , and let {Y1, . . . , Yη} = {0, 1, φ}r(n×n)

denote the set of all possible valid values of the observation. For each i ∈ [η], let qi ∈ [0, 1]

denote the probability that the estimator Ŝk succeeds in satisfying the given requirement
when the data observed equals Yi. (Recall that the given requirement is in terms of the
actual items and not their positions.) Then we have

∣∣P1(Ŝk ∈ {T1, . . . , Tβ})− P2(Ŝk ∈ {T1, . . . , Tβ})
∣∣ =

∣∣ η∑
i=1

P1(Y = Yi)qi −
η∑
i=1

P2(Y = Yi)qi
∣∣

≤
η∑
i=1

| P1(Y = Yi)− P2(Y = Yi) | qi

(i)

≤
η∑
i=1

2n
2rεqi

(ii)

≤ 6n
2rε,

as claimed, where step (i) follows from our earlier bound (3.28) and step (ii) uses the bound
η ≤ 3n

2r.
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Chapter 4

Labeling and Classification

“Often are the amalgamated judgements of many better
than the assessment of one.”

– Marie Curie

4.1 Introduction

Recent years have witnessed a surge of interest in the use of crowdsourcing for labeling
massive datasets. Expert labels are often difficult or expensive to obtain at scale, and
crowdsourcing platforms allow for the collection of labels from a large number of low-cost
workers. This paradigm, while enabling several new applications of machine learning, also
introduces some key challenges: first, low-cost workers are often non-experts and the labels
they produce can be quite noisy, and second, data collected in this fashion has a high amount
of heterogeneity with significant differences in the quality of labels across workers and tasks.
Thus, it is important to develop realistic models and scalable algorithms for aggregating and
drawing meaningful inferences from the noisy labels obtained via crowdsourcing.

This chapter focuses on objective labeling tasks involving binary choices, meaning that
each question or task is associated with a single correct binary answer or label.1 There is
a vast literature on the problem of estimation from noisy crowdsourced labels [56, 84, 85,
88, 116, 117, 151, 274]. This past work is based primarily on the classical Dawid-Skene
model [60]. The Dawid-Skene model is a paramter-based model in which each worker i is
associated with a single scalar parameter qDS

i ∈ [0, 1], and it is assumed that the probability
that worker i answers any question j correctly is given by the same scalar qDS

i . Thus, the

1In this chapter, we use the terms {question, task}, and {answer, label} in an interchangeable manner.
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Dawid-Skene model imposes a homogeneity condition on the questions, one which is often not
satisfied in practical applications where some questions may be more difficult than others.2

Accordingly, in this chapter, we propose and analyze a more general permutation-based
model that allows the noise in the answer to depend on the particular question-worker
pair. Within the context of such models, we propose and analyze a variety of estimation
algorithms. One possible metric for analysis is the Hamming error, and there is a large
body of past work [56, 84, 85, 88, 116, 117, 274] that provides sufficient conditions that
guarantee zero Hamming error—meaning that every question is answered correctly—with
high probability. Although the Hamming error can be suitable for the analysis of Dawid-
Skene style models, we argue in the sequel that it is less appropriate for the heterogenous
settings studied in this chapter. Instead, when tasks have heterogenous difficulties, it is more
natural to use a weighted metric that also accounts for the underlying difficulty of the tasks.
Concretely, an estimator should be penalized less for making an error on a question that is
intrinsically more difficult. In this chapter, we introduce and provide analysis under such a
difficulty-weighted error metric.
From a high-level perspective, the contributions of this chapter can be summarized as follows:

• We introduce a new “permutation-based” model for crowd-labeled data, and a new difficulty-
weighted metric that extends the popular Hamming metric.

• We provide upper and lower bounds on the minimax error, sharp up to logarithmic factors,
for estimation under the permutation-based model. Our bounds lead to the useful impli-
cation that the generality afforded by the proposed permutation-based model as compared
to the popular parameter-based Dawid-Skene model enables more robust estimation, and
surprisingly, there is only a small statistical price to be paid for this flexibility.

• We provide a computationally-efficient estimator that achieves the minimax limits over
the permutation-based model when an approximate ordering of the workers in terms of
their abilities is known.

• We provide a computationally-efficient estimator, termed the OBI-WAN estimator, that
is consistent over the permutation-based model class. Moreover, it is optimal over an in-
termediate setting between the parameter-based Dawid-Skene and the permutation-based
models, which allows for task heterogeneity but in a restricted, parameter-based manner.
As a special case, our sharp upper bounds on the estimation error of OBI-WAN also ap-
ply uniformly over the parameter-based Dawid-Skene model, while prior known guarantees
fall short of establishing such uniform bounds.

The remainder of this chapter is organized as follows. In Section 4.2, we provide some
background, setup the problems we address in this chapter, and provide an overview of re-
lated literature. Section 4.3 is devoted to our main results. We present numerical simulations

2To be clear, the original model by Dawid and Skene [60] also allows for asymmetric errors across different
classes. In this chapter, we focus on the setting with symmetric error probabilities, that has popularly come
to be known as the “one-coin Dawid-Skene model”, and is considered in many past theoretical works [56,
88, 116, 117].
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in Section 4.4. We conclude the chapter with a discussion of future research directions in
Section 4.5. We present proofs of our main results in Section 4.6.

4.2 Problem setting

We begin with some background on existing crowd labeling models, followed by an intro-
duction to our proposed models; we conclude with a discussion of related work.

4.2.1 Observation model

Consider a crowdsourcing system that consists of n workers and d questions. We assume
every question has two possible answers, denoted by {−1,+1}, of which exactly one is
correct. We let x∗ ∈ {−1, 1}d denote the collection of correct answers to all d questions.
We model the question-answering via an unknown matrix Q∗ ∈ [0, 1]n×d whose (i, j)th entry,
Q∗ij, represents the probability that worker i answers question j correctly. Otherwise, with
probability 1−Q∗ij, worker i gives the incorrect answer to question j. For future reference,
note that the parameter-based Dawid-Skene model involves a special case of such a matrix,
namely one of the form Q∗ = qDS1T , where the vector qDS ∈ [0, 1]n corresponds to the vector
of correctness probabilities, with a single scalar associated with each worker.

We denote the response of worker i to question j by a variable Yij ∈ {−1, 0, 1}, where we
set Yij = 0 if worker i is not asked question j, and set Yij to the answer (−1 or 1) provided
by the worker otherwise. We also assume that worker i is asked question j with probability
pobs ∈ [0, 1], independently for every pair (i, j) ∈ [n]× [d], and that a worker is never asked
the same question twice. We also make the standard assumption that given the values of x∗

and Q∗, the entries of Y are all mutually independent. In summary, we observe a matrix Y
which has independent entries distributed as

Yij =


x∗j with probability pobs Q

∗
ij

−x∗j with probability pobs (1−Q∗ij)
0 with probability (1− pobs).

Given this random matrix Y , our goal is to estimate the binary vector x∗ ∈ {−1, 1}d of true
labels.

Obtaining non-trivial guarantees for this problem requires that some structure be imposed
on the probability matrix Q∗. The parameter-based Dawid-Skene model is one form of such
structure: it requires that the probability matrix Q∗ be rank one, with identical columns all
equal to qDS ∈ Rn. As noted previously, this structural assumption on Q∗ is very strong. It
assumes that each worker has a fixed probability of answering a question correctly, and is
likely to be violated in settings where some questions are more difficult than others.

Accordingly, in this chapter, we study a more general permutation-based model of the
following form. We assume that there are two underlying orderings, both of which are
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unknown to us: first, a permutation π∗ : [n] → [n] that orders the n workers in terms of
their (latent) abilities, and second, a permutation σ∗ : [d]→ [d] that orders the d questions
with respect to their (latent) difficulties. In terms of these permutations, we assume that
the probability matrix Q∗ obeys the following conditions:

• Worker monotonicity: For every pair of workers i and i′ such that π∗(i) < π∗(i′) and
every question j, we have Q∗ij ≥ Q∗i′j.
• Question monotonicity: For every pair of questions j and j′ such that σ∗(j) < σ∗(j′)

and every worker i, we have Q∗ij ≥ Q∗ij′ .

In other words, the permutation-based model assumes the existence of a permutation of the
rows and columns such that each row and each column of the permuted matrix Q∗ has non-
increasing entries. The rank of the resulting matrix is allowed to be as large as min{n, d}.
It is straightforward to verify that the parameter-based Dawid-Skene model corresponds to
a particular type of such probability matrices, restricted to have identical columns.

It should be noted that none of these models are identifiable without further constraints.
For instance, changing x∗ to −x∗ and Q∗ to (11T −Q∗) does not change the distribution of
the observation matrix Y . In the context of the parameter-based Dawid-Skene model, several
papers [85, 116, 117, 274] have resolved this issue by requiring that 1

n

∑n
i=1 q

DS
i ≥ 1

2
+ µ for

some constant value µ > 0. Although this condition resolves the lack of identifiability,
the underlying assumption—namely that every question is answerable by a subset of the
workers—can be violated in practice. In particular, one frequently encounters questions
that are too difficult to answer by any of the hired workers, and for which the worker’s
answers are near uniformly random (e.g., see the papers [69, 235]). On the other hand,
empirical observations also show that workers in crowdsourcing platforms, as opposed to
being adversarial in nature, at worst provide random answers to labeling tasks [69, 82, 83,
270]. On this basis, it is reasonable to assume that for every worker i and question j we
have that Q∗ij ≥ 1

2
. We make this assumption throughout this chapter.

In summary, we let CPerm denote the set of all possible values of matrix Q∗ under the
proposed permutation-based model, that is,

CPerm : =
{
Q ∈ [0.5, 1]n×d |there exist permutations (π, σ) such that

question and worker monotonocity hold
}
.

For future reference, we use

CDS : =
{
Q ∈ CPerm | Q = qDS1T for some qDS ∈ [0.5, 1]n

}
,

to denote the subset of such matrices that are realizable under the parameter-based Dawid-
Skene assumption.

4.2.2 Evaluating estimators

In this section, we introduce the criteria used to evaluate estimators in this chapter. In
formal terms, an estimator x̂ is a measurable function that maps any observation matrix
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Y to a vector in the Boolean hypercube {−1, 1}d. The most popular way of assessing the
performance of such an estimator is in terms of its (normalized) Hamming error

DH(x̂, x∗) : =
1

d

d∑
j=1

1{x̂j 6= x∗j}, (4.1)

where 1{x̂j 6= x∗j} denotes a binary indicator which takes the value 1 if x̂j 6= x∗j , and 0
otherwise. A potential deficiency of the Hamming error is that it places a uniform weight
on each question. As mentioned earlier, there are applications of crowdsourcing in which
some subset of the questions are very difficult, and no hired worker can answer reliably. In
such settings, any estimator will have an inflated Hamming error, not due to any particular
deficiencies of the estimator, but rather due to the intrinsic hardness of the assigned collection
of questions. This error inflation will obscure possible differences between estimators.

With this issue in mind, we propose an alternative error measure that weights the Ham-
ming error with the difficulty of each task. A more general class of error measures takes the
form

LQ∗(x̂, x∗) =
1

d

d∑
j=1

1{x̂j 6= x∗j}Ψ(Q∗1j, . . . , Q
∗
nj), (4.2)

for some function Ψ : [0, 1]n → R+ which captures the difficulty of estimating the answer to
a question.

The Q∗-loss: In order to choose a suitable function Ψ, we note that past work on the
parameter-based Dawid-Skene model [56, 85, 88, 116, 117] has shown that the quantity

1

n

n∑
i=1

(2qDS
i − 1)2, (4.3)

popularly known as the collective intelligence of the crowd, is central to characterizing the
overall difficulty of the crowd-sourcing problem under the parameter-based Dawid-Skene
assumption. A natural generalization, then, is to consider the weights

Ψ(Q∗1j, . . . , Q
∗
nj) =

1

n

n∑
i=1

(
2Q∗ij − 1

)2
for each task j ∈ [d], (4.4a)

which characterizes the difficulty of task j for a given collection of workers. This choice gives
rise to the Q∗-loss function

LQ∗(x̂, x∗) : =
1

d

d∑
j=1

(
1{x̂j 6= x∗j}

1

n

n∑
i=1

(2Q∗ij − 1)2
)

(4.4b)

=
1

dn
|||(Q∗ − 1

2
11T ) diag(x̂− x∗)|||2F, (4.4c)
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where diag(x̂−x∗) denotes the matrix in Rd×d whose diagonal entries are given by the vector
x̂ − x∗. Note that under the parameter-based Dawid-Skene model (in which Q∗ = qDS1T ),
this loss function reduces to

LQ∗(x̂, x∗) =
( 1

n

n∑
i=1

(2qDS
i − 1)2

) (1

d

d∑
j=1

1{x̂j 6= x∗j}
)

︸ ︷︷ ︸
DH(x̂,x∗)

,

corresponding to the normalized Hamming error rescaled by the collective intelligence.
For future reference, let us summarize some properties of the function LQ∗ : (a) it is

symmetric in its arguments (x∗, x̂), and satisfies the triangle inequality; (b) it takes values
in the interval [0, 1]; and (c) if for every question j ∈ [d], there exists a worker ` ∈ [n] such
that Q∗`j >

1
2
, then LQ∗ defines a metric; if not, it defines a pseudo-metric.

Minimax risk: Given the loss function LQ∗ , we evaluate the performance of estimators in
terms of their uniform risk properties over a particular class C of probability matrices. More
formally, for an estimator x̂ and class C ⊆ [0, 1]n×d of possible values of Q∗, the uniform risk
of x̂ over class C is

sup
x∗∈{−1,1}d

sup
Q∗∈C

E[LQ∗(x̂, x∗)], (4.5)

where the expectation is taken over the randomness in the observations Y for the given
values of x∗ and Q∗. The smallest value of the expression (4.5) across all estimators is the
minimax risk.

Regime of interest: In this chapter, we focus on understanding the minimax risk as well
as the risk of various computationally efficient estimators. We work in a non-asymptotic
framework where we are interested in evaluating the risk in terms of the triplet (n, d, pobs).
We assume that pobs ≥ 1

n
, which ensures that on average, at least one worker answers

any question. We also operate in the regime d ≥ n, which is commonplace in practical
applications. Indeed, as also noted in earlier works [274], typical medium or large-scale
crowdsourcing tasks employ tens to hundreds of workers, while the number of questions is
on the order of hundreds to many thousands. We assume that the value of pobs is known.
This is a mild assumption since it is straightforward to estimate pobs very accurately using
its empirical expectation.

4.2.3 Related work

Having set up our model and notation, let us now relate it to past work in the area. For
the problem of crowd labeling, the parameter-based Dawid-Skene model [60] is the dominant
model, and has been widely studied [56, 85, 88, 116, 117, 151, 274]. Some papers have studied
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models beyond the parameter-based Dawid-Skene model. In a recent work, Khetan and
Oh [125] analyze an extension of th parameter-based Dawid-Skene model where a vector q̃ ∈
Rn, capturing the abilities of the workers, is supplemented with a second vector h∗ ∈ [0, 1]d,
and the likelihood of worker i correctly answering question j is set as q̃i(1− h∗j + (1− q̃i)h∗j .
Although this model now has (n+d) parameters instead of just n as in the parameter-based
Dawid-Skene model, it retains parametric-type assumptions. Each worker and each question
is described by a single parameter, and in this model the probability of correctness takes a
specific form governed by these parameters. In contrast, in the permutation-based model
each worker-question pair is described by a single parameter. Our permutation-based model
forms a strict superset of this class. Our permutation-based model forms a strict superset
of this class. Zhou et al. [275, 276] propose a model based on a certain minimax entropy
principle, and Whitehill et al. [265] propose a parameter-based model, that also incorporate
question difficulties; however, these algorithms have yet to be rigorously analyzed. While
the present chapter addresses the setting of binary labels with symmetric error probabilities,
several of these prior works also address settings with more than two classes, and where the
probability of error of a worker may be asymmetric across the classes. We defer a further
detailed comparison of our main results with those in earlier works to Section 4.3.4.

A related problem in the context of crowdsourcing is to estimate pairwise outcome prob-
abilities from pairwise comparison data (Chapter 2). The permutation-based SST model
considered in Chapter 2 is closely related to the permutation-based model for the workers
assumed in the present chapter. However, the current chapter involves an unknown set of
labels, as well as a significantly different observation model: in particular, the observed data
couples the unknown matrix Q∗ with the unknown labels. Moreover, rather than estimating
the unknown probabilities Q∗, our primary goal in this chapter is to estimate these un-
derlying labels, for which significantly different algorithmic ideas and proof techniques are
required.

Finally, the problem of aggregating labels of crowdsourcing workers is conceptually sim-
ilar to that of aggregating the outputs of multiple weak classifiers, each solving multiple
classification problems [186]. Our results for this crowdsourcing problem may also shed
light on fundamental theoretical properties and algorithm design guidelines for the classifier-
aggregation problem.

4.3 Main results

We now turn to the statement of our main results. As noted earlier, our results are focused
on the practically relevant regime where we have that:

pobs ≥
1

n
and d ≥ n. (R)

We use c, c1, c2, c4, c0 to denote positive universal constants that are independent of all other
problem parameters. Recall that the Q∗-loss takes values in the interval [0, 1].
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4.3.1 Minimax risk for estimation under the permutation-based
model

We begin by proving sharp upper and lower bounds on the minimax risk for the permutation-
based model CPerm. The upper bound is obtained via an analysis of the following least
squares estimator

(x̃LS, Q̃LS) ∈ arg min
x∈{−1,1}d, Q∈CPerm

|||p−1
obs Y − (2Q− 11T ) diag(x)|||2F. (4.6)

The intuition behind this estimator is as follows. One can show (see the proof of Theo-
rem 10(a) for details) that the unknowns x∗ and Q∗ are related to the mean of the observed

matrix Y as E[Y ] = pobs(2Q
∗ − 11T ) diag(x∗). Consequently, the estimate (x̃LS, Q̃LS) com-

puted via the program (4.6) equals the true solution (x∗, Q∗) when Y is replaced by its
population version.

We do not know of a computationally efficient way to compute this estimate. Nonethe-
less, our statistical analysis provides a benchmark for comparing other computationally-
efficient estimators, to be discussed in subsequent sections. The following result holds in the
regime (R):

Theorem 10. (a) For any x∗ ∈ {−1, 1}d and any Q∗ ∈ CPerm, the least squares estimator
x̃LS has error at most

LQ∗(x̃LS, x∗) ≤ c1

1

npobs

log2 d, (4.7a)

with probability at least 1− e−c0d log(dn).
(b) Conversely, any estimator x̂ has error at least

sup
Q∗∈CDS

sup
x∗∈{−1,1}d

E[LQ∗(x̂, x∗)] ≥ c2

1

npobs

. (4.7b)

The lower bound holds even if the true matrix Q∗ is known to the estimator.

The result of Theorem 10 has a number of important consequences. Since the permutation-
based class CPerm is significantly richer than the parameter-based Dawid-Skene class CDS,
one might expect that estimation over CPerm might require a significantly larger sample size
to achieve the same accuracy. However, Theorem 10 shows that this is not the case: the
lower bound (4.7b) holds even when the supremum over matrices Q∗ is restricted to the
parameter-based Dawid-Skene model CDS ⊂ CPerm. Consequently, we see that estimation
over the more general permutation-based model leads to (at worst) a logarithmic penalty in
the required sample size. Thus, making the restrictive assumption that the data is drawn
from the parameter-based Dawid-Skene model yields little statistical advantage as compared
to making the more relaxed assumption of the permutation-based model.
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We note that the least squares estimator analyzed in part (a) also yields an accurate
estimate of the probability matrix Q∗ in the Frobenius norm, useful in settings where the
calibration of workers or questions might be of interest. Again, this result holds in the
regime (R):

Corollary 2. (a) For any x∗ ∈ {−1, 1}d and any Q∗ ∈ CPerm,, the least squares estimate

Q̃LS has error at most

1

dn
|||Q̃LS −Q∗|||2F ≤ c1

1

npobs

log2 d, (4.8a)

with probability at least 1− e−c0d log(dn).
(b) Conversely, for any answer vector x∗ ∈ {−1, 1}d, any estimator Q̂ has error at least

sup
Q∗∈CPerm

E[
1

dn
|||Q̂−Q∗|||2F] ≥ c2

1

npobs

. (4.8b)

This lower bound holds even if the true answer vector x∗ is known to the estimator.

We do not know if there exist computationally-efficient estimators that can achieve the
upper bound on the sample complexity established in Theorem 10(a) uniformly over the
entire permutation-based model class. In the following sections, we design and analyze
polynomial-time estimators that address interesting subclasses of the permutation-based
model.

4.3.2 The WAN estimator: When workers’ ordering is
(approximately) known

Several organizations employ crowdsourcing workers only after a thorough testing and cal-
ibration process. This section is devoted to a setting in which the workers are calibrated,
in the sense that it is known how they are ordered in terms of their respective abilities.
More formally, recall from Section 4.2.1 that any matrix Q∗ ∈ CPerm is associated with two
permutations: a permutation of the workers in terms of their abilities, and a permutation of
the questions in terms of their difficulty. In this section, we assume that the permutation of
the workers is (approximately) known to the estimation algorithm. Note that the estimator
does not know the permutation of the questions, nor does it know the values of the entries
of Q∗.

Given a permutation π of the workers, our estimator consists of two steps, which we refer
to as Windowing and Aggregating Näıvely, respectively, and accordingly term the procedure
as the WAN estimator:
• Step 1 (Windowing): Compute the integer

kWAN ∈ arg max
k∈{p−1

obs log1.5(dn),...,n}

∑
j∈[d]

1
{∣∣∑

i∈[k]

Yπ−1(i)j

∣∣ ≥√kpobs log1.5(dn)
}
. (4.9a)
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• Step 2 (Aggregating Näıvely): Set x̂WAN(π) as a majority vote of the best kWAN workers—
that is

[x̂WAN(π)]j ∈ arg max
b∈{−1,1}

kWAN∑
i=1

1{Yπ−1(i)j = b} for every j ∈ [d]. (4.9b)

The windowing step finds a value kWAN such that the answers of the best kWAN workers to most
questions are significantly biased towards one of the options, thereby indicating that these
workers are knowledgeable (or at least, are in agreement with each other). The second step
then simply takes a majority vote of this set of the best kWAN workers. We remark that it is
important to choose a reasonably good value of kWAN (as done in Step 1) since a much larger
value could include many random workers thereby increasing the noise in the input to the
second step, whereas too small a value could eliminate too much of the “signal”. Both steps
can be carried out in time O(nd).

For the case when π is an approximate ordering, we establish an oracle bound on the
error. For every j ∈ [d], let Q∗j denote the jth column of Q∗; for any ordering π of the
workers, let Qπ

j denote the vector obtained by permuting the entries of Q∗j in the order given
by π, that is, with the first entry of Qπ

j corresponding to the best worker according to π, and
so on. Also recall the notation π∗ representing the true permutation of the workers in terms
of their actual abilities. As with all of our theoretical results, the following claim holds in
the regime (R):

Theorem 11. For any Q∗ ∈ CPerm and any x∗ ∈ {−1, 1}d, suppose the WAN estimator is
provided with the permutation π of workers. Then for every question j ∈ [d] such that

‖Q∗j −
1

2
‖2

2 ≥
5 log2.5(dn)

pobs

, and ‖Qπ
j −Qπ∗

j ‖2 ≤
‖Q∗j − 1

2
‖2√

9 log(dn)
, (4.10a)

we have

P([x̂WAN(π)]j = x∗j) ≥ 1− e−c0 log1.5(dn). (4.10b)

Consequently, if π is the correct permutation of the workers, then

LQ∗(x̂WAN(π), x∗) ≤ c1

1

npobs

log2.5 d, (4.10c)

with probability at least 1− e−c′0 log1.5(dn).

At this point, we recall the lower bound of Theorem 10(b) on the estimation error in
the Q∗-loss allows for any estimator. Moreover, it applies to estimators that know not only
the ordering of the workers, but also the entire matrix Q∗. This lower bound matches the
upper bound (4.10c) of Theorem 11, and the two results in conjunction imply that the
bound (4.10c) is sharp up to logarithmic factors.
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We also note that the conditions (4.10a) required for the result of Theorem 11 are sharp

up to logarithmic factors. The required approximation guarantee ‖Qπ
j −Qπ∗

j ‖2 ≤
‖Q∗j−

1
2
‖2√

9 log(dn)
, if

weakened to ‖Qπ
j −Qπ∗

j ‖2 ≤ 2‖Q∗j − 1
2
‖2, would allow for any arbitrary permutation π. This

is because every permutation π satisfies ‖Qπ
j −Qπ∗

j ‖2 ≤ ‖Qπ
j − 1

2
‖2 +‖Qπ∗

j − 1
2
‖2 = 2‖Q∗j− 1

2
‖2.

Secondly, there exist constants c0 > 0 and c2 > 0 such that if one were guaranteed a lower

bound of only c0
pobs

on ‖Q∗j− 1
2
‖2

2 instead of the stated condition of 5 log2.5(dn)
pobs

, then there exists
a Q∗ ∈ CDS satisfying this weaker condition such that any estimator x̂ incurs an error at
least P(x̂j 6= x∗j) ≥ c2. Furthermore, this lower bound holds not only when the ordering of
workers is exactly known, but even when the entire matrix Q∗ is known. The proof for this
claim follows from the construction in the proof of Theorem 10(b).

The result of Theorem 11 for the WAN algorithm has the following useful implication
for the setting when the ordering of workers is unknown (under either of the models CDS or
CPerm). For any Q∗ ∈ CPerm, there exists a set of workers SQ∗ ⊆ [n] such that an estimator
x̂S that takes a majority vote of the answers of the workers in SQ∗ , has risk at most

LQ∗(x̂S, x∗) ≤ c1

1

npobs

log2.5 d,

with high probability. Consequently, it suffices to design an estimator that only identifies
a set of good workers and computes a majority vote of their answers. The estimator need
not attempt to infer the values of the entries of Q∗, as is otherwise required, for instance,
to compute maximum likelihood estimates. The estimator we propose in the next section is
based on this observation.

4.3.3 The OBI-WAN estimator

In this section, we return to the setting where the ordering of the workers is unknown. In
addition to the parameter-based Dawid-Skene and the permutation-based models introduced
earlier, we also study the estimation problem in an intermediate model that lies between these
two models. This intermediate model introduces a parameter h∗j ∈ [0, 1] that captures the
difficulty of each question j ∈ [d], along with parameters q̃ ∈ Rn associated to the workers as
in the parameter-based Dawid-Skene model. Under this intermediate xmodel, the probability
that worker i ∈ [n] correctly answers question j ∈ [d] (when the worker is asked the question)
is given by

P(Yij = x∗j) = q̃i(1− h∗j) +
1

2
h∗j , ∀ (i, j) such that Yij 6= 0. (4.11)

Intuitively, the parameter h∗j corresponds to the difficulty of question j. When h∗j = 1, the
worker is purely stochastic and provides a random guess, while for smaller values of h∗j the
worker is more likely to provide a correct answer

.This modeling assumption leads to the parameter-based class

CInt : =

{
Q = q̃(1− h)T +

1

2
1hT | for some q̃ ∈ [

1

2
, 1]n, h ∈ [0, 1]d

}
.
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Note that we have the nested relations CDS ⊂ CInt ⊂ CPerm; the parameter-based Dawid-
Skene model is a special case of CInt corresponding to h = 0.

Up to a bijective transformation of the parameters, the model (4.11) is identical to a
recent model proposed independently by Khetan and Oh [125], where the probability of a
correct answer is assumed to be q̃i(1− h∗j) + (1− q̃i)h∗j . The two models however arise from
different conceptual motivations: Khetan and Oh consider the probability of correctness as
a convex combination of the worker’s behavior q̃i and the opposite behavior (1− q̃i), whereas
our consideration of rarity of adversarial behavior leads to the probability of correctness set
as a convex combination of the worker’s behavior q̃i and random responses 1

2
.

We now describe a computationally efficient estimator, and establish sharp guarantees
on its statistical risk for the intermediate parameter-based model CInt, as well as guarantees
on its consistency under the permutation-based model. Our analysis of this estimator also
makes contributions in the specific context of the parameter-based Dawid-Skene model. In
particular, the guarantees established for computationally efficient estimators in prior works
(e.g., [56, 84, 85, 88, 116, 117, 125, 274]) fall short of translating to uniform guarantees over
the parameter-based Dawid-Skene model CDS in the Q∗-loss; see Section 4.3.4 for further
details. Our result in this section fills this gap by establishing sharp uniform bounds on the
statistical risk over the entire parameter-based Dawid-Skene class CDS, and more generally
over the entire class CInt.

Our proposed estimator operates in two steps. The first step performs an Ordering Based
on Inner-products (OBI), that is, computes an ordering of the workers based on an inner
product with the data. The second step calls upon the WAN estimator from Section 4.3.2
with this ordering. We thus term our proposed estimator as the OBI-WAN estimator,
x̂OBI-WAN. In order to make its description precise, we augment the notation of the WAN
estimator x̂WAN(π) to let x̂WAN(π, Y ) to denote the estimate given by x̂WAN(π) operating on Y
when given the permutation π of workers.

An important technical issue is that re-using the observed data Y to both determine
an appropriate ordering of workers as well as to estimate the desired answers, results in a
violation of important independence assumptions. We resolve this difficulty by partitioning
the set of questions into two sets, and using the ordering estimated from one set to estimate
the desired answers for the other set and vice versa. We provide a careful error analysis for
this partitioning-based estimator in the sequel. Formally, the OBI-WAN estimator x̂OBI-WAN

is defined by the following steps:

• Step 0 (preliminary): Split the set of d questions into two sets, T0 and T1, with every
question assigned to one of the two sets uniformly at random. Let Y0 and Y1 denote the
corresponding submatrices of Y , containing the columns of Y associated to questions in
T0 and T1 respectively.

• Step 1 (OBI): For ` ∈ {0, 1}, let

u` ∈ arg max
‖u‖2=1

‖Y T
` u‖2
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denote the top eigenvector of Y`Y
T
` ; in order to resolve the global sign ambiguity of eigen-

vectors, we choose the global sign so that
∑

i∈[n][u`]
2
i1{[u`]i > 0} ≥

∑
i∈[n][u`]

2
i1{[u`]i < 0}.

Let π` be the permutation of the n workers in order of the respective entries of u` (with
ties broken arbitrarily).

• Step 2 (WAN): Compute the quantities

x̂OBI-WAN(T0) : = x̂WAN(Y0, π1), and x̂OBI-WAN(T1) : = x̂WAN(Y1, π0),

corresponding to estimates of the answers for questions in the sets T0 and T1, respectively.

The following theorem provides guarantees on this estimator, again in the regime (R).

Theorem 12.(a) Uniformly optimal over CInt: For any Q∗ ∈ CInt and any x∗ ∈ {−1, 1}d,
the error incurred by the estimate x̂OBI-WAN is upper bounded as

LQ∗(x̂OBI-WAN, x
∗) ≤ c1

1

npobs

log2.5 d, (4.12a)

with probability at least 1− e−c0 log1.5(dn).

(b) Uniformly consistent over CPerm: For any Q∗ ∈ CPerm and any x∗ ∈ {−1, 1}d, the esti-
mate x̂OBI-WAN has error at most

LQ∗(x̂OBI-WAN, x
∗) ≤ c1

1
√
npobs

log d, (4.12b)

with probability at least 1− e−c0 log1.5(dn).

Recall that the statistical lower bound established earlier in Theorem 10(b) is also appli-
cable to the classes CDS and CInt. Consequently, the upper bound of Theorem 12 is sharp
over these two classes.

Guarantees for OBI-WAN under the Dawid-Skene model for the Hamming
error

In this section, we present results relating the performance of the OBI-WAN estimator
to the settings considered in most prior works on this topic. Most of this chapter focuses
on the permutation-based model, the Q∗-loss and does not account for adversarial workers.
In the following theorem, we present optimality guarantees of the OBI-WAN estimator,
in terms of the popular Hamming error, when data is actually faithful to the parameter-
based Dawid-Skene model, and in a setting where the workers may also be adversarial (that
is, where qDS

i < 1
2

for some workers i ∈ [n]). In particular, we show that the OBI-WAN
estimator incurs a zero Hamming error under the parameter-based Dawid-Skene model when
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the collective intelligence (see Equation (4.3)) is sufficiently high. Our results show that
OBI-WAN is optimal up to logarithmic factors, and that it also has appealing adaptivity
properties.

We introduce some notation in order to describe the result involving adversarial workers.
For the vector qDS ∈ [0, 1]n, we define two associated vectors qDS+, qDS− ∈ [0, 1]n as qDS+

i =
max{qDS

i , 1
2
} and qDS−

i = min{qDS
i , 1

2
} for every i ∈ [n]. Then we have (qDS− 1

2
) = (qDS+− 1

2
)+

(qDS−− 1
2
), with qDS+ representing normal workers and qDS− representing adversarial workers

who are inclined to provide incorrect answers. As with all our theorems, the following result
holds in the regime (R):

Theorem 13. Consider any Dawid-Skene matrix of the form Q∗ = qDS1T for some qDS ∈
[0, 1]n. Then:

(a) If ‖qDS+− 1
2
‖2 ≥ ‖qDS−− 1

2
‖2+

√
4 log2.5(dn)

pobs
and (qDS− 1

2
)T1 ≥ 0, then for any x∗ ∈ {−1, 1}d,

the OBI-WAN estimator satisfies

P(x̂OBI-WAN = x∗) ≥ 1− e−c0 log1.5(dn). (4.13a)

(b) Conversely, there exists a positive universal constant c such that for any qDS ∈ [ 1
10
, 9

10
]n

with ‖qDS − 1
2
‖2 ≤

√
c

pobs
, any estimator x̂ has (normalized) Hamming error at least

sup
x∗∈{−1,1}d

E
[ d∑
i=1

1

d
1{x̂i 6= x∗i }

]
≥ 1

10
. (4.13b)

A couple of remarks are in order, and for the following discussion, consider the two mild
conditions ‖qDS+ − 1

2
‖2 ≥ 1.01‖qDS− − 1

2
‖2 and (qDS − 1

2
)T1 > 0. First, we claim that under

these mild conditions, the OBI-WAN estimator is optimal up to logarithmic factors. To see

this, first observe that part (b) of Theorem 13 necessitates the condition ‖qDS− 1
2
‖2 >

√
c

pobs
,

for a positive universal constant c, for any non-trivial recovery guarantees. Now suppose

that ‖qDS − 1
2
‖2 >

√
c′ log2.5(dn)

pobs
for a large enough positive constant c′; observe that this

condition is only a logarithmic factor away from the necessary condition. Then under the

mild aforementioned conditions, we have ‖qDS+− 1
2
‖2 ≥ ‖qDS−− 1

2
‖2 +

√
4 log2.5(dn)

pobs
. Part (a)

of Theorem 13 then guarantees that the OBI-WAN estimator recovers the true answers x∗

with high probability.
Secondly, Theorem 13 also shows that OBI-WAN has strong adaptivity guarantees under

the parameter-based Dawid-Skene model. The guarantees match (up to logarithmic factors)
those derived in past works such as [117]. Furthermore, our guarantees are applicable for all
values of pobs, as opposed to the restricted range required in past works. In more detail, for
the parameter-based Dawid-Skene model, past works consider the regime pobs ≤ logn

n
, and
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show that the algorithms (say, x̂) proposed therein incur an error upper bounded as

1

d
E[

d∑
i=1

1{x̂i 6= x∗i }] ≤ e−(c0npobs)(
1
n
‖qDS− 1

2
‖22) (4.14)

≤ e−c0 logn in the regime pobs ≤ logn
n

.

Observe that this bound is no better than the bound of 1
2

achieved by random guessing
unless

‖qDS − 1

2
‖2

2 ≥
c2

pobs

,

where c2 > 0 is a universal constant. On the other hand, part (a) of Theorem 13 above shows

that when ‖qDS − 1
2
‖2

2 ≥
4 log2.5(dn)

pobs
, the error incurred by OBI-WAN is upper bounded as

1

d
E[

d∑
i=1

1{x̂i 6= x∗i }] ≤ e−c0 log1.5(dn).

Furthermore, the OBI-WAN algorithm and the associated guarantees are not restricted to
the regime pobs ≤ logn

n
.

The OBI-WAN estimator is thus not only consistent under the permutation-based model,
but also has strong adaptivity guarantees under the Dawid-Skene model.

One application of Theorem 13 is to the setting that has been the focus of this chapter,
where we have no adversarial workers. In this case, qDS− = 0, and qDS+ = qDS, and the
upper and lower bounds match upto a logarithmic factor. The upper bound shows that

when ‖qDS − 1
2
‖2 ≥

√
4 log2.5(dn)

pobs
the Hamming error is vanishingly small while the lower

bound shows that there is a universal constant c such that the Hamming error is essentially

as large as possible when ‖qDS − 1
2
‖2 ≤

√
c

pobs
.

The results of Theorem 12 and Theorem 13 in conjunction show that the OBI-WAN
estimator not only has optimal guarantees (up to logarithmic factors) in terms of the models
and metrics popular in past literature, but is also efficient in terms of the more general
models and metric introduced here.

4.3.4 Past work and the Q∗-loss

Several past works have introduced computationally-efficient estimation algorithms, and
provided theoretical guarantees for these algorithms under the parameter-based Dawid-Skene
model. These guarantees apply to the Hamming metric, and usually quantify the sample
complexity required for exact recovery of all the questions with high probability. In this
section, we consider the implications for such guarantees for the goal of this chapter—
namely, that of establishing uniform guarantees under the Q∗-loss. We find that guarantees
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from earlier works—for the purposes of establishing uniform guarantees over the parameter-
based Dawid-Skene model in the Q∗-loss—are either inapplicable, or lead to sub-optimal
guarantees.

To be fair, some of this past work applies to settings more general than our chapter,
including problems with more than two classes, and problems where the probability of error
of a worker may be asymmetric across the classes. The present chapter, on the other hand,
considers the setting of binary labels with symmetric error probabilities, and accordingly,
all comparison made in this section pertain to this setting. We note that the various prior
works make different assumptions regarding the choice of questions assigned to each worker,
and in order to bring these works under the same umbrella, we assume that each of the n
workers answers each of the d questions (that is, pobs = 1) unless specified otherwise. As
indicated earlier, in this section we restrict attention to the parameter-based Dawid-Skene
model CDS.

Note that when the guarantee claimed in a past work requires certain additional condi-
tions that are not satisfied, one can always appeal to the näıve bound

LQ∗(x̂, x∗) ≤
1

n
‖qDS − 1

2
‖2

2. (4.15)

Thus, in all of comparisons with past work, we take the minimum of this bound, and the
bound provided by their work. We show below that in each of the prior works, this augmented
guarantee has weaker scaling than the bound strictly weaker scaling than the scaling of

LQ∗(x̂, x∗) ≤
1

n
log2.5 d, (4.16)

achieved by the OBI-WAN estimator for the parameter-based Dawid-Skene model (see
Theorem 12(a)) when pobs = 1.

Ghosh et al. [88] The guarantees for recovery provided in the paper [88] require the lower
bound

‖qDS − 1

2
‖2

2 ≥ c0

√
n log n (4.17)

to be satisfied, where c0 is a positive universal constant. This requirement means that it is not
possible to translate the bounds of [88] to a uniform bound over the entire parameter-based
Dawid-Skene class in the Q∗-loss. For instance, for a DS matrix given by the vector

qDS
i =

{
1 if i ≤

√
n

1
2

otherwise,
(4.18)

the guarantees of [88] are inapplicable, and the näıve bound of 1
n
‖qDS − 1

2
‖2

2 = 1√
n

is sub-
optimal.
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Karger et al. [116, 117], Khetan and Oh [125] The guarantees from this set of works
assume that pobs = O( log d

d
).3 The assumption stems from the use of message passing algo-

rithms, where the analysis requires a certain “locally tree-like” worker-question assignment
graph which is guaranteed to hold in this regime. Moreover, the results of [116] apply to a
particular subset of the parameter-based Dawid-Skene model, for which is it assumed that
qDS ∈ {1

2
, 1}n.

Let us evaluate these guarantees from the perspective of our requirements, namely to
obtain uniform guarantees on the Q∗-loss under the parameter-based Dawid-Skene model
across different values of the problem parameters. When pobs = O( log d

d
), then the trivial

upper bound of 1 on the Q∗-loss is only a logarithmic factor away from the lower bound of
1

npobs
given by Theorem 10(b) in the present chapter. Consequently, any result will then be

sandwiched between these two bounds, and can yield at most a logarithmic improvement
over the trivial upper bound in this regime. On the other hand, the guarantees derived
in [116, 117, 125] are loose when pobs takes larger values. For instance, when pobs ≥ 1√

n
,

these bounds reduce to the trivial property that the number of answers decoded incorrectly
is upper bounded by d. Consequently, in this regime, these analyses yield an upper bound
of 1

n
‖qDS − 1

2
‖2

2; note that this bound could be as large as 1
4
.

Dalvi et al. [56] For the setting described in equation (4.18), the bound of Dalvi et al.
only guarantees that the number of answers estimated incorrectly is upper bounded by cd,
for some constant c > 0. This guarantee translates to a suboptimal bound of order 1√

n
on

the Q∗-loss.

Zhang et al. [274] Zhang et al. [274] assume the existence of three groups of workers such
that the second largest singular value of a certain set of matrices capturing the correlations
between the probabilities of correctness of workers in the groups are all lower bounded by a
parameter, denoted as σL. Their results require, among other conditions, that d ≥ (σL)−13.
It turns out that for a large number of settings of interest, this condition is quite prohibitive.
Here is a simple example to illustrate this issue. Suppose that

qDS
i =

{
1 if i ≤

√
n log d

1
2

otherwise
. (4.19)

In order to apply the bounds of [274] to this setting, we must have d ≥ n14. One can see
that this condition is prohibitive, even when the number of workers n is as small as 10. The
näıve bound of 1

n
‖qDS − 1

2
‖2

2 = log d
4
√
n

is also suboptimal. We note that on the other hand, the

3The setting analyzed in these papers is slightly different from ours when pobs < 1. Specifically, the
paper [125] assumes that the sets of questions assigned to the workers are chosen based on a certain regular
random bipartite graph, with each worker answering dpobs questions and each question being answered by
npobs workers. We think that the assumptions on the worker-question assignment in [125] and those made
in the present chapter may have similar guarantees. In the spirit of allowing for a comparison between the
two works, we consider their guarantees as applicable for our setting as well.
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problem (4.19) is not actually hard: a simple analysis of the majority voting algorithm leads
to a guarantee that all the questions will be decoded correctly with a high probability.

Gao et al. [84] Gao et al. [84] present an algorithm and associated guarantees to estimate
the true labels under the parameter-based Dawid-Skene model when the worker abilities qDS

are (approximately) known. In order to estimate the value of qDS, they employ one of the
two following methods: (a) The algorithm of Zhang et al. [274], which results in the same
limitations as those for the guarantees of [274] discussed earlier; and (b) An estimator based
on the work of Gao and Zhou [85] that prohibits settings where most labels in may have
the same true value, thereby yielding only the näıve bound of 1 on the minimax risk of
estimation under the Q∗-loss.

Majority voting Finally, let us comment on a relatively simple estimator—namely, the
majority voting estimator. It computes the sign vector x̃MV ∈ {−1,+1}d with entries

[x̃MV]j ∈ arg max
b∈{−1,1}

n∑
i=1

1{Yij = b} for all j ∈ [d].

Here we use 1{·} to denote the indicator function. In Appendix 4.A, we show that the
majority voting estimator also incurs an expected Q∗-loss lower bounded as order 1√

n
under

the parameter-based Dawid-Skene model.

4.4 Simulations

In this section, we present numerical simulations comparing our proposed OBI-WAN esti-
mator (introduced in Section 4.3.3) to the Spectral-EM estimator due to Zhang et al. [274],
which to the best of our knowledge, has the strongest established guarantees in the litera-
ture. For the Spectral-EM estimator, we used an implementation provided by the authors
of the paper [274]. The code for the OBI-WAN estimator as well as the constituent WAN
estimator is available on the author’s website.

The results from our simulations are plotted in Figure 4.1. The plots in the six panels
(a) through (f) of the figure are discussed below.

(a) Easy: Q∗ = qDS1T ∈ CDS where qDS
i = 9

10
if i < n

2
, and qDS

i = 1
2

otherwise. The
parameter n is varied, and the regime of operation is (d = n, pobs = 1). In this setting,
both estimators correctly recover x∗.

(b) Few smart: Q∗ = qDS1T ∈ CDS where qDS
i = 9

10
if i <

√
n, and qDS

i = 1
2

otherwise. The
parameter n is varied, and the regime of operation (d = n, pobs = 1). Even though the data
is drawn from the parameter-based Dawid-Skene model, the error of Spectral-EM is much
higher than that of the OBI-WAN estimator. Recall that the OBI-WAN estimator has
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(e) Minimax lower bound
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(f) Super sparse

Figure 4.1: Results from numerical simulations comparing the OBI-WAN and Spectral-EM esti-
mators. The plots in panels (a)-(d) measure the Q∗-loss as a function of n, and the plots in panels
(e)-(f) measure the Q∗-loss as a function of pobs. Each point is an average of over 20 trials. Recall
that when Q∗ follows the parameter-based Dawid-Skene model, as in panels (a)-(c), (e)-(f), the
Hamming error is proportional to the Q∗-loss. Also note that the Y-axis of panel (d) is plotted on
a logarithmic scale.

uniform guarantees of recovery over the entire parameter-based Dawid-Skene class, unlike
the estimators in prior literature.

(c) Adversarial: Q∗ = qDS1T ∈ CDS where qDS
i = 9

10
if i < n

4
+
√
n, qDS

i = 1
10

if i > 3n
4

, and
qDS
i = 1

2
otherwise. The parameter n is varied, and the regime of operation is (d = n, pobs =

1). This set of simulations moves beyond the assumption that the entries of Q∗ are lower
bounded by 1

2
, and allows for adversarial workers. The OBI-WAN estimator is successful

in such a setting as well.
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(d) In CPerm but outside CInt: Q
∗
ij = 9

10
if (i <

√
n or j < d

2
), and Q∗ij = 1

2
otherwise. The

parameter n is varied, and the regime of operation is (d = n, pobs = 1). Here we have
Q∗ ∈ CPerm\CInt. The Q∗-loss incurred by the OBI-WAN estimator decays as 1√

n
, whereas

the Q∗-loss of Spectral-EM grows remains a constant.

(e) Minimax lower bound: Q∗ = qDS1T ∈ CDS where qDS
i = 9

10
if i ≤ 5

pobs
and qDS

i = 1
2

otherwise. The parameter pobs is varied, and the regime of operation is (d = 1000, n = 1000).
This setting is the cause of the minimax lower bound of Theorem 10(b). The error of both
estimators, in this case, behaves in an almost identical manner with a scaling of 1

pobs
.

(f) Super sparse: Q∗ = qDS1T ∈ CDS where qDS
i = 9

10
if i ≤ n

10
and qDS

i = 1
2

otherwise.
The parameter pobs is varied, and the regime of operation is (d = 1000, n = 1000). We
see that the OBI-WAN estimator incurs a relatively higher error when data is very sparse

— more generally, we have observed a higher error when pobs = o( log2(dn)
n

), and this gap
is also reflected in our upper bounds for the OBI-WAN estimator in Theorem 12(a) and
Theorem 13(a) that are loose by precisely a polylogarithmic factor as compared to the
associated lower bounds.

The relative benefits and disadvantages of of the proposed OBI-WAN estimator, as
observed from the simulations, may be summarized as follows. In terms of limitations, the
error of OBI-WAN is higher than prior works when pobs is small (as observed in the super-
sparse case) or when n and d are small (for instance, less than 200). On the positive side,
the simulations reveal that the OBI-WAN estimator leads to accurate estimates in a variety
of settings, providing uniform guarantees over the CDS and CInt classes, and demonstrating
significant robustness in more general settings in comparison to the best known estimator in
the literature.

4.5 Discussion

We proposed a flexible permutation-based model for the noise in crowdsourced labels, and by
establishing fundamental theoretical guarantees on estimation, we showed that this model
allows for robust and statistically efficient estimation of the true labels in comparison to
the popular parameter-based Dawid-Skene model. We hope that this win-win feature of the
permutation-based model will encourage researchers and practitioners to further build on the
permutation-based core of this model. In addition, we proposed a new metric for theoretical
evaluation of algorithms for this problem that eliminates drawbacks of the Hamming metric
used in prior works. Using our approach towards estimation under such a general class, we
proposed a robust estimator, OBI-WAN, that unlike the estimators in prior literature, has
optimal uniform guarantees over the entire parameter-based Dawid-Skene model. In more
general settings, the OBI-WAN estimator is uniformly optimal over the parameter-based
class CInt that is richer than the parameter-based Dawid-Skene model, and is uniformly
consistent over the entire permutation-based model.
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This work gives rise to several open problems that are theoretically challenging and
potentially useful in practice. First, the problem of establishing optimal minimax risk under
the permutation-based model for computationally-efficient estimators remains open. Second,
the focus of Theorem 10 of the present chapter is on the global minimax error, and it is of
interest to obtain sharp bounds on local adaptivity under the permutation-based model. Such
adaptive bounds are obtained for Dawid-Skene and related parameter-based models in the
papers [84, 117, 125, 274] as well as in Theorem 12 of the present chapter for the parameter-
based Dawid-Skene model. Third, it will be useful to extend the proposed permutation-based
model and associated algorithms to more general settings in crowdsourcing such as having
multiple (more than two) choice questions. Finally, we considered a symmetric setting where
the error probability is independent of the true answer, and extension to the asymmetric case
remains open.

4.6 Proofs

In this section, we present the proofs of our theoretical results. In the proofs we ignore floors
and ceilings unless critical to the proof. We assume that n and d are greater than some
universal constants; the case of smaller values of these parameters are then directly implied
by only changing the constant prefactors.

4.6.1 Proof of Theorem 10(a): Minimax upper bound

In this section, we prove the minimax upper bound stated in part (a) of Theorem 10. The
proof is divided into two parts, where in the first part, we obtain an upper bound on the
error term |||(2Q∗− 11T )diag(x∗)− (2Q̃LS− 11T )diag(x̃LS)|||2F, following which we convert this
bound to one on LQ∗(x∗, x̃LS).

We begin with the first part of the proof, where we bound the error in estimating the
product term (2Q∗ − 11T )diag(x∗). Let us rewrite our observation model in a “linearized”
fashion that is convenient for subsequent analysis. In particular, let us define a random
matrix W ∈ Rn×d with entries independently drawn from the distribution

Wij =


1− pobs(2Q

∗
ij − 1)x∗j w.p. pobs

(
Q∗ij
(1+x∗j

2

)
+ (1−Q∗ij)

(1−x∗j
2

))
−1− pobs(2Q

∗
ij − 1)x∗j w.p. pobs

(
Q∗ij
(1−x∗j

2

)
+ (1−Q∗ij)

(1+x∗j
2

))
−pobs(2Q

∗
ij − 1)x∗j w.p. 1− pobs,

(4.20)

where “w.p.” is a shorthand for “with probability”. One can verify that E[W ] = 0, every
entry of W is bounded by 2 in absolute value, and moreover that our observed matrix Y can
be written in the form

1

pobs

Y = (2Q∗ − 11T ) diag(x∗) +
1

pobs

W. (4.21)
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Let Πn denote the set of all permutations of the n workers, and let Σd denote the set of
all permutations of the d questions. For any pair of permutations (π, σ) ∈ Πn × Σd, define
the set

CPerm(π, σ) : =
{
Q ∈ [0, 1]n×d |Qij ≥ Qi′j′ whenever π(i) ≤ π(i′) and σ(j) ≤ σ(j′)

}
,

corresponding to the subset of CPerm consisting of matrices that are faithful to the permu-
tations π and σ. For any fixed x ∈ {−1, 1}d, π ∈ Πn and σ ∈ Σd, define the matrix

Q̃(π, σ, x) ∈ arg min
Q∈CPerm(π,σ)

C(Q, x),

where C(Q, x) : = ||| 1

pobs

Y − (2Q− 11T )diag(x)|||2F.

Using this notation, we can rewrite the least squares estimator (4.6) in the compact form

(x̃LS, π̃LS, σ̃LS) ∈ arg min
(π,σ)∈Πn×Σd
x∈{−1,1}d

C(Q̃(π, σ, x), x), and Q̃LS = Q̃(π̃LS, σ̃LS, x̃LS).

For the purposes of analysis, let us define the set

P : =
{

(π, σ, x) ∈ Πn × Σd × {−1, 1}d | C(Q̃(π, σ, x), x) ≤ C(Q∗, x∗)
}
. (4.22)

With this set-up, we claim that it is sufficient to show the following: fix a triplet (π, σ, x) ∈
P , for this fixed triplet there is a universal constant c1 such that

P
(
|||(2Q̃(π, σ, x)− 11T )diag(x− x∗)|||2F ≤ c1

d

pobs

log2 d
)
≥ 1− e−4d log(dn). (4.23)

Given this bound, since the cardinality of the set P is upper bounded by e3d log d (since d ≥ n),
a union bound over all these permutations applied to (4.23) yields

P
(

max
(π,σ,x)∈P

|||(2Q̃(π, σ, x)− 11T )diag(x− x∗)|||2F ≤ c1
d log2 d

pobs

)
≥ 1− e−d log(dn).

The set P is guaranteed to be non-empty since the true permutations π∗ and σ∗ corresponding
to Q∗ and the true answer x∗ always lie in P , and consequently, the above tail bound yields
the claimed result.

The remainder of our analysis is devoted to proving the bound (4.23). Given any triplet
(π, σ, x) ∈ P , we define the matrices

V ∗ : = (2Q∗ − 11T ) diag(x∗), and Ṽ (π, σ, x) : = (2Q̃(π, σ, x)− 11T ) diag(x).

Henceforth, for brevity, we refer to the matrix Ṽ (π, σ, x) simply as Ṽ and the matrix

Q̃(π, σ, x) simply as Q̃, since the values of the associated quantities (π, σ, x) are fixed and
clear from context.
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Applying the linearized form (4.21) of our observation model to the inequality that defines
the set (4.22), some simple algebraic manipulations yield

1

2
|||V ∗ − Ṽ |||2F ≤

1

pobs

〈〈V ∗ − Ṽ , W 〉〉. (4.24)

The following lemma uses this inequality to obtain an upper bound on the quantity 1
2
|||V ∗−

Ṽ |||2F.

Lemma 19. There exists a universal constant c1 > 0 such that

P
(
|||V ∗ − Ṽ |||2F ≤ c1

d log2 d

pobs

)
≥ 1− e−4d log(dn). (4.25)

See the end of this section for the proof of this lemma. This completes the first part of the
proof.

In the second part of the proof, we now convert our bound (4.25) on the Frobenius norm

|||V ∗− Ṽ |||F into one on the error in estimating x∗ under the Q∗-loss. The following lemma is
useful for this conversion:

Lemma 20. For any pair of matrices A1, A2 ∈ Rn×d
+ and any pair of vectors v1, v2 ∈

{−1, 1}d, we have

|||A1 diag(v1 − v2)|||2F ≤ 4|||A1 diag(v1)− A2 diag(v2)|||2F. (4.26)

See the end of this section for the proof of this claim.
Recall our assumption that every entry of the matrices Q∗ and Q̃ is at least 1

2
. Conse-

quently, we can apply Lemma 20 with A1 = (Q∗ − 1
2
11T ), A2 = (Q̃ − 1

2
11T ), v1 = x∗ and

v2 = x to obtain the inequality

|||(Q∗ − 1

2
11T )diag(x∗ − x)|||2F ≤ 4|||(Q∗ − 1

2
11T )diag(x∗)−(Q̃− 1

2
11T )diag(x̂)|||2F

= 4|||V ∗ − Ṽ |||2F. (4.27)

Coupled with Lemma 19, this bound yields the desired result (4.23).

Proof of Lemma 19

Our proof of this lemma closely follows along the lines of the proof of Theorem 1 in Chapter 2.
Denote the error in the estimate as ∆̂ : = Ṽ − V ∗. Then from the inequality (4.24), have

1

2
|||∆̂|||2F ≤

1

pobs

〈〈W, ∆̂〉〉. (4.28)
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For the quadruplet (π, σ, x, V ∗) under consideration, define the set

VDIFF(π, σ, x, V
∗) : =

{
α(V − V ∗) |V = (2Q− 11T )diag(x),

Q ∈ CPerm(π, σ), α ∈ [0, 1]
}
.

Since the terms π, σ, x and V ∗ are fixed for the purposes of this proof, we will use the
abbreviated notation VDIFF for VDIFF(π, σ, x, V

∗).
For each choice of radius t > 0, define the random variable

Z(t) : = sup
D∈VDIFF,
|||D|||F≤t

1

pobs

〈〈D, W 〉〉. (4.29a)

Using the basic inequality (4.28), the Frobenius norm error |||∆̂|||F then satisfies the bound

1

2
|||∆̂|||2F ≤

1

pobs

〈〈W, ∆̂〉〉 ≤ Z
(
|||∆̂|||F

)
. (4.29b)

Thus, in order to obtain a high probability bound, we need to understand the behavior of
the random quantity Z(t).

One can verify that the set VDIFF is star-shaped, meaning that αD ∈ VDIFF for every
α ∈ [0, 1] and every D ∈ VDIFF. Using this star-shaped property, we are guaranteed that
there is a non-empty set of scalars δn,d > 0 satisfying the critical inequality

E[Z(δn,d)] ≤
δ2
n,d

2
. (4.29c)

Our interest is in an upper bound to the smallest (strictly) positive solution δn,d to the
critical inequality (4.29c), and moreover, our goal is to show that for every t ≥ δn,d, we have

|||∆̂|||F ≤ c
√
tδn,d with high probability.

Define a “bad” event

At : =
{
∃∆ ∈ VDIFF | |||∆|||F ≥

√
tδn,d and

1

pobs

〈〈∆, W 〉〉 ≥ 2|||∆|||F
√
tδn,d

}
. (4.30)

Using the star-shaped property of VDIFF, it follows by a rescaling argument that

P[At] ≤ P[Z(δn,d) ≥ 2δn,d
√
tδn,d] for all t ≥ δn,d.

The following lemma helps control the behavior of the random variable Z(δn,d).

Lemma 21. For any δ > 0, the mean of Z(δ) is upper bounded as

E[Z(δ)] ≤ c1
n+ d

pobs

log2(nd), (4.31a)
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and for every u > 0, its tail probability is bounded as

P
(
Z(δ) > E[Z(δ)] + u

)
≤ exp

( −c2u
2pobs

δ2 + E[Z(δ)] + u

)
, (4.31b)

where c1 and c2 are positive universal constants.

See the end of this section for the proof of this lemma.
Setting u = δn,d

√
tδn,d in the tail bound (4.31b), we find that

P
(
Z(δn,d) > E[Z(δn,d)]+δn,d

√
tδn,d

)
≤ exp

( −c2(δn,d
√
tδn,d)

2pobs

δ2
n,d + E[Z(δn,d)] + δn,d

√
tδn,d

)
, for all t>0.

By the definition of δn,d in (4.29c), we have E[Z(δn,d)] ≤ δ2
n,d ≤ δn,d

√
tδn,d for any t ≥ δn,d,

and with these relations we obtain the bound

P[At] ≤ P[Z(δn,d) ≥ 2δn,d
√
tδn,d

]
≤ exp

(
− c2

3
δn,d
√
tδn,dpobs

)
, for all t ≥ δn,d.

Consequently, either |||∆̂|||F ≤
√
tδn,d, or we have |||∆̂|||F >

√
tδn,d. In the latter case, condi-

tioning on the complement Act , our basic inequality implies that 1
2
|||∆̂|||2F ≤ 2|||∆̂|||F

√
tδn,d and

hence |||∆̂|||F ≤ 4
√
tδn,d. Putting together the pieces yields that

P
(
|||∆̂|||F ≤ 4

√
tδn,d

)
≥ 1− exp

(
− c2

3
δn,d
√
tδn,dpobs

)
, valid for all t ≥ δn,d. (4.32)

Finally, from the bound on the expected value of Z(t) in Lemma 21, we see that the

critical inequality (4.29c) is satisfied for δn,d =
√

2c1(n+d)
pobs

log(nd). Setting t = δn,d =√
2c1(n+d)
pobs

log(nd) in equation (4.32) yields the claimed result.

Proof of Lemma 20

Consider any four scalars a1 ≥ 0, a2 ≥ 0, b1 ∈ {−1, 1} and b2 ∈ {−1, 1}. If b1 = b2 then

(a1b1 − a1b2)2 = 0 ≤ (a1b1 − a2b2)2.

Otherwise we have b1 = −b2. In this case, since a1 and a2 have the same sign,

(a1b1 − a2b2)2 ≥ (a1b1)2 =
1

4
(a1b1 − a1b2)2.

The two results above in conjunction yield the inequality (a1(b1 − b2))2 ≤ 4(a1b1 − a2b2)2.
Applying the above argument to each entry of the matrices A1diag(v1−v2) and (A1diag(v1)−
A2diag(v2)) yields the claim.
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Proof of Lemma 21

We need to prove the upper bound (4.31a) on the mean, as well as the tail bound (4.31b).

Upper bounding the mean: We upper bound the mean by using Dudley’s entropy
integral, as well as some auxiliary results on metric entropy. Given a set C equipped with a
metric ρ and a tolerance parameter ε ≥ 0, we let logN(ε,C, ρ) denote the ε-metric entropy
of the class C in the metric ρ.

With this notation, the truncated form of Dudley’s entropy integral inequality4 yields

E[Z(δ)] ≤ c

pobs

{
d−8 +

∫ 2
√
nd

1
2
d−9

√
logN(ε,VDIFF, |||.|||F)(∆ε)

}
. (4.33)

The upper limit of 2
√
nd in the integration is due to the fact |||D|||F ≤ 2

√
nd for every

D ∈ VDIFF.
It is known [221] that the metric entropy of the set VDIFF is upper bounded as

logN(ε,VDIFF, |||.|||F) ≤ 8
max{n, d}2

ε2
(

log
max{n, d}

ε

)2
for each ε > 0.

Combining this upper bound with the Dudley entropy integral (4.33), and observing that
the integration has ε ≥ 1

2
d−9, the claimed upper bound (4.31a) follows.

Bounding the tail probability of Z(δ): In order to establish the claimed tail bound (4.31b),
we use a Bernstein-type bound on the supremum of empirical processes due to Klein and
Rio [129, Theorem 1.1c]. In particular, this result applies to a random variable of the form
X† = supv∈V〈X, v〉, where X = (X1, . . . , Xm) is a vector of independent random variables
taking values in [−1, 1], and V is some subset of [−1, 1]m. Their theorem guarantees that for
any t > 0,

P
(
X† > E[X†] + t

)
≤ exp

(
−t2

2 sup
v∈V

E[〈v, X〉2] + 4E[X†] + 3t

)
. (4.34)

In our setting, we apply this tail bound with the choices

X =
1

2
W, and X† =

1

2
sup

D∈VDIFF,
|||D|||F≤δ

〈〈D, W 〉〉 =
1

2
pobsZ(δ).

The entries of the matrix W are independently distributed with a mean of zero and a
variance of at most 4pobs, and are bounded in absolute value by 2. As a result, we have

4Here we use (∆ε) to denote the differential of ε, so as to avoid confusion with the number of questions
d.
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E[〈〈D, W 〉〉2] ≤ 4pobs|||D|||2F ≤ 4pobsδ
2 for every D ∈ VDIFF. With these assignments, inequal-

ity (4.34) guarantees that

P
(
pobsZ(δ) > pobsE[Z(δ)] + pobsu

)
≤ exp

( −(upobs)
2

2pobsδ2 + 2pobsE[Z(δ)] + 3upobs

)
,

for all u > 0, and some algebraic simplifications yield the claimed result.

4.6.2 Proof of Theorem 10(b): Minimax lower bound

We now turn to the proof of the minimax lower bound. For a numerical constant δ ∈ (0, 1
4
)

whose precise value is determined later, define the probability matrix Q∗ ∈ [0, 1]n×d with
entries

Q∗ij =

{
1
2

+ δ if i ≤ 1
pobs

1
2

otherwise.
(4.35)

One may assume that the matrix Q∗ is known to any estimator under consideration.
The Gilbert-Varshamov bound [90, 258] guarantees that for a universal constant c > 0,

there is a collection η = exp(cd) binary vectors—that is, a collection of vectors {x1, . . . , xη}
all belonging to the Boolean hypercube {−1, 1}d—such that the normalized Hamming dis-
tance (4.1) between any pair of vectors in this set is lower bounded as

DH(x`, x`
′
) ≥ 1

10
, for every `, `′ ∈ [η].

For each ` ∈ [η], let P` denote the probability distribution of Y induced by setting x∗ = x`.
For the choice of Q∗ specified in (4.35), following some algebra, we obtain a upper bound on
the Kullback-Leibler divergence between any pair of distributions from this collection as

DKL(P`‖P`′) ≤ c′dδ2 for every ` 6= `′ ∈ [η],

for another constant c′ > 0. Combining the above observations with Fano’s inequality [54]
yields that any estimator x̂ has expected normalized Hamming error lower bounded as

E[DH(x̂, x∗)] ≥ 1

20

(
1− c′dδ2 + log 2

log η

)
.

Consequently, for the choice of Q∗ given by (4.35), the Q∗-loss is lower bounded as

E[LQ∗(x̂, x∗)] =
4δ2

pobs

E[DH(x̂, x∗)]

n
≥ 4δ2

20npobs

(
1− c′dδ2 + log 2

cd

) (i)

≥ c′′

npobs

,

for some constant c′′ > 0 as claimed. Here inequality (i) follows by setting δ to be a sufficiently
small positive constant (depending on the values of c′ and c′′).
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4.6.3 Proof of Corollary 2(a): Upper bound for estimating Q∗

In the proof of Theorem 10(a), we showed that there is a constant c1 > 0 such that

|||(2Q∗ − 11T )x∗ − (2Q̃LS − 11T )x̃LS|||2F ≤ c1
d

pobs

log2 d,

with probability at least 1 − e−d log(dn). Since all entries of the matrices 2Q∗ − 11T and
2Q̃LS− 11T are non-negative, and since every entry of the vectors x∗ and x̃LS lies in {−1, 1},
some algebra yields the bound(

(2Q∗ij − 1)− (2[Q̃LS]ij − 1)
)2 ≤

(
(2Q∗ij − 1)x∗j − (2[Q̃LS]ij − 1)[x̃LS]j

)2
,

for every i ∈ [n], j ∈ [d]. Combining these inequalities yields the claimed bound.

4.6.4 Proof of Corollary 2(b): Lower bound for estimating Q∗

We begin by constructing a set, of cardinality η, of possible matrices Q∗, for some integer
η > 1, and subsequently we show that it is hard to identify the true matrix if drawn from
this set. We begin by defining a η-sized collection of vectors {h1, . . . , hη}, all contained in
the set [1

2
, 1]d, as follows. The Gilbert-Varshamov bound [90, 258] guarantees a constant

c ∈ (0, 1) such that there exists set of η = exp(cd) vectors, v1, . . . , vη ∈ {−1, 1}d with the
property that the normalized Hamming distance (4.1) between any pair of these vectors is
lower bounded as

DH(v`, v`
′
) ≥ 1

10
, for every `, `′ ∈ [η].

Fixing some δ ∈ (0, 1
4
), let us define, for each ` ∈ [η], the vector h` ∈ Rd with entries

[h`]j : =

{
1
2

+ δ if [v`]j = 1
1
2

otherwise.

For each ` ∈ [η], define the matrix Q` = 1(h`)T , and let P` denote the probability distribution
of the observed data Y induced by setting Q∗ = Q` and x∗ = 1. Since the entries of Y are
all independent, some algebra leads to the following upper bound on the Kullback-Leibler
divergence between any pair of distributions from this collection:

DKL(P`‖P`′) ≤ 4pobsndδ
2 for every ` 6= `′ ∈ [η].

Moreover, some simple calculation shows that the squared Frobenius norm distance between
any two matrices in this collection is lower bounded as

|||Q` −Q`′ |||2F ≥
1

10
dnδ2 for every ` 6= `′ ∈ [η].
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Combining the above observations with Fano’s inequality [54] yields that any estimator Q̂
for Q∗ has mean squared error lower bounded as

E[|||Q∗ − Q̂|||2F] ≥ 1

20
dnδ2

(
1− 4pobsdnδ

2 + log 2

log η

)
≥ c′

d

pobs

,

where we have set δ2 = c′′

pobsn
for a small enough positive constant c′′, where c′ is another

positive constant whose value may depend only on c and c′′.

4.6.5 Proof of Theorem 11: When ordering of workers is
approximately known

We begin by stating a key auxiliary lemma, which is somewhat more general than what is
required for the current proof. For any matrix Q∗ ∈ CPerm and worker permutation π, we
define the set

J : =
{
j∈ [d] | ∃kj ≥

log1.5(dn)

pobs

s.t.

kj∑
i=1

(Q∗π−1(i)j −
1

2
) ≥ 3

4

√
kj
pobs

log1.5(dn)
}
. (4.36)

Note that this set corresponds to a subset of questions that are relatively “easy”, in a certain
sense specified by Q∗.

Lemma 22. For the set J , the WAN estimator satisfies the bound

P
(

[x̂WAN(π)]j0 = x∗j0 for all j0 ∈ J
)
≥ 1− e−c log1.5(dn).

See the end of this section for the proof of this claim.

Lemma 22 guarantees that the WAN estimator correctly answers all questions that are
relatively easy. Note that the set (4.36) is defined in terms of the `1-norm of subvectors of
columns of Q∗ − 1

2
, whereas the conditions

‖Q∗j −
1

2
‖2

2 ≥
5 log2.5(dn)

pobs

and ‖Qπ
j −Qπ∗

j ‖2 ≤
‖Q∗j − 1

2
‖2√

9 log(dn)
(4.37)

in the theorem claim are in terms of the `2-norm of the columns of Q∗. The following lemma
allows us to connect the `1 and `2-norm constraints for any vector in a general class.

Lemma 23. For any vector v ∈ [0, 1]n such that v1 ≥ . . . ≥ vn, there must be some α ≥
d1

2
‖v‖2

2e such that

α∑
i=1

vi ≥

√
α‖v‖2

2

2 log n
. (4.38)
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See the end of this section for the proof of this claim.
Using these two lemmas, we can now complete the proof of the theorem. We may assume

without loss of generality that the rows of Q∗ are ordered to be non-decreasing downwards
along any column, that is, that π∗ is the identity permutation. Consider any question j ∈ [d]
for which the permutation π satisfies the bounds (4.37). For any ` ∈ [n], let g` ∈ Rn

denote a vector with ones in its first ` positions and zeros elsewhere. The Cauchy-Schwarz
inequality implies that (Qπ

j − 1
2
)Tg` ≥ (Q∗j − 1

2
)Tg`−

√
`‖Qπ

j −Q∗j‖2. By applying Lemma 23

to the vector Q∗j − 1
2
, we are guaranteed the existence of some value k ≥ 5 log2.5(dn)

2pobs
such that

(Q∗j − 1
2
)Tgk ≥ ‖Q∗j − 1

2
‖2

√
k

2 logn
. Consequently, we have the lower bound

(Qπ
j −

1

2
)Tgk ≥ ‖Q∗j −

1

2
‖2

√
k

2 log n
−
√
k‖Qπ

j −Q∗j‖2

(i)

≥ .37‖Q∗j −
1

2
‖2

√
k

log(dn)

(ii)

≥ 3

4

√
k

pobs

log1.5(dn),

where inequalities (i) and (ii) follow from conditions (4.37). Consequently, we can apply
Lemma 22 for every such question j, thereby yielding the claimed result.

Proof of Lemma 22

Observe that the windowing step of the WAN estimator identifies a group of kWAN workers
such that their aggregate responses towards questions are biased (towards either answer

{−1, 1}) by at least
√
kWANpobs log1.5(dn). We first derive three properties associated with

having such a bias. These properties involve function γπ : [n] × [d] × {−1, 1} → R, where
γπ(k, j, x) represents the amount of bias in the responses of the top k ∈ [n] workers for
question j ∈ [d] towards the answer x ∈ {−1, 1}:

γπ(k, j, x) : =
k∑
i=1

(1{Yπ−1(i)j = x} − 1{Yπ−1(i)j = −x}) = x

k∑
i=1

Yπ−1(i)j.

A straightforward application of the Bernstein inequality [15], using the fact that the entries
of the observed matrix Y are all independent, with moments bounded as

E[Yij] = 2pobs(Q
∗
ij −

1

2
)x∗j , and E[Y 2

ij ] = pobs,

ensures that all three properties stated below are satisfied with probability at least 1 −
ec log1.5(dn) for every question j ∈ [d] and every k ∈ {p−1

obs log1.5(dn), . . . , n}. For the remainder
of the proof we work conditioned on the event where the following properties hold:

(P1) Sufficient condition for bias towards correct answer: If
∑k

i=1(Q∗π−1(i)j−
1
2
) ≥ 3

4

√
k log1.5(dn)

pobs
,

then γπ(k, j, x∗j) ≥
√
kpobs log1.5(dn).
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(P2) Necessary condition for bias towards any answer x ∈ {−1, 1}: γπ(k, j, x) ≥
√
kpobs log1.5(dn)

only if x = x∗j and
∑k

i=1(Q∗π−1(i)j −
1
2
) ≥ 1

4

√
k log1.5(dn)

pobs
.

(P3) Sufficient condition for aggregate to be correct: If
∑k

i=1(Q∗π−1(i)j −
1
2
) ≥ 1

4

√
k log1.5(dn)

pobs
,

then γπ(k, j, x∗j) > 0.

We now show that when these three properties hold, for any question j0 ∈ J , we must have
that [x̂WAN(π)]j0 = x∗j0 . In particular, we do so by exihibiting a question that is at least as
hard as j0 on which the WAN estimator is definitely correct, and use the above properties
to conclude that it therefore must also be correct on the question j0.

Recall that by the definition (4.36) of J , for any question j0 ∈ J , it must be the case that
there exists a kj0 ≥ p−1

obs log1.5(dn) such that

kj0∑
i=1

(Q∗π−1(i)j −
1

2
) ≥ 3

4

√
kj0
pobs

log1.5(dn). (4.39)

We define an associated set J0 as the set of questions that are at least as easy as question j0

according to the underlying permutation σ∗, that is,

J0 : = {j ∈ [d] | σ∗(j) ≤ σ∗(j0)}.

By the monotonicity of the columns of Q∗, every question in J0 also satisfies condition (4.39).
For each positive integer k, define the set

J(k) : =
{
j ∈ [d]

∣∣∣γπ(k, j, x) ≥
√
kpobs log1.5(dn) for some x ∈ {−1, 1}

}
.

Property (P1) ensures that every question in the set J0 is also in the set J(kj0). We then
have

|J(kWAN)|
(i)

≥ |J(kj0)| ≥ |J0|,

where step (i) uses the optimality of kWAN for the optimization problem in equation (4.9a).
Given this, there are two possibilities: either (1) we have the equality J(kWAN) = J0, or (2) the
set J(kWAN) contains some question not in the set J0. We address each of these possibilities
in turn.
Case 1: It suffices to observe by Properties (P1)–(P3), that the aggregate of the top kWAN

workers is correct on every question in the set J(kWAN) and this implies that it must be the
case that [x̂WAN(π)]j0 = x∗j0 as desired.

Case 2: In this case, there is some question j′ /∈ J0 such that γπ(kWAN, j, x) ≥
√
kWANpobs log1.5(dn)

for some x ∈ {−1, 1}. Property (P2) guarantees that
∑kWAN

i=1 (Q∗π−1(i)j′−
1
2
) ≥ 1

4

√
kWAN log1.5(dn)

pobs
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and that x = x∗j . Now, since every question easier than j0 is in the set J0, question j′ must
be more difficult than j0, which implies that

kWAN∑
i=1

(Q∗π−1(i)j0
− 1

2
) ≥ 1

4

√
kWAN log1.5(dn)

pobs

.

Applying Property (P3), we can then conclude that [x̂WAN(π)]j0 = x∗j0 as desired.

Proof of Lemma 23

We partition the proof into two cases depending on the value of ‖v‖2
2.

Case 1: First, suppose that 1
2
‖v‖2

2 ≥ e. In this case, we proceed via proof by contradiction.
If the claim were false, then we would have√

α‖v‖2
2

2 log n
>

α∑
i=1

vi ≥ αvα for every α ≥ d1
2
‖v‖2

2e.

It would then follow that

n∑
i=1

v2
i =

d 1
2
‖v‖22e−1∑
i=1

v2
i +

n∑
i=d 1

2
‖v‖22e

v2
i

(i)

≤ d1
2
‖v‖2

2e − 1 +
n∑

i=d 1
2
‖v‖22e

v2
i

<
1

2
‖v‖2

2 +
n∑

i=d 1
2
‖v‖22e

‖v‖2
2

2i log n
,

where step (i) uses the fact that vi ∈ [0, 1]. Using the standard bound
∑b

i=a
1
i
≤ log( eb

a
) and

the assumption d1
2
‖v‖2

2e ≥ e, we find that

1

2
‖v‖2

2 +
n∑

i=d 1
2
‖v‖22e

‖v‖2
2

2i log n
≤ ‖v‖2

2.

The resulting chain of inequalities contradicts the definition of ‖v‖2
2.

Case 2: Otherwise, we may assume that 1
2
‖v‖2

2 < e. Observe that the case v = 0 trivially
satisfies the claim with α = 1, and hence we restrict attention to non-zero vectors. Define a
vector v′ ∈ [0, 1]n as

v′ =
1

v1

v.
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We first prove the claim of the lemma for the vector v′, that is, we prove that there exists
some value α ≥ d1

2
‖v′‖2

2e such that

α∑
i=1

v′i ≥

√
α‖v′‖2

2

2 log n
. (4.40)

Observe that 1 = v′1 ≥ · · · ≥ v′n ≥ 0. If 1
2
‖v′‖2

2 ≥ e, then our claim (4.40) is proved via the
analysis of Case 1 above. Otherwise, we have that 1

2
‖v′‖2

2 ≤ e and v′1 = 1. Setting α = 1, we
obtain the inequalities

α∑
i=1

v′i = 1 and

√
α‖v′‖2

2

2 log n
≤ 1,

where we have used the assumption that n is large enough (concretely, n ≥ 16). We have
thus proved the bound (4.40), and it remains to translate this bound on v′ to an analogous
bound on the vector v. Observe that since v1 ≤ 1, we have the relation ‖v′‖2 ≥ ‖v‖2. Using
the same value of α as that derived for vector v′, we then obtain from (4.40) that this value
α ≥ d1

2
‖v′‖2

2e ≥ d1
2
‖v‖2

2e satisfies

v1

α∑
i=1

v′i ≥ v1

√
α‖v′‖2

2

2 log n
,

which establishes the claim.

4.6.6 Proof of Theorem 12 (a): OBI-WAN under intermediate
class

Define the vector r∗ : = q̃ − 1
2
. We split the proof into two cases, depending on whether or

not the condition

‖r∗‖2‖1− h∗‖2 ≥

√
Cd log2.5(dn)

pobs

(4.41)

is satisfied. Here C > 20 is a constant, whose value is specified later in the proof. (In
particular, see equation (4.48) in Lemma 24.)

Case 1

First, suppose that condition (4.41) is violated. For each x̂ ∈ {−1, 1}d, we then have

LQ∗(x̂, x∗) ≤
1

dn
‖r∗‖2

2‖1− h∗‖2
2 ≤

6C log2.5 d

npobs

,

as claimed, where we have made use of the fact that d ≥ n.
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Case 2

In this second case, we may assume that condition (4.41) holds, and we do so throughout
the remainder of this section. Our proof of this case is divided into three parts, each corre-
sponding to one of the three steps in the OBI-WAN algorithm. The first step is to derive
certain properties of the split of the questions. The second step is to derive approximation-
guarantees on the outcome of the OBI step. The third and final step is to show that this
approximation guarantee ensures that the output of the WAN estimator meets the claimed
error guarantee.

Step 1: Analyzing the split Our first step is to exhibit a useful property of the split of
the questions—namely, that with high probability, the questions in the two sets T0 and T1

have a similar total difficulty.
The random sets (T0, T1) chosen in the first step can be obtained as follows: first generate

an i.i.d. sequence {εj}dj=1 of equiprobable {0, 1} variables, and then set T` : = {j ∈ [d] | εj =
`} for ` ∈ {0, 1}. Note that we have E[

∑
j∈[d](1 − h∗j)2εj] = 1

2
‖1 − h∗‖2

2, and E[
∑

j∈[d]((1 −
h∗j)

2εj)
2] = 1

2

∑
j∈[d](1− h∗j)4 ≤ 1

2
‖1− h∗‖2

2. Applying Bernstein’s inequality then guarantees
that

P
(∑
j∈T`

(1− h∗j)2 >
2

3
‖1− h∗‖2

2

)
≤ exp

(
− c‖1− h∗‖2

2

)
for each ` ∈ {0, 1},

where c is a positive universal constant. We are thus guaranteed that

1

3
‖1− h∗‖2

2 ≤
∑
j∈T`

(1− h∗j)2 ≤ 2

3
‖1− h∗‖2

2 for both ` ∈ {1, 2}, (4.42)

with probability at least 1 − e
−cC log2.5 d

pobs , where we have used the fact that ‖1 − h∗‖2
2 ≥

Cd log2.5 d
pobs‖r∗‖22

≥ C log2.5 d
pobs

. Now define the error event

E : =
{
LQ∗(x̂OBI-WAN, x

∗) >
6C log2.5 d

npobs

}
.

Combining the sandwich relation (4.42) with the union bound, we find that

P(E) =
∑

partitions T̃0,T̃1

P(E | T0 = T̃0, T1 = T̃1)P(T0 = T̃0, T1 = T̃1)

≤
∑

partitions T̃0,T̃1
satisfying (4.42)

P(E | T0 = T̃0, T1 = T̃1)P(T0 = T̃0, T1 = T̃1) + e
−cC log2.5 d

pobs .
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Consequently, in the rest of the proof we consider any partition (T̃0, T̃1) that satisfies the
sandwich bound (4.42) and derive an upper bound on the error conditioned on this par-

tition. In other words, it suffices to prove the following bound for any partition (T̃0, T̃1)
satisfying (4.42):

P(E | T0 = T̃0, T1 = T̃1) ≤ e−c
′ log1.5(dn), (4.43)

for some positive universal constant c′ whose value may depend only on C. We note that
conditioned on the partition (T̃0, T̃1), and for any fixed values of Q∗ and x∗, the responses
of the workers to the questions in one set are statistically independent of the responses in
the other set. Consequently, we describe the proof for any one of the two partitions, and the
overall result is implied by a union bound of the error guarantees for the two partitions. We
use the notation ` to denote either one of the two partitions in the sequel, that is, ` ∈ {0, 1}.

Step 2: Guarantees for the OBI step Assume without loss of generality that the
rows of the matrix Q∗ are ordered according to the abilities of the corresponding workers,
that is, the entries of q̃ are arranged in a non-increasing order. Recall that π` denotes the
permutation of the workers in order of their respective values in u`. Let r̃` ∈ Rn denote the
vector obtained by permuting the entries of r∗ in the order given by π`. Thus the entries
of r̃` are identical to those of r∗ up to a permutation; the ordering of the entries of r̃` is
identical to the ordering of the entries of u`. The following lemma—central for the proof of
this theorem—establishes a deterministic relation between these vectors. The proof of this
lemma combines matrix perturbation theory with some careful algebraic arguments.

Lemma 24. Suppose that condition (4.41) holds for a sufficiently large constant C > 0.
Then for any split (T0, T1) satisfying the relation (4.42), we have

P
(
‖r̃` − r∗‖2

2 >
‖r∗‖2

2

9 log(dn)

)
≤ e−c log1.5 d. (4.44)

See the end of this section for the proof of this claim.

At this point, we are now ready to apply the bound for the WAN estimator from Theorem 11.

Step 3: Guarantees for the WAN step Recall that for any choice of index ` ∈ {0, 1},
the OBI step operates on the set T` of questions, and the WAN step operates on the alternate
set T1−`. Consequently, conditioned on the partition (T̃0, T̃1), the outcomes Y1−` of the
comparisons in set (1− `) are statistically independent of the permutation π` obtained from
set ` in the OBI step.

Consider any question j ∈ T1−` that satisfies the inequality ‖(1 − h∗j)r∗‖2
2 ≥

5 log2.5(dn)
pobs

.

We now claim that this question j satisfies the pair of conditions (4.10a) required by the
statement of Theorem 11. First observe that (1−h∗j)r∗ is simply the jth column of the matrix

(Q∗ − 1
2
), we have ‖Q∗j − 1

2
‖2

2 ≥
5 log2.5(dn)

pobs
. The first condition in (4.10a) is thus satisfied.
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In order to establish the second condition, observe that a rescaling of the inequality (4.44)
by the non-negative scalar (1− h∗j) yields the bound

‖(1− h∗j)r̃` − (1− h∗j)r∗‖2
2 ≤
‖(1− h∗j)r∗‖2

2

9 log(dn)
for every j ∈ T1−`. (4.45)

Recall our notational assumption that the entries of q̃ (and hence the rows of Q∗) are arranged
in order of the workers’ abilities, and that Qπ is a matrix obtained by permuting the rows of
Q∗ according to a given permutation π. Also observe that the vector (1−h∗j)r̃` equals the jth

column of (Qπ`− 1
2
), where π` is the permutation of the workers obtained from the OBI step.

Consequently, the approximation guarantee (4.45) implies that ‖Qπ`
j − Q∗j‖2 ≤

‖Q∗j‖2√
9 log(dn)

.

Thus the second condition in equation (4.10a) is also satisfied for the question j under
consideration.

Applying the result of Theorem 11 for the WAN step, we obtain that this question j is
decoded correctly with a probability at least 1 − e−c log1.5(dn), for some positive constant c.

Since this argument holds for every question j satisfying ‖(1−h∗j)r∗‖2
2 ≥

5 log2.5(dn)
pobs

, the total

contribution from the remaining questions to the Q∗-loss is at most 5 log2.5(dn)
pobsn

. A union bound

over all questions and both values of ` ∈ {0, 1} then yields the claim that the aggregate Q∗-

loss is at most 5 log2.5(dn)
pobsn

with probability at least 1− e−c′ log1.5(dn), for some positive constant

c′, as claimed in (4.43).

Proof of Lemma 24

The proof of this lemma consists of three main steps:

(i) First, we show that u` is a good approximation for the vector of worker abilities r∗ up to
a global sign.

(ii) We then show that the global sign is correctly identified with high probability.

(iii) The final step in the proof is to convert this guarantee to one on the permutation induced
by u`.

Step 1 We first show that the vector u` approximates r∗ up to a global sign. Assume
without loss of generality that x∗j = 1 for every question j ∈ [d]. As in the proof of Theo-
rem 10(a), we begin by rewriting the model in a “linearized” fashion which is convenient for
our analysis. Let Q∗0 and Q∗1 denote the submatrices of Q∗ obtained by splitting its columns
according to the sets T0 and T1. Then we have for ` ∈ {0, 1},

1

pobs

Y` = (2Q∗` − 11T ) diag(x∗) +
1

pobs

W`, (4.46)
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where conditioned on T0 and T1, the noise matrices W0,W1 ∈ Rn×d have entries indepen-
dently drawn from the distribution (4.20). One can verify that the entries of W0 and W1

have a mean of zero, second moment upper bounded by 4pobs, and their absolute values are
upper bounded by 2.

We now require a standard result on the perturbation of eigenvectors of symmetric ma-
trices [246]. Consider a symmetric and positive semidefinite matrix M ∈ Rd×d, a second

symmetric matrix ∆M ∈ Rd×d, and let M̃ = M + ∆M . Let v ∈ Rd be an eigenvector asso-
ciated to the largest eigenvalue of M . Likewise define ṽ ∈ Rd as an eigenvector associated
to the largest eigenvalue of M̃ . Then we are guaranteed [246] that

min{‖ṽ − v‖2, ‖ṽ + v‖2} ≤
2|||∆M |||op

max{λ1(M)− λ2(M)− 2|||∆M |||op, 0}
, (4.47)

where λ1(M) and λ2(M) denote the largest and second largest eigenvalues of M , respectively.
In order to apply the bound (4.47), we define the matrix R∗` : = Q∗` − 1

2
11T , as well as the

matrices

M̃ : =
1

p2
obs

Y`Y
T
` , M = 4R∗` (R

∗
` )
T , and

∆M : =
2

pobs

W`(R
∗
` )
T +

2

pobs

R∗`W
T
` +

1

p2
obs

W`W
T
` .

Using our linearized observation model (4.46), it is straightforward to verify that these choices

satisfy the condition M̃ = M + ∆M , so that the bound (4.47) can be applied.
Recall that for any matrix Q∗ ∈ CInt, we have Q∗ = q̃(1−h∗)T + 1

2
(h∗)T for some vectors

q̃ ∈ [1
2
, 1]n and h∗ ∈ [0, 1]d. Also recall our definition of the associated quantity r∗ ∈ [0, 1

2
]n

as r∗ = q̃ − 1
2
. We denote the magnitude of the vector r∗ as ρ : = ‖r∗‖2.

With the notation introduced above, we are ready to apply the bound (4.47). First

observe that the matrix R∗` has a rank of one, and consequently |||R∗` |||op = ρ
√∑

j∈T`(1− h
∗
j)

2.

Conditioned on the bound (4.42), we obtain√
1

3
ρ‖1− h∗‖2 ≤ |||R∗` |||op ≤

√
2

3
ρ‖1− h∗‖2.

Moreover, the entries of the matrix W` are independent, zero-mean, and have a second
moment upper bounded by 4pobs. Consequently, known results on random matrices [12,
Remark 3.13] guarantee that

|||W`|||op ≤ c

√
max{d, n}pobs log1.5 d ≤ c

√
dpobs log1.5 d,

with probability at least 1− e−c log1.5 d, where we have used the fact that d ≥ n and pobs ≥ 1
n
.

These inequalities, in turn, imply that the top eigenvalue of M is lower bounded as λ1(M) =
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|||R∗|||2op ≥ 1
3
ρ2‖1− h∗‖2

2, the second eigenvalue vanishes (that is, λ2(M) = 0), and moreover
that

|||∆M |||op ≤
2

pobs

|||R∗|||op|||W |||op +
1

p2
obs

|||W |||2op

≤ c′
√
d log1.5 d

pobs

(ρ‖1− h∗‖2
√
pobs +

√
d log1.5 d).

Recall the lower bound ρ‖1 − h∗‖2 ≥
√

Cd log2.5 d
pobs

, assumed in the statement of the lemma.

Using these facts and doing some algebra, we find that with probability at least 1−e−c log1.5 d,
for any pair of sets T0 and T1 satisfying (4.42), we have the bound

min{‖u` −
1

ρ
r∗‖2

2, ‖u` +
1

ρ
r∗‖2

2} ≤
1

36

1

ρ2‖1− h∗j‖2
2

d log1.5 d

pobs

, (4.48)

where the prefactor 1
36

is obtained by setting the constant C > 20 to a large enough value.

Step 2 We now verify that the global sign is correctly identified. Recall our selection

n∑
j=1

[u`]
2
j1{[u`]j > 0} ≥

n∑
j=1

[u`]
2
j1{[u`]j < 0}.

Since every entry of the vector r∗ is non-negative, we have the inequality

‖u` +
1

ρ
r∗‖2

2 ≥
n∑
j=1

[u`]
2
j1{[u`]j > 0} ≥

n∑
j=1

[u`]
2
j1{[u`]j < 0},

and consequently,

‖u` +
1

ρ
r∗‖2

2 ≥
1

2
‖u`‖2

2. (4.49a)

On the other hand, a version of the triangle inequality yields

2‖u`‖2
2 + 2‖u` +

1

ρ
r∗‖2

2 ≥ ‖
1

ρ
r∗‖2

2 = 1 (4.49b)

Now suppose that ‖u` − 1
ρ
r∗‖2

2 ≥ ‖u` + 1
ρ
r∗‖2

2. Then from our earlier result (4.48), we have
the bound

‖u` +
1

ρ
r∗‖2

2 ≤
d log1.5 d

36ρ2‖1− h∗‖2
2pobs

, (4.49c)
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with probability at least 1 − e−c log1.5(dn). Putting together the inequalities (4.49a), (4.49b)
and (4.49c) and rearranging some terms yields the inequality

ρ2‖1− h∗‖2
2 ≤

d log1.5 d

9pobs

.

This requirement contradicts our initial assumption ρ2‖1 − h∗‖2
2 ≥

Cd log2.5 d
pobs

, with C > 20,

thereby proving that ‖u` − 1
ρ
r∗‖2

2 < ‖u` + 1
ρ
r∗‖2

2. Substituting this inequality into equa-

tion (4.48) yields the bound

‖u` −
1

ρ
r∗‖2

2 ≤
1

36ρ2‖1− h∗j‖2
2

d log1.5 d

pobs

. (4.50)

Step 3 The final step of this proof is to convert the approximation guarantee (4.50) on
u` to an approximation guarantee on the vector r̃` (which, recall, is a permutation of r∗

according to the permutation induced by u`). An additional lemma is useful for this step:

Lemma 25. For any ` ∈ {0, 1}, we have ‖r̃` − r∗‖2 ≤ 2‖ρu` − r∗‖2.

See the end of this section for the proof of this claim.

Combining Lemma 25 with the inequality (4.50) yields that for any choice of the set T0

and T1 satisfying the condition (4.42), with probability at least 1− e−c log1.5 d, we have

‖r̃` − r∗‖2
2 ≤

1

18‖1− h∗‖2
2

d log1.5 d

pobs

(i)

≤ ‖r∗‖2
2

18 log(dn)
.

Here, inequality (i) follows from our earlier assumption that ‖r∗‖2‖1 − h∗‖2 ≥
√

Cd log2.5 d
pobs

with C > 20.

Proof of Lemma 25

Recall that the two vectors r̃` and r∗ are identical up to a permutation. Now suppose r̃` 6= r∗.
Then there must exist some position i ∈ [n − 1] such that [r∗]i < [r∗]i+1 and [r̃`]i ≥ [r̃`]i+1.
Define the vector r̃′ obtained by interchanging the entries in positions i and (i + 1) in r∗.
The difference ∆ : = ‖r̃′ − ρu`‖2

2 − ‖r∗ − ρu`‖2
2 then can be bounded as

∆ = ([r̃′]i−ρ[u`]i)
2 + ([r̃′]i+1−ρ[u`]i+1)2 − ([r∗]i−ρ[u`]i)

2 − ([r∗]i+1−ρ[u`]i+1)2

= ([r∗]i+1−ρ[u`]i)
2 + ([r∗]i−ρ[u`]i+1)2 − ([r∗]i−ρ[u`]i)

2 − ([r∗]i+1−ρ[u`]i+1)2

= 2ρ([r∗]i+1 − [r∗]i)([u`]i+1 − [u`]i)

≤ 0,
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where the final inequality uses the fact that the ordering of the entries in the two vectors
r̃` and u` are identical, which in turn implies that [u`]i ≥ [u`]i+1. We have thus shown an
interchange of the entries i and (i + 1) in r∗, which brings it closer to the permutation of
r̃`, cannot increase the distance to the vector ρu`. A recursive application of this argument
leads to the inequality ‖r̃` − ρu`‖2 ≤ ‖r∗ − ρu`‖2. Applying the triangle inequality then
yields

‖r̃` − r∗‖2 ≤ ‖r̃` − ρu`‖2 + ‖ρu` − r∗‖2 ≤ 2‖ρu` − r∗‖2,

as claimed.

4.6.7 Proof of Theorem 12(b): OBI-WAN under
permutation-based model

First, suppose that pobs <
log1.5(dn)

n
. In this case, we have

LQ∗(x̂OBI-WAN, x
∗) ≤ 1 ≤ 1

√
npobs

log(dn),

and the claim follows immediately.

Otherwise, we may assume that pobs ≥ log1.5(dn)
n

. For any index ` ∈ {0, 1}, consider an
arbitrary permutation π`. Observe that conditioned on the split (T0, T1), the data Y1−` is
independent of the choice of the permutation π`. Now consider any question j ∈ T1−` that
satisfies

n∑
i=1

(Q∗ij −
1

2
)2 ≥ 3

2

√
n

pobs

log(dn). (4.51a)

Lemma 22 (with the associated parameter kj = n) then guarantees that

P([x̂WAN(π)]j 6= x∗j) ≤ e−c log1.5(dn). (4.51b)

All remaining questions can contribute a total of at most 3
2

1√
npobs

log(dn) to the Q∗-loss.

Consequently, a union bound over the probabilities (4.51b) for all questions (in T0 and T1)
that satisfy the bound (4.51a) yields the claimed result.

4.6.8 Proof of Theorem 13(a): OBI-WAN under Dawid-Skene

Throughout the proof, we make use the notation previously introduced in the proof of
Theorem 12(a). As in this same proof, we condition on some choice of T0 and T1 that
satisfies (4.42). The proof of this theorem follows the same structure as the proof of Theo-
rem 12(a) and the lemmas within it. However, we must make additional arguments in order
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to account for adversarial workers. In the remainder of the proof, we consider any ` ∈ {0, 1},
and then apply the union bound across both values of `.
Our proof consists of the three steps:

(1) We first show that the vector u` is a good approximation to (qDS − 1
2
) up to a global

sign.

(2) Second, we show that the global sign of r∗ is indeed recovered correctly.

(3) Third, we establish guarantees on the performance of the WAN estimator for our
setting.

We work through each of these steps in turn.

Step 1 We first show that the vector u` is a good approximation to qDS− 1
2

up to a global
sign. When Q∗ = qDS1T , we can set the vector h∗ = 0 in the proof of Theorem 12(a). We
also have r∗ = qDS − 1

2
. With these assignments, the the arguments up to equation (4.48)

in Lemma 24 continue to apply even for the present setting where qDS ∈ [0, 1]n. From these
arguments, we obtain the following approximation guarantee (4.48) on recovering r∗ up to a
global sign:

min{‖u` −
1

ρ
r∗‖2

2, ‖u` +
1

ρ
r∗‖2

2} ≤
1

36

1

ρ2

log1.5 d

pobs

, (4.52)

with probability at least 1− e−c log1.5 d.

Step 2 The next step of the proof is to show that the global sign of r∗ is indeed recovered
correctly. Define two pairs of vectors {u+

` , u
−
` } and {r∗+` , r∗−` }, all lying in the unit cube

[0, 1]n, with entries

[u+
` ]i : = max{[u+

` ]i, 0} and [u−` ]i : = min{[u−` ]i, 0} for every i ∈ [n];

[r∗+` ]i : = max{[r∗+` ]i, 0}, and [r∗−` ]i : = min{[r∗−` ]i, 0} for every i ∈ [n].

From the conditions assumed in the statement of the theorem, we have ‖r∗+‖2 ≥ ‖r∗−‖2 +√
4 log2.5(dn)

pobs
, whereas from the choice of u in the OBI-WAN estimator, we have ‖u+‖2 ≥

‖u−‖2. One can also verify that

‖u` +
1

ρ
r∗‖2

2 ≥ ‖u+
` +

1

ρ
r∗−‖2

2 + ‖u−` +
1

ρ
r∗+‖2

2. (4.53a)

Now suppose that ‖1
ρ
r∗+‖2 ≥ ‖u−` ‖2 +

√
log2.5(dn)
ρ2pobs

. Then from the triangle inequality, we

obtain the bound

‖u−` +
1

ρ
r∗+‖2 ≥ ‖

1

ρ
r∗+‖2 − ‖u−` ‖2 ≥

√
log2.5(dn)

ρ2pobs

. (4.53b)
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Otherwise we have that ‖1
ρ
r∗+‖2 < ‖u−` ‖2 +

√
log2.5(dn)
ρ2pobs

. In this case, we have

‖u+
` +

1

ρ
r∗−‖2 ≥ ‖u+

` ‖2 − ‖
1

ρ
r∗−‖2 ≥ ‖u−` ‖2 − ‖

1

ρ
r∗+‖2 + 2

√
log2.5(dn)

ρ2pobs

≥

√
log2.5(dn)

ρ2pobs

. (4.53c)

Putting together the conditions (4.53a), (4.53b) and (4.53c), we obtain the bound ‖u` +
1
ρ
r∗‖2

2 ≥
log2.5(dn)
ρ2pobs

. In conjunction with the result of equation (4.52), this bound guarantees

the correct detection of the global sign, that is, ‖u` − 1
ρ
r∗‖2

2 ≤ 1
36

1
ρ2

log1.5 d
pobs

. The deterministic
inequality afforded by Lemma 25 then guarantees that

‖r̃` − r∗‖2
2 ≤

1

18

log1.5 d

pobs

, (4.54)

and this completes the analysis of the OBI part of the estimator.

Step 3 In the third step, we establish guarantees on the performance of the WAN estimator
for our setting. Recall that since the WAN estimator uses the permutation given by r̃` and
with this permutation, acts on the observation Y1−` of the other set of questions, the noise
W1−` is statistically independent of the choice of r̃`, when conditioned on the split (T0, T1).
Assume without loss of generality that x∗ = 1 and that the rows of Q∗ are arranged according
to the worker abilities, meaning that qDS

i ≥ qDS
i′ for every i < i′, or in other words, r∗i ≥ r∗i′

for every i < i′. Recall our earlier notation of gk ∈ {0, 1}n denoting a vector with ones in its
first k positions and zeros elsewhere.

Now from the proof of Lemma 22 the following two properties ensure that the WAN
estimator decodes every question correctly with probability at least 1 − e−c log1.5(dn): (i)

There exists some value k ≥ p−1
obs log1.5(dn) such that 〈r̃`, gk〉 ≥ 3

4

√
k log1.5(dn)

pobs
, and (ii) for

every k ∈ [n], it must be that 〈r̃`, gk〉 > −1
4

√
k log1.5(dn)

pobs
. Let us first address property (i).

Lemma 23 guarantees the existence of some value k ≥ d1
2
‖r∗‖2

2e such that

〈r∗+, gk〉 ≥
√
k‖r∗+‖2√
log(dn)

.

If there exist multiple such values of k, then choose the smallest such value. Since the vector
r∗ has its entries arranged in order, and since ‖r∗+‖2 ≥ ‖r∗−‖2, we obtain the following
relations for this chosen value of k:

〈r∗, gk〉 = (r∗+)Tgk ≥
√
k‖r∗+‖2√
log(dn)

≥ ‖r
∗‖2

2

√
k

log(dn)
≥

√
log2.5(dn)

pobs

k

log(dn)
.
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The Cauchy-Schwarz inequality then implies

〈r̃`, gk〉 ≥ 〈r∗, gk〉 −
√
k‖r̃` − r∗‖2

(i)

≥ 3

4

√
k log1.5(dn)

pobs

,

where the inequality (i) also uses our earlier bound (4.54), thereby proving the first property.
Now towards the second property, we use the condition 〈r∗, 1〉 ≥ 0. Since the entries of r∗

are arranged in order, we have 〈r∗, gk〉 ≥ 0 for every k ∈ [n]. Applying the Cauchy-Schwarz
inequality yields

〈r̃`, gk〉 ≥ 〈r∗, gk〉 −
√
k‖r̃` − r∗‖2

(ii)
> −1

4

√
k log1.5(dn)

pobs

,

where the inequality (ii) also uses our earlier bound (4.54), thereby proving the second
property. This argument completes the proof of part (a).

4.6.9 Proof of Theorem 13(b): Lower bound for Dawid-Skene

The Gilbert-Varshamov bound [90, 258] guarantees existence of a set of η vectors, x1, . . . , xη ∈
{−1, 1}d such that the normalized Hamming distance (4.1) between any pair of vectors in
this set is lower bounded as DH(x`, x`

′
) ≥ 0.25, for every `, `′ ∈ [η], where η = exp(c1d)

for some constant c1 > 0. For each ` ∈ [η], let P` denote the probability distribution of Y
induced by setting x∗ = x`. When Q∗ = qDS1T for some qDS ∈ [ 1

10
, 9

10
]n, we have an upper

bound on the Kullback-Leibler divergence between any pair of distributions ` 6= `′ ∈ [η]
as DKL(P`‖P`′) ≤ 25 pobsd ‖qDS − 1

2
‖2

2 ≤ 25cd, where we have used the assumption
‖qDS− 1

2
‖2

2 ≤ c
pobs

. Putting the above observations together into Fano’s inequality [54] yields

a lower bound on the expected value of the normalized Hamming error (4.1) for any estimator
x̂ as:

E[DH(x̂, x∗)] ≥ 1

8

(
1− 25cd+ log 2

c1d

) (i)

≥ 1

10
,

as claimed, where inequality (i) results from setting the value of c as a small enough positive
constant.

4.A Appendix: The majority voting estimator

In this section, we analyze the majority voting estimator, given by

[x̃MV]j ∈ arg max
b∈{−1,1}

n∑
i=1

1{Yij = b} for every j ∈ [d].

Here we use 1{·} to denote the indicator function. The following theorem provides bounds
on the risk of majority voting under the Q∗-semimetric loss in the regime of interest (R).
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Proposition 4. For the majority vote estimator, the uniform risk over the Dawid-Skene
class is lower bounded as

sup
x∗∈{−1,1}d

sup
Q∗∈CDS

E[LQ∗(x̃MV, x
∗)] ≥ c2

1
√
npobs

, (4.55)

for some positive constant c2.

A comparison of the bound (4.55) with the results of Theorem 10, Theorem 12(a) and
Theorem 13 shows that the majority voting estimator is suboptimal in terms of the sample
complexity. Since this suboptimality holds for the (smaller) Dawid-Skene model class, it
also holds for the (larger) intermediate model class, as well as the permutation-based model
class.
The remainder of this section is devoted to the proof of this claim.

Proof of Proposition 4

We begin with a lower bound due to Feller [77] (see also [161, Theorem 7.3.1]) on the tail
probability of a sum of independent random variables.

Lemma 26 (Feller). There exist positive universal constants c1 and c2 such that for any set
of independent random variables X1, . . . , Xn satisfying E[Xi] = 0 and |Xi| ≤ M for every
i ∈ [n], if

∑n
i=1 E[(Xi)

2] ≥ c1 then

P
( n∑
i=1

Xi > t
)
≥ c2 exp

( −t2

12
∑n

i=1 E[(Xi)2]

)
,

for every t ∈ [0,
∑n
i=1 E[(Xi)

2]

M2√c1 ].

In what follows, we use Lemma 26 to derive the claimed lower bound on the error incurred

by the majority voting algorithm. To this end, let S ⊂ [n] denote the set of some |S| =
√

n
2pobs

workers. Consider the following value of matrix Q∗:

Q∗ij =

{
1 if i ∈ S
1
2

otherwise.

Then for any question j ∈ [d], we have
∑n

i=1(2Q∗ij − 1)2 =
√

n
2pobs

.

Now suppose that x∗j = −1 for every question j ∈ [d]. Then for every i ∈ S, the
observations are distributed as

Yij =

{
0 with probability 1− pobs

−1 with probability pobs,
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and for every i /∈ S, as

Yij =


0 with probability 1− pobs

−1 with probability 0.5pobs

1 with probability 0.5pobs.

Consider any question j ∈ [d]. Then in this setting, the majority voting estimator
incorrectly estimates the value of x∗j when

∑n
i=1 Yij > 0. We now use Lemma 26 to obtain a

lower bound on the probability of the occurrence of this event. Some simple algebra yields

n∑
i=1

E[Yij] = −|S|pobs and
n∑
i=1

E[(Yij)
2] = npobs.

In order to satisfy the conditions required by the lemma, we assume that npobs > c1. Note
that this condition makes the problem strictly easier than the condition npobs ≥ 1 assumed
otherwise, and affects the lower bounds by at most a constant factor c1. An application of
Lemma 26 with t = −

∑n
i=1 E[Yij] = |S|pobs now yields

P(
n∑
i=1

Yij > 0) ≥ c2 exp
(−|S|2p2

obs

12npobs

) (i)

≥ c′,

for some constant c′ > 0 that may depend only on c1 and c2, where inequality (i) is a

consequence of the choice |S| =
√

n
2pobs

.

Now that we have established a constant-valued lower bound on the probability of error
in the estimation of x∗j for every j ∈ [d], for the value of Q∗ under consideration, we have

P([x̃MV]j 6= x∗j)
n∑
i=1

(Q∗ij −
1

2
)2 ≥

√
n

2pobs

c′,

and consequently E[LQ∗(x̃MV, x
∗)] ≥ c′√

2npobs
, as claimed.
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Chapter 5

Matrix Completion and
Recommendations

“Being complete is a state of utmost fulfillment.”

– C. V. Raman

5.1 Introduction

We consider the problem of noisy matrix completion wherein a structured matrix must be
reconstructed from partial and noisy observations. The archetypal example of this setting is
in the context of recommender systems [133], and other applications include understanding
images [145], credit risk monitoring [257], fluorescence spectroscopy [95], and modeling signal-
adaptive audio effects [215]. We refer the reader to the surveys [58, 92] for an overview of
the vast literature on this topic.

We use a particular variant of a recommender system application as a running example
throughout the chapter. In this context, suppose there are n ≥ 2 users and d ≥ 2 items.
There is an unknown matrix M∗ ∈ [0, 1]n×d that captures the users’ preferences for the items.
Specifically, the (i, j)th entry of M∗, M∗

ij, represents the probability that user i likes item j.
The problem is to estimate this preference matrix M∗ ∈ [0, 1]n×d from observing users’ likes
or dislikes for some subset of the items.

Following many of the seminal works [34, 35, 44, 122, 206, 245] in this area, we consider
a random design observation model in this chapter. The standard random design setup we
consider is associated to a parameter pobs ∈ (0, 1], such that for any user-item pair (i, j), we
observe user i’s rating for item j with probability pobs. When an entry (i, j) is observed,
we get access to only a binary rating ({like, dislike} or {0, 1}), which arises as a Bernoulli
realization of the true preference M∗

ij.
1 More formally, we observe a matrix Y ∈ {0, 1

2
, 1}n×d,

1Our results and proofs readily extend to any rating scheme with bounded values, such as five-star
ratings. We focus on the binary case for purposes of brevity.
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where

Yij =


1 with probability pobsM

∗
ij (user i likes item j)

0 with probability pobs(1−M∗
ij) (user i dislikes item j)

1
2

with probability 1− pobs (no data available),
(5.1)

for every (i, j) ∈ [n] × [d]. The goal is to estimate the underlying matrix M∗ from the
observed matrix Y .

It is not hard to see that one cannot hope to do achieve the aforementioned estimation
goal in any non-trivial way without any modeling assumptions on the matrix M∗. In what
follows, we discuss some modeling assumptions—we begin with the typical low non-negative
rank assumption, followed by our proposed low “permutation-rank” model.

Non-negative rank: The problem of non-negative low-rank matrix completion assumes
that the matrix M∗ takes the form

M∗ = UV T ,

for some matrices U ∈ Rn×r
+ and V ∈ Rd×r

+ . Here, r ∈ {0, . . . ,min{d, n}} is a parameter
termed the “non-negative” rank of the matrix. It is often assumed that the value r of the
non-negative rank is known and that r is much smaller than min{d, n}, but in this chapter
we make no such assumptions. For any value of r ∈ {0, . . . ,min{d, n}}, we let CNR(r) denote
the set of all matrices with a non-negative factorization of rank at most r,

CNR(r) : = {M ∈ [0, 1]n×d |M = UV T , U ∈ Rn×r
+ , V ∈ Rd×r

+ }.

For any matrix M , the smallest value of r such that M ∈ CNR(r) is termed its non-negative
rank. We denote the non-negative rank of any matrix M as r(M).

Observe that any matrix M ∈ CNR(r) can alternatively be written as

M =
r∑
`=1

u(`)(v(`))T ,

for some vectors u(`) ∈ Rn
+, v

(`) ∈ Rd
+ such that u(`)(v(`))T ∈ [0, 1]n×d for every ` ∈ [r]. Such

a decomposition is interpreted as the existence of some r “features,” where for each feature
`, the d entries of vector v(`) represent the contribution of feature ` to the d respective items,
and the n entries of vector u(`) represent the amounts by which the n respective users are
influenced by feature `. The popular overview article by Koren, Bell, and Volinsky [133]
provides an explanation for this assumption:

“Latent factor models are an alternative approach that tries to explain the ratings
by characterizing both items and users on, say, 20 to 100 factors inferred from the
ratings patterns. In a sense, such factors comprise a computerized alternative to
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the aforementioned human-created song genes. For movies, the discovered factors
might measure obvious dimensions such as comedy versus drama, amount of
action, or orientation to children; less well-defined dimensions such as depth of
character development or quirkiness; or completely uninterpretable dimensions.
For users, each factor measures how much the user likes movies that score high
on the corresponding movie factor.”

Let us now delve deeper into this model2, and continue the context of movie recom-
mendations for concreteness. Suppose there are r features that govern the movie watching
experience, where examples of such features are the amount of comedy content or the depth
of character development. For any user i ∈ [n] and any feature ` ∈ [r], we let u

(`)
i ∈ R+

denote the “affinity” of user i towards feature `, and for any movie j ∈ [d], we let v
(`)
j ∈ R+

denote the amount of content associated to feature ` in movie j. The conventional low non-
negative rank model then assumes that the affinity of user i towards movie j conditioned on
feature ` equals

u
(`)
i v

(`)
j .

Observe that this model is of a parameter-based form in that for any given feature `, the
entire behavior of any user or any movie is governed by a single parameter each (u

(`)
i and

v
(`)
j for user i and item j respectively). Moreover, such an assumption has some unnatural

implications. For instance, consider any two movies, say A and B, and any two users, say
X and Y . Then conditioned on any feature `, we have the implication

Preference of user X for movie A

Preference of user X for movie B
=

Preference of user Y for movie A

Preference of user Y for movie B
.

In words, the low non-negative rank model inherently leads to the unrealistic assumption
that for any given feature, the ratio of preferences for any pair of movies is identical for all
users. Likewise, for any given feature, the ratio of preferences of any pair of users is identical
for all movies. In this chapter, we assume the following more general model that overcomes
these issues.

Permutation-rank: The permutation-rank model is also associated to an integer param-
eter ρ ∈ {0, . . . ,min{n, d}} that we will term as the permutation rank. In order to define
this model, we first define some primitives. Let CPR(0) denote the set of all matrices that
have a permutation-rank of zero – this is a singleton set containing the all-zero matrix as its
only element. Now let CPR(1) denote the set of matrices that have a permutation rank of at
most 1, that is,

CPR(1) : = {M ∈ [0, 1]n×d | ∃ permutations π1 : [n]→ [n] and π2 : [d]→ [d] such that

Mij ≥Mi′j′ for every quadruple (i, j, i′, j′) such that π1(i) ≥ π1(i′) and π2(j) ≥ π2(j′) }.
2A slightly different, alternative interpretation is discussed in Appendix 5.A.
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In words, a non-zero matrix is said to have a permutation rank of 1 if there exists a permuta-
tion of its rows and columns such that the entries of the resulting matrix are non-decreasing
down any column and to the right along any row. Observe that any matrix with the con-
ventional (non-negative) rank equal to 1 also belongs to the set CPR(1). Moreover, a matrix
in CPR(1) can have any non-negative rank—the set of matrices with a permutation-rank of
1 also includes matrices with a full non-negative rank.

With these primitives, we are now ready to define the more general class of matrices with
permutation rank ρ. To this end, for any value ρ ∈ {0, . . . ,min{n, d}}, we define the set

CPR(ρ) : =
{
M ∈ [0, 1]n×d

∣∣∣ M =
∑ρ

`=1Q
` for some matrices Q1, . . . , Qρ ∈ CPR(1)

}
,

of matrices having a permutation-rank at most ρ. Note that the permutations in CPR(1)
are allowed to be different for each of the constituent matrices Q1, . . . , Qρ. For any matrix
M , the smallest value of ρ such that M ∈ CPR(ρ) is termed its permutation-rank, and is
denoted as ρ(M).

Revisiting the example of movie recommendations, the interpretation of this more general
permutation-rank model is that conditioned on any feature ` ∈ [r], the preference ordering
across movies continues to be consistent for different users, but the values of these preferences
need not be identical scalings of each other.

Observe that the conventional non-negative matrix-completion setting CNR(r) is a special
case of the permutation-rank matrix-completion setting where each matrix Q` is restricted
to be of rank one. Whenever r < min{d, n}, we have the strict inclusion CNR(r) ⊂ CPR(r).

Outline and main contributions: Having discussed the limitations of the non-negative
rank model, and having defined the new permutation-based model that overcomes these
issues, we now outline our contributions in the remainder of the chapter. In Section 5.2
we present our main results on the problem of estimating the matrix M∗ (in the Frobenius
norm) from partial and noisy observations. Specifically, we present a certain regularized least
squares estimator which we prove is minimax-optimal for estimation over the permutation-
rank model. We also show that surprisingly, even if one considers the more restrictive
non-negative rank model, and even if the rank is known, no estimator can yield a lower
statistical error (up to logarithmic factors). We also analyze the computationally efficient
Singular Value Thresholding (SVT) algorithm and show that this algorithm yields consistent
estimates over the permutation-rank model, in addition to yielding the optimal estimate
under the non-negative rank model. In Section 5.3, we establish some interesting properties
of the permutation-rank model, and also derive certain relationships of this model with the
non-negative rank model. We present a concluding discussion in Section 5.4. In Section 5.5
we present the proofs of our theoretical results.
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5.2 Main results on estimating M ∗

In this section, we present our main theoretical results on estimating the underlying matrix
M∗ from the observations Y .

5.2.1 Statistically optimal estimation

In what follows, we establish sharp guarantees on the estimation of matrices in CNR and
CPR from observations of the form (5.1). Our upper bounds employ the regularized least

squares estimator M̂LSReg, that operates on the observed data Y as follows. The estimator
first computes

Y ′ : =
1

pobs

Y − 1− pobs

2pobs

11T . (5.2a)

Now letting ρ(M) denote the permutation-rank of any matrix M , the estimator then com-
putes

M̂LSReg ∈ arg min
M∈[0,1]n×d

(
|||Y ′ −M |||2F +

ρ(M) max{n, d} log2.01 d

pobs

)
(5.2b)

as the final estimate.
Observe that importantly, the estimator M̂LSReg does not need to know the value of the

true permutation-rank of the underlying matrix. Note that while the estimator as stated
assumes to know pobs, this is not a critical issue since if unknown, this parameter can be
estimated accurately from the data.

We now present sharp oracle inequalities on the statistical risk of low permutation-rank
matrix estimation, also showing that the estimator M̂LSReg is statistically optimal up to
logarithmic factors. In order to state our results cleanly, we introduce the notation BP(ρ, ε)
to denote the set of all matrices that are at most ε away from some matrix with permutation-
rank ρ,

BP(ρ, ε) : =
{
M ∈ [0, 1]n×d | ∃M ′ ∈ [0, 1]n×d s.t. ρ(M ′) ≤ ρ and |||M −M ′|||F ≤ ε

}
.

We also use BN(r, ε) to denote the set of all matrices that are at most ε away from some
matrix with non-negative-rank r,

BN(r, ε) : =
{
M ∈ [0, 1]n×d | ∃M ′ ∈ [0, 1]n×d s.t. r(M ′) ≤ r and |||M −M ′|||F ≤ ε

}
.

In stating the following theorem, as well as throughout the remainder of the chapter, we
use c, c′, c1 etc. to denote positive universal constants. The values of these constants may
differ for different results.
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Theorem 14. (a) For any matrix M∗ ∈ [0, 1]n×d, the error incurred by the regularized least

squares estimator M̂LSReg is upper bounded as

1

nd
|||M̂LSReg −M∗|||2F ≤ c1 min

{ ε2
nd

+
ρ log2.01(nd)

min{n, d}pobs

, 1
}
, (5.3a)

with probability at least 1− e−c0 max{n,d} log(max{nd}), for any (ρ, ε) such that M∗ ∈ BP(ρ, ε).

(b) Conversely, for any integer r ∈ [max{n, d}], any value ε ≥ 0, and any estimator M̂ ,

there exists a matrix M∗ ∈ BN(r, ε) such that the estimator M̂ incurs an error at least

E
[ 1

nd
|||M̂ −M∗|||2F

]
≥ c2 min

{ ε2
nd

+
r

min{n, d}pobs

, 1
}
. (5.3b)

The oracle inequalities in Theorem 14 can now be used to obtain sharp bounds on the
minimax risk for the problem of matrix completion over the sets CNR and CPR.

Remark 1 (Minimax risk). Part (a) of Theorem 14 implies that for any value of ρ ∈
[min{n, d}], the error incurred by the regularized least squares estimator M̂LSReg is upper
bounded as

sup
M∗∈CPR(ρ)

1

dn
|||M̂LSReg −M∗|||2F ≤ c1 min

{ ρ log2.01(nd)

min{n, d}pobs

, 1
}
, (5.4a)

with probability at least 1− e−c0(n+d) log(nd). The deterministic 1
nd
|||M̂LSReg−M∗|||2F ≤ 1 further

implies a similar bound on the risk incurred by the estimator M̂LSReg,

sup
M∗∈CPR(ρ)

1

dn
E[|||M̂LSReg −M∗|||2F] ≤ c′1 min

{ ρ log2.01(nd)

min{n, d}pobs

, 1
}
. (5.4b)

Conversely, part (b) of Theorem 14 implies that for any r ∈ [max{n, d}], any estimator M̂
incurs an error lower bounded as

sup
M∗∈CNR(r)

1

dn
E[|||M̂ −M∗|||2F] ≥ c2 min

{ r

min{n, d}pobs

, 1
}
. (5.4c)

We have thus established a sharp characterization of the minimax risk, up to logarithmic
factors. An important consequence of our oracle and minimax results is the multi-fold benefit
of moving from the restrictive non-negative-rank assumptions to the strictly and significantly
more general permutation-rank assumptions. Fitting a permutation-rank k model when the
true matrix actually has a non-negative rank of k incurs very little additional (overfitting)
error. On the other hand, as we show in the next section, fitting a non-negative rank k model
when the true matrix actually has a permutation-rank of k can incur a very high (model
mismatch) error.



CHAPTER 5. MATRIX COMPLETION AND RECOMMENDATIONS 155

A special case of our present problem is equivalent to the setting considered earlier in
Chapter 2, corresponding to the case when the value of ρ is known and equal to 1, the
matrix M∗ is square with n = d, and all entries of M∗ satisfy the shifted-skew-symmetry
condition M∗

ij +M∗
ji = 1. The proof of the upper bound of Theorem 14(a) employs the proof

framework established in Chapter 2. Our result of Theorem 14(a) in the present chapter,
in turn, augments the minimax results of Theorem 1 in Chapter 2 by providing oracle
inequalities for the problem considered therein. Our result also provides sharp guarantees
on the estimation of “mixtures” of different permutations in the setting of Chapter 2.

5.2.2 Computationally efficient estimator

At this point, we do not know how to compute the regularized least squares estimator (5.2b)
in an efficient manner. Consequently, in this section we turn to another estimator – the
singular value thresholding (SVT) estimator. Singular value thresholding has been used
either directly or as a subroutine in several past papers on the conventional low-rank matrix
completion problem (see, for example, [31, 44, 67]). An algorithm for fast computation of
the SVT is provided in [32].

In what follows, we show that for the setting considered in this chapter, the SVT estimator
is consistent for estimation under the permutation-rank model (with an error suboptimal by
a factor of

√
min{n, d}pobs) and is also simultaneously optimal for estimation under the

non-negative-rank model. Moreover, the estimator does not need to now the value of ρ or r
nor does it need to know whether the underlying matrix is drawn from a permutation-rank
model or the conventional non-negative-rank model.

Let us first describe the SVT estimator.3 From the observation matrix Y ∈ {0, 1
2
, 1}n×d,

we first obtain the transformed observation matrix Y ′ as in (5.2a). Let the singular value
decomposition of this matrix be Y ′ = UDV T , where the (n × d) matrix D is diagonal and
the (n× d) matrices U and V are orthonormal. For a threshold λ > 0 to be specified, define
another diagonal matrix Tλ with entries

[Tλ]jj =

{
0 if Djj < λ

Djj − λ if Djj ≥ λ,
(5.5)

for every j ∈ [max{n, d}]. Finally, the SVT estimator is given by

M̂SVT = UTλV
T .

The following theorem now establishes guarantees for the singular value thresholding esti-
mator, showing that it provides a consistent (but slightly suboptimal) estimate under the
permutation-rank model. Using the same proof framework, for the sake of completeness, we
also derive the previously known guarantees [44, 132] on for optimal estimation under the
non-negative rank model.

3This estimator is identical to the SVT estimator studied in Section 2.3.2 in Chapter 2, but we never-
theless describe it here for the sake of completeness.
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Theorem 15. Suppose that pobs ≥ 1
min{n,d} log7(nd).

(a) For any ρ ∈ [min{n, d}] and any matrix M∗ ∈ CPR(ρ), the soft-SVT estimator M̂SVT with

threshold λ = 2.1
√

n+d
pobs

incurs an error upper bounded as

1

nd
|||M̂SVT −M∗|||2F ≤ c1

ρ√
min{n, d}pobs

, (5.6a)

with probability at least 1− e−c0 max{n,d}.
(b) For any r ∈ [min{n, d}] and any matrix M∗ ∈ CNR(r), the soft-SVT estimator M̂SVT with

threshold λ = 2.1
√

n+d
pobs

incurs an error upper bounded as

1

nd
|||M̂SVT −M∗|||2F ≤ c1

r

min{n, d}pobs

, (5.6b)

with probability at least 1− e−c0 max{n,d}.

Observe that the bound (5.6a) on the risk of the SVT estimator for the permutation-
based model has a

√
min{n, d} term in the denominator, as opposed to a min{n, d} term in

the oracle risk established in Theorem 14 and the minimax risk established in Remark 1. On
the other hand, a comparison with the results of Section 5.2.1 yields that the bound (5.6b)
for the SVT estimator is optimal with respect to the non-negative rank model. Importantly,
the estimator automatically adapts to the container set CPR(·) or CNR(·) as well as to the
true value of r or ρ.

5.3 Properties of permutation-rank model

In this section, we derive some more insights on the proposed permutation-rank model.

5.3.1 Comparison between permutation-rank model and
non-negative-rank model

We begin by comparing the permutation-rank model with the conventional non-negative
rank model. To this end, first observe that the definitions of the two models immediately
imply that the permutation-rank of any matrix is always upper bounded by its non-negative
rank, that is, for any matrix M :

ρ(M) ≤ r(M),

A natural question that now arises is whether, in addition to this simple relation, there is
any additional general condition that constrains the two notions of the matrix rank. The
following proposition shows that there is no other guaranteed relation between the two
notions of matrix rank.
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In order to state the proposition, we introduce two additional pieces of notation: For any
integer k ≥ 0, we let Jk denote an upper triangular matrix of size (k× k) with all entries on
and above the diagonal set as 1, and let Ik denote the identity matrix of size (k × k).

Proposition 5. For any values 0 < ρ ≤ r ≤ min{n, d}, there exists matrices whose
permutation-rank is ρ and non-negative rank is r. For instance, the following block ma-
trix M of size (n× d),

M : =

Jr−ρ+1 0 0
0 Iρ−1 0
0 0 0

 ,
has r(M) = r and ρ(M) = ρ.

We now investigate a second relation between the two models, towards which we begin
with the simple observation that for every positive integer k < min{d, n}, there is a strict
inclusion

CNR(k) ⊂ CPR(k).

Furthermore, recall from our discussion earlier that the assumptions of the permutation-
rank model are much less restrictive than the assumptions of the non-negative rank model.
With this context, a natural question that arises is how badly would an estimator that fits
a non-negative rank of k be biased when the true underlying matrix may actually have a
permutation rank of k. The following proposition answers this question by quantifying the
distance between non-negative-rank and permutation-rank models.

Proposition 6. Consider any positive integer k ≤ 1
2

min{d, n}, and any estimator M̃k that
outputs a matrix in CNR(k). The error incurred by this estimator when the true matrix lies
in the set CPR(k) is lower bounded as

sup
M∗∈CPR(k)

1

dn
|||M − M̃k|||2F ≥ c3

1

k
, (5.7)

with probability 1.

This result is a consequence of the following bound on the Hausdorff distance between
the two sets, which is proved as a part of the proof of Proposition 6:

sup
M1∈CPR(k)

inf
M2∈CNR(k)

1

dn
|||M1 −M2|||2F ≥ c3

1

k
, (5.8)

whenever k ≤ 1
2

min{d, n}.
Observe that when k is a constant (but n and d are allowed to grow), the right hand

sides of the bounds (5.7) and (5.8) also equal a constant, which is the largest possible error
and the largest possible order-wise gap between any pair of matrices in [0, 1]n×d.
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5.3.2 No “good” convex approximation

In this section, we investigate a question about an important property of the permutation-
based set, and in particular, its primitive CPR(1). With the often-pursued goal of optimiza-
tion over the set CPR(1) in mind, a natural question that arises is: Is the set CPR(1) is
convex? If not, then does it at least have a “good” convex approximation? The following
proposition answers these questions in the negative.

Proposition 7. There is a constant c > 0 such that every convex set C ⊆ Rn×n must
necessarily satisfy

1

nd
max

{
sup

M1∈CPR(1)

inf
M2∈C

|||M1 −M2|||2F , sup
M2∈C

inf
M1∈CPR(1)

|||M1 −M2|||2F
}
≥ c.

A specific example of a convex set C is the convex hull of CPR(1). Then by definition we
have the relation sup

M1∈CPR(1)

inf
M2∈C

|||M1−M2|||2F = 0. Consequently, Proposition 7 implies that

sup
M2∈C

inf
M1∈CPR(1)

|||M1 −M2|||2F = Θ(nd), thereby suggesting that the convex hull of CPR(1) is

a much larger set than CPR(1) itself.
The proof of Proposition 7 relies on a more general result that we derive, relating a

certain notion of inherent (lack of) convexity of a set to the Hausdorff distance between that
set and any convex approximation.

Note that this result does not preclude the possibility that an optimization procedure
over a convex approximation to CPR(1) converges close enough to some element of CPR(1)
itself. We leave the investigation of this possibility to future work.

5.3.3 On the uniqueness of decomposition

In this section, we investigate conditions for the uniqueness of the decomposition of any
matrix into its constituent components that have a permutation-rank of one.

In the conventional setting of low non-negative rank matrix completion, there has been
considerable interest in the conditions required for uniqueness of the decomposition of ma-
trices into their constituent non-negative rank-one matrices [7, 68, 91, 141, 251]. In this
section, we consider an analogous question under the permutation-rank setting. In more
detail, consider any matrix M ∈ [0, 1]n×d with a permutation-rank decomposition

M =

ρ(M)∑
`=1

M (`), (5.9)

where M (`) ∈ CPR(1) for every ` ∈ [ρ(M)]. Then under what conditions on the matrix M is
the set {M (1), . . . ,M (ρ(M))} of constituent matrices unique?
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Proposition 8. A necessary condition for the uniqueness of a permutation-rank decomposi-
tion (5.9) is that for every coordinate (i, j) ∈ [n]× [d], there is at most one ` ∈ [ρ] such that

M
(`)
ij is non-zero and distinct from all other entries of M (`).

Note that the necessary condition continues to hold even if we restrict attention to only
symmetric matrices.

The result of Proposition 8 indicates that any sufficient condition(s) for uniqueness of
the decomposition will be extremely strong. Moreover, we believe that the conditions for
sufficiency may be significantly stronger than those necessitated by Proposition 8. The
reason for such drastic requirements for uniqueness is the high-degree of flexibility offered
by the permutation-rank model.

We illustrate the condition necessitated by Proposition 8 by means of a simple example.
Consider the following matrix M with n = d = 2 and ρ(M) = 2 and decomposition into
M (1),M (2) ∈ CPR(1):

M : =

[
1 .6
.6 1

]
=

[
0 .3
.3 .9

]
+

[
1 .3
.3 .1

]
As described in the statement of Proposition 8, the condition specified therein is required to
hold for every coordinate of the matrix. Let us first evaluate this condition for coordinate
(1, 1). Since M

(1)
11 = 0, there is at most one ` ∈ {1, 2} such that M

(`)
11 is non-zero. The

coordinate (1, 1) therefore passes the necessary condition for uniqueness. Moving on to

coordinate (1, 2), we have M
(1)
12 = M

(1)
21 and hence there is at most one ` ∈ {1, 2} such that

M
(`)
12 is distinct from all other entries of M (`). The coordinate (1, 2) also passes the condition

necessary for uniqueness. The argument for coordinate (1, 2) also applies to coordinate (2, 1)
since the matrices involved are symmetric. We finally test coordinate (2, 2). Observe that

M
(1)
22 /∈ {0,M (1)

11 ,M
(1)
12 ,M

(1)
21 } and M

(2)
22 /∈ {0,M (2)

11 ,M
(2)
12 ,M

(2)
21 }. As a consequence, for both

` = 1 and ` = 2, we have that M
(`)
22 is non-zero and distinct from all other entries of M (`). The

condition necessary for uniqueness is thus violated. Indeed, as guaranteed by Proposition 8,
there exits other decomposition of M , for instance,

M =

[
1 .6
.6 1

]
=

[
0 .4
.4 .9

]
+

[
1 .2
.2 .1

]
.

5.4 Discussion

We see that the conventional low-rank models for matrix completion and denoising are
equivalent to parameter-based assumptions with undesirable implications. We propose a
new permutation-rank approach and argue, by means of a philosophical discussion as well as
theoretical guarantees, that this approach offers significant benefits at little additional cost.

We established benefits of the permutation-based approach for the matrix completion
problem under the random design observation setting. In the literature, the classical low
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(non-negative) rank matrix completion problem has recently been studied under other ob-
servation models such as weighted random sampling [178], fixed design [109, 130], stream-
ing/active learning [9, 113, 272], or biased observation models [104], which are also of interest
in the context of permutation-rank matrix completion.

5.5 Proofs

In this section, we present the proofs of the claimed results. We assume without loss of
generality that the values of n and d are large enough (that is, greater than certain constants)
– otherwise the results continue to hold with different constant prefactors.

5.5.1 Proof of Theorem 14(a): Oracle upper bound

The proof of this theorem builds on the framework established in the proof of Theorem 1 in
Chapter 2. In particular, the problem setting of Theorem 1 is a special case of the present
problem, restricted to the case of n = d, ρ = 1, and establishing control over the minimax
risk. In the present proof, we employ several additional techniques in order to generalize to
the setting under consideration in the present chapter.

Let us assume without loss of generality that n ≤ d.
One can verify that the matrix Y ′ can equivalently be written in a linearized form as

Y ′ = M∗ +
1

pobs

W ′, (5.10a)

where W ′ has entries that are independent, and are distributed as

[W ′]ij =


pobs(

1
2
− [M∗]ij) + 1

2
with probability pobs[M

∗]ij

pobs(
1
2
− [M∗]ij)− 1

2
with probability pobs(1− [M∗]ij)

pobs(
1
2
− [M∗]ij) with probability 1− pobs.

(5.10b)

We begin by introducing some additional notation in order to accommodate the arbitrary
permutation-rank of M∗ and the fact that each constituent component in CPR(1) can have
any arbitrary permutation. For any pair of permutations π : [n]→ [n] and σ : [d]→ [d], we
first define the set

CPR(1; π, σ) : = {M ∈ CPR(1) | rows and columns of M are ordered

according to π and σ respectively}.

Now let Π denote the set of all possible permutations of d items, and let Σ denote the
set of all possible permutations of the n users. Consider any value k ∈ [n], any sequence

Π̃(k) : = (π1, . . . , πk) ∈ Πk and any sequence Σ̃(k) : = (σ1, . . . , σk) ∈ Σk. Define the associated
sets
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Define an associated set

CPR(k; Π̃(k), Σ̃(k)) : =
{
M =

k∑
`=1

M (`)
∣∣∣ M (`) ∈ CPR(1; π`, σ`) for every ` ∈ [k]

}
.

We then define the estimator

MΠ̃(k),Σ̃(k) ∈ arg min
M∈CPR(k;Π̃(k),Σ̃(k))

|||Y ′ −M |||2F,

using which the least squares estimator (5.2b) can equivalently be rewritten as

M̂LSReg ∈ arg min
k∈[n]

arg min
Π̃(k)⊆Πk,

Σ̃(k)⊆Σk

|||Y ′ −MΠ̃(k),Σ̃(k)|||2F +
kd log2.01 d

pobs

.

Define M0 ∈ [0, 1]n×d as the matrix

M0 ∈ arg min
M∈[0,1]n×d

(
|||M −M∗|||2F +

ρ(M)d log2.01 d

pobs

)
,

and an associated set Γ̃ as

Γ̃ : =
{

(k, Π̃(k), Σ̃(k)) ∈ [n]× Πk × Σk
∣∣∣|||Y ′ −MΠ̃(k),Σ̃(k)|||2F +

kd log2.01 d

pobs

≤ |||Y ′ −M0|||2F +
ρ(M0)d log2.01 d

pobs

}
.

Note that the set Γ̃ is guaranteed to be non-empty since the parameter and permutations
corresponding to M0 always lie in Γ̃. We will subsequently show the following bound for any
(k, Π̃(k), Σ̃(k)) ∈ Γ̃:

P
(
|||MΠ̃(k),Σ̃(k) −M0|||2F ≤ c1

ρ(M0)d log2.01 d

pobs

)
≥ 1− e−4kd log d, (5.11)

for some positive universal constant c1. Under our assumption of d ≥ n, for any value of k
the cardinality of the set Γ̃ restricted to any k is at most e2kd log d. Hence a union bound over
all k ∈ [n] and all permutations, applied to (5.11) yields

P
(

max
(k,Π̃(k),Σ̃(k))∈Γ̃

|||MΠ̃(k),Σ̃(k) −M0|||2F ≤ c1

ρ(M0)d log2.01 d

pobs

)
≥ 1− e−d log d.

Since M̂LSReg is equal to MΠ̃(k),Σ̃(k) for some k ∈ [n] and some (Π̃(k), Σ̃(k)) ∈ Γ̃, this tail bound
yields

P
(
|||M̂LSReg −M0|||2F ≤ c1

ρ(M0)d log2.01 d

pobs

)
≥ 1− e−d log d.
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Finally, applying the triangle inequality yields the claimed result

P
(
|||M̂LSReg −M∗|||2F ≤ 2|||M∗ −M0|||2F + 2c1

ρ(M0)d log2.01 d

pobs

)
≥ 1− e−d log d.

The remainder of our proof is devoted to proving the claim (5.11). By definition, any

(k, Π̃(k), Σ̃(k)) ∈ Γ̃ must satisfy the inequality

|||Y −MΠ̃(k),Σ̃(k)|||2F +
kd log2.01 d

pobs

≤ |||Y −M0|||2F +
ρ(M0)d log2.01 d

pobs

.

Denoting the error in the estimate as ∆̂Π̃(k),Σ̃(k) : = MΠ̃(k),Σ̃(k) −M0, and using the linearized
form (5.10a), some algebraic manipulations yield the basic inequality

1

2
|||∆̂Π̃(k),Σ̃(k) |||2F ≤

1

pobs

〈〈W ′, ∆̂Π̃(k),Σ̃(k)〉〉+
1

2

(ρ(M0)− k)d log2.01 d

pobs

. (5.12)

Now consider the set of matrices

CDIFF(Π̃(k), Σ̃(k);M0) : =
{
α(M −M0) | M ∈ CPR(k; Π̃(k), Σ̃(k)), α ∈ [0, 1]

}
, (5.13)

and note that CDIFF(Π̃(k), Σ̃(k);M0) ⊆ [−1, 1]n×d. For each choice of radius t > 0, define the
random variable

ZΠ̃(k),Σ̃(k)(t) : = sup
MDIFF∈CDIFF(Π̃(k),Σ̃(k);M0),

|||MDIFF|||F≤t

1

pobs

〈〈MDIFF, W
′〉〉. (5.14)

Using the basic inequality (5.12), the Frobenius norm error |||∆̂Π̃(k),Σ̃(k)|||F then satisfies the
bound

1

2
|||∆̂Π̃(k),Σ̃(k) |||2F ≤ ZΠ̃,Σ̃

(
|||∆̂Π̃(k),Σ̃(k)|||F

)
+

1

2

(ρ(M0)− k)d log2.01 d

pobs

. (5.15)

Thus, in order to obtain our desired bound, we need to understand the behavior of the
random quantity ZΠ̃(k),Σ̃(k)(t).

Dy definition, the set CDIFF(Π̃(k), Σ̃(k);M0) is “star-shaped”, meaning that αMDIFF ∈
CDIFF(Π̃(k), Σ̃(k)) for every α ∈ [0, 1] and every MDIFF ∈ CDIFF(Π̃(k), Σ̃(k);M0). Using this
star-shaped property, we are guaranteed that E[ZΠ̃(k),Σ̃(k)(δ)] grows at most linearly with δ.
We are then in turn guaranteed the existence of some scalar δ0 > 0 satisfying the critical
inequality

E[ZΠ̃(k),Σ̃(k)(δ0)] ≤ δ2
0

2
. (5.16)
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Our interest is in an upper bound to the smallest (strictly) positive solution δ0 to the critical

inequality (5.16), and moreover, our goal is to show that for every t ≥ δ0, we have |||∆̂|||F ≤
c
√
tδ0 with high probability. To this end, define a “bad” event At as

At =
{
∃∆ ∈ CDIFF(Π̃(k), Σ̃(k);M0) | |||∆|||F ≥

√
tδ0 and

1

pobs

〈〈∆, W ′〉〉 ≥ 2|||∆|||F
√
tδ0

}
.

(5.17)

Using the star-shaped property of CDIFF(Π̃(k), Σ̃(k);M0), it follows by a rescaling argument
that

P[At] ≤ P[ZΠ̃(k),Σ̃(k)(δ0) ≥ 2δ0

√
tδ0] for all t ≥ δ0.

The following lemma helps control the behavior of the random variable ZΠ̃(k),Σ̃(k)(δ0).

Lemma 27. For any δ > 0, the mean of ZΠ̃(k),Σ̃(k)(δ) is bounded as

E[ZΠ̃(k),Σ̃(k)(δ)] ≤ c1
max{k, ρ(M0)}d

pobs

log2 d,

and for every u > 0, its tail probability is bounded as

P
(
ZΠ̃(k),Σ̃(k)(δ) > E[ZΠ̃(k),Σ̃(k)(δ)] + u

)
≤ exp

( −c2u
2pobs

δ2 + E[ZΠ̃(k),Σ̃(k)(δ)] + u

)
,

where c1 and c2 are positive universal constants.

From this lemma, we have the tail bound

P
(
ZΠ̃(k),Σ̃(k)(δ0) > E[ZΠ̃(k),Σ̃(k)(δ0)] + δ0

√
tδ0

)
≤ exp

( −c2(δ0

√
tδ0)2pobs

δ2
0 + E[ZΠ̃(k),Σ̃(k)(δ0)] + (δ0

√
tδ0)

)
,

for all t > 0. By the definition of δ0 in (5.16), we have E[ZΠ̃(k),Σ̃(k)(δ0)] ≤ δ2
0 ≤ δ0

√
tδ0 for all

t ≥ δ0, and consequently

P[At] ≤ P[ZΠ̃(k),Σ̃(k)(δ0) ≥ 2δ0

√
tδ0

]
≤ exp

(−c2(δ0

√
tδ0)2pobs

3δ0

√
tδ0

)
,

for all t ≥ δ0. Now we must have either |||∆̂Π̃(k),Σ̃(k)|||F ≤
√
tδ0, or we have |||∆̂Π̃(k),Σ̃(k) |||F >

√
tδ0.

In the latter case, conditioning on the complement Act , our basic inequality implies that

1

2
|||∆̂Π̃(k),Σ̃(k)|||2F ≤ 2|||∆̂Π̃(k),Σ̃(k) |||F

√
tδ0 +

1

2

(ρ(M0)− k)d log2.01 d

pobs

,
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and hence

|||∆̂Π̃(k),Σ̃(k) |||F ≤ 4
√
tδ0 +

√
(ρ(M0)− k)d log2.01 d

pobs

.

Putting together the pieces yields the bound

P
(
|||∆̂Π̃(k),Σ̃(k) |||2F ≤ 32tδ0 + 2

(ρ(M0)− k)d log2.01 d

pobs

)
≥ 1− exp

(
− c2δ0

√
tδ0pobs

)
, (5.18)

for all t ≥ δ0. Finally, from the bound on the expected value of ZΠ̃(k),Σ̃(k)(t) in Lemma 27,
we see that the critical inequality (5.16) is satisfied for

δ0 =

√
c1 max{ρ(M0), k}d

pobs

log d.

Setting t = c′δ0 in (5.18) for a large enough constant c′ yields

P
(
|||∆̂Π̃(k),Σ̃(k)|||F ≤

c′1ρ(M0)d

pobs

log2 d
)
≥ 1− exp

(
− 4 max{ρ(M0), k}d log d

)
, (5.19)

for some constant c′1 > 0, thus proving the bound (5.11).
It remains to prove Lemma 27.

Proof of Lemma 27 Bounding E[ZΠ̃(k),Σ̃(k)(δ)]: We establish an upper bound on E[ZΠ̃(k),Σ̃(k)(δ)]

by using Dudley’s entropy integral, as well as some auxiliary results on metric entropy. We
use the notation logN(ε,C, ||| · |||F) to denote the ε metric entropy of class C ⊂ Rn×d in the
Frobenius norm metric ||| · |||F.

For convenience of analysis, we introduce a new random variable

Z̃Π̃(k),Σ̃(k) : = sup
MDIFF∈CDIFF(Π̃(k),Σ̃(k);M0)

〈〈MDIFF, W
′〉〉.

Then by definition, we have E[ZΠ̃(k),Σ̃(k)(δ)] ≤ 1
pobs

E[Z̃Π̃(k),Σ̃(k) ] for every δ > 0. In addi-

tion, since M0 ∈ CPR(k), it can be decomposed as M0 =
∑k

`=1 M
(`)
0 , for some matrices

M
(1)
0 , . . . ,M

(k)
0 ∈ CPR(1).

We introduce some additional notation for ease of exposition. If ρ(M0) < k, then

let M
(ρ(M0)+1)
0 , . . . ,Mk

0 denote all-zero matrices. Hence we can equivalently write M0 =∑max{ρ(M0),k}
`=1 M

(`)
0 . On the other hand, if ρ(M0) > k then let πk+1, . . . , πρ(M0) be arbitrary

(but fixed) permutations of n items and σk+1, . . . , σρ(M0) be arbitrary (but fixed) permuta-
tions of d items. With this notation in place, we have the following deterministic upper
bound on the value of the random variable Z̃Π̃(k),Σ̃(k) :

Z̃Π̃(k),Σ̃(k) ≤
max{ρ(M0),k}∑

`=1

sup
[MDIFF]`∈CDIFF({π`},{σ`};M

(`)
0 )

〈〈[MDIFF]`, W
′〉〉.
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We also recall our assumption that d ≥ n without loss of generality. Now the truncated form
of Dudley’s entropy integral inequality yields4

E[Z̃Π̃(k),Σ̃(k) ] ≤
max{ρ(M0),k}∑

`=1

c
{
d−8 +

∫ 2d

1
2
d−9

√
logN(ε,CDIFF({π`}, {σ`};M (`)

0 ), |||.|||F)(∆ε)
}
,

(5.20)

where we have used the fact that the diameter of the set CDIFF({π`}, {σ`};M (`)
0 ) is at most

2d in the Frobenius norm.
In Lemma 3 derived earlier in Chapter 2, we derived a bound on the metric entropy of

the set CDIFF({π`}, {σ`};M (`)
0 ) as:

logN
(
ε,CDIFF({π`}, {σ`};M (`)

0 ), ||| · |||F
)
≤ 16

d2

ε2
(

log
d

ε

)2
,

for any ε > 0 and ` ∈ [k]. Substituting this bound on the metric entropy into the Dudley
bound (5.20) yields

E[Z̃Π̃(k),Σ̃(k) ] ≤ c′max{ρ(M0), k}d log2 d.

The inequality E[ZΠ̃(k),Σ̃(k)(δ)] ≤ 1
pobs

E[Z̃Π̃(k),Σ̃(k) ] then yields the claimed result.

Bounding the tail probability of ZΠ̃(k),Σ̃(k)(δ): In order to establish the claimed tail bound,

we use a Bernstein-type bound on the supremum of empirical processes due to Klein and
Rio [129, Theorem 1.1c], which we state in a simplified form here.

Lemma 28. Let X : = (X1, . . . , Xm) be any sequence of zero-mean, independent random
variables, each taking values in [−1, 1]. Let V ⊂ [−1, 1]m be any measurable set of m-length
vectors. Then for any u > 0, the supremum X† = supv∈V〈X, v〉 satisfies the upper tail bound

P
(
X† > E[X†] + u

)
≤ exp

( −u2

2 supv∈V E[〈v, X〉2] + 4E[X†] + 3u

)
.

We now call upon Lemma 28 setting V = {MDIFF ∈ CDIFF(Π̃(k), Σ̃(k);M0) | |||MDIFF|||F ≤
δ}, X = W ′, and X† = pobsZΠ̃(k),Σ̃(k)(δ). The entries of the matrix W ′ are mutually in-
dependent, have a mean of zero, and are bounded by 1 in absolute value. Then we have
E[X†] = pobsE[ZΠ̃(k),Σ̃(k)(δ)] and E[〈〈MDIFF, W

′〉〉2] ≤ 4pobs|||MDIFF|||2F ≤ 4pobsδ
2 for every

MDIFF ∈ V . With these assignments, and some algebraic manipulations, we obtain that for
every u > 0,

P
(
ZΠ̃(k),Σ̃(k)(δ) > E[ZΠ̃(k),Σ̃(k)(δ)] + u

)
≤ exp

( −u2pobs

8δ2 + 4E[ZΠ̃(k),Σ̃(k)(δ)] + 3u

)
,

as claimed.
4Here we use (∆ε) to denote the differential of ε, so as to avoid confusion with the number of columns d.
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5.5.2 Proof of Theorem 14(b): Oracle lower bound

Assume without loss of generality that d ≥ n. Throughout the proof, we ignore floor and
ceiling conditions as these are not critical to the proof and affect the lower bound by only a
constant factor.

The Gilbert-Varshamov bound [90, 258] from coding theory guarantees existence of

η : = exp
(
c(dr + pobsε

2)
)

binary vectors g1, . . . , gη, each of length (dr + pobsε
2), such that the Hamming distance

between any pair of vectors in this set is lower bounded as

DH(g`, g`
′
) ≥ dr + pobsε

2

10
.

For some δ ∈ (0, 1
4
) whose value is specified later, define a related set of vectors g̃1, . . . , g̃η as

g̃`j =

{
1
2

+ δ if g`j = 1
1
2
− δ if g`j = 0,

for every ` ∈ [η] and j ∈ [dr+ pobsε
2]. Next define a set of “low rank” matrices G1, . . . , Gη ∈

[0, 1]n×d where the matrix G` is obtained as follows. For each ` ∈ [η], arrange the first rd
entries of vector g̃` as the entries of an (r× d) matrix—this arrangement may be done in an

arbitrary manner as long as it is consistent across every ` ∈ [η]. Now append a (pobsε
2

d
× d)

matrix at the bottom, whose entries comprise the last pobsε
2 entries of the vector g̃`—again,

this arrangement may be done in an arbitrary manner as long as it is consistent across every
` ∈ [η]. Now stack 1

pobs
copies of the resulting

(
(r + pobsε

2

d
)× d

)
matrix on top of each other

to form a
(
( r
pobs

+ ε2

d
)× d

)
matrix. Note that our assumption ε2 + rmax{n,d}

pobs
≤ nd, along with

the assumption d ≥ n, implies that n ≥ r
pobs

+ ε2

d
. Append (n− ( r

pobs
+ ε2

d
)) rows of all zeros

at the bottom of this matrix, and denote the resultant (n× d) matrix as G`.
We now show that G` ∈ BN(r, ε) for every ` ∈ [η], that is, we show that the matrix

G` ∈ [0, 1]n×d can be decomposed into a sum of a low-rank matrix (of non-negative rank
at most r) and a sparse matrix (number of non-zero entries at most ε2). First we set to
zero the entries in G` which correspond to the last pobsε

2 entries of the vector g̃`. Let us
denote the resulting matrix as G̃`. Each row of the matrix G̃` is either all zero or is identical
to one among the first r rows of G`. Consequently we have r(G̃`) ≤ r. Also observe that

in the matrix (G` − G̃`), the number of non-zero entries is at most 1
pobs
× pobsε

2 = ε2, and

furthermore, each of these entries lie in the interval [0, 1]. Hence we have |||G` − G̃`|||2F ≤ ε2.
The matrix G` thus satisfies all the requirements for membership in the set BN(r, ε).

For every ` ∈ [η], let P` denote the probability distribution of the matrix Y obtained by
setting M∗ = G`. One can verify that the set of matrices G1, . . . , Gη constructed above has
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the following two properties, for every pair ` 6= `′ ∈ [η]:

DKL(P`‖P`′) ≤ c′δ2pobs

( dr
pobs

+ ε2
)
,

and

|||G` −G`′|||2F ≥
δ2

10

( dr
pobs

+ ε2
)
.

Substituting these relations in Fano’s inequality [54] yields that when M∗ is drawn uniformly

at random from the set {G1, . . . , Gη}, any estimate M̂ for M∗ incurs an error lower bounded
as

E[|||M̂ −M∗|||2F] ≥ δ2

20

( dr
pobs

+ ε2
)(

1−
c′δ2pobs

(
dr
pobs

+ ε2
)

+ log 2

c(dr + pobsε2)

) (i)

≥ c′′
( dr
pobs

+ ε2
)
,

where inequality (i) is obtained by choosing δ2 as a small enough constant (that depends only
on c and c′). Recalling our assumption d ≥ n, and consequently replacing d by max{n, d}
in the bound yields the claimed result.

5.5.3 Proof of Theorem 15: SVT Estimator

This proof builds on the framework of the proof of a result in our earlier work [221, Theorem
2] corresponding to the case of n = d and ρ = 1. We introduce certain additional tricks in
order to generalize the proof for general values of ρ and to obtain a sharp dependence on ρ.

Assume without loss of generality that n ≤ d.
Recall from earlier (5.10a) that we can write our observation model as Y ′ = M∗ +

1
pobs

W ′, where W ′ ∈ [−1, 1]n×d is a zero-mean matrix with mutually independent entries.

The distribution (5.10b) of the entries is reproduced here for convenience:

[W ′]ij =


pobs(

1
2
− [M∗]ij) + 1

2
with probability pobs[M

∗]ij

pobs(
1
2
− [M∗]ij)− 1

2
with probability pobs(1− [M∗]ij)

pobs(
1
2
− [M∗]ij) with probability 1− pobs.

(5.21)

For any matrix X, let σ1(X), σ2(X), . . . denote its singular values in descending order.
Our proof of the upper bound hinges upon the following three lemmas. The first lemma

is Lemma 4 from Chpater 2 which states that if λ ≥ 1.01|||W ′|||op
pobs

, then

|||M̂SVT −M∗|||2F ≤ c
n∑
j=1

min
{
λ2, σ2

j (M
∗)
}

with probability at least 1− c1e
−c′n, where c, c1 and c′ are positive universal constants.
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Our second lemma is an approximation-theoretic result that bounds the tail of the singular
values of any matrix with a given permutation-rank or non-negative rank. The proof of this
lemma builds on a construction due to Chatterjee [44] with several additional techniques in
order to obtain a result that is sharp enough for our purposes.

Lemma 29. (a) For any matrix M ∈ CPR(ρ) and any s ∈ {1, 2, . . . , n− 1}, we have

n∑
j=s+1

σ2
j (M) ≤ ndρ2

s
.

(b) For any matrix M ∈ CNR(r) and any s ∈ {1, 2, . . . , n− 1}, we have

n∑
j=s+1

σ2
j (M) ≤ ndmax

{r − s
r

, 0
}
.

Our third lemma controls the noise term W ′.

Lemma 30. The operator norm of the noise matrix W ′ distributed as (5.21) is upper bounded
as

P
(
|||W ′|||op > 2.01

√
pobs(n+ d)

)
≤ e−c

′max{n,d}.

Based on these three lemmas, we now complete the proof of the theorem. From Lemma 30

we see that the choice λ = 2.1
√

n+d
pobs

guarantees that λ ≥ 1.01|||W ′|||op
pobs

with probability at least

1 − e−c
′max{n,d}. Consequently, the condition required for an application of Lemma 4 is

satisfied, and applying this lemma then yields the upper bound

|||M̂SVT −M∗|||2F ≤ c
n∑
j=1

min
{ d

pobs

, σ2
j (M

∗)
}

with probability at least 1 − e−c′max{n,d}. Applying Lemma 29 yields that with probability
at least 1− e−c′max{n,d}, it must be that

|||M̂SVT −M∗|||2F ≤ cmin
s∈[n]

( sd
pobs

+
ρ2nd

s

)
, if M∗ ∈ CPR(ρ),

and

|||M̂SVT −M∗|||2F ≤ cmin
s∈[n]

( sd
pobs

+ ndmax
{

1− s

r
, 0
})
, if M∗ ∈ CNR(r).

For the case when M∗ ∈ CPR(ρ), setting s = dρ√pobsne and performing some algebra
shows that

P
[ 1

nd
|||M̂SVT −M∗|||2F >

c1ρ√
pobsd

]
≤ e−c

′max{n,d}.
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When M∗ ∈ CNR(r), setting s = r shows that

P
[ 1

nd
|||M̂SVT −M∗|||2F >

c1r

pobsd

]
≤ e−c

′max{n,d}.

Recalling our assumption that d ≥ n and substituting n = min{n, d} and d = max{n, d}
yields the claimed result.

Proof of Lemma 5 Part (a): Without loss of generality, assume that d ≥ n.
We begin with an upper bound on the tail of the singular values of any matrix in CPR(1),

that is, that has a permutation-rank of 1. The proof of this bound uses a construction due
to Chatterjee [44] for a rank s̃ approximation of any matrix in CPR(1), for any value s̃ ∈ [n].
We first reproduce Chatterjee’s construction.

For a given matrix M ∈ CPR(1), define the vector τ ∈ Rd of column sums—namely, with

entries τj =
∑n

i=1[M ]ij for j ∈ [d]. Using this vector, define a rank s̃ approximation M̃ to
M by grouping the columns according to the vector τ according to the following procedure:

• Observing that each τj ∈ [0, n], divide the full interval [0, n] into s̃ groups—say of
the form [0, n/s̃), [n/s̃, 2n/s̃), . . . [(s̃− 1)n/s̃, n]. If τj falls into the interval α for some
α ∈ [s̃], then map column j to the group Gα of indices.

• For each α ∈ [s̃] such that group Gα is non-empty, choose a particular column index

j′ =∈ Gα in an arbitrary fashion. For every other column index j ∈ Gα, set M̃ij = Mij′

for all i ∈ [n].

By construction, the matrix M̃ has at most s̃ distinct rows, and hence rank at most s̃.
Now consider any column j ∈ [d] and suppose that j ∈ Gα. Let j′ denote the column chosen
for the group Gα in the second step of the construction. Since M ∈ CPR(1), we must either

have Mij ≥Mij′ = M̃ij for every i ∈ [n], or Mij ≤Mij′ = M̃ij for every i ∈ [n]. Then we are
guaranteed that

n∑
i=1

|M̃ij −Mij| =|
n∑
i=1

(M̃ij −Mij) |= |τj′ − τj| ≤
n

s̃
, (5.22)

where we have used the fact the pair (τj, τj′) must lie in an interval of length at most n/s̃.
This completes the description of Chatterjee’s construction.

In what follows, we use Chatterjee’s result in order to obtain our claimed bound on the
tail of the spectrum of any matrix M ∈ CPR(ρ). We modify the result in a specific critical
manner that allows us to obtain the desired dependence on the parameter ρ. Recall that
any matrix M ∈ CPR(ρ) can be decomposed as

M =

ρ∑
`=1

M (`),
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for some matrices M (1), . . . ,M (ρ) ∈ CPR(1). For every ` ∈ [r], let M̃ (`) be a rank s̃ = s
ρ

approximation of M (`) obtained from Chatterjee’s construction above, but with the following
additional detail. Observe that in Chatterjee’s construction, the choice of column j′ from
group Gα is arbitrary. For our construction, we will make a specific choice of this column:
we choose the column whose entries have the smallest values among all columns in the group
Gα. With this choice, we have the property

M̃
(`)
ij ≤M

(`)
ij for every ` ∈ [ρ], i ∈ [n], j ∈ [d]. (5.23)

Now let M̃ : =
∑ρ

`=1 M̃
(`). Since every entry of every matrix M̃ (`) is non-negative, we

have that every entry of M̃ is also non-negative. We also claim that

M̃ij =

ρ∑
`=1

M̃
(`)
ij

(i)

≤
ρ∑
`=1

M
(`)
ij = Mij ≤ 1,

where the inequality (i) is a consequence of the set of inequalities (5.23). Thus we have that

M̃ ∈ [0, 1]n×d, and that the rank of M̃ is at most ρs̃. This result then yields the bound

n∑
j=ρs̃+1

σ2
j (M) ≤ |||M − M̃ |||2F ≤

n∑
i=1

d∑
j=1

|Mij − M̃ij|.

Applying the triangle inequality, we further bound this quantity as

n∑
j=ρs̃+1

σ2
j (M) ≤

n∑
i=1

d∑
j=1

|
ρ∑
`=1

(M
(`)
ij − M̃

(`)
ij )| ≤

n∑
i=1

d∑
j=1

ρ∑
`=1

|M (`)
ij − M̃

(`)
ij |

(i)

≤ ρnd

s̃
=
ρ2nd

s
,

where the bound (i) follows from (5.22), and equation (ii) is a result of our choice s̃ = s
ρ
.

Part (b): This result follows directly from the facts that the rank of M is at most r, and the
square of its Frobenius norm is at most nd.

Proof of Lemma 30 Define an ((n+ d)× (n+ d)) matrix W ′′ as

W ′′ =
1
√
pobs

[
0 W ′

(W ′)T 0

]
.

From (5.21) and the construction above, we have that the matrix W ′′ is symmetric, with
mutually independent entries above the diagonal that have a mean of zero and a variance
upper bounded by 1. Consequently, known results in random matrix theory (e.g., see [44,
Theorem 3.4] or [250, Theorem 2.3.21]) yield the bound |||W ′′|||op ≤ 2.01

√
n+ d with proba-

bility at least 1− e−cmax{n,d}. One can also verify that |||W ′′|||op = 1√
pobs
|||W ′|||op, yielding the

claimed result.
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5.5.4 Proof of Proposition 5: Every rank is possible

We recall that for any integer k ≥ 0, the notation Jk denotes an upper triangular matrix of
size (k × k) with all entries on and above the diagonal set as 1, and Ik denotes the identity
matrix of size (k × k). We also recall the following block matrix M , of size (n× d), defined
in the statement of the proposition:

M =

Jr−ρ+1 0 0
0 Iρ−1 0
0 0 0

 .
In the remainder of the proof, we show that r(M) = r and ρ(M) = ρ. Using the ideas in the
construction of M and the associated proof to follow, one can construct many other matrices
that have the non-negative rank and the permutation-rank equaling r and ρ respectively, for
any given value 1 ≤ ρ ≤ r ≤ min{n, d}.

We partition the proof into four parts.

Proof of r(M) ≤ r: One can write M as a sum of r matrices, each having a non-negative
rank of one: for each non-zero row, consider a component matrix comprising that row and
zeros elsewhere. Consequently, we also have r(M) ≤ r. We have thus established that the
non-negative rank of this matrix equals exactly r.

Proof of r(M) ≥ r: Towards the claim regarding the non-negative rank, observe that the
(normal) rank of M∗ equals r. Since the rank of any matrix is a lower bound on its non-
negative rank, we have that r(M) ≥ r.

Proof of ρ(M) ≤ ρ: Observe that the (n × d) matrix with Jr−ρ+1 as its top-left submatrix
and 0 elsewhere has a permutation-rank of 1. Moreover, any (n × d) matrix with exactly
one entry as 1 and the remaining entries 0 also has a permutation-rank of 1, and hence a
(n× d) matrix with Iρ−1 as its submatrix and zeros elsewhere has a permutation-rank of at
most (ρ− 1). Putting these arguments together, we obtain the bound ρ(M) ≤ ρ.

Proof that ρ(M) ≥ ρ: Suppose that M =
∑ρ(M)

`=1 M (`) for some M (1), . . . ,M (ρ) ∈ CPR(1).

First observe that for every ` ∈ [M (ρ)], we have M (`) ∈ CPR(1) ⊂ [0, 1]n×d, and therefore

M
(`)
ij ≥ 0. This observation then implies that for any (i, j) ∈ [n] × [d], we must have the

relation

Mij = 0 ⇒ M
(`)
ij = 0 for every ` ∈ [ρ(M)].

Secondly, observe that the matrix

I2×2 =

[
1 0
0 1

]
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does not belong to CPR(1). It
It follows that any matrix containing I2×2 as a submatrix cannot belong to the set CPR(1).

It further follows that for any positive integer k, the matrix Ik×k must have a permutation
rank of at least k. Finally, observe that the matrix M defined earlier contains Iρ×ρ as its
submatrix, given by the intersection of rows {r − ρ, . . . , r} with the columns {r − ρ, . . . , r}.
It follows that M must have a permutation rank of at least ρ, thereby proving the claim.

5.5.5 Proof of Proposition 6: Bias of non-negative-rank fitting
estimator

We assume for ease of exposition that r divides n and d. Otherwise, since r ≤ 1
2

min{n, d},
one may take floors or ceilings and this will change the result only by a constant factors.

First consider the block matrix M ∈ [0, 1]
n
r
× d
r :

M =

[
1 1
1 0

]
, (5.24)

where each of the four blocks is of size ( n
2r
× d

2r
). The following lemma shows that the best

rank-1 approximation to M has a large approximation error:

Lemma 31. For the matrix M defined in (5.24), for any vectors u() ∈ Rn and v() ∈ Rd, it
must be that

|||M − u()v()T |||2F ≥ c
nd

r2
,

where c > 0 is a universal constant.

We use the matrix M defined in (5.24) to build the following block matrix M ′ ∈ CPR(r):

M ′ : =


M 0 · · · 0
0 M · · · 0
...

...
. . .

...
0 0 · · · M

 .
In words, the matrix M ′ is a block-diagonal matrix where the diagonal has r copies of M .

Due to the block diagonal structure of M ′, the singular values of M ′ are simply r copies of
the singular values of its constituent matrix M . Consequently, we have that for any matrix
M̃ ∈ CNR(r):

|||M̃ −M ′|||2F ≥ r(|||M |||2F − |||M |||2op)
(i)

≥ c
nd

r
,

as claimed, where the inequality (i) is a consequence of Lemma 31.
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Proof of Lemma 31 Consider any value i ∈ [ n
2r

] and j ∈ [ d
2r

]. Then we claim that

(Mi,j − [u()v()T ]i,j)
2 + (Mi+ n

2r
,j−[u()v()T ]i+ n

2r
,j)

2 + (Mi,j+ d
2r
− [u()v()T ]i,j+ d

2r
)2

+ (Mi+ n
2r
,j+ d

2r
− [u()v()T ]i+ n

2r
,j+ d

2r
)2 ≥ 0.01. (5.25)

If not, then for the choice of M in (5.24), we must have [u()v()T ]i,j ∈ (0.9, 1.1), [u()v()T ]i+ n
2r
,j ∈

(0.9, 1.1), [u()v()T ]i,j+ d
2r
∈ (0.9, 1.1) and [u()v()T ]i+ n

2r
,j+ d

2r
< 0.1. However, since [u()v()T ]i′,j′ =

u
()
i′ v

()
j′ for every coordinate (i′, j′), we also have

[u()v()T ]i,j × [u()v()T ]i+ n
2r
,j+ d

2r
= [u()v()T ]i+ n

2r
,j × [u()v()T ]i,j+ d

2r
,

which contradicts the required ranges of the individual coordinates.
Summing the bound (5.25) over all values of i ∈ [ n

2r
] and j ∈ [ d

2r
] yields the claimed

result.

5.5.6 Proof of Proposition 7: No “good” convex approximation

Consider any set S and any convex set C. We begin with a key lemma that establishes a
relation between the Hausdorff distance of S from C and a proposed notion of the inherent
convexity of S.

Lemma 32. For any set S ⊆ [0, 1]n×d and any convex set C ⊆ [0, 1]n×d, it must be that

max
{

sup
M∈S

inf
M ′∈C
|||M −M ′|||2F , sup

M ′∈C
inf
M∈S
|||M −M ′|||2F

}
≥ 2

9
sup

M1∈S, M2∈S
inf
M0∈S

|||1
2

(M1 +M2)−M0|||2F. (5.26)

See the end of this section for a proof of this claim.
The left hand side of inequality (5.26) is the Hausdorff distance between the sets S and

C in terms of the squared Frobenius norm The right hand side of the inequality represents
a notion of the inherent convexity of the set S.

With this lemma in place, we now complete the remainder of the proof. To this end, we
set S = CPR(1), and let C be any convex set of [0, 1]-valued (n× d) matrices.

We now construct a pair of matrices M1 ∈ CPR(1) and M2 ∈ CPR(1) that we use to lower
bound the right hand side of (5.26). Define M1 ∈ CPR(1) as

[M1]ij =

{
1 if i ≤ n

2
, j ≤ d

2

0 otherwise,
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and matrix M2 ∈ CPR(1) as

[M2]ij =

{
1 if i > n

2
, j > d

2

0 otherwise.

It follows that the entries of the matrix 1
2
(M1 +M2) are given by:

[
1

2
(M1 +M2)]ij =

{
1
2

if (i ≤ n
2
, j ≤ d

2
) or (i > n

2
, j > d

2
)

0 otherwise.

Now consider any pair of integers (i, j) ∈ [bn/2c]× [bd/2c]. Then the (2×2) submatrix of
1
2
(M1 +M2) formed by its entries (i, j), (i+dn/2e, j), (i, j+dd/2e) and (i+dn/2e, j+dd/2e)

equals [
1
2

0
0 1

2

]
.

It is easy to verify that there is a constant c > 0 such that the squared Frobenius norm
distance between this rescaled identity matrix and any (2×2) matrix in CPR(1) is at least c.
Since this argument holds for any choice of (i, j) ∈ [bn/2c]× [bd/2c], summing up the errors
across each of these sets of entries yields

|||1
2

(M1 +M2)−M |||2F ≥ c′nd, for every matrix M ∈ CPR(1),

where c′ > 0 is a universal constant. Finally, substituting this bound in Lemma 32 yields
the claimed result.

It remains to prove Lemma 32.

Proof of Lemma 32. For the given sets S and C, let dHaus denote the Hausdorff distance
between the two sets in the squared Frobenius norm, that is,

dHaus(S,C) : = max
{

sup
M∈S

inf
M ′∈C

|||M −M ′|||2F , sup
M ′∈C

inf
M∈S
|||M −M ′|||2F

}
Consider any matrices M1 ∈ S and M2 ∈ S. From the definition of dHaus, we know that

there exist matrices M̃1 ∈ C and M̃2 ∈ C such that

|||Mi − M̃i|||2F ≤ dHaus(S,C), for i ∈ {1, 2}. (5.27)

Since C is a convex set, we also have 1
2
(M̃1 + M̃2) ∈ C. Then from the definition of dHaus, we

also know that there exists a matrix M0 ∈ S such that

|||1
2

(M̃1 + M̃2)−M0|||2F ≤ dHaus(S,C). (5.28)

Finally, applying the triangle inequality to the bounds (5.27) and (5.28) yields

|||1
2

(M1 +M2)−M0|||2F ≤ 3|||1
2

(M̃1 + M̃2)−M0|||2F +
3

4
|||M1 − M̃1|||2F +

3

4
|||M2 − M̃2|||2F

≤ 9

2
dHaus(S,C).
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5.5.7 Proof of Proposition 8: Necessary condition for unique
decomposition

Suppose there exists a coordinate pair (i, j) such the stated condition is violated. Then there
must exist two distinct values `1 ∈ [ρ] and `2 ∈ [ρ] that satisfy the following three conditions:

(a) M
(`1)
ij > 0 and M

(`2)
ij > 0,

(b) M
(`1)
ij is distinct from all other entries in M (`1), and

(c) M
(`2)
ij is distinct from all other entries in M (`2).

In addition, the fact that M
(`1)
ij + M

(`2)
ij ∈ (0, 1) for every coordinate (i, j), along with

condition (a) above, imply a fourth condition:

(d) M
(`1)
ij ∈ (0, 1) and M

(`2)
ij 6= 1.

Now, conditions (b)–(d) in tandem imply the existence of some value ε > 0 such that all
of the following properties hold:
(i) (M

(`1)
ij + ε) ∈ [0, 1],

(ii) (M
(`2)
ij − ε) ∈ [0, 1], and

(iii) setting the (i, j)th entries of the matrices M (`1) and M
(`2)
ij as (M

(`1)
ij + ε) and (M

(`2)
ij − ε)

respectively does not change the ordering of the entries within matrices M (`1) and M (`2).

As a result of properties (i)–(iii), the decomposition where M (`1) and M (`2) are replaced
by these new matrices with replaced (i, j)th entry is a different, valid permutation-rank
decomposition of M∗.

5.A Appendix: Alternative interpretation of the

non-negative rank model

In the non-negative rank model described in the introduction, one may wonder why the
affinity of a user to a movie conditioned on a feature must be modeled as the product
u

(`)
i v

(`)
j , where u

(`)
i is user i’s affinity for feature ` and v

(`)
j is movie j’s connection to feature

`. Secondly, one may also wonder why the net affinity of a user to a movie is the sum of the
affinities across the features

∑r
`=1 u

(`)
i v

(`)
j . These two modeling assumptions may sometimes

be confusing, and hence in what follows, we present an alternative interpretation of the low
non-negative rank model for the recommender systems application.

Consider any feature ` ∈ [r]. The affinities of users towards movies conditioned on this

feature is a matrix X(`) ∈ [0, 1]n×d, whose (i, j)th entry X
(`)
ij is the probability that user i

likes movie j when asked to judge only based on feature `. The matrix X(`) is assumed to
have a (non-negative) rank of 1.

Now, every user is assumed to have his/her own way of weighing features to decide which

movies he/she likes. Specifically, any user i ∈ [n] is associated to values α
(1)
i , . . . , α

(r)
i such

that α
(`)
i ≥ 0 for every ` ∈ [r] and

∑r
`=1 α

(`)
i = 1, where for any i and `, the value α

(`)
i
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represents the weight that user i puts on feature `. Then the probability that user i likes
any movie j is assumed to be the convex combination

r∑
`=1

α
(`)
i X

(`)
ij .

This completes the description of the model. Let us now verify that the resulting user-
movie matrix has a non-negative rank of r. Since X(`) has a non-negative rank of 1, we can
write X(`) = u(`)(v(`))T for some vectors u(`) and v(`). Then the ith row of the net user-movie

matrix equals
∑r

`=1 α
(`)
i u

(`)
i (v(`))T , and hence the net user-movie matrix equals

r∑
`=1

ũ(`)(v(`))T , where ũ(`) =

α
(`)
1 u

(`)
1

...

α
(`)
n u

(`)
n

 .
This completes the alternative description of the non-negative rank model.

One can observe that the restriction
∑r

`=1 α
(`)
i = 1 makes this model slightly more re-

strictive than the non-negative rank model described earlier in the main text. However, our
lower bounds (Theorem 14(b)) on the risk for the non-negative rank model continue to apply
to this model as well.
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Part II

Incentives: Unique Multiplicative
Mechanisms
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Chapter 6

Double or Nothing

“Life may appear like a gamble. Although it is not very
much so.”

– Charles Darwin

6.1 Introduction

Complex machine learning tools such as deep learning are gaining increasing popularity and
are being applied to a wide variety of problems. These tools require large amounts of labeled
data [38, 62, 101, 205]. These large labeling tasks are being performed by coordinating
crowds of semi-skilled workers through the Internet. This is known as crowdsourcing. Gen-
erating large labeled data sets through crowdsourcing is inexpensive and fast as compared
to employing experts. Furthermore, given the current platforms for crowdsourcing such as
Amazon Mechanical Turk and many others, the initial overhead of setting up a crowdsourc-
ing task is minimal. Crowdsourcing as a means of collecting labeled training data has now
become indispensable to the engineering of intelligent systems. The crowdsourcing of labels
is also often used to supplement automated algorithms, to perform the tasks that are too
difficult to accomplish by machines alone [14, 80, 124, 139, 259].

Most workers in crowdsourcing are not experts. As a consequence, labels obtained from
crowdsourcing typically have a significant amount of error [119, 260, 261]. It is not surprising
that there is significant emphasis on having higher quality labeled data for machine learning
algorithms, since a higher amount of noise implies requirement of more labels for obtaining
the same accuracy in practice. Moreover, several algorithms and settings are not very tolerant
of data that is noisy [10, 99, 153, 157]; for instance, the paper [153] concludes that “a range
of different types of boosting algorithms that optimize a convex potential function satisfying
mild conditions cannot tolerate random classification noise.” Recent efforts have focused
on developing statistical techniques to post-process the noisy labels in order to improve
its quality (see Chapter 4 for a detailed discussion). However, when the inputs to these
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Is this the Golden Gate Bridge?

Yes
No

a b Is this the Golden Gate Bridge?

Yes
No
I’m not sure

Figure 6.1: Different interfaces for a task that requires the worker to answer the question “Is this
the Golden Gate Bridge?”: (a) the conventional interface; (b) with an option to skip.

algorithms are very erroneous, it is difficult to guarantee that the processed labels will be
reliable enough for subsequent use by machine learning or other applications. In order
to avoid “garbage in, garbage out”, we take a complementary approach to this problem:
cleaning the data at the time of collection.

We consider crowdsourcing settings where the workers are paid for their services, such as
in the popular crowdsourcing platforms of Amazon Mechanical Turk (mturk.com), Crowd-
flower (crowdflower.com) and other commercial platforms, as well as internal crowdsourcing
platforms of companies such as Google, Facebook and Microsoft. These commercial plat-
forms have gained substantial popularity due to their support for a diverse range of tasks
for machine learning labeling, varying from image annotation and text recognition to speech
captioning and machine translation. We consider problems that are objective in nature,
that is, have a definite answer. Figure 6.1a depicts an example of such a question where the
worker is shown a set of images, and for each image, the worker is required to identify if the
image depicts the Golden Gate Bridge.

Our approach builds on the simple insight that in typical crowdsourcing setups, workers
are simply paid in proportion to the amount of tasks they complete. As a result, workers
attempt to answer questions that they are not sure of, thereby increasing the error rate
of the labels. For the questions that a worker is not sure of, her answers could be very
unreliable [108, 119, 260, 261]. To ensure acquisition of only high-quality labels, we wish
to encourage the worker to skip the questions about which she is unsure, for instance, by
providing an explicit “I’m not sure” option for every question (see Figure 6.1b); we will
thus often refer to this setting as the skip-based setting. Given this additional option, one
must also ensure that the worker is indeed incentivized to skip the questions that she is not
confident about, and to attempt the questions for which she is sure enough. The goal is to
design payment mechanisms that incentivize the worker to respond in this manner. As we
will see later, this significantly improves the aggregate quality of the labels that are input
to the machine learning algorithms. We term any payment mechanism that incentivizes the
worker to do so as an “incentive compatible” mechanism.

In addition to incentive compatibility, preventing spammers is another desirable require-
ment from incentive mechanisms in crowdsourcing. Spammers are workers who answer ran-
domly without regard to the question being asked, in the hope of earning some free money,

mturk.com
crowdflower.com
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and are known to exist in large numbers on crowdsourcing platforms [17, 119, 260, 261]. The
presence of spammers can significantly affect the performance of any machine learning algo-
rithm that is trained on this data. It is thus of interest to deter spammers by paying them as
low as possible. An intuitive objective, to this end, is to ensure a minimum possible payment
to spammers who answer randomly. For instance, in a task with binary-choice questions, a
spammer is expected to have half of the attempted answers incorrect; one may thus wish to
set the payment to its minimum possible value if half or more of the attempted answers are
wrong. In this chapter, however, we impose strictly and significantly weaker requirement, and
then show that there is one and only one incentive-compatible mechanism that can satisfy
this weak requirement. Our requirement is referred to as the “no-free-lunch” axiom. It says
that if all the questions attempted by the worker are answered incorrectly, then the payment
must be the minimum possible. We term this condition the “no-free-lunch” axiom.

We propose a payment mechanism for the aforementioned setting (“incentive compatibil-
ity” plus “no-free-lunch”), and show that surprisingly, this is the only possible mechanism.
We also show that additionally, our mechanism makes the smallest possible payment to
spammers among all possible incentive compatible mechanisms that may or may not satisfy
the no-free-lunch axiom. Interestingly, our payment mechanism takes a multiplicative form:
the evaluation of the worker’s response to each question is a certain score, and the final
payment is a product of these scores. This mechanism has additional appealing features in
that it is simple to compute, and is also simple to explain to the workers. Our mechanism is
applicable to any type of objective questions, including multiple choice annotation questions,
transcription tasks, etc. We also demonstrate via empirical evaluations that our theoretical
guarantees do translate to practice.

Related literature. The framework of “strictly proper scoring rules” [24, 94, 137, 216]
provides a general theory for eliciting information for settings where this information can
subsequently be verified by the mechanism designer, for example, by observing the true value
some time in the future. In our work, this verification is performed via the presence of some
“gold standard” questions in the task. Consequently, our mechanisms can also be called
“strictly proper scoring rules”. It is important to note that the framework of strictly proper
scoring rules, however, provides a large collection of possible mechanisms and does not guide
the choice of a specific mechanism from this collection [94]. In this work, we show that for the
crowdsourcing setups considered, under a very mild condition we term the “no-free-lunch”
axiom, the mechanism proposed in this chapter is the one and only strictly proper scoring
rule.

Interestingly, proper scoring rules have another interesting connection with machine
learning techniques: to quote the paper [28], “proper scoring rules comprise most loss func-
tions currently in use: log-loss, squared error loss, boosting loss, and as limiting cases cost-
weighted misclassification losses.” The present chapter does not investigate this aspect of
proper scoring rules, and we refer the reader to the papers [27, 28, 164] for more details.

In this chapter, we assume the existence of some ‘gold standard’ questions whose an-



CHAPTER 6. DOUBLE OR NOTHING 181

swers are known apriori to the system designer. As a result, the payment to a worker is
determined solely by her own work. There is a parallel line of literature that explores the
design of mechanisms that operate in the absence of any gold standard questions. The idea
in the aforementioned line of literature is to reward the agents based on certain criteria
that compares certain elicited data from the agents with each other, and typically involves
asking agents to predict other agents’ responses. The mechanisms designed often provide
weaker guarantees (such as that of truth-telling being a Nash equilibrium) due to the ab-
sence of a gold standard answer to compare with. This line of literature includes work on
peer-prediction [57, 171], the Bayesian truth serum [188] and prediction markets [50, 267],
and related subsequent works [115].

The design of statistical inference algorithms for denoising the data obtained from workers
is an active topic of research; see Chapter 4 for more details. In addition, several machine
learning algorithms accommodating errors in the data have also been designed [5, 36, 47,
146]. These algorithms are typically oblivious to the elicitation procedure. Our work nicely
complements this line of research in that these inference algorithms may now additionally
employ the higher quality data and the specific structure of the elicited data for an improved
denoising efficiency.

Another relevant problem in crowdsourcing is that of choosing which workers to hire or
efficiently matching workers to tasks, and such problems are studied in the papers [4, 102,
271, 277] under different contexts. Our work assumes that a worker is already matched, and
focuses on incentivizing that worker to respond in a certain manner. A recent line of work
has focussed on elicitation of data from multiple agents in order to perform certain specific
estimation tasks [33, 61, 75, 156]. In contrast, our goal is to ensure that workers censor their
own low-quality (raw) data, without restricting our attention to any specific downstream
algorithm or task.

Organization. The organization of this chapter is as follows. We present the formal prob-
lem setting in Section 6.2. In Section 6.3 we consider the skip-based setting: We present our
proposed mechanism and show that it is the only mechanism which satisfies the requirements
discussed above. In Section 6.4 we evaluate the proposed schemes via synthetic simulations.
We discuss various modeling choices made in our work as well as direction for future research
in Section 6.5. In Section 6.6 we present proofs of our theoretical results.

This chapter also contains an appendix (Section 6.A) in which we prove that imposing
a requirement that is only slightly stronger than our proposed no-free-lunch axiom leads to
impossibility results. Subsequently in Chapter 7 (Section 7.4), we also present experiments
using data from Amazon Mechanical Turk that reveal significant improvements in the quality
of data using our skip-based setting and multiplicative mechanisms.
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6.2 Problem setting

In the crowdsourcing setting that we consider, one or more workers perform a task, where
a task consists of multiple questions. The questions are objective, by which we mean, each
question has precisely one correct answer. Examples of objective questions include multiple-
choice classification questions such as Figure 6.1, questions on transcribing text from audio
or images, etc.

For any possible answer to any question, we define the worker’s confidence about an
answer as the probability, according to her belief, of this answer being correct. In other
words, one can assume that the worker has (in her mind) a probability distribution over
all possible answers to a question, and the confidence for an answer is the probability of
that answer being correct. As a shorthand, we also define the confidence about a question
as the confidence for the answer that the worker is most confident about for that question.
We assume that the worker’s confidences for different questions are independent. In the
interface we consider, for each question, the worker can either choose to ‘skip’ the question
or provide an answer (Figure 6.1b). Our goal is that for every question, the worker should
be incentivized to skip if her confidence for that question is below a certain pre-defined
threshold, otherwise select the answer that she is most confident about.

Let N denote the total number of questions in the task. Among these questions, we
assume the existence of some “gold standard” questions, that is, a set of questions whose
answers are known to the requester. Let G (1 ≤ G ≤ N) denote the number of gold
standard questions. The G gold standard questions are assumed to be distributed uniformly
at random in the pool of N questions (of course, the worker does not know which G of
the N questions form the gold standard). The payment to a worker for a task is computed
after receiving her responses to all the questions in the task. The payment is based on the
worker’s performance on the gold standard questions. Since the payment is based on known
answers, the payments to different workers do not depend on each other, thereby allowing
us to consider the presence of only one worker without any loss in generality.

Let x1, . . . , xG denote the evaluations of the answers that the worker gives to the G gold
standard questions, and let f denote the scoring rule, i.e., a function that determines the
payment to the worker based on these evaluations x1, . . . , xG. In the skip-based setting we
consider in this chapter, we have xi ∈ {−1, 0,+1} for all i ∈ [G]. Here, “0” denotes that the
worker skipped the question, “−1” denotes that the worker attempted to answer the question
and that answer was incorrect, and “+1” denotes that the worker attempted to answer the
question and that answer was correct. The payment function is f : {−1, 0,+1}G → R.

The payment is further associated to two parameters, αmax and αmin. The parameter
αmax denotes the budget, i.e., the maximum amount that is paid to any individual worker
for this task:

max
x1,...,xG

f(x1, . . . , xG) = αmax.
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The amount αmax is thus the amount of compensation paid to a perfect worker for her work.
Further, one may often also have the requirement of paying a certain minimum amount to
any worker. The parameter αmin (≤ αmax) denotes this minimum payment: the payment
function must also satisfy

min
x1,...,xG

f(x1, . . . , xG) ≥ αmin.

For instance, crowdsourcing platforms today allow payments to workers, but do not allow
imposing penalties: this condition gives αmin = 0.

We assume that the worker attempts to maximize her overall expected payment. In
what follows, the expression ‘the worker’s expected payment’ will refer to the expected
payment from the worker’s point of view, and the expectation will be taken with respect
to the worker’s confidences about her answers and the uniformly random choice of the G
gold standard questions among the N questions in the task. A payment function f is called
incentive compatible if the expected payment of the worker under this payment function is
strictly maximized when the worker answers in the manner desired.1

We now explain what we mean by the phrase “manner desired” in the context of our
skip-based setting. Let T ∈ (0, 1) be some predefined “threshold” value. The goal is to
design payment mechanisms that incentivize the worker to skip the questions for which her
confidence is lower than T , and answer those for which her confidence is higher than T . 2

Moreover, for the questions that she attempts to answer, she must be incentivized to select
the answer that she believes is most likely to be correct. The value of T is chosen apriori
based on factors such as budget constraints, the targeted quality of labels, and/or the choice
of the algorithm used to subsequently aggregate the responses of multiple workers. In this
chapter, we assume that the value of the threshold T is specified to us.

In the remainder of this section, we formally define the concepts of the worker’s expected
payment and incentive compatibility; the reader interested in understanding the chapter at
a higher level may skip directly to the next section without loss in continuity.

Let Ω denote the set of options for each question. We assume that Ω is a finite set, for
instance, the set {Yes,No} for a task with binary-choice questions, or the set of all strings
of at most a certain length for a task with textual responses. Let Q ∈ [0, 1]|Ω|×N denote the
beliefs of a worker for the N questions asked. Specifically, for any question i ∈ [N ] and any
option ω ∈ Ω, let Qω,i represent the probability, according to the worker’s belief, that option
ω is the correct answer to question i. Then from the law of total probability, any valid Q
must have

∑
ω∈Ω Qω,i = 1 for every i ∈ [N ]. The value of Q is unknown to the mechanism.

Let us first define the notion of the expected payment (from the worker’s point of view)
for any given response of the worker to the questions. For any question i ∈ [N ], define a
variable ξi ∈ {0, 1} that is set as 0 if the worker skips question i and is set as 1 if the worker

1Such a notion of incentive compatibility is often called “strict incentive compatibility”; we drop the
prefix term “strict” for brevity.

2In the event that the confidence about a question is exactly equal to T , the worker may choose to answer
or skip.
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attempts question i. Further, for every question i ∈ [N ] such that ξi 6= 0, let ωi ∈ Ω denote
the option selected by the worker; whenever ξi = 0, indicating a skip, we let ωi take any
arbitrary value in Ω. Furthermore, let pi = Qωi,i denote the probability, according to the
worker’s belief, that the chosen option ωi is the correct answer to question i. For notational
purposes, we also define a vector E = (ε1, . . . , εG) ∈ {−1, 1}G. Then for the given responses,
for the worker beliefs Q, and under payment mechanism f , the worker’ expected payment
ΓQ,f : ({0, 1} × Ω)N → R is given by the expression:

ΓQ,f (ξ1, ω1, . . . , ξN , ωN)

=
1(
N
G

) ∑
(j1,...,jG)
⊆{1,...,N}

∑
E∈{−1,1}G

(
f(ε1ξj1 , . . . , εGξjG)

G∏
i=1

(pji)
1+εi
2 (1− pji)

1−εi
2

)
. (6.1)

In the expression (6.1), the outermost summation corresponds to the expectation with respect
to the randomness arising from the unknown positions of the gold standard questions. The
inner summation corresponds to the expectation with respect to the worker’s beliefs about
the correctness of her responses. Note that the right hand side of (6.1) implicitly depends
on (ω1, . . . , ωN) through the values (p1, . . . , pN). Also note that for every question i such
that ξi = 0, the right hand side of (6.1) does not depend on the values of ωi and pi; this is
because the choice ξi = 0 of skipping question i implies that the worker did not select any
particular option.

We will now use the the definition of the expected payment of the worker to define the
notion of incentive compatibility. To this end, for any valid probabilities Q, let A(Q) ⊆
({0, 1} × Ω)N denote an associated set of “desired” responses. By this we mean that every
a ∈ ({0, 1} × Ω)N represents a possible response to the set of N questions, and the goal is
to incentivize the worker to provide any one response in the set A(Q). Then a mechanism
f is termed incentive compatible if

ΓQ,f (a) > ΓQ,f (a
′) for every a ∈ A(Q), every a′ /∈ A(Q), and every valid Q.

The goal is to design mechanisms that are incentive compatible, that is, incentivize the
workers to respond in the desired manner that is discussed above.

6.3 Main results

In this section we present our main results for the skip-based setting that is considered in
this chapter.

6.3.1 The no-free-lunch axiom

Recall from the previous that the goal is to design an incentive compatible mechanism for
the skip-based setting. In order for practical deployment, we must somehow decide on any
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one particular mechanism. However, the space of all possible mechanisms for this problem
may be rather wide. Thus in order to narrow down our search, we begin by imposing the
following additional simple and natural requirement:

Axiom 1 (No-free-lunch Axiom). If all the answers attempted by the worker in the gold
standard are wrong, then the payment is the minimum possible. More formally, f(x1, . . . , xG) =
αmin for every evaluation (x1, . . . , xG) such that 0 <

∑G
i=1 1{xi 6= 0} =

∑G
i=1 1{xi = −1}.

One may expect a payment mechanism to impose the restriction of minimum payment
to spammers who answer randomly. For instance, in a task with binary-choice questions,
a spammer is expected to have 50% of the attempted answers incorrect; one may thus
wish to set a the minimum possible payment if 50% or more of the attempted answers
were incorrect. The no-free-lunch axiom which we impose is however a significantly weaker
condition, mandating minimum payment if all attempted answers are incorrect.

6.3.2 Payment mechanism

We now present our proposed payment mechanism in Algorithm 1.

Algorithm 1 Incentive mechanism for skip-based setting
• Inputs:

I Threshold T

I Budget parameters αmax and αmin

I Evaluations (x1, . . . , xG) ∈ {−1, 0,+1}G of the worker’s answers to the G gold
standard questions

• Set α−1 = 0, α0 = 1, α+1 = 1
T

• The payment is

f(x1, . . . , xG) = κ
G∏
i=1

αxi + αmin,

where κ = (αmax − αmin)TG.

The proposed mechanism has a multiplicative form: each answer in the gold standard is
given a score based on whether it was correct (score = 1

T
), incorrect (score = 0) or skipped

(score = 1), and the final payment is simply a product of these scores (scaled and shifted by
constants). The mechanism is easy to describe to workers: For instance, if T = 1

2
, G = 3,

αmax = 80 cents and αmin = 0 cents, then the description reads:

“The reward starts at 10 cents. For every correct answer in the 3 gold standard
questions, the reward will double. However, if any of these questions are answered
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incorrectly, then the reward will become zero. So please use the ‘I’m not sure’ option
wisely.”

Observe how this payment rule is similar to the popular ‘double or nothing’ paradigm [182].
The algorithm makes a minimum payment if one or more attempted answers in the gold

standard are wrong. Note that this property is significantly stronger than the no-free-lunch
axiom which we originally required, where we wanted a minimum payment only when all
attempted answers were wrong. Surprisingly, as we prove shortly, Algorithm 1 is the only
incentive-compatible mechanism that satisfies no-free-lunch.

The following theorem shows that our mechanism is indeed guaranteed to satisfy the
stated requirements.

Theorem 16. The mechanism of Algorithm 1 is incentive-compatible and satisfies the no-
free-lunch axiom.

We see that this mechanism thus incentivizes a worker to skip the questions for which
her confidence is below T , while answering those for which her confidence is greater than T .
In the latter case, the worker is incentivized to select the answer which she thinks is most
likely to be correct.

6.3.3 Uniqueness of our mechanism

While we started out with a very weak condition of no-free-lunch of that requires a minimum
payment when all attempted answers are wrong, the mechanism proposed in Algorithm 1 is
significantly more strict and pays the minimum amount when any of the attempted answers
is wrong. A natural question that arises is: can we design an alternative mechanism satisfying
incentive compatibility and no-free-lunch that operates somewhere in between? The following
theorem answers this question in the negative.

Theorem 17. The mechanism of Algorithm 1 is the only incentive-compatible mechanism
that satisfies the no-free-lunch axiom.

Theorem 17 gives a strong result despite imposing very weak requirements. To see this,
recall our earlier discussion on deterring spammers, that is, making a low payment to work-
ers who answer randomly. For instance, when the task comprises binary-choice questions,
one may wish to design mechanisms which make the minimum possible payment when the
responses to 50% or more of the questions in the gold standard are incorrect. The no-free-
lunch axiom is a much weaker requirement, and the only mechanism that can satisfy this
requirement is the mechanism of Algorithm 1.

The proof of Theorem 17 is based on the following key lemma, establishing a condition
that any incentive-compatible mechanism must necessarily satisfy. Note that this lemma
does not require the no-free-lunch axiom.
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Lemma 33. Any incentive-compatible mechanism f must satisfy, for every gold standard
question i ∈ {1, . . . , G} and every (y1, . . . , yi−1, yi+1, . . . , yG) ∈ {−1, 0, 1}G−1,

Tf(y1, . . . , yi−1, 1, yi+1, . . . , yG) + (1− T )f(y1, . . . , yi−1,−1, yi+1, . . . , yG)

= f(y1, . . . , yi−1, 0, yi+1, . . . , yG) .

The proof of Lemma 33 is provided in Section 6.6.3 along with the proofs of all other
theoretical results.

6.3.4 Optimality against spamming behavior

As discussed earlier, crowdsourcing tasks, especially those with multiple choice questions,
often encounter spammers who answer randomly without heed to the question being asked.
For instance, under a binary-choice setup, a spammer will choose one of the two options
uniformly at random for every question. A highly desirable objective in crowdsourcing set-
tings is to deter spammers. To this end, one may wish to impose a condition of making the
minimum possible payment when the responses to 50% or more of the attempted questions
in the gold standard are incorrect. A second desirable metric could be to minimize the
expenditure on a worker who simply skips all questions. While the aforementioned require-
ments were deterministic functions of the worker’s responses, one may alternatively wish to
impose requirements that depend on the distribution of the worker’s answering process. For
instance, a third desirable feature would be to minimize the expected payment to a worker
who answers all questions uniformly at random. We now show that interestingly, our unique
multiplicative payment mechanism simultaneously satisfies all these requirements. The re-
sult is stated assuming a multiple-choice setup, but extends trivially to non-multiple-choice
settings.

Theorem 17.R (Distributional). Consider any value A ∈ {0, . . . , G}. Among all incentive-
compatible mechanisms (that may or may not satisfy no-free-lunch), Algorithm 1 pays strictly
the smallest amount to a worker who skips some A of the questions in the the gold standard,
and chooses answers to the remaining (G− A) questions uniformly at random.

Theorem 17.S (Deterministic). Consider any value B ∈ (0, 1]. Among all incentive-
compatible mechanisms (that may or may not satisfy no-free-lunch), Algorithm 1 pays strictly
the smallest amount to a worker who gives incorrect answers to a fraction B or more of the
questions attempted in the gold standard.

We see from this result that the multiplicative payment mechanism of Algorithm 1 thus
possesses very useful properties geared to deter spammers, while ensuring that a good worker
will be paid a high enough amount. To illustrate this point, let us compare the mechanism
of Algorithm 1 with the popular additive class of payment mechanisms.
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Example 3. Consider the popular class of “additive” mechanisms, where the payments to
a worker are added across the gold standard questions. This additive payment mechanism
offers a reward of αmax

G
for every correct answer in the gold standard, αmaxT

G
for every question

skipped, and 0 for every incorrect answer. Importantly, the final payment to the worker is the
sum of the rewards across the G gold standard questions. One can verify that this additive
mechanism is incentive compatible. One can also see that that as guaranteed by our theory,
this additive payment mechanism does not satisfy the no-free-lunch axiom.

Suppose each question involves choosing from two options. Let us compute the payment
that these two mechanisms make under a spamming behavior of choosing the answer randomly
to each question. Given the 50% likelihood of each question being correct, on can compute
that the additive mechanism makes a payment of αmax

2
in expectation. On the other hand,

our mechanism pays an expected amount of only αmax2−G. The payment to spammers thus
reduces exponentially with the number of gold standard questions under our mechanism,
whereas it does not reduce at all in the additive mechanism.

Now, consider a different means of exploiting the mechanism(s) where the worker simply
skips all questions. To this end, observe that if a worker skips all the questions then the
additive payment mechanism will make a payment of αmaxT . On the other hand, the proposed
payment mechanism of Algorithm 1 pays an exponentially smaller amount of αmaxT

G (recall
that T < 1).

6.4 Simulations

In this section, we present synthetic simulations the effects of our setting and our mecha-
nism on the final label quality. Experiments using real-world data from crowdsourcing are
described in Section 7.4 of Chapter 7, where the skip-based setting is compared with the
standard baseline as well as a confidence-based setting that forms the focus of Chapter 7.

In this section, we employ synthetic simulations to understand the effects of various
distributions of the confidences and labeling errors. We consider binary-choice questions in
this set of simulations. Whenever a worker answers a question, her confidence for the correct
answer is drawn from a distribution P independent of all else. We investigate the effects of
the following five choices of the distribution P :

• The uniform distribution on the support [0.5, 1].
• A triangular distribution with lower end-point 0.2, upper end-point 1 and a mode of 0.6.
• A beta distribution with parameter values α = 5 and β = 1.
• The hammer-spammer distribution [117]: uniform on the discrete set {0.5, 1}.
• A truncated Gaussian distribution: a truncation of N (0.75, 0.5) to the interval [0, 1].

We compare (a) the setting where workers attempt every question, with (b) the setting
where workers skip questions for which their confidence is below a certain threshold T . In
this set of simulations, we set T = 0.75. In either setting, we aggregate the labels obtained
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Figure 6.2: Error under different interfaces for synthetic simulations of five distributions of the
workers’ error probabilities.

from the workers for each question via a majority vote on the two classes. Ties are broken
by choosing one of the two options uniformly at random.

Figure 6.2 depicts the results from these simulations. Each bar represents the fraction of
questions that are labeled incorrectly, and is an average across 50,000 trials. (The standard
error of the mean is too small to be visible.) We see that the skip-based setting consistently
outperforms the conventional setting, and the gains obtained are moderate to high depending
on the underlying distribution of the workers’ errors. In particular, the gains are quite
striking under the hammer-spammer model: this result is not surprising since the mechanism
(ideally) screens the spammers out and leaves only the hammers who answer perfectly.

The setup of the simulations described above assumes that the workers confidences equal
the true error probabilities. In practice, however, the workers may have incorrect beliefs. The
setup also assumes that ties are broken randomly; however in practice, ties may be broken
in a more systematic manner by eliciting additional labels for only these hard questions. We
now present a second set of simulations that mitigates these biases. In particular, when a
worker has a confidence of p, the actual probability of error is assumed to be drawn from
a Gaussian distribution with mean p and standard deviation 0.1, truncated to [0, 1]. In
addition, when evaluating the performance of the majority voting procedure, we consider
a tie as having an error of 0.4. Figure 6.3 depicts the results of these simulations. We
observe that the results from these simulations are very similar to those obtained in the
earlier simulation setup of Figure 6.2.
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Figure 6.3: Errors under a model that is a perturbation of the first experiment, where the worker’s
confidence is a noisy version of the true error probability and where ties are considered different
from random decisions.

6.5 Discussion

Given the uniqueness in theory, simplicity, and good empirical performance, we envisage our
‘multiplicative’ mechanisms to be of interest to machine learning researchers and practition-
ers who use crowdsourcing to collect labeled data. In this concluding section, we first discuss
the modeling assumptions that we made in this chapter, followed by a discussion on open
problems.

Modelling assumptions

When forming the model for our problem, as in any other field of theoretical research, we
had to make certain assumptions and choices. In what follows, we discuss the reasons for
the modeling choices we made.

• Use of gold standard questions. We assume the existence of gold standard questions in the
task, i.e., a subset of questions to which the answers are known to the system designer.
The existence of gold standard is commonplace in crowdsourcing platforms [45, 143].

• Error rate vs. sample size under skips Consider the skip-based setting. As discussed
earlier, allowing the workers to skip questions they are unsure of reduces the error rates in
the data obtained. However, the higher data quality trades off with the sample size, i.e.,
the amount of (non-skipped) data obtained is lower. In our simulations in this chapter as
well as in the experiments discussed in the next chapter, we see that the tradeoff is very
favorable towards our skip-based setting in that we see a significant drop in the aggregate
error with the use of our skip-based interface and mechanism.
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• Workers aiming to maximize their expected payments: We assume that the workers aim
to maximize their expected payments. In many other problems in game theory, one often
makes the assumption that people are “risk-averse”, and aim to maximize the expected
value of some “utility function” of their payments. However in the context of the crowd-
sourcing settings we consider here, we believe that the assumption of workers maximizing
their expected payments is a perfectly reasonable assumption. The reason is that each
such task in crowdsourcing lasts for a handful of minutes and is worth a few tens of
cents. Workers typically perform tens to hundreds of tasks per day, and consequently
their empirical hourly wages very quickly converge to their expectation.

• Workers knowing their confidences: We understand that in practice the workers will have
noisy or granular estimates of their own beliefs. The mathematical assumption of workers
knowing their precise confidences is an idealization intended for mathematical tractability.
This is one of the reasons why we only elicit a quantized value of the workers’ beliefs (in
terms of skipping or choosing one of a finite number of confidence levels), and not try to
ask for a precise value.

• Eliciting a quantized version of the beliefs: We do not directly attempt to elicit the values
of the beliefs of the workers, but instead ask them to indicate only a quantization by means
of either attempting or skipping the question. In the next chapter, we extend our results
to a finer quantization where we also ask for the confidence level of the worker in terms of
a finite number of choices such as {“I’m not sure”, “moderately sure”, “absolutely sure”}.
We prefer this quantization to direct assessment to real-valued probability, motivated by
the extensive literature in psychology on the coarseness of human perception and process-
ing (e.g., [114, 169, 220, 238]) establishing that humans are more comfortable at providing
quantized responses. This notion is verified by experiments on Amazon Mechanical Turk
in the paper [220] where it is observed that people are more consistent when giving or-
dinal answers (comparing pairs of items) as opposed to when they are asked for numeric
evaluations.

Open problems

We discuss two sets of open problems, one from the practical perspective and another on the
theoretical front.

First, in the chapter, we assumed that the number of total questions N in a task, the
number of gold standard questions G, and the threshold T for skipping (or the number and
thresholds of the different confidence levels) were provided to the mechanism. While these
parameters may be chosen by hand by a system designer based on her own experience, a
more principled design of these parameters is an important question. The choices for these
parameters may have to be made based on certain tradeoffs. For instance, a higher value of
G reduces the variance in the payments but uses more resources in terms of gold standard
questions. Or for instance, more number of threshold levels L would increase the amount of
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information obtained about the workers’ beliefs, but also increase the noise in the workers’
estimates of her own beliefs.

A second open problem is the design of inference algorithms that can exploit the specific
structure of the skip-based setting. There are several algorithms and theoretical analyses in
the literature for aggregating data from multiple workers in the baseline setting (see Chap-
ter 4). A useful direction of research in the future is to develop algorithms and theoretical
guarantees that incorporate information about the workers’ confidences. For instance, for
the skip-based setting considered in this chapter, the missing labels are not missing “at
random” but are correlated with the difficulty of the task. Designing algorithms that can
exploit this information judiciously (e.g., via confidence-weighed worker/item constraints in
the minimax entropy method of [276]) is a useful direction of future research.

6.6 Proofs

In this section, we prove the claimed theoretical results whose proofs are not included in the
main text of the chapter.

The property of incentive-compatibility does not change upon any shift of the mechanism
by a constant value or any scaling by a positive constant value. As a result, for the purposes
of these proofs, we can assume without loss of generality that αmin = 0.

6.6.1 Proof of Theorem 16: Our mechanism works

The proposed payment mechanism satisfies no-free-lunch since the payment is αmin when
there are one or more wrong answers in the gold standard. It remains to show that the
mechanism is incentive compatible. To this end, observe that the property of incentive-
compatibility does not change upon any shift of the mechanism by a constant value or any
scaling by a positive constant value. As a result, for the purposes of this proof, we can
assume without loss of generality that αmin = 0.

We will first assume that, for every question that the worker does not skip, she selects
the answer which she believes is most likely to be correct. Under this assumption we will
show that the worker is incentivized to skip the questions for which her confidence is smaller
than T and attempt if it is greater than T . Finally, we will show that the mechanism
indeed incentivizes the worker to select the answer which she believes is most likely to be
correct for the questions that she doesn’t skip. In what follows, we will employ the notation
κ = αmaxT

G.
Let us first consider the case when G = N . Let p1, . . . , pN be the confidences of the worker

for questions 1, . . . , N respectively. Further, let p(1) ≥ · · · ≥ p(m) > T > p(m+1) ≥ · · · ≥ p(N)

be the ordered permutation of these confidences (for some number m). Let {(1), . . . , (N)}
denote the corresponding permutation of the N questions. If the mechanism is incentive
compatible, then the expected payment received by this worker should be maximized when
the worker answers questions (1), . . . , (m) and skips the rest. Under the mechanism proposed
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in Algorithm 1, this action fetches the worker an expected payment of

κ
p(1)

T
· · ·

p(m)

T
.

Alternatively, if the worker answers the questions {i1, . . . , iβ}, with pi1 > · · · > piν > T >
piν+1 > · · · > piβ for some value ν, then the expected payment is

pi1 · · · piβ
κ

T β
= κ

pi1
T
· · ·

piβ
T

(6.2)

≤ κ
pi1
T
· · · piν

T
(6.3)

≤ κ
p(1)

T
· · ·

p(m)

T
(6.4)

where inequality (6.3) holds because
pij
T
≤ 1 ∀ j > ν and holds with equality only when

β = ν. Inequality (6.4) is a result of
p(j)
T
≥ 1 ∀ j ≤ m and holds with equality only when

ν = m. It follows that the expected payment is (strictly) maximized when i1 = (1), . . . , iβ =
(m) as required.

The case of G < N is a direct consequence of the result for G = N , as follows. When
G < N , from a worker’s point of view, the set of G questions is distributed uniformly
at random in the superset of N questions. However, for every set of G questions, the
relations (6.2), (6.3), (6.4) and their associated equality/strict-inequality conditions hold.
The expected payment is thus (strictly) maximized when the worker answers the questions
for which her confidence is greater than T and skips those for which her confidence is smaller
than T .

One can see that for every question that the worker chooses to answer, the expected
payment increases with an increase in her confidence. Thus, the worker is incentivized to
select the answer that she thinks is most probably correct.

Finally, since κ = αmaxT
G > 0 and T ∈ (0, 1), the payment is always non-negative and

satisfies the αmax-budget constraint.

6.6.2 Proof of Theorem 17: Uniqueness of our mechanism

The property of incentive-compatibility does not change upon any shift of the mechanism
by a constant value or any scaling by a positive constant value. As a result, for the purposes
of this proof, we can assume without loss of generality that αmin = 0.

We will first prove that any incentive-compatible mechanism satisfying the no-free-lunch
axiom must make a zero payment if one or more answers in the gold standard are incorrect.
The proof proceeds by induction on the number of skipped questions S in the gold standard.
Let us assume for now that in the G questions in the gold standard, the first question is
answered incorrectly, the next (G − 1 − S) questions are answered by the worker and have
arbitrary evaluations, and the remaining S questions are skipped. The proof proceeds by an
induction on S. Suppose S = G − 1. In this case, the only attempted question is the first
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question and the answer provided by the worker to this question is incorrect. The no-free-
lunch axiom necessitates a zero payment in this case, thus satisfying the base case of our
induction hypothesis. Now we prove the hypothesis for some S under the assumption of it
being true when the number of questions skipped in the gold standard is (S + 1) or more.
From Lemma 33 (with i = G− S − 1) we have

Tf(−1, y2, . . . , yG−S−2, 1, 0, . . . , 0) + (1− T )f(−1, y2, . . . , yG−S−2,−1, 0, . . . , 0)

= f(−1, y2, . . . , yG−S−2, 0, 0, . . . , 0)

= 0,

where the final equation is a consequence of our induction hypothesis: The induction hy-
pothesis is applicable since f(−1, y2, . . . , yG−S−2, 0, 0, . . . , 0) corresponds to the case when
the last (S + 1) questions are skipped and the first question is answered incorrectly. Now,
since the payment f must be non-negative and since T ∈ (0, 1), it must be that

f(−1, y2, . . . , yG−S−2, 1, 0, . . . , 0) = 0,

and

f(−1, y2, . . . , yG−S−2,−1, 0, . . . , 0) = 0.

This completes the proof of our induction hypothesis. Furthermore, each of the arguments
above hold for any permutation of theG questions, thus proving the necessity of zero payment
when any one or more answers are incorrect.

We will now prove that when no answers in the gold standard are incorrect, the payment
must be of the form described in Algorithm 1. Let κ be the payment when all G questions in
the gold standard are skipped. Let C be the number of questions answered correctly in the
gold standard. Since there are no incorrect answers, it follows that the remaining (G − C)
questions are skipped. Let us assume for now that the first C questions are answered correctly
and the remaining (G−C) questions are skipped. We repeatedly apply Lemma 33, and the
fact that the payment must be zero when one or more answers are wrong, to get

f(1, . . . , 1︸ ︷︷ ︸
C−1

, 1, 0, . . . , 0︸ ︷︷ ︸
G−C

) =
1

T
f(1, . . . , 1︸ ︷︷ ︸

C−1

, 0, 0, . . . , 0︸ ︷︷ ︸
G−C

)− 1− T
T

f(1, . . . , 1︸ ︷︷ ︸
C−1

,−1, 0, . . . , 0︸ ︷︷ ︸
G−C

)

=
1

T
f(1, . . . , 1︸ ︷︷ ︸

C−1

, 0, 0, . . . , 0︸ ︷︷ ︸
G−C

)

...

=
1

TC
f(0, . . . , 0︸ ︷︷ ︸

G

)

=
1

TC
κ .
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In order to abide by the budget, we must have the maximum payment as αmax = κ 1
TG

. It
follows that κ = αmaxT

G. Finally, the arguments above hold for any permutation of the G
questions, thus proving the uniqueness of the mechanism of Algorithm 1.

6.6.3 Proof of Lemma 33: The workhorse lemma

First we consider the case of G = N . In the set {y1, . . . , yi−1, yi+1, . . . , yG}, for some (η, γ) ∈
{0, . . . , G − 1}2 such that η + γ + 1 ≤ G, suppose there are η elements with a value 1, γ
elements with a value −1, and (G − 1 − η − γ) elements with a value 0. Let us assume for
now that i = η+γ+1, y1 = 1, . . . , yη = 1, yη+1 = −1, . . . , yη+γ = −1, yη+γ+2 = 0, . . . , yG = 0.

Suppose the worker has confidences (p1, . . . , pη+γ) ∈ (T, 1]η+γ for the first (η + γ) ques-
tions, a confidence of q ∈ (0, 1] for the next question, and confidences smaller than T for the
remaining (G− η− γ− 1) questions. The mechanism must incentivize the worker to answer
the first (η+γ) questions and skip the last (G−η−γ−1) questions; for question (η+γ+1),
it must incentivize the worker to answer if q > T and skip if q < T . Supposing the worker
indeed attempts the first (η + γ) questions and skips the last (G− η − γ − 1) questions, let
x = {x1, . . . , xη+γ} ∈ {−1, 1}η+γ denote the the evaluation of the worker’s answers to the
first (η + γ) questions. Define quantities {rj}j∈[η+γ] as rj = 1 − pj for j ∈ {1, . . . , η}, and
rj = pj for j ∈ {η + 1, η + γ}. The requirement of incentive compatibility necessitates

q
∑

x∈{−1,1}η+γ

f(x1, . . . , xη,−xη+1, . . . ,−xη+γ, 1, 0, . . . , 0)
∏

j∈[η+γ]

r
1−xj

2
j (1− rj)

1+xj
2


+ (1− q)

∑
x∈{−1,1}η+γ

f(x1, . . . , xη,−xη+1, . . . ,−xη+γ,−1, 0, . . . , 0)
∏

j∈[η+γ]

r
1−xj

2
j (1− rj)

1+xj
2


q<T

≶
q>T

∑
x∈{−1,1}η+γ

f(x1, . . . , xη,−xη+1, . . . ,−xη+γ, 0, 0, . . . , 0)
∏

j∈[η+γ]

r
1−xj

2
j (1− rj)

1+xj
2

 .

The left hand side of this expression is the expected payment if the worker chooses to answer
question (η+γ+ 1), while the right hand side is the expected payment if she chooses to skip
it. For any real-valued variable q, and for any real-valued constants a, b and c,

aq
q<c

≶
q>c

b ⇒ ac = b .
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As a result,

T
∑

x∈{−1,1}η+γ

f(x1, . . . , xη,−xη+1, . . . ,−xη+γ, 1, 0, . . . , 0)
∏

j∈[η+γ]

r
1−xj

2
j (1− rj)

1+xj
2


+ (1− T )

∑
x∈{−1,1}η+γ

f(x1, . . . , xη,−xη+1, . . . ,−xη+γ,−1, 0, . . . , 0)
∏

j∈[η+γ]

r
1−xj

2
j (1− rj)

1+xj
2


−

∑
x∈{−1,1}η+γ

f(x1, . . . , xη,−xη+1, . . . ,−xη+γ−1, 0, 0, . . . , 0)
∏

j∈[η+γ]

r
1−xj

2
j (1− rj)

1+xj
2

 = 0.

(6.5)

The left hand side of (6.5) represents a polynomial in (η+γ) variables {rj}η+γ
j=1 which evaluates

to zero for all values of the variables within a (η+γ)-dimensional solid Euclidean ball. Thus,
the coefficients of the monomials in this polynomial must be zero. In particular, the constant
term must be zero. The constant term appears when xj = 1 ∀ j in the summations in (6.5).
Setting the constant term to zero gives

Tf(x1 = 1, . . . , xη = 1,−xη+1 = −1, . . . ,−xη+γ = −1, 1, 0, . . . , 0)

+ (1− T )f(x1 = 1, . . . , xη = 1,−xη+1 = −1, . . . ,−xη+γ = −1,−1, 0, . . . , 0)

− f(x1 = 1, . . . , xη = 1,−xη+1 = −1, . . . ,−xη+γ = −1, 0, 0, . . . , 0) = 0

as desired. Since the arguments above hold for any permutation of the G questions, this
completes the proof for the case of G = N .

Now consider the case G < N . Let g : {−1, 0, 1}N → R+ represent the expected payment
given an evaluation of all the N answers, when the identities of the gold standard questions
are unknown. Here, the expectation is with respect to the (uniformly random) choice of the
G gold standard questions. If (x1, . . . , xN) ∈ {−1, 0, 1}N are the evaluations of the worker’s
answers to the N questions then the expected payment is

g(x1, . . . , xN) =
1(
N
G

) ∑
(i1,...,iG)⊆{1,...,N}

f(xi1 , . . . , xiG) . (6.6)

Notice that when G = N , the functions f and g are identical.
In the set {y1, . . . , yi−1, yi+1, . . . , yG}, for some (η, γ) ∈ {0, . . . , G − 1}2 with η + γ < G,

suppose there are η elements with a value 1, γ elements with a value −1, and (G−1−η−γ)
elements with a value 0. Let us assume for now that i = η+γ+ 1, y1 = 1, . . . , yη = 1, yη+1 =
−1, . . . , yη+γ = −1, yη+γ+2 = 0, . . . , yG = 0.

Suppose the worker has confidences {p1, . . . , pη+γ} ∈ (T, 1]η+γ for the first (η + γ) of the
N questions, a confidence of q ∈ (0, 1] for the next question, and confidences smaller than
T for the remaining (N − η− γ − 1) questions. The mechanism must incentivize the worker
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to answer the first (η + γ) questions and skip the last (N − η − γ − 1) questions; for the
(η + γ + 1)th question, the mechanism must incentivize the worker to answer if q > T and
skip if q < T . Supposing the worker indeed attempts the first (η + γ) questions and skips
the last (N − η − γ − 1) questions, let x = {x1, . . . , xη+γ} ∈ {−1, 1}η+γ denote the the
evaluation of the worker’s answers to the first (η+γ) questions. Define quantities {rj}j∈[η+γ]

as rj = 1 − pj for j ∈ {1, . . . , η}, and rj = pj for j ∈ {η + 1, η + γ}. The requirement of
incentive compatibility necessitates

q
∑

x∈{−1,1}η+γ

g(x1, . . . , xη,−xη+1, . . . ,−xη+γ, 1, 0, . . . , 0)
∏

j∈[η+γ]

r
1−xj

2
j (1− rj)

1+xj
2


+ (1− q)

∑
x∈{−1,1}η+γ

g(x1, . . . , xη,−xη+1, . . . ,−xη+γ,−1, 0, . . . , 0)
∏

j∈[η+γ]

r
1−xj

2
j (1− rj)

1+xj
2


q<T

≶
q>T

∑
x∈{−1,1}η+γ

g(x1, . . . , xη,−xη+1, . . . ,−xη+γ, 0, 0, . . . , 0)
∏

j∈[η+γ]

r
1−xj

2
j (1− rj)

1+xj
2

 .

(6.7)

Again, applying the fact that for any real-valued variable q and for any real-valued constants

a, b and c, aq
q<c

≶
q>c

b ⇒ ac = b, we get that

Tg(x1 = 1, . . . , xη = 1,−xη+1 = −1, . . . ,−xη+γ = −1, 1, 0, . . . , 0)

+ (1− T )g(x1 = 1, . . . , xη = 1,−xη+1 = −1, . . . ,−xη+γ = −1,−1, 0, . . . , 0)

− g(x1 = 1, . . . , xη = 1,−xη+1 = −1, . . . ,−xη+γ = −1, 0, 0, . . . , 0) = 0 . (6.8)

The proof now proceeds via induction on the quantity (G−η−γ−1), i.e., on the number
of skipped questions in {y1, . . . , yi−1, yi+1, . . . , yG}. We begin with the case of (G−η−γ−1) =
G− 1 which implies η = γ = 0. In this case (6.8) simplifies to

Tg(1, 0, . . . , 0) + (1− T )g(−1, 0, . . . , 0) = g(0, 0, . . . , 0) .

Applying the expansion of function g in terms of function f from (6.6) gives

T (c1f(1, 0, . . . , 0) + c2f(0, 0, . . . , 0)) + (1− T ) (c1f(−1, 0, . . . , 0) + c2f(0, 0, . . . , 0))

= (c1f(0, 0, . . . , 0) + c2f(0, 0, . . . , 0))

for constants c1 > 0 and c2 > 0 that respectively denote the probabilities that the first
question is picked and not picked in the set of G gold standard questions. Cancelling out
the common terms on both sides of the equation, we get the desired result

Tf(1, 0, . . . , 0) + (1− T )f(−1, 0, . . . , 0) = f(0, 0, . . . , 0) .
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Next, we consider the case when (G− η− γ− 1) questions are skipped in the gold standard,
and assume that the result is true when more than (G − η − γ − 1) questions are skipped
in the gold standard. In (6.8), the functions g decompose into a sum of the constituent f
functions. These constituent functions f are of two types: the first where all of the first
(η + γ + 1) questions are included in the gold standard, and the second where one or more
of the first (η + γ + 1) questions are not included in the gold standard. The second case
corresponds to situations where there are more than (G − η − γ − 1) questions skipped in
the gold standard and hence satisfies our induction hypothesis. The terms corresponding
to these functions thus cancel out in the expansion of (6.8). The remainder comprises only
evaluations of function f for arguments in which the first (η + γ + 1) questions are included
in the gold standard: since the last (N − η− γ− 1) questions are skipped by the worker, the
remainder evaluates to

Tc3f(y1, . . . , yη+γ, 1, 0, . . . , 0) + (1− T )c3f(y1, . . . , yη+γ,−1, 0, . . . , 0)

= c3f(y1, . . . , yη+γ, 0, 0, . . . , 0)

for some constant c3 > 0. Dividing throughout by c3 gives the desired result.
Finally, the arguments above hold for any permutation of the first G questions, thus

completing the proof.

Proof of Theorem 6.3.4: Minimum payment to spammers

The property of incentive-compatibility does not change upon any shift of the mechanism
by a constant value or any scaling by a positive constant value. As a result, for the purposes
of this proof, we can assume without loss of generality that αmin = 0.

Part A (Distributional). Let m denote the number of options in each question. One
can verify that under the mechanism of Algorithm 1, a worker who skips A questions and
answers the rest uniformly at random will get a payment of αmaxTA

mG−A
in expectation. This

expression arises due to the fact that Algorithm 1 makes a zero payment if any of the
attempted answers are incorrect, and a payment of αmaxT

A if the worker skips A questions
and answers the rest correctly. Under uniformly random answers, the probability of the
latter event is 1

mG−A
.

Now consider any other mechanism, and denote it as f ′. Let us suppose without loss of
generality that the worker attempts the first (G−A) questions. Since the payment must be
non-negative, a repeated application of Lemma 33 gives

f ′(1, . . . , 1︸ ︷︷ ︸
G−A

, 0, . . . , 0) ≥ Tf ′(1, . . . , 1︸ ︷︷ ︸
G−A+1

, 0, . . . , 0) (6.9)

...

≥ TAf ′(1, . . . , 1)

= TAαmax, (6.10)
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where equation (6.10) is a result of the αmax-budget constraint. Since there is a 1
mG−A

chance
of the (G − A) attempted answers being correct, the expected payment under any other

mechanism f ′ must be at least αmaxTA

mG−A
.

We will now show that if any mechanism f ′ that makes an expected payment of αmaxTA

mG−A

to such a spammer, then the mechanism must be identical to Algorithm 1. We split the
proof of this part into two cases, depending on the value of the parameter A.

Case I (A < G): In order to make an expected payment of αmaxTA

mG−A
, the mechanism must

achieve the bound (6.10) with equality, and furthermore, the mechanism must have zero
payment if any of the (G−A) attempted questions are answered incorrectly. In other words,
the mechanism f ′ under consideration must satisfy

f ′(y1, . . . , yG−A, 0, . . . , 0) = 0 ∀(y1, . . . , yG−A) ∈ {−1, 1}G−A\{1}G−A.

A repeated application of Lemma 33 then implies

f ′(0, 0, . . . ,−1) = 0. (6.11)

Note that so far we considered the case when the worker attempts the first (G−A) questions.
The arguments above hold for any choice of the (G − A) attempted questions, and conse-
quently the results shown so far in this proof hold for all permutations of the arguments to
f ′. In particular, the mechanism f ′ must make a zero payment when any (G−1) questions in
the gold standard are skipped and the remaining question is answered incorrectly. Another
repeated application of Lemma 33 to this result gives

f ′(y1, . . . , yG) = 0 ∀(y1, . . . , yG) ∈ {0,−1}G\{0}G.

This condition is precisely the no-free-lunch axiom, and in Theorem 17 we had shown that
Algorithm 1 is the only incentive-compatible mechanism that satisfies this axiom. It follows
that our mechanism, Algorithm 1 strictly minimizes the expected payment in the setting
under consideration.

Case II (A = G): In order to achieve the bound (6.10) with equality, the mechanism f ′

must also achieve the bound (6.9) with equality. Noting that we have A = G in this case, it
follows that the mechanism f ′ must satisfy

f ′(−1, 0, . . . , 0) = 0.

This condition is identical to (6.11) established for Case I earlier, and the rest of the argument
now proceeds in a manner identical to the subsequent arguments in Case I.

Part B (Deterministic). Given our result of Theorem 17, the proof for the determin-
istic part is straightforward. Algorithm 1 makes a payment of zero when one or more of the
answers to questions in the gold standard are incorrect. Consequently, for every value of
parameter B ∈ (0, 1], Algorithm 1 makes a zero payment when a fraction B or more of the
attempted answers are incorrect. Any other mechanism doing so must satisfy the no-free-
lunch axiom. In Theorem 17 we had shown that Algorithm 1 is the only incentive-compatible
mechanism that satisfies this axiom. It follows that our mechanism, Algorithm 1, strictly
minimizes the payment in the event under consideration.
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6.A Appendix: A stronger no-free-lunch

Recall that the no-free-lunch axiom under the skip-based mechanism of Section 6.3 requires
the payment to be the minimum possible if all attempted answers in the gold standard are
incorrect. However, a worker who skips all the questions may still receive a payment. One
may thus wish to impose a stronger requirement instead, where the minimum payment is
made to workers who make no useful contribution. This is the primary focus of this section.

In order to accommodate this requirement, let us define the following axiom which is
slightly stronger than the no-free-lunch axiom defined earlier.

Strong-no-free-lunch: If none of the answers in the gold standard are correct, then the
payment is αmin. More formally, strong-no-free-lunch imposes the condition f(x1, . . . , xG) =
αmin for every evaluation (x1, . . . , xG) that satisfies

∑G
i=1 1{xi > 0} = 0.

The strong-no-free-lunch axiom is only slightly stronger than the no-free-lunch axiom
proposed in Section 6.3. The strong-no-free-lunch axiom can equivalently be written as
imposing requiring the payment to be the minimum possible for every evaluation that satisfies∑G

i=1 1{xi 6= 0} =
∑G

i=1 1{xi = −1}. From this interpretation, one can see that to the set
of events necessitating the minimum payment under the no-free-lunch axiom, the strong-no-
free-lunch axiom adds only one extra event – the event of the worker skipping all questions.
Unfortunately, it turns out that this minimal strengthening of the requirements is associated
to impossibility results.

In this section we show that no mechanism satisfying the strong-no-free-lunch axiom can
be incentive compatible in general. The only exception is the case when (a) all questions
are in the gold standard (G = N), and (b) it is guaranteed that the worker has a confidence
greater than T for at least one of the N questions. These conditions are, however, impractical
for the crowdsourcing setup under consideration in this chapter. We will first prove the
impossibility results under the strong-no-free-lunch axiom. For the sake of completeness
(and also to satisfy mathematical curiosity), we will then provide a (unique) mechanism
that is incentive-compatible and satisfies the strong-no-free-lunch axiom for the skip-based
setting under the two conditions listed above. The proofs of each of the claims made in this
section are provided at the end of this section.

In this section, we will call any worker whose confidences for all of the N questions is
lower than T as an unknowledgeable worker, and call the worker a knowledgeable worker
otherwise.

Proposition 9. No payment mechanism satisfying the strong-no-free-lunch axiom can incen-
tivize an unknowledgeable worker to skip all questions. As a result, no mechanism satisfying
the strong-no-free-lunch axiom can be incentive-compatible.

The proof of this proposition, and that of all other theoretical claims made in this section,
are presented at the end of this section.

The impossibility result of Proposition 9 relies on trying to incentivize an unknowl-
edgeable worker to act as desired. Since no mechanism can be incentive compatible for
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unknowledgeable workers, we will now consider only workers who are knowledgeable. The
following proposition shows that the strong-no-free-lunch axiom is too strong even for this
relaxed setting.

Proposition 10. When G < N , there exists no mechanism that is incentive-compatible for
knowledgeable workers and satisfies the strong-no-free-lunch axiom.

Given this impossibility result for G < N , we are left with G = N which means that the
true answers to all the questions are known a priori. This condition is clearly not applicable to
a crowdsourcing setup; nevertheless, it is mathematically interesting and may be applicable
to other scenarios such as testing and elicitation of beliefs about future events.

Proposition 11 below presents a mechanism for this case and proves its uniqueness. We
previously saw that an unknowledgeable worker cannot be incentivized to skip all the ques-
tions (even when G = N). Thus, in our payment mechanism, we do the next best thing:
Incentivize the unknowledgeable worker to answer only one question, that which she is most
confident about, while incentivizing the knowledgeable worker to answer questions for which
her confidence is greater than T and skip those for which her confidence is smaller than T .

Proposition 11. Let C be the number of correct answers and W be the number of wrong
answers (in the gold standard). Let the payment be αmin if W > 0 or C = 0, and be (αmax−
αmin)TG−C + αmin otherwise. Under this mechanism, when G = N , an unknowledgeable
worker is incentivized to answer only one question, that for which her confidence is the
maximum, and a knowledgeable worker is incentivized to answer the questions for which
her confidence is greater than T and skip those for which her confidence is smaller than T .
Furthermore, when G = N , this mechanism is the one and only mechanism that obeys the
strong-no-free-lunch axiom and is incentive-compatible for knowledgeable workers.

Proofs

In the remainder of this section, we prove the various claims regarding the strong no-free-
lunch axiom studied in this section.

Proof of Proposition 9

If the worker skips all questions, then the expected payment is zero under the strong-no-
free-lunch axiom. On the other hand, in order to incentivize knowledgeable workers to select
answers whenever their confidences are greater than T , there must exist some situation in
which the payment is strictly larger than zero. Suppose the payment is strictly positive when
questions {1, . . . , z} are answered correctly, questions {z+1, . . . , z′} are answered incorrectly,
and the remaining questions are skipped. If the confidence of the unknowledgeable worker
is in the interval (0, T ) for every question, then attempting to answer questions {1, . . . , z′}
and skipping the rest fetches her a payment that is strictly positive in expectation. Thus,
this unknowledgeable worker is incentivized to answer at least one question.
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Proof of Proposition 10

Consider a (knowledgeable) worker who has a confidence of p ∈ (T, 1] for the first question,
q ∈ (0, 1) for the second question, and confidences in the interval (0, T ) for the remaining
questions. Suppose the worker attempts to answer the first question (and selects the answer
the believes is most likely to be correct) and skips the last (N − 2) questions as desired.
Now, in order to incentivize her to answer the second question if q > T and skip the second
question if q < T , the payment mechanism must satisfy

pqg(1, 1, 0, . . . , 0) + (1− p)qg(−1, 1, 0, . . . , 0) + p(1− q)g(1,−1, 0, . . . , 0)

+ (1− p)(1− q)g(−1,−1, 0, . . . , 0)
q<T

≶
q>T

pg(1, 0, 0, . . . , 0) + (1− p)g(−1, 0, 0, . . . , 0) .

For any real-valued variable q, and for any real-valued constants a, b and c,

aq
q<c

≶
q>c

b ⇒ ac = b .

As a result we have

pTg(1, 1, 0, . . . , 0) + (1− p)Tg(−1, 1, 0, . . . , 0) + p(1− T )g(1,−1, 0, . . . , 0)

+ (1− p)(1− T )g(−1,−1, 0, . . . , 0)− pg(1, 0, 0, . . . , 0)− (1− p)g(−1, 0, 0, . . . , 0) = 0 .

The left hand side of this equation is a polynomial in variable p and takes a value of zero
for all values of p in a one-dimensional box (T, 1]. It follows that the monomials of this
polynomial must be zero, and in particular the constant term must be zero:

Tg(−1, 1, 0, . . . , 0) + (1− T )g(−1,−1, 0, . . . , 0)− g(−1, 0, 0, . . . , 0) = 0 .

The strong-no-free-lunch axiom implies f(−1,−1, 0, . . . , 0) = f(−1, 0, . . . , 0) = f(0, . . . , 0) =
0, and hence g(−1,−1, 0, . . . , 0) = g(−1, 0, 0, . . . , 0) = 0. Since T ∈ (0, 1), we have

0 = g(−1, 1, 0, . . . , 0)

= c1f(−1, 1, 0, . . . , 0) + c2f(−1, 0, . . . , 0) + c2f(1, 0, . . . , 0) , (6.12)

for some constants c1 > 0 and c2 > 0 that represent the probability that the first two
questions are included in the gold standard, and the probability that the first (or, second)
but not the second (or, first) questions are included in the gold standard. Since f is a
non-negative function, it must be that

f(1, 0, . . . , 0) = 0 .

Now suppose a (knowledgeable) worker has a confidence of p ∈ (T, 1] for the first question
and confidences lower than T for the remaining (N − 1) questions. Suppose the worker
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chooses to skip the last (N − 1) questions as desired. In order to incentivize the worker to
answer the first question, the mechanism must satisfy for all p ∈ (T, 1],

0 < pg(1, 0, . . . , 0) + (1− p)g(−1, 0, . . . , 0)− g(0, 0, . . . , 0)

= pc3f(1, 0, . . . , 0) + pc4f(0, 0, . . . , 0) + (1− p)c3f(−1, 0, . . . , 0)

+ (1− p)c4f(0, 0, . . . , 0)− f(0, 0, . . . , 0)

= 0,

where c3 > 0 and c4 > 0 are some constants. The final equation is a result of the strong-
no-free-lunch axiom and the fact that f(1, 0, . . . , 0) = 0 as proved above. This yields a
contradiction, and hence no incentive-compatible mechanism f can satisfy the strong-no-
free-lunch axiom when G < N even when allowed to address only knowledgeable workers.

Finally, as a sanity check, note that if G = N then c2 = 0 in (6.12). The proof above
thus doesn’t hold when G = N .

Proof of Proposition 11

We will first show that the mechanism works as desired.
First consider the case when the worker is unknowledgeable and her confidences are of

the form T > p(1) ≥ p(2) ≥ p(3) ≥ · · · ≥ p(G). If she answers only the first question, then her
expected payment is

κ
p(1)

T
.

Let us now see her expected payment if she doesn’t follow this answer pattern. The strong-
no-free-lunch axiom implies that if the worker doesn’t answer any question then her expected
payment is zero. Suppose the worker chooses to answer questions {i1, . . . , iz}. In that case,
her expected payment is

κ
pi1 · · · piz

T z
= κ

pi1
T
· · · piz

T

≤ κ
(p(1)

T

)z
(6.13)

≤ κ
p(1)

T
, (6.14)

where (6.14) uses the fact that p(1) < T . The inequality in (6.14) becomes an equality only
when z = 1. Now when z = 1, the inequality in (6.13) becomes an equality only when
i1 = (1). Thus the unknowledgeable worker is incentivized to answer only one question –
the one that she has the highest confidence in.

Now consider a knowledgeable worker and suppose her confidences are of the form p(1) ≥
· · · ≥ p(m) > T > p(m+1) ≥ · · · ≥ p(G) for some m ≥ 1. If the worker answers questions
(1), . . . , (m) as desired, her expected payment is

κ
p(1)

T
· · ·

p(m)

T
.
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Now let us see what happens if the worker does not follow this answer pattern. The strong-
no-free-lunch axiom implies that if the worker doesn’t answer any question then her expected
payment is zero. Now, if she answers some other set of questions, say questions {i1, . . . , iz}
with p(1) ≤ pi1 < · · · < piy ≤ p(m) < piy+1 < · · · piz ≤ p(G). The expected payment in that
case is

κ
pi1 · · · piz

T z
= κ

pi1
T
· · · piz

T

≤ κ
pi1
T
· · ·

piy
T

(6.15)

≤ κ
p(1)

T
· · ·

p(m)

T
(6.16)

where inequality (6.15) is a result of
pij
T
≤ 1 ∀ j > y and holds with equality only when

y = z. Inequality (6.16) is a result of
p(j)
T
≥ 1 ∀ j ≤ m and holds with equality only when

y = m. Thus the expected payment is maximized when i1 = (1), . . . , iz = (m) as desired.
Finally, the payment strictly increases with an increase in the confidences, and hence the
worker is incentivized to always consider the answer that she believes is most likely to be
correct.

We will now show that this mechanism is unique.
The necessary conditions derived in Lemma 33, when restricted to the case of G = N and

(y1, . . . , yi−1, yi+1, . . . , yG) 6= {0}N−1, is also applicable to the present setting. This is because
the strong-no-free-lunch axiom assumed here is a stronger condition than the no-free-lunch
axiom considered in Lemma 33, and moreover, (y1, . . . , yi−1, yi+1, . . . , yG) 6= {0}N−1 avoids
the use of unknowledgeable workers in the proof of Lemma 33. It follows that for every
question i∈{1, . . . , G} and every (y1, . . . , yi−1, yi+1, . . . , yG)∈{−1, 0, 1}G−1\{0}G−1, it must
be that

Tf(y1, . . . , yi−1, 1, yi+1, . . . , yG) + (1− T )f(y1, . . . , yi−1,−1, yi+1, . . . , yG)

= f(y1, . . . , yi−1, 0, yi+1, . . . , yG) . (6.17)

We claim that the payment must be zero whenever the number of incorrect answers
W > 0. The proof proceeds by induction on the number of correct answers C. First suppose
C = 0 (and W > 0). Then all questions are either wrong or skipped, and hence by the strong-
no-free-lunch axiom, the payment must be zero. Now suppose the payment is necessarily
zero whenever W > 0 and the total number of correct answers is (C − 1) or lower, for some
C ∈ [G − 1]. Consider any evaluation (y1, . . . , yG) ∈ {−1, 0, 1}G in which the number of
incorrect answers is more than zero and the number of correct answers is C. Suppose yi = 1
for some i ∈ [G], and yj = −1 for some j ∈ [G]\{i}. Then from the induction hypothesis, we
have f(y1, . . . , yi−1,−1, yi+1, . . . , yG) = f(y1, . . . , yi−1, 0, yi+1, . . . , yG) = 0. Applying (6.17)
and noting that T ∈ (0, 1), we get that f(y1, . . . , yi−1, 1, yi+1, . . . , yG) = 0 as claimed. This
result also allows us to simplify (6.17) to: For every question i ∈ {1, . . . , G} and every
(y1, . . . , yi−1, yi+1, . . . , yG) ∈ {−1, 0, 1}G−1\{0}G−1,

f(y1, . . . , yi−1, 1, yi+1, . . . , yG) =
1

T
f(y1, . . . , yi−1, 0, yi+1, . . . , yG) . (6.18)
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We now show that when C > 0 and W = 0, the payment must necessarily be of the form
described in the statement of Proposition 11. The proof again proceeds via an induction on
the number of correct answers C (≥ 1). Define a quantity κ > 0 as

κ = Tf(1, 0, . . . , 0) . (6.19)

Now consider the payment f(1, y2, . . . , yG) for some (y2, . . . , yG) ∈ {0, 1}G−1\{0}G−1 with
C correct answers. Applying (6.18) repeatedly (once for every i such that yi = 1), we get

f(1, y2, . . . , yG) =
κ

TC
.

Unlike other results in this chapter, at this point we cannot claim the result to hold
for all permutations of the questions. This is because we have defined the quantity κ in
an asymmetric manner (6.19), in terms of the payment function when the first question is
correct and the rest are skipped. In what follows, we will prove that the result claimed in
the statement of Proposition 11 indeed holds for all permutations of the questions.

From equation (6.18) we have

f(0, 1, 0, . . . , 0) = Tf(1, 1, 0, . . . , 0)

= f(1, 0, 0, . . . , 0)

= κ .

Thus the payment must be κ even if the second answer in the gold standard is correct and
the rest are skipped. In fact, the argument holds when any one answer in the gold standard
is correct and the rest are skipped. Thus the definition of κ is not restricted to the first
question alone as originally defined in (6.19), but holds for all permutations of the questions.
This allows the other arguments above to be applicable to any permutation of the questions.
Finally, the budget constraint of αmax fixes the value of κ to that claimed, thereby completing
the proof.
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Chapter 7

Eliciting Confidences

“Be confident about your abilities. Be aware of your
limitations.”

– Vikram Sarabhai

7.1 Introduction

In this chapter, we consider crowdsourcing settings where the worker must perform a “task”
comprising multiple questions. We assume that each question is objective, meaning that it
has exactly one correct answer. In addition to eliciting the answers that the worker thinks

Is this the Golden Gate Bridge?

Yes
No

a b Is this the Golden Gate Bridge?

Yes
No
I’m not sure

c Is this the Golden Gate Bridge?

Yes      Moderately sure Absolutely sure
No  Moderately sure Absolutely sure

I’m not sure

Figure 7.1: An interface to elicit the answer and the worker’s (quantized) confidence level: (a)
standard interface used in crowdsourcing, (b) skip-based interface of Chapter 6 which forms a
special case of the setting of this chapter, and (c) the confidence-based interface considered in this
chapter.
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are correct, we also wish to elicit the worker’s confidence for each question; see Figure 7.1
for an illustration. For every question, the worker is asked for a quantized confidence level
associated to the answer that he/she provides – for instance, by asking the worker to indicate
whether he/she has a mild, moderate, or high confidence for his/her answer as illustrated in
Figure 7.1(c). We term this setting as a “confidence-based” setting.

The goal is to design payment mechanisms that are “incentive compatible”, that is,
incentivize the worker to report the answer they think is most likely to be correct and their
own confidence level honestly. In general, there may be many mechanisms which may be
incentive compatible, we wish to choose a mechanism for deployment in a principled manner,
and to that end, we propose a mild and natural “no-free-lunch” requirement on any payment
mechanism. We then design a mechanism that takes a “multiplicative” form and show that
our mechanism is the only mechanism that is possible.

For the reader who read Chapter 6, let us also provide a brief comparison with the setting
of the skip-based setting considered therein. In Chapter 6 we considered an interface where
the worker may answer any question if his/her confidence is high enough, or skip it otherwise.
Given that we are asking the worker to make decisions based on his/her confidence, in this
chapter we aim to directly elicit the confidence of the worker. The no-free-lunch axiom of
this chapter is even weaker than that of Chapter 6: the no-free-lunch axiom of this chapter
requires the minimum possible payment only if the worker indicates the highest confidence
level for all the questions she attempts and if all these responses are incorrect.

Organization. The organization of this chapter is as follows. We present the formal
problem setting in Section 7.2. In Section 7.3, we construct a mechanism for the confidence-
based setting, which takes a multiplicative form, and prove its uniqueness. In Section 7.4
we present experiments using data from Amazon Mechanical Turk to evaluate the potential
of our setting and algorithm to work in practice. We present a concluding discussion in
Section 7.5. Finally, in Section 7.6 we provide proofs of our theoretical results.

7.2 Problem setting

We retain all of the notation and terminology from Chapter 6 which we reproduce here for
completeness; we extend the formulation of Chapter 6 from the skip-based to a confidence-
based setting.

General setting and terminology

In the crowdsourcing setting that we consider, one or more workers perform a task, where
a task consists of multiple questions. The questions are objective, by which we mean, each
question has precisely one correct answer. Examples of objective questions include multiple-
choice classification questions such as Figure 7.1, questions on transcribing text from audio
or images, etc.
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For any possible answer to any question, we define the worker’s confidence about an
answer as the probability, according to her belief, of this answer being correct. In other
words, one can assume that the worker has (in her mind) a probability distribution over all
possible answers to a question, and the confidence for an answer is the probability of that
answer being correct. As a shorthand, we also define the confidence about a question as the
confidence for the answer that the worker is most confident about for that question. We
assume that the worker’s confidences for different questions are independent.

Let N denote the total number of questions in the task. Among these questions, we
assume the existence of some “gold standard” questions, that is, a set of questions whose
answers are known to the requester. Let G (1 ≤ G ≤ N) denote the number of gold
standard questions. The G gold standard questions are assumed to be distributed uniformly
at random in the pool of N questions (of course, the worker does not know which G of
the N questions form the gold standard). The payment to a worker for a task is computed
after receiving her responses to all the questions in the task. The payment is based on the
worker’s performance on the gold standard questions. Since the payment is based on known
answers, the payments to different workers do not depend on each other, thereby allowing
us to consider the presence of only one worker without any loss in generality.

Confidence-based setting

In the confidence-based setting that we consider in this chapter, for each question, the worker
can either ‘skip’ the question or provide an answer, and in the latter case, indicate her
confidence for this answer as a number in {1, . . . , L}. We term this indicated confidence as
the ‘confidence-level’. Here, L represents the highest confidence-level, and ‘skip’ is considered
to be a confidence-level of 0. For instance, the interface of Figure 7.1c has L = 3. 1 Note
that we do not solicit an answer if the worker indicates a confidence-level of 0 (skip), but
the worker must provide an answer if she indicates a confidence-level of 1 or higher.

The reader who has read Chapter 6 will see from the aforementioned definition that the
confidence-based setting is a generalization of the skip-based setting. The skip-based setting
corresponds to L = 1.

The goal is to ensure that for a given set of intervals that partition [0, 1], for every
question the worker is incentivized to indicate ‘skip’ or choose the appropriate confidence-
level when her confidence for that question falls in the corresponding interval. We specify
these intervals by means of a set of “threshold” parameters {Sl, Tl}Ll=1 that determine the
confidence-levels that the workers should indicate. We assume that these thresholds are
specified to us, and will use them to design the payment mechanism in a principled manner.
In particular, we will require specification of two reference points for each confidence level,
and this specification generalizes the skip-based setting.

1When the task is presented to the workers, the word ‘skip’ or the numbers {1, . . . , L} are replaced by
more comprehensible phrases such as “I don’t know”, “moderately sure”, “absolutely sure”, etc.
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• The first set of thresholds specifies a comparison of any confidence level with the skip-
ping option as a fixed reference. To this end, recall that in the skip-based setting, the
threshold T specified when the worker should skip a question and when she should
attempt to answer. This is generalized to the confidence-based setting where for ev-
ery level l ∈ [L], a fixed threshold Sl specifies the ‘strength’ of confidence-level l: If
restricted to only the two options of skipping or selecting confidence-level l for any
question, the worker should be incentivized to select confidence-level l if her confidence
is higher than Sl and skip if her confidence is lower than Sl.

• The second set of thresholds specifies a comparison of any confidence level with its
neighbors. If a worker decides to not skip a question, she must choose one of multiple
confidence-levels. A set {Tl}Ll=1 of thresholds specify the boundaries between different
confidence-levels. In particular, when the confidence of the worker for a question lies
in (Tl−1, Tl+1), then the worker must be incentivized to indicate confidence-level (l−1)
if her confidence is lower than Tl and to indicate confidence-level l if her confidence is
higher than Tl. This includes selecting level L if her confidence is higher than TL and
selecting level 0 if her confidence is lower than T1.

We will call a payment mechanism as incentive-compatible if it satisfies the two requirements
listed above, and also incentivizes the worker to select the answer that she believes is most
likely to be correct for every question for which her confidence is higher than T1.

The problem setting inherently necessitates certain restrictions in the choice of the thresh-
olds. Since we require the worker to choose a higher level when her confidence is higher,
the thresholds must necessarily be monotonic and satisfy 0 < S1 < S2 < · · · < SL < 1 and
0 < T1 < T2 < · · · < TL < 1. Also observe that the definitions of S1 and T1 coincide, and
hence S1 = T1. Additionally, we can show (see Appendix 7.A) that for incentive-compatible
mechanisms to exist, it must be that Tl > Sl ∀ l ∈ {2, . . . , L}. As a result, the thresholds
must also satisfy T1 = S1, T2 > S2, . . . , TL > SL. These thresholds may be chosen based on
various factors of the problem at hand, for example, on the post-processing algorithms, any
statistics on the distribution of worker abilities, budget constraints, etc. In this chapter, we
will assume that these values are given to us.

Payment function

Let x1, . . . , xG denote the evaluations of the answers that the worker gives to the G gold
standard questions, and let f denote the scoring rule, i.e., a function that determines the
payment to the worker based on these evaluations x1, . . . , xG.

We let any answer i ∈ [G] take values in the set xi ∈ {−L, . . . ,+L}. Here, we set xi = 0
if the worker skipped the question, and for l ∈ {1, . . . , L}, we set xi = l if the question was
answered correctly with confidence l and xi = −l if the question was answered incorrectly
with confidence l. The function f : {−L, . . . ,+L}G → R specifies the payment to be made
to the worker.
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As before, the payment is further associated to two parameters, αmax and αmin. The
parameter αmax denotes the budget, i.e., the maximum amount that is paid to any individual
worker for this task:

max
x1,...,xG

f(x1, . . . , xG) = αmax.

The amount αmax is thus the amount of compensation paid to a perfect worker for her work.
Further, one may often also have the requirement of paying a certain minimum amount to
any worker. The parameter αmin (≤ αmax) denotes this minimum payment: the payment
function must also satisfy

min
x1,...,xG

f(x1, . . . , xG) ≥ αmin.

For instance, crowdsourcing platforms today allow payments to workers, but do not allow
imposing penalties: this condition gives αmin = 0.

We assume that the worker attempts to maximize her overall expected payment. In
what follows, the expression ‘the worker’s expected payment’ will refer to the expected
payment from the worker’s point of view, and the expectation will be taken with respect
to the worker’s confidences about her answers and the uniformly random choice of the G
gold standard questions among the N questions in the task. A payment function f is called
incentive compatible if the expected payment of the worker under this payment function is
strictly maximized when the worker answers in the manner desired.2

Incentive compatibility

In the remainder of this section, we formally define the concepts of the worker’s expected
payment and incentive compatibility; the reader interested in understanding the chapter at
a higher level may skip directly to the next section without loss in continuity.

Let Ω denote the set of options for each question. We assume that Ω is a finite set, for
instance, the set {Yes,No} for a task with binary-choice questions, or the set of all strings
of at most a certain length for a task with textual responses. Let Q ∈ [0, 1]|Ω|×N denote the
beliefs of a worker for the N questions asked. Specifically, for any question i ∈ [N ] and any
option ω ∈ Ω, let Qω,i represent the probability, according to the worker’s belief, that option
ω is the correct answer to question i. Then from the law of total probability, any valid Q
must have

∑
ω∈Ω Qω,i = 1 for every i ∈ [N ]. The value of Q is unknown to the mechanism.

Let us first define the notion of the expected payment (from the worker’s point of view)
for any given response of the worker to the questions. For any question i ∈ [N ], suppose the
worker indicates the confidence-level ξi ∈ {0, . . . , L}. For every question i ∈ [N ] such that
ξi 6= 0, let ωi ∈ Ω denote the option selected by the worker; whenever ξi = 0, indicating
a skip, we let ωi take any arbitrary value in Ω. Furthermore, let pi = Qωi,i denote the
probability, according to the worker’s belief, that the chosen option ωi is the correct answer

2Such a notion of incentive compatibility is also called a strictly proper scoring rule.
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to question i. For notational purposes, we also define a vector E = (ε1, . . . , εG) ∈ {−1, 1}G.
Then for the given responses, for the worker beliefs Q, and under payment mechanism f ,
the worker’ expected payment ΓQ,f : ({0, . . . , L} × Ω)N → R is given by the expression:

ΓQ,f (ξ1, ω1, . . . , ξN , ωN)

=
1(
N
G

) ∑
(j1,...,jG)
⊆{1,...,N}

∑
E∈{−1,1}G

(
f(ε1ξj1 , . . . , εGξjG)

G∏
i=1

(pji)
1+εi
2 (1− pji)

1−εi
2

)
. (7.1)

In the expression (7.1), the outermost summation corresponds to the expectation with respect
to the randomness arising from the unknown positions of the gold standard questions. The
inner summation corresponds to the expectation with respect to the worker’s beliefs about
the correctness of her responses. Note that the right hand side of (7.1) implicitly depends
on (ω1, . . . , ωN) through the values (p1, . . . , pN). Also note that for every question i such
that ξi = 0, the right hand side of (7.1) does not depend on the values of ωi and pi; this is
because the choice ξi = 0 of skipping question i implies that the worker did not select any
particular option.

We will now use the the definition of the expected payment of the worker to define the
notion of incentive compatibility. To this end, for any valid probabilities Q, let A(Q) ⊆
({0, . . . , L} × Ω)N denote an associated set of “desired” responses. By this we mean that
every a ∈ ({0, . . . , L} × Ω)N represents a possible response to the set of N questions, and
the goal is to incentivize the worker to provide any one response in the set A(Q). Then a
mechanism f is termed incentive compatible if

ΓQ,f (a) > ΓQ,f (a
′) for every a ∈ A(Q), every a′ /∈ A(Q), and every valid Q.

The goal is to design mechanisms that are incentive compatible, that is, incentivize the
workers to respond in a certain manner. The specific choice of “desired responses” for the
skip-based and the confidence-based settings are discussed subsequently in their respective
sections. We begin with the skip-based setting.

7.3 Main results

In this section we present the main theoretical results of this chapter. This makes the case of
having only a ‘skip’ as considered in Chapter 6 a special case of this setting, and corresponds
to L = 1.

7.3.1 No-free-lunch axiom

We now present a simple and natural requirement that we impose on any payment mechanism
in order to enable us to narrow down on a good mechanism.
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Axiom 2 (Generalized-no-free-lunch axiom). If all the answers attempted by the worker
in the gold standard are selected as the highest confidence-level (level L), and all of them turn
out to be wrong, then the payment is αmin. More formally, we require the mechanism f to
satisfy f(x1, . . . , xG) = αmin for every evaluation (x1, . . . , xG) that satisfies 0 <

∑G
i=1 1{xi 6=

0} =
∑G

i=1 1{xi = −L}.

Observe that the no-free-lunch axiom for the confidence-based setting introduced here is
even weaker than that considered for the skip-based setting in Chapter 6. It reduces to the
no-free-lunch axiom of the skip-based setting when L = 1, but more generally, is applicable
only when the worker has selected the highest confidence level for every attempted question.

7.3.2 Payment mechanism

The proposed payment mechanism is described in Algorithm 2.

Algorithm 2 Incentive mechanism for the confidence-based setting
• Inputs:

I Thresholds S1, . . . , SL and T1, . . . , TL

I Budget parameters αmax and αmin

I Evaluations (x1, . . . , xG) ∈ {−L, . . . ,+L}G of the worker’s answers to the G gold stan-
dard questions

• Set α−L, . . . , αL as

I αL = 1
SL

, α−L = 0

I For l ∈ {L− 1, . . . , 1},

αl =
(1− Sl)Tl+1αl+1 + (1− Sl)(1− Tl+1)α−(l+1) − (1− Tl+1)

Tl+1 − Sl
and α−l =

1− Slαl
1− Sl

I α0 = 1

• The payment is

f(x1, . . . , xG) = κ

G∏
i=1

αxi + αmin

where κ = (αmax − αmin)
(

1
αL

)G
.

The following theorem shows that this mechanism indeed incentivizes a worker to select
answers and confidence-levels as desired.
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Theorem 18. The mechanism of Algorithm 2 is incentive-compatible and satisfies the generalized-
no-free-lunch axiom.

Remark 2. The mechanism of Algorithm 2 also ensures a condition stronger than the
‘boundary-based’ definition of the thresholds {Tl}l∈[L] given earlier. Under this mechanism,
for every l ∈ [L − 1] the worker is incentivized to select confidence-level l (over all else)
whenever her confidence lies in the interval (Tl, Tl+1), select confidence-level 0 (over all else)
whenever her confidence is lower than T1 and select confidence-level L (over all else) when-
ever her confidence is higher than TL.

7.3.3 Uniqueness of this mechanism

We prove that the mechanism of Algorithm 2 is unique, that is, no other incentive-compatible
mechanism can satisfy the generalized-no-free-lunch axiom.

Theorem 19. The payment mechanism of Algorithm 2 is the only incentive-compatible
mechanism that satisfies the generalized-no-free-lunch axiom.

The proof of Theorem 19 is conceptually similar to that of the skip-based setting con-
sidered in the previous chapter, but involves resolving several additional complexities that
arise due to elicitation from multiple confidence levels.

7.4 Experiments

In this section, we review experiments conducted in [235] on the Amazon Mechanical Turk
crowdsourcing platform to evaluate the performance of the new skip-based (Chapter 6) and
confidence-based (this chapter) interfaces and mechanisms in real-world scenarios. The data
collection procedure is described in detail in Appendix B of paper [235].

There are nine experiments (tasks) ranging from image annotation to text and speech
recognition. All experiments involve objective questions, and the responses elicited were
multiple choice in five of the experiments and freeform text in the rest. For each experiment,
three settings were tested: (i) the baseline conventional setting (Figure 7.1a) with a mecha-
nism of paying a fixed amount per correct answer, (ii) our skip-based setting (Figure 7.1b)
with our multiplicative mechanism, and (iii) our confidence-based setting (Figure 7.1c) with
our confidence-based mechanism. For each mechanism in each experiment, 35 workers inde-
pendently performed the task, thus amounting to a total of 945 worker-tasks.

Results: Raw data Figure 7.2 plots, for the baseline, skip-based and confidence-based
mechanisms for all nine experiments, the (i) fraction of questions that were answered in-
correctly, (ii) fraction of questions that were answered incorrectly among those that were
attempted, (iii) the average payment to a worker (in cents), and (iv) break up of the answers
in terms of the fraction of answers in each confidence level. The payment for various tasks
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Figure 7.2: The error-rates in the raw data and payments in the nine experiments indexed as
(a)–(i). Each individual bar in the plots corresponds to one mechanism in one experiment and is
generated from 35 distinct workers (this totals to 945 worker-tasks).
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Figure 7.3: Error-rates in the aggregated data in the five experiments involving multiple-choice
tasks.

plotted in Figure 7.2 is computed as the average of the payments across 100 (random) selec-
tions of the gold standard questions, in order to prevent any distortion of the results due to
the randomness in the choice of the gold standard questions.

The figure shows that the amount of errors among the attempted questions is much lower
in the skip and the confidence-based settings than the baseline setting. Also observe that in
the confidence-based setting, as expected, the answers selected with higher confidence-levels
are more correct. The total money spent under each of these settings is similar, with the skip
and the confidence-based settings faring better in most cases. We also elicited feedback from
the workers, in which we received several positive comments (and no negative comments).
Examples of comments that were received are: “I was wondering if it would possible to
increase the maximum number of HITs I may complete for you. As I said before, they were
fun to complete. I think I did a good job completing them, and it would be great to complete
some more for you.”; “I am eagerly waiting for your bonus.”; “Enjoyable. Thanks.”

Results: Aggregated data We saw in the raw data that under the skip-based setting,
the amount of error among the attempted questions was significantly lower than the amount
of error in the baseline setting. However, the skip-based setting was also associated, by
design, to lesser amount of data by virtue of questions being skipped by the workers. A
natural question that arises is how the baseline and the skip-based mechanisms will compare
in terms of the final data quality, i.e., the amount of error once data from multiple workers
is aggregated.

To this end, we considered the five experiments that consisted of multiple-choice ques-
tions. We let a parameter num workers take values in {3, 5, 7, 9, 11}. For each of the five
experiments and for each of the five values of num workers, we perform the following actions
1,000 times: for each question, we choose num workers workers and perform a majority vote
on their responses. If the correct answer for that question does not lie in the set of options
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given by the majority, we consider it as an accuracy of zero. Otherwise, if there are m
options tied in the majority vote, and the correct answer is one of these m, then we consider
it as an accuracy of 100

m
% (hence, 100% if the correct answer is the only answer picked by

the majority vote). We average the accuracy across all questions and across all iterations.
We choose majority voting as the means of aggregation since (a) it is the simplest and still

most popular aggregation method, and (b) to enable an apples-to-apples comparison design
since while more advanced aggregation algorithms have been developed for the baseline
setting without the skip (see, for instance, Chapter 4), design of analogous algorithms for
the new skip-based setting hasn’t been explored yet.

The results are presented in Figure 7.3. We see that in most cases, our skip-based mech-
anism induces a lower labelling error at the aggregate level than the baseline. Furthermore,
in many of the instances, the reduction is two-fold or higher.

All in all, in the experiments, we observe a substantial reduction in the error-rates while
expending the same or lower amounts and receiving no negative comments from the workers,
suggesting that these mechanisms can work; the fundamental theory underlying the mecha-
nisms ensures that the system cannot be gamed in the long run. Our proposed settings and
mechanisms thus have the potential to provide much higher quality labeled data as input to
machine learning algorithms.

7.5 Discussion

We conclude this chapter with a discussion on an important open problem – the choice of
the number of confidence levels L. In the chapter we assume that the number of confidence
levels L is specified to us, and we provide mechanisms for any given choice of L, but assume
that the value of L is provided to us. There are at least two effects that one must account
for when making this choice. An increase in the value of L is good because we may obtain
additional nuanced information about the workers’ beliefs. However, on the other hand,
workers would now require a greater time and effort in order to provide select the confidence
level, and moreover, the multitude of options may make their answers more noisy. In other
words, both the “signal” and the “noise” in the data increase with an increase in the value
of L, and lead to an interesting trade-off. It is also of interest to design means of choosing
the thresholds {Sl, Tl}Ll=1 once the value of L is set.

7.6 Proofs

In this section, we prove the claimed theoretical results whose proofs are not included in the
main text of the chapter.

The property of incentive-compatibility does not change upon any shift of the mechanism
by a constant value or any scaling by a positive constant value. As a result, for the purposes
of these proofs, we can assume without loss of generality that αmin = 0.
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7.6.1 Proof of Theorem 18: Working of Algorithm 2

We first state three properties that the constants {αl}Ll=−L defined in Algorithm 2 must
satisfy.

Lemma 34. For every l ∈ {0, . . . , L− 1}

Tl+1αl+1 + (1− Tl+1)α−(l+1) = Tl+1αl + (1− Tl+1)α−l , (7.2)

and
Sl+1αl+1 + (1− Sl+1)α−(l+1) = α0 = 1 . (7.3)

Lemma 35. αL > αL−1 > · · · > α−L = 0.

Lemma 36. For any m ∈ {1, . . . , L}, any p > Tm and any z < m,

pαm + (1− p)α−m > pαz + (1− p)α−z , (7.4)

and for any m ∈ {0, . . . , L− 1}, any p < Tm+1 and any z > m,

pαm + (1− p)α−m > pαz + (1− p)α−z . (7.5)

The proof of these results are available at the end of this section. Given these lemmas,
we now complete the proof of Theorem 18.

The choice of α−L = 0 made in Algorithm 2 ensures that the payment is zero whenever
any answer in the gold standard evaluates to −L. This choice ensures that the no-free-lunch
axiom is satisfied. One can easily verify that the payment lies in the interval [0, αmax]. It
remains to prove that the proposed mechanism is incentive-compatible.

Define E = (ε1, . . . , εG) ∈ {−1, 1}G and E\1 = (ε2, . . . , εG). Suppose the worker has
confidences p1, . . . , pN for her N answers. For some (s(1), . . . , s(N)) ∈ {0, . . . , L}N suppose
pi ∈ (Ts(i), Ts(i)+1) ∀ i ∈ {1, . . . , N}, i.e., s(1), . . . , s(N) are the correct confidence-levels
for her answers. Consider any other set of confidence-levels s′(1), . . . , s′(N). When the
mechanism of Algorithm 2 is employed, the expected payment (from the point of view of the
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worker) on selecting confidence-levels s(1), . . . , s(N) is

E[Pay] =
1(
N
G

) ∑
(j1,...,jG)
⊆{1,...,N}

∑
E∈{−1,1}G

G∏
i=1

αεis(ji)(pji)
1+εi
2 (1− pji)

1−εi
2 (7.6)

=
1(
N
G

) ∑
(j1,...,jG)
⊆{1,...,N}

∑
E\1∈{−1,1}G−1

(
pj1αs(j1) + (1− pj1)α−s(j1)

) G∏
i=2

αεis(ji)(pji)
1+εi
2 (1− pji)

1−εi
2

...

=
1(
N
G

) ∑
(j1,...,jG)
⊆{1,...,N}

G∏
i=1

(
pjiαs(ji) + (1− pji)α−s(ji)

)
(7.7)

>
1(
N
G

) ∑
(j1,...,jG)
⊆{1,...,N}

G∏
i=1

(
pjiαs′(ji) + (1− pji)α−s′(ji)

)

which is the expected payment under any other set of confidence-levels s′(1), . . . , s′(N). The
last inequality is a consequence of Lemma 36.

An argument similar to the above also proves that for any m ∈ {1, . . . , L}, if allowed to
choose between only skipping and confidence-level m, the worker is incentivized to choose
confidence-level m over skip if her confidence is greater Sm, and choose skip over level m if if
her confidence is smaller than Sm. Finally, from Lemma 35 we have αL > · · · > α−L = 0. It
follows that the expected payment (7.7) is strictly increasing in each of the values p1, . . . , pN .
Thus the worker is incentivized to report the answer that she thinks is most likely to be
correct.

Proof of Lemma 34

Algorithm 2 states that α−l = 1−αlSl
1−Sl

for all l ∈ [L]. A simple rearrangement of the terms in

this expression gives (7.3).
Towards the goal of proving (7.2), we will first prove an intermediate result:

αl > 1 > α−l ∀ l ∈ {L, . . . , 1} . (7.8)

The proof proceeds via an induction on l ∈ {L, . . . , 2}. The case of l = 1 will be proved
separately. The induction hypothesis involves two claims: αl > 1 > α−l and Tlαl + (1 −
Tl)α−l > 1. The base case is l = L for which we know that αL = 1

SL
> 1 > 0 = α−L

and Tlαl + (1 − Tl)α−l = Tl
Sl
> 1. Now suppose that the induction hypothesis is true for

(l+ 1). Rearranging the terms in the expression defining αl in Algorithm 2 and noting that
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1 > Tl+1 > Sl, we get

αl =
(1− Sl)

(
Tl+1αl+1 + (1− Tl+1)α−(l+1)

)
− (1− Tl+1)

(1− Sl)− (1− Tl+1)
(7.9)

>
(1− Sl)− (1− Tl+1)

(1− Sl)− (1− Tl+1)

= 1 .

From (7.3) we see that the value 1 is a convex combination of αl and α−l. Since αl > 1 and
Sl ∈ (0, 1), it must be that α−l < 1. Furthermore, since Tl > Sl we get

Tlαl + (1− Tl)α−l > Slαl + (1− Sl)α−l
= 1 .

This proves the induction hypothesis. Let us now consider l = 1. If L = 1 then we have
αL = 1

SL
> 1 > 0 = α−L and we are done. If L > 1 then we have already proved that

α2 > 1 > α−2 and T2α2 + (1 − T2)α−2 > 1. An argument identical to (7.9) onwards proves
that α1 > 1 > α−1.

Now that we have proved αl > α−l∀ l ∈ [L], we can rewrite the expression defining α−l
in Algorithm 2 as

Sl =
1− α−l
αl − α−l

.

Substituting this expression for Sl in the definition of αl in Algorithm 2 and making some
simple rearrangements gives the desired result (7.2).

Proof of Lemma 35

We have already shown (7.8) in the proof of Lemma 34 above that αl > 1 > α−l ∀ l ∈ [L].
Next we will show that αl+1 > αl and α−(l+1) < α−l ∀ l ≥ 0. First consider l = 0, for

which Algorithm 2 sets α0 = 1, and we have already proved that α1 > 1 > α−1.
Now consider some l > 0. Observe that since Slαl + (1 − Sl)α−l = 1 (Lemma 34),

Sl+1 > Sl and αl > α−l, it must be that

Sl+1αl + (1− Sl+1)α−l > 1 . (7.10)

From Lemma 34, we also have

Sl+1αl+1 + (1− Sl+1)α−(l+1) = 1 . (7.11)

Subtracting (7.10) from (7.11) we get

Sl+1(αl+1 − αl) + (1− Sl+1)(α−(l+1) − α−l) < 0 . (7.12)
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From Lemma 34 we also have

Tl+1αl+1 + (1− Tl+1)α−(l+1) = Tl+1αl + (1− Tl+1)α−l (7.13)

⇒ Tl+1(αl+1 − αl) + (1− Tl+1)(α−(l+1) − α−l) = 0 . (7.14)

Subtracting (7.12) from (7.14) gives

(Tl+1 − Sl+1)[(αl+1 − αl) + (α−l − α−(l+1))] > 0 . (7.15)

Since Tl+1 > Sl+1 by definition, it must be that

αl+1 − αl > α−(l+1) − α−l . (7.16)

Now, rearranging the terms in (7.13) gives

(αl+1 − αl)Tl+1 = −(α−(l+1) − α−l)(1− Tl+1) . (7.17)

Since Tl+1 ∈ (0, 1), it follows that the terms (αl+1 − αl) and (α−(l+1) − α−l) have opposite
signs. Using (7.16) we conclude that αl+1 − αl > 0 and α−(l+1) − α−l < 0.

Proof of Lemma 36

Let us first prove (7.4). First consider the case z = m− 1. From Lemma 34 we know that

Tmαm−1 + (1− Tm)α−(m−1) = Tmαm + (1− Tm)α−m,

and with some rearrangement,

0 = Tm(αm − αm−1) + Tm(α−(m−1) − α−m)− (α−(m−1) − α−m)

< p(αm − αm−1) + p(α−(m−1) − α−m)− (α−(m−1) − α−m) , (7.18)

where (7.18) is a consequence of p > Tm and Lemma 35. A simple rearrangement of the
terms in (7.18) gives (7.4). Now, for any z < m, recursively apply this result to get

pαm + (1− p)α−m > pαm−1 + (1− p)α−(m−1)

> pαm−2 + (1− p)α−(m−2)

...

> pαz + (1− p)α−z .

Let us now prove (7.5). We first consider the case z = m+ 1. From Lemma 34 we know
that

Tm+1αm + (1− Tm+1)α−m = Tm+1αm+1 + (1− Tm+1)α−(m+1)

⇒ 0 = Tm+1(αm+1 − αm) + Tm+1(α−m − α−(m+1))− (α−m − α−(m+1))

> p(αm+1 − αm) + p(α−m − α−(m+1))− (α−m − α−(m+1)) , (7.19)
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where (7.19) is a consequence of p < Tm+1 and Lemma 35. A simple rearrangement of the
terms in (7.19) gives (7.5). For any z > m, applying this result recursively gives

pαm + (1− p)α−m > pαm+1 + (1− p)α−(m+1)

> pαm+2 + (1− p)α−(m+2)

...

> pαz + (1− p)α−z .

7.6.2 Proof of Theorem 19: Uniqueness of Algorithm 2

We will first define one additional piece of notation. Let g : {−L, . . . , L}N → R+ de-
note the expected payment given an evaluation of the N answers, where the expectation
is with respect to the (uniformly random) choice of the G gold standard questions. If
(x1, . . . , xN) ∈ {−L, . . . , L}N are the evaluations of the worker’s answers to the N questions
then the expected payment is

g(x1, . . . , xN) =
1(
N
G

) ∑
(i1,...,iG)⊆{1,...,N}

f(xi1 , . . . , xiG) . (7.20)

Notice that when G = N , the functions f and g are identical.
The proof of uniqueness is based on a certain condition necessitated by incentive-compatibility

stated in the form of Lemma 37 below. Note that this lemma does not require the generalized-
no-free-lunch axiom, and may be of independent interest.

Lemma 37. Any incentive-compatible mechanism must satisfy, for every question i ∈
{1, . . . , G}, every (y1, . . . , yi−1, yi+1, . . . , yG) ∈ {−L, . . . , L}G−1, and every m ∈ {1, . . . , L},

Tmf(y1, . . . , yi−1,m, yi+1, . . . , yG) + (1− Tm)f(y1, . . . , yi−1,−m, yi+1, . . . , yG)

= Tmf(y1, . . . , yi−1,m− 1, yi+1, . . . , yG) + (1− Tm)f(y1, . . . , yi−1,−(m− 1), yi+1, . . . , yG)
(7.21a)

and

Smf(y1, . . . , yi−1,m, yi+1, . . . , yG) + (1− Sm)f(y1, . . . , yi−1,−m, yi+1, . . . , yG)

= f(y1, . . . , yi−1, 0, yi+1, . . . , yG) . (7.21b)

Note that (7.21a) and (7.21b) coincide when m = 1, since T1 = S1 by definition. See the
end of this section for a proof of this lemma.

We first prove that any incentive compatible mechanism that satisfies the no-free-lunch
axiom must give a zero payment when one or more questions are selected with a confidence
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L and turn out to be incorrect. Let us assume for now that in the G questions in the
gold standard, the first question is answered incorrectly with a confidence of L, the next
(G − 1 − S) questions are answered by the worker and have arbitrary evaluations, and the
remaining S questions are skipped. The proof proceeds by an induction on S. If S = G− 1,
the only attempted question is the first question and this is incorrect with confidence L. The
no-free-lunch axiom necessitates a zero payment in this case, thus satisfying the base case
of our induction hypothesis. Now we prove the hypothesis for some S under the assumption
that the hypothesis is true for every S ′ > S. From Lemma 33 with m = 1, we have

T1f(−L, y2, . . . , yG−S−1, 1, 0, . . . , 0) + (1− T1)f(−L, y2, . . . , yG−S−1,−1, 0, . . . , 0)

= T1f(−L, y2, . . . , yG−S−1, 0, 0, . . . , 0) + (1− T1)f(−L, y2, . . . , yG−S−1, 0, 0, . . . , 0)

= f(−L, y2, . . . , yG−S−1, 0, 0, . . . , 0)

= 0 , (7.22)

where the final equation (7.22) is a consequence of our induction hypothesis given the fact
that f(−L, y2, . . . , yG−S−1, 0, 0, . . . , 0) corresponds to the case when the last (S+1) questions
are skipped and the first question is answered incorrectly with confidence L. Now, since the
payment f must be non-negative and since T ∈ (0, 1), it must be that

f(−L, y2, . . . , yG−S−1, 1, 0, . . . , 0) = 0

and
f(−L, y2, . . . , yG−S−1,−1, 0, . . . , 0) = 0 .

Repeatedly applying the same argument to m = 2, . . . , L gives that for every value of m, it
must be that f(−L, y2, . . . , yG−S−1,m, 0, . . . , 0) = f(−L, y2, . . . , yG−S−1,−m, 0, . . . , 0) = 0.
This completes the proof of our induction hypothesis. Observe that each of the aforemen-
tioned arguments hold for any permutation of the G questions, thus proving the necessity of
zero payment when any one or more answers are incorrect.

We now prove that when no answers in the gold standard are incorrect with confidence
L, the payment must be of the form described in Algorithm 1. Let κ denote the payment
when all G questions in the gold standard are skipped, i.e.,

κ = f(0, . . . , 0) .

Now consider any S ∈ {0, . . . , G − 1} and any (y1, . . . , yG−S−1,m) ∈ {−L, . . . , L}G−S.
The payments {f(y1, . . . , yG−S−1,m, 0, . . . , 0)}Lm=−L must satisfy the (2L − 1) linear con-
straints arising out of Lemma 37 and must also satisfy f(y1, . . . , yG−S−1,−L, 0, . . . , 0) =
0. This comprises a total of 2L linearly independent constraints on the (2L + 1) values
{f(y1, . . . , yG−S−1,m, 0, . . . , 0)}Lm=−L. The only set of solutions that meet these constraints
are

f(y1, . . . , yG−S−1,m, 0, . . . , 0) = αmf(y1, . . . , yG−S−1, 0, 0, . . . , 0),
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where the constants {αm}Lm=−L are as specified in Algorithm 2. Applying this argument G
times, starting from S = 0 to S = G− 1, gives

f(y1, . . . , yG) = κ
G∏
j=1

αyj .

Finally, the budget requirement necessitates αmax = κ (αL)G, which mandates the value of κ

to be αmax

(
1
αL

)G
. This is precisely the mechanism described in Algorithm 2.

Proof of Lemma 37: Necessary condition for any incentive-compatible
mechanism

First consider the case of G = N . For every j ∈ {1, . . . , i− 1, i+ 1, . . . , G}, define

rj =

{
1− pj if yj ≥ 0

pj if yj < 0 .

Define E\i = {ε1, . . . , εi−1, εi+1, . . . , εG}. For any l ∈ {−L, . . . , L} let Λl ∈ R+ denote the
expected payment (from the worker’s point of view) when her answer to the ith question
evaluates to l:

Λl =
∑

E\i∈{−1,1}G−1

f(y1ε1, . . . , yi−1εi−1, l, yi+1εi+1, . . . , yGεG)
∏

j∈[G]\{i}

r
1−εj

2
j (1− rj)

1+εj
2

 .(7.23)

Consider a worker who has confidences {p1, . . . , pi−1, pi+1, . . . , pG} ∈ (0, 1)G−1 for ques-
tions {1, . . . , i− 1, i+ 1, . . . , G} respectively, and for question i suppose she has a confidence
of q ∈ (Tm−1, Tm+1). For question i, we must incentivize the worker to select confidence-level
m if q > Tm, and to select (m− 1) if q < Tm. This necessitates

qΛm + (1− q)Λ−m
q<Tm
≶

q>Tm

qΛm−1 + (1− q)Λ−(m−1) . (7.24)

Also, for question i, the requirement of level m having a higher incentive as compared to
skipping when q > Sm and vice versa when q < Sm necessitates

qΛm + (1− q)Λ−m
q<Sm
≶

q>Sm

Λ0 . (7.25)

Now, note that for any real-valued variable q, and for any real-valued constants a, b and c,

aq
q<c

≶
q>c

b ⇒ ac = b .
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Applying this fact to (7.24) and (7.25) gives

(TmΛm + (1− Tm)Λ−m)− (TmΛm−1 + (1− Tm)Λ−(m−1)) = 0 , (7.26)

(SmΛm + (1− Sm)Λ−m)− Λ0 = 0 . (7.27)

From the definition of Λl in (7.23), we see that the left hand sides of (7.26) and (7.27) are
both polynomials in (G − 1) variables {rj}j∈[G]\{i} and take a value of zero for all values
of the variables in a (G − 1)-dimensionall solid ball. Thus, each of the coefficients (of the
monomials) in both polynomials must be zero, and in particular, the constant terms must
also be zero. Observe that in both these polynomials, the constant term arises only when
εj = 1 ∀ j ∈ [G]\{i} (which makes the exponent of rj to be 0 and that of (1− rj) to be 1).
Thus, setting the constant term to zero in the two polynomials results in

Tmf(y1, . . . , yi−1,m, yi+1, . . . , yG) + (1− Tm)f(y1, . . . , yi−1,−m, yi+1, . . . , yG)

= Tmf(y1, . . . , yi−1,m− 1, yi+1, . . . , yG) + (1− Tm)f(y1, . . . , yi−1,−(m− 1), yi+1, . . . , yG)
(7.28)

and

Smf(y1, . . . , yi−1,m, yi+1, . . . , yG) + (1− Sm)f(y1, . . . , yi−1,−m, yi+1, . . . , yG)

= f(y1, . . . , yi−1, 0, yi+1, . . . , yG) (7.29)

thus proving the claim for the case of G = N .
Now consider the case when G < N . In order to simplify notation, let us assume i = 1

without loss of generality (since the arguments presented hold for any permutation of the
questions). Suppose a worker’s answers to questions {2, . . . , G} evaluate to (y2, . . . , yG) ∈
{−L, . . . , L}G−1, and further suppose that the worker skips the remaining (N−G) questions.
By going through arguments identical to those for G = N , but with f replaced by g, we get
the necessity of

Tmg(m, y2, . . . , yG, 0, . . . , 0) + (1− Tm)g(−m, y2, . . . , yG, 0, . . . , 0)

= Tmg(m− 1, y2, . . . , yG, 0, . . . , 0) + (1− Tm)g(−(m− 1), y2, . . . , yG, 0, . . . , 0) (7.30)

and

Smg(m, y2, . . . , yG, 0, . . . , 0) + (1− Sm)g(−m, y2, . . . , yG, 0, . . . , 0) = g(0, y2, . . . , yG, 0, . . . , 0) .
(7.31)

We will now use this result in terms of function g to get an equivalent result in terms of
function f . For some S ∈ {0, . . . , G − 1}, suppose yG−S+1 = 0, . . . , yG = 0. The remaining
proof proceeds via an induction on S. We begin with S = G − 1. In this case, (7.30)
and (7.31) simplify to

Tmg(m, 0, . . . , 0) + (1− Tm)g(−m, 0, 0, . . . , 0)

= Tmg(m− 1, 0, . . . , 0) + (1− Tm)g(−(m− 1), 0, . . . , 0)
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and

Smg(m, 0, . . . , 0) + (1− Sm)g(−m, 0, . . . , 0) = g(0, 0, . . . , 0) .

Applying the definition of function g from (7.20) leads to

Tm (c1f(m, 0, . . . , 0) + c2f(0, 0, . . . , 0)) + (1− Tm) (c1f(−m, 0, . . . , 0) + c2f(0, 0, . . . , 0))

= Tm (c1f(m− 1, 0, . . . , 0) + c2f(0, 0, . . . , 0))

+ (1− Tm) (c1f(−(m− 1), 0, . . . , 0) + c2f(0, 0, . . . , 0)) ,

and

Sm (c1f(m, 0, . . . , 0) + c2f(0, 0, . . . , 0)) + (1− Sm) (c1f(−m, 0, . . . , 0) + c2f(0, 0, . . . , 0))

= (c1f(0, 0, . . . , 0) + c2f(0, 0, . . . , 0))

for constants c1 > 0 and c2 > 0 that respectively denote the probabilities that the first
question is picked and not picked in the set of G gold standard questions. Canceling out the
common terms on both sides of the equation, we get the desired results

Tmf(m, 0, . . . , 0) + (1− Tm)f(−m, 0, . . . , 0)

= Tmf(m− 1, 0, . . . , 0) + (1− Tm)f(−(m− 1), 0, . . . , 0)

and

Smf(m, 0, . . . , 0) + (1− Sm)f(−m, 0, . . . , 0) = f(0, 0, . . . , 0) .

Next, we consider the case of a general S ∈ {0, . . . , G− 2} and assume that the result is
true when yG−S = 0, . . . , yG = 0. In (7.30) and (7.31), the functions g decompose into a sum
of the constituent f functions. These constituent functions f are of two types: the first where
all of the first (G − S) questions are included in the gold standard, and the second where
one or more of the first (G−S) questions are not included in the gold standard. The second
case corresponds to situations where there are more than S questions skipped in the gold
standard, i.e., when yG−S = 0, . . . , yG = 0, and hence satisfies our induction hypothesis. The
terms corresponding to these functions thus cancel out in the expansion of (7.30) and (7.31).
The remainder comprises only evaluations of function f for arguments in which the first
(G − S) questions are included in the gold standard: since the last (N − G + S) questions
are skipped by the worker, the remainder evaluates to

Tmc3f(y1, . . . , yi−1,m, yi+1, . . . , yG) + (1− Tm)c3f(y1, . . . , yi−1,−m, yi+1, . . . , yG)

= Tmc3f(y1, . . . , yi−1,m− 1, yi+1, . . . , yG) + (1− Tm)c3f(y1, . . . , yi−1,−(m− 1), yi+1, . . . , yG) ,

Smc3f(y1, . . . , yi−1,m, yi+1, . . . , yG) + (1− Sm)c3f(y1, . . . , yi−1,−m, yi+1, . . . , yG)

= c3f(y1, . . . , yi−1, 0, yi+1, . . . , yG) ,

for some constant c3 > 0. Dividing throughout by c3 gives the desired result.
Finally, the arguments above hold for any permutation of the first G questions, thus

completing the proof.
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7.A Appendix: Necessity of Tl > Sl for the problem to

be well defined

We now show that the restriction Tl > Sl was necessary when defining the thresholds in
Section 7.3.

Proposition 12. Incentive-compatiblity necessitates Tl > Sl ∀ l ∈ {2, . . . , L}, even in the
absence of the generalized-no-free-lunch axiom.

First observe that the proof of Lemma 37 did not employ the generalized-no-free-lunch
axiom, neither did it assume Tl > Sl. We will thus use the result of Lemma 37 to prove our
claim.

Suppose the confidence of the worker for all but the first question is lower than T1 and
that the worker decides to skip all these questions. Suppose the worker attempts the first
question. In order to ensure that the worker selects the answer that she believes is most
likely to be true, it must be that

f(l, 0, . . . , 0) > f(−l, 0, . . . , 0) ∀l ∈ [L] .

We now call upon Lemma 37 where we set i = 1, m = l, y2 = . . . , yG = 0. Using the fact
that Tl > Tl−1 ∀l ∈ {2, . . . , L}, we get

Tlf(l, 0, . . . , 0) + (1− Tl)f(−l, 0, . . . , 0)

= Tlf(l − 1, 0, . . . , 0) + (1− Tl)f(−(l − 1), 0, . . . , 0)

> Tl−1f(l − 1, 0, . . . , 0) + (1− Tl−1)f(−(l − 1), 0, . . . , 0)

= Tl−1f(l − 2, 0, . . . , 0) + (1− Tl−1)f(−(l − 2), 0, . . . , 0)

> Tl−2f(l − 2, 0, . . . , 0) + (1− Tl−2)f(−(l − 2), 0, . . . , 0)

...

> T1f(1, 0, . . . , 0) + (1− T1)f(−1, 0, . . . , 0)

= f(0, . . . , 0)

= Slf(l, 0, . . . , 0) + (1− Sl)f(−l, 0, . . . , 0).

Since f(l, 0, . . . , 0) > f(−l, 0, . . . , 0), we have our desired result.
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Chapter 8

Approval Voting

“Give them many options, give them many paths, give
them the freedom that they may ask.”

– Ada Lovelace

8.1 Introduction

In the big data era, with the ever increasing complexity of machine learning models such as
deep learning, the demand for large amounts of labeled data is growing at an unprecedented
scale. These labeling tasks used to be done by domain experts. It is not hard to imagine
that the limited pool of experts would limit the size of the datasets. In the modern day,
these massive labeling tasks are performed through commercial web services such as Amazon
Mechanical Turk, where millions of crowdsourcing workers or annotators perform tasks in
exchange for monetary payments [211]. Unfortunately, the data obtained via crowdsourcing
is typically highly erroneous [119, 260, 261] due to the lack of expertise of workers, lack
of appropriate incentives, and often the lack of an appropriate interface for the workers to
express their knowledge. The typical crowdsourcing labeling task consists of a set of items
such as images to be labeled, and each item is associated with a set of exclusive categories.
Each worker is required to select the category that she believes is most likely to be correct.
More formally, it involves eliciting the mode of the worker’s belief. Such a “single-selection”
crowdsourcing setting has been studied extensively, both empirically and theoretically.

In this chapter, we consider an alternative “approval-voting” means of eliciting labels
from the workers. Approval voting [21, 120, 185, 264] is a form of voting in which each
voter can “approve of” (that is, select) multiple candidates. No further preferences among
these candidates is specified by the voter. In our context of crowdsourcing, the approval
voting interface allows workers to select multiple options for every question.1 See Figure 8.1

1The literature on psychology often refers to approval voting as “subset selection”.
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Figure 8.1: Illustration of a task with (a) the standard single selection interface, and (b) an approval-
voting interface.

for an example. Approval voting is known to have many advantages over single-selection
systems in psychology and social choice theory [21, 49, 51, 52, 89, 103, 140]. First, an
approval voting interface is easy to understand [140]. Approval voting provides workers more
flexibility to express their beliefs, for instance, allowing the worker to express any confusion
between multiple options, instead of being forced to select one of the options. Approval
voting also utilizes the expertise of workers with partial knowledge more effectively. For
instance, Coombs [51] posits that “It seems to be a common experience of individuals taking
objective tests to feel confident about eliminating some of the wrong alternatives and then
guess from among the remaining ones.” Further, Coombs argues that “Individuals taking
the test should be instructed to cross out all the alternatives which they consider wrong.”
This is precisely what we intend to do in this chapter.

Under this approval-voting interface, we require a worker to select the options that she
feels are “quite likely” to be correct (we formalize this in subsequent sections). In the setting
of crowdsourcing, as compared to single-selection, selecting multiple options would allow for
obtaining more information about the partial knowledge of these non-expert workers. This
additional information is particularly valuable for difficult labeling questions, allowing for
the identification of the sources of difficulty.

Let us illustrate the utility of this setting in crowdsourcing by means of an example
illustrated in Figure 8.1. The question requires the worker to identify the animal in the
image — a leopard in this case. Suppose there are two workers. The first worker believes
the true label to be either “Cheetah” or “Leopard”, but certainly not any other option;
the second worker is confused about some other aspect of the image, and believes the true
label to be either “Jaguar” or “Leopard”, but certainly none of the others. If each worker is
allowed to select only a single answer (Figure 8.1(a)), and if the workers choose one of the
two options they are confused about uniformly at random, there is a 25% chance that the
first worker selects “Cheetah” and the second worker selects “Jaguar”. Moreover, there is
a 50% chance that one worker chooses “Leopard” and the other chooses some other option.
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In each of these cases, their responses will thus not provide any definitive answer about
the true label. In contrast, under the approval voting interface (Figure 8.1(b)), we allow
the worker to select both the options that they are confused about, that is, (“Cheetah”,
“Leopard”) from the first worker and (“Jaguar”, “Leopard”) from the other worker, then
“Leopard” becomes a clear winner. Indeed, “Leopard” is the language in Figure 8.1. For
our second example, we continue to consider the question in Figure 8.1. Now suppose that
one worker knows the correct answer to be “Leopard” for sure, while the second worker
is completely confused between “Cheetah”, “Jaguar” and “Leopard.” In a single-selection
setting, the second worker may select one of the other three options at random, and in
the case “Cheetah” is not selected, it provides an inconclusive set of answers from the two
workers comprising two different options. On the other hand, in the approval voting setting,
the second worker is allowed to communicate her confusion by selecting all three options
under consideration, that allows for inference of “Leopard” as the correct answer.

Despite the flexibility it offers in eliciting partial knowledge, approval voting alone may
not suffice for high quality crowdsourcing. A worker may have no incentive to truthfully
disclose her knowledge on the crowdsourcing question. For instance, an immediate concern
with the approval voting setup is that a (spammer) worker may simply choose all provided
options for each question such that the correct answer is then guaranteed to lie in the set of
selected options.2 In order to incentivize the workers to report their answers truthfully, we
need to couple approval voting with an appropriate payment mechanism that is a strictly
proper scoring rule, such that a worker receives her maximum expected payment if and only
if she truthfully discloses her partial knowledge (that is, the support of her belief) on the
crowdsourcing question. Moreover, we want the mechanism to be “frugal”, that is, to pay
as little as possible for poor-quality work.

In crowdsourcing tasks comprising objective questions, it is a standard practice [83] to
include “gold standard questions,” that is, questions to which the system designer (or, the
principal in game-theoretic terms) already knows the answers. The gold standard ques-
tions are mixed at random within the actual questions, and the worker is unaware of which
questions are the gold standard. These gold standard questions are employed to verify the
answers provided by the workers, and form the basis of the payments made to the workers.
The gold standard questions are typically generated by experts (who are often much more
expensive than crowdsourcing workers), or are obtained as an aggregate of the answers of a
large number of crowdsourcing workers. In this chapter, we will not concern ourselves with
the source of these gold standard questions, but only assume that we have access to a set of
gold standard questions to which we know the correct answers.

The framework of scoring rules [24, 94, 137, 216] considers the design of payment mech-
anisms (that is, scoring rules) to elicit predictions about an event whose actual outcome
will be observed in the future. The payment is a function of the agent’s response and the
outcome of the event. The payment is called a “strictly proper scoring rule” if its expecta-

2In fact, we received questions regarding precisely this action in several of our initial presentations on
this work.
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tion, with respect to the belief of the agent about the event, is strictly maximized when the
agent reports her true belief.3 Within this context, the first goal of the chapter, in informal
terms, is to design strictly proper scoring rules that incentivize the worker to select only
those options which she thinks are relatively more likely to be correct. While proper scoring
rules have previously been studied under quite generic settings, this general theory provides
a very broad class of scoring rules, and does not specify any particular scoring rule for use. In
the application of crowdsourcing, we have a budget issue in reality. This leads to the second
goal of the chapter — choose the strictly proper scoring rule which is optimal in terms of
frugality.

Summary of results and organization

We consider two settings in the context of incentivizing the worker, for each question, to
select options which she thinks are “quite likely” to be correct. The two settings differ in
the precise meaning of the term “quite likely”: The second setting is a generalization of the
first, but this added generality allows for only weaker guarantees. We now describe these
settings and summarize our results at a higher level.

The first setting we consider involves eliciting every option which she believes could
possibly be correct. Mathematically, we formulate this problem as eliciting the support
of the beliefs of workers for each question under a certain “coarse beliefs” assumption. As
mentioned above, this setup coincides with the existing psychology studies on multiple-choice
tests. We propose a scoring rule that we show is strictly proper for eliciting the support of
the beliefs. Along the lines of our second goal, we then prove that our proposed scoring
rule has several useful properties: (1) it makes the minimum payment under a spamming or
low-quality work, as compared to any possible strictly proper scoring rule; (2) it is the only
strictly proper scoring rule that can satisfy a simple and intuitive condition which we term
“no-free-lunch”; (3) it is robust in the sense that, even when the coarse beliefs assumption
is violated, the scoring rule does not break down, but continues to incentivize workers to act
in a certain desirable manner.

In the second part of the chapter, we consider a general setting that is associated with a
given parameter σ, and for each question, involves eliciting the set of options whose likelihood
of correctness is more than σ according to the worker’s belief. This setting is more general
than the first setting since: (1) the first setting turns out to be a special case corresponding
to σ = 0; and (2) we do not make the coarse beliefs assumption. We design a scoring rule for
this setting and show that it is strictly proper. In addition, we also prove that under certain
restricted conditions, our proposed rule is the only possible strictly proper scoring rule.

The rest of the chapter is organized as follows. We begin with a description of the formal
problem setting and the goals of the chapter in Section 8.2. We present our main theoretical

3In this chapter, we use the term “strictly proper scoring rule” instead of using “(strictly) incentive
compatible” as in Chapter 6 and Chapter 7 in order to remain consistent with our paper associated to
the results of this chapter. In the context of our work, the two terms mean the same and can be used
interchangably.
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results in Section 8.3. Here, in Section 8.3.1 we present theoretical results on the problem of
eliciting the support of the worker, and in Section 8.3.2 we present theory on the problem of
eliciting options whose belief-probabilities exceed a given threshold. We conclude the main
text of the chapter with a discussion on empirical evaluations and future work in Section 8.4.

8.2 Problem setting

Consider N ≥ 1 questions, each of which has B options (2 ≤ B < ∞) to choose from.
For each option, exactly one of the B options is correct. We assume that these N questions
contain G (1 ≤ G ≤ N) “gold standard” questions, that is, questions to which the mechanism
designer knows the answers a priori. These gold standard questions are assumed to be mixed
uniformly at random among the N questions, and the worker is evaluated based on her
performance on these G questions. For every individual question, we assume that the worker
has, in her mind, a distribution over the B options representing her beliefs of the probabilities
of the respective options being correct. We assume that these belief-distributions of a worker
are independent across questions [89].

8.2.1 Payment function (scoring rule)

As mentioned earlier, the worker’s performance is evaluated based on her responses to the
gold standard questions. For any question in the gold standard, we denote the evaluation
of the worker’s performance on this question by a value in the set {−(B − 1), . . . , B}: the
magnitude of this value represents the number of options she had selected, and the sign is
positive if the correct answer was in the set of selected options and negative otherwise. For
instance, if the worker selected four options for a certain gold standard question but none
of them was correct, then the evaluation of this response is denoted as “−4”; if the worker
selects two options for a gold standard question and one of them turns out to be the correct
option then the evaluation of this response is denoted as “+2”.

We will assume that the payments are bounded, that is, any payment must lie in the
interval [αmin, αmax], for some values αmin and αmax > αmin. The choice of the two parameters
αmin and αmax may be made keeping various factors in mind, such as guidelines of the
crowdsourcing platform used, the budget constraints, and the minimum wage. We will
assume that the values of the two parameters are given to us.

Let

f : {−(B − 1), . . . , B}G → [αmin, αmax]

denote the payment function. We will use the terms “payment function” and “scoring rule”
interchangeably throughout the chapter. It is this function f which must be designed in
order to incentivize the worker. In order to bring all possible scoring rules on an equal
footing, we fix αmax as the payment for the best possible outcome, which is when the worker
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selects exactly the correct option (and nothing else) for each question in the gold standard:

f(1, . . . , 1) = αmax. (8.1)

Throughout the chapter, we assume all scoring rules to satisfy (8.1), along with the require-
ment to lie in the interval [αmin, αmax].

In the sequel, we use the notation f ∗ and f# to denote the two scoring rules proposed
in this chapter, and f to denote any general scoring rule. We will say that the worker has
“not attempted” a certain question if the worker selects all the B options for that question.

8.2.2 Expected payment

A quantity central to our analysis is the expected payment, where the expectation is from
the point of view of the worker, and is taken over the randomness in the choice of the G
gold standard questions among the N questions, and over the N probability distributions
representing her beliefs for the N questions. Let us formalize this notion. Suppose that
for question i ∈ [N ], the worker has selected some yi ∈ [B] of the B options. Further,
let si ∈ [0, 1] denote the probability, under the worker’s beliefs, that the correct answer to
question i lies in this set of yi selected options. In other words, si denotes the sum of the
beliefs for the yi options selected by the worker (consequently, the sum of the beliefs for the
options not selected is (1−si)). Then from the worker’s point of view, her expected payment
for this selection is

1(
N
G

) ∑
(j1,...,jG)⊆[N ]

∑
(ε1,...,εG)∈{−1,1}G

(
f(ε1yj1 , . . . , εGyjG)

G∏
i=1

(1− sji)1{εi=−1}s
1{εi=1}
ji

)
. (8.2)

The outer summation in (8.2) corresponds to the expectation with respect to the random
distribution of the G gold standard questions in the N total questions. The inner summation
in (8.2) corresponds to the expectation with respect to the worker’s beliefs of her choices
being correct. In more detail, the values ε1, . . . , εG iterate over all possible events regarding
whether or not the correct answer lies in the selected set of options for each of the G gold
standard questions, and the term

∏G
i=1(1 − sji)

1{εi=−1}s
1{εi=1}
ji

represents the probability
(according to the worker’s beliefs) of the occurrence of each such event. For instance, if the
worker selects all options (yi = B) for every question i ∈ [N ], then the correct answer must
necessarily lie in the set of selected options (that is, si = 1 for every i ∈ [G]), and then the
payment evaluates to exactly f(B, . . . , B).

Given the presence of gold standard questions, the performance of any worker can be
verified based on only her own answers (without depending on the answers of other workers).
The payments made to different workers thus do not depend on each other, and hence we
consider only one worker without loss of generality.

In this chapter, we assume that the worker aims to maximize her expected reward, where
the expectation is taken over the randomness in the choice of the G standard questions, and
in terms of the beliefs of the worker regarding the correctness of various options for each
question.
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8.2.3 Goal

At a higher level, our goal is to incentivize the worker, for each question, to select all options
that she believes are quite likely to be correct. The chapter is split into two parts, depending
on the specifics of this goal, as detailed below.

First setting: Eliciting support of beliefs

The first part of the chapter (Section 8.3.1) addresses the goal of eliciting, for every question,
the support of the worker’s distribution over the B options. In other words, we wish to
incentivize the worker such that for each question, the worker should select the smallest
subset of the set of options such that the correct answer according to her belief lies in the
selected subset. Such a requirement is motivated by studies such as [51] discussed earlier,
and also due to its virtue of being quite simple to describe to the workers.

Formally, suppose that for any question i ∈ [N ], the worker believes that the probability
of option b ∈ [B] being correct is pib, for some non-negative values pi1, . . . , piB that sum to
one. Then the goal is to incentivize the worker, for each question i ∈ [N ], to select precisely
the set of options

{b ∈ [B] | pib 6= 0}. (8.3)

The worker is incentivized to do so by means of a payment mechanism that forms a strictly
proper scoring rule.

Definition 8 (Strictly proper scoring rule for support elicitation). A payment function is a
strictly proper scoring rule for the problem of eliciting the support of beliefs if the expected
payment (8.2) from the worker’s point of view is strictly maximized when she selects all
options (8.3) for which her belief is non-zero.

As we show in Appendix 8.A.1, there is no strictly proper scoring rule for this goal in
the absence of any additional assumptions. To this end, we make a certain assumption
of “coarse beliefs” that is motivated by various findings in psychology that are similar in
spirit. There is an extensive literature in psychology establishing the coarseness of processing
and perception in humans. For instance, Miller’s celebrated paper [169] establishes the
information and storage capacity of humans, that an average human being can typically
distinguish at most about seven states. This granualrity of human computation is verified
in many subsequent experiments [212, 238]. The paper [114] establishes the ineffectiveness
of finer-granularity response elicitation. Mullainathan et al. [174] hypothesize that humans
often group things into categories; this hypothesis is experimentally verified in the paper [240]
in a specific setting. In the same spirit of coarseness of human processing, we make the
following assumption.

Consider some (fixed and known) value ρ > 0, and assume that the probability of any
option for any question, according to the worker’s belief, is either zero or greater than
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ρ.4 Since one must necessarily take into account situations when a worker is totally clueless
about a question, that is, when her belief is distributed uniformly over all options, we restrict
ρ < 1

B
. To summarize, we make the following “coarse belief” assumption.

Definition 9 (Coarse belief assumption). The worker’s belief for any option for any question
lies in the set {0} ∪ (ρ, 1] for some (fixed and known) value ρ ∈

(
0, 1

B

)
.

Our first set of results (Section 8.3.1) address the goal of designing strictly proper scoring
rules for support elicitation under the coarse beliefs assumption. In general, there may be
many such strictly proper scoring rules possible, and hence importantly, we also show that
our designed mechanism is strictly “optimal” in the sense of a certain notion of frugality
and “unique” in that it is the only mechanism that satisfies a simple and intuitive additional
requirement. We present this mechanism, along with the precise definitions and statements
of uniqueness and optimality in Section 8.3.1.

Second setting: Eliciting thresholded beliefs

Our second set of results (Section 8.3.2) consider a more general setting that also does
not make the coarse beliefs assumption. We assume to be given the value of a parameter
σ ∈ (0, 1). For any question i ∈ [N ], let pib denote the probability of option b ∈ [B] being
correct according to the worker’s belief. Here, pi1, . . . , piB are non-negative values that sum
to one. Then for each question i ∈ [N ], we want the worker to select precisely the set of
options

{b ∈ [B] | pib > σ}, (8.4a)

while not selecting the options

{b ∈ [B] | pib < σ}. (8.4b)

Then the goal is to design payment mechanisms that are strictly proper scoring rules that
incentivize this behavior.

Definition 10 (Strictly proper scoring rule to elicit thresholded beliefs). A payment function
is a strictly proper scoring rule if the expected payment (8.2) from the worker’s point of view
is strictly maximized when she selects all options (8.4a) for which her belief is more than σ
and does not select all options (8.4b) for which her belief is lower than σ.

We note that the worker is allowed to act either way for options for which her belief is
exactly σ. We do not impose a requirement from the scoring rule when the worker’s belief
equals σ for any option since this is a boundary case that is impossible to incentivize; see
Appendix 8.A.2 for a proof of this claim.

4The impossibility shown in Appendix 8.A.1, discussed earlier in Section 8.2.3, pertains to the case ρ = 0.
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In Section 8.3.2, we provide a payment mechanism that forms a strictly proper scoring
rule for eliciting thresholded beliefs, along with additional results on its “uniqueness”. We
remark that the absence of additional assumptions (such as that of coarse beliefs), the results
on uniqueness/optimality are weaker than that established towards elicitation of the support
in Section 8.3.1.

8.3 Main results

We present our main results in this section. In Section 8.3.1, we consider the requirement
of eliciting the full support of the beliefs of the worker. Under a “coarse beliefs” assump-
tion regarding on the beliefs of people, we design a strictly proper scoring rule and show
strong guarantees associated to it. Subsequently in Section 8.3.2, we forgo this coarse beliefs
assumption and design strictly proper scoring rules that elicit options with beliefs above a
chosen (strictly positive) threshold.

8.3.1 Eliciting support under a coarse beliefs assumption

In this section, we address the goal of eliciting the full support of the workers’ beliefs,
assuming a coarseness of belief that assigns a value of zero to very low probability categories,
as detailed in Section 8.2.3. Since the support of the belief distribution must necessarily
contain at least one item, we will mandate the worker to select at least one option for each
question. Consequently, the scoring rules considered in this section are functions mapping
the set {−(B − 1), . . . ,−1, 1, . . . , B} to the interval [αmin, αmax].

In what follows, we first present our proposed strictly proper scoring rule for this problem,
and subsequently derive certain motivating properties for our scoring rule.

Proposed strictly proper scoring rule

We begin by presenting our proposed scoring rule, denoted by f ∗, as Scoring rule 3. Here,
the function 1 : {True, False} → {0, 1} is the indicator function, defined as 1{x} = 1 if x
is true, and 1{x} = 0 otherwise.

The payment is based only on the evaluation of the worker’s responses to the gold stan-
dard questions. It is easy to describe the mechanism in words: The payment is αmin plus

(i) 0 if the correct answer is not selected for one or more questions, otherwise

(ii) κ∗ reduced by (100ρ)% for each option selected.

Part (i) of the payment rule is a result of the indicator function 1{xi ≥ 1} in the description
of Scoring rule 3. Part (ii) arises due to the term (1 − ρ)|xi|. The term κ∗ is only used to
ensure that the (αmax, αmin)-conditions are satisfied.

Observe that our proposed scoring rule takes a very interesting “multiplicative” structure.
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Scoring rule 3 Strictly proper scoring rule to elicit support of beliefs in approval voting

• Input: Evaluations of the worker’s answers to the G gold standard questions
(x1, . . . , xG)

• Output: The worker’s payment

f ∗(x1, . . . , xG) = κ∗
G∏
i=1

(
(1− ρ)|xi| 1{xi ≥ 1}

)
+ αmin,

where κ∗ = αmax−αmin

(1−ρ)G

Theorem 20. Under the coarse-beliefs assumption, Scoring rule 3 is strictly proper.

Our multiplicative scoring rule is thus theoretically guaranteed to work.

Frugality

As discussed earlier, popular crowdsourcing platforms suffer from the problem of low-quality
data, often due to the presence of spammers and the like. To this end, it is imperative to have
scoring rules that make a low payment for such work, while retaining a high-enough payment
for good workers. Such a scoring rule will ensure that, first, there is minimal expenditure
on such spamming behavior, and second, that the low payment will deincentivize spammers
from taking up the task. With this motivation, we study such frugality properties of our
proposed scoring rules, and contrast them with all other strictly proper scoring rules.5

Consider the problem of eliciting the support of the worker’s beliefs for each question
under the coarse beliefs assumption. Recall our proposed payment function f ∗ described in
Scoring rule 3. Also, recall the condition f(1, . . . , 1) = αmax and f(x) ∈ [αmin, αmax] for every
x imposed on any scoring rule considered here. Then we have the following guarantees on
our scoring rule f ∗, as compared to any other strictly proper scoring rule.

Theorem 21. For any N ≥ G, among all strictly proper scoring rules, our scoring rule f ∗

spends the strictly minimum possible amount to a worker who does not attempt any question,
that is,

f(B, . . . , B) > f ∗(B, . . . , B),

for every strictly proper scoring rule f .

5In this chapter, the term “frugality” is used only in a colloquial sense, although the connotation here is
similar in spirit to other formal notions of frugality [6, 249] that address the amount of over-payment by a
mechanism.
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Theorem 21 addresses the most concerning spamming behavior — that of skipping all
questions — and shows that our proposed strictly proper scoring rule pays a strictly smaller
amount under such a behavior as compared to any other strictly proper scoring rule. In
accordance with our earlier discussion, this result is important in practice since a system
using our strictly proper scoring rule will waste he minimum amount of money on such
spamming behavior, and moreover, the lower payment may serve to deincentivize spammers
from taking up tasks that employ our strictly proper scoring rule.

The proof of Theorem 21 first shows that any strictly proper scoring rule f must satisfy
f(B, . . . , B) ≥ f ∗(B, . . . , B). The proof then goes on to show that any strictly proper
scoring rule f with f(B, . . . , B) = f ∗(B, . . . , B) must necessarily satisfy f(x) = f ∗(x) for
every argument x, that is, must be identical to Scoring rule 3. This claim is proved via (thee
levels of) induction on x.

The following theorem now proves more properties of our scoring rule.

Theorem 22. (a) When N = G, for any (x1, . . . , xG) ∈ {−(B − 1), . . . ,−1, 1, . . . , B}G, we
have

f(x1, . . . , xG) ≥ f ∗(x1, . . . , xG).

(b) For any N ≥ G, consider any value γ ∈ [G]. Consider any strictly proper scoring rule f
such that

f(x1, . . . , xG) = f ∗(x1, . . . , xG)

for every (x1, . . . , xG) ∈ {−(B − 1), . . . ,−1, 1, . . . , B}G that satisfies
∑G

i=1 1{xi = 1} ≥ γ.
Then it must be that

f(x1
′, . . . , xG

′) ≥ f ∗(x1
′, . . . , xG

′)

for every (x1
′, . . . , xG

′) ∈ {−(B − 1), . . . ,−1, 1, . . . , B}G that satisfies
∑G

i=1 1{xi′ = 1} ≥
γ − 1.

Let us parse the two parts of the theorem. Part (a) of Theorem 22 demonstrates that
our scoring rule is pointwise the most frugal among all strictly proper scoring rules under
the setting N = G. While the setting of N = G is not directly useful for our crowdsourcing
setting in practice, it is important since it forms the basis for all the theoretical guarantees.
Part (b) then goes on to show that any other strictly proper scoring rule that pays the
same amount as Scoring rule 3 for a certain quality of work, must pay at least as much as
our scoring rule for a worse quality. The notion of quality in the statement of this part is
determined by the number of questions to which the worker chose only the correct answer∑G

i=1 1{xi = 1}.
Each of the three parts follow from one or more applications application of the following

lemma.
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Lemma 38. Consider some y, y′ ∈ [B]N and some I ⊆ [N ] such that yi = y′i + 1 for all
i ∈ I, and yi = y′i for all i /∈ I. Then any strictly proper scoring rule f must necessarily
satisfy

1(
N
G

) ∑
(j1,...,jG)⊆[N ]

f(yj1 , . . . , yjG) ≥ 1(
N
G

) ∑
(j1,...,jG)⊆[N ]

(1− ρ)|I∩{j1,...,jG}|f(y′j1 , . . . , y
′
jG

). (8.5)

Furthermore, a necessary condition for the above inequality to be satisfied with equality is

f(ε1y
′
j1
, . . . , εGy

′
jG

) = αmin (8.6)

for all (j1, . . . , jG) ⊆ [N ], and all {(ε1, . . . , εG) ∈ {−1, 1}G\{1}G | εi = 1 whenever ji /∈ I}.

The lemma derives lower bounds on the payment made by any strictly proper scoring
rule under any evaluation y as compared to another evaluation y′ that differs from y only in
the questions in some set I. In particular, the left hand side of (8.5) is simply the expected
payment under a strictly proper scoring rule f under an evaluation y. The right hand side is
a rescaling of the expected payment under the evaluation y′, where the payment is rescaled
by a factor (1− ρ) for every additional option selected in y′ as compared to y.

The second part (8.6) of the lemma then shows that any strictly proper scoring rule that
achieves (8.5) with equality must make a minimum payment whenever any of the questions
in the set I does not have the correct answer selected.

Robustness to the coarse beliefs assumption: Incentives with finer beliefs

In the earlier subsections, we made the “coarse belief” assumption that the worker’s belief
for any option, when non-zero, is at least ρ. We then designed a strictly proper scoring rule,
Scoring rule 3, with respect to eliciting the supports of the beliefs of the worker. A natural
question then arises is: How does this scoring rule perform if the coarse beliefs assumption
is violated? We address this issue in the present section, showing that our scoring rule does
not break down, but rather continues to incentivize workers to act in a certain desirable way.
In more detail, if Scoring rule 3 (for a certain value of ρ) is encountered by a worker who
may have arbitrary beliefs, the scoring rule incentivizes the worker to select all options for
which the relative belief of the worker is high enough.

Theorem 23. Under Scoring rule 3, for any question, a worker with beliefs 1 ≥ p1 ≥ . . . ≥
pB ≥ 0 for the B options is incentivized to select options {1, . . . ,m} for that question, where

m = arg max
z∈[B]

(
pz∑z
i=1 pi

> ρ

)
.

It is not hard to interpret this incentivized action. The worker selects options one by one
in decreasing order of her beliefs as long as the selected option contributes a fraction more
than ρ to the total belief of the selected options.
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In order to understand the result of Theorem 23 slightly better, let us perform a sanity
check and verify that the earlier result of Theorem 20 for “coarse beliefs” is indeed a special
case of Theorem 23. To this end, suppose the beliefs of the worker for any particular question
are p1 ≥ · · · pm > ρ > pm+1 = · · · = pB = 0 for some m ∈ [B]. Then we have

pz∑z
i=1 pi

=
0∑z
i=1 pi

= 0 < ρ for all z ≥ m+ 1,

and

pz∑z
i=1 pi

≥ pz
1
> ρ for all z ≤ m.

It follows that under the result of Theorem 23, a worker with “coarse beliefs” will be incen-
tivized to select precisely the support of her beliefs.

The proof of Theorem 23 proof first computes the expected payment under the response
described in Theorem 23, and then by means of some careful algebraic arguments, shows
that any other answer will lead to a strictly lower payment.

An axiomatic derivation

We conclude this section with an alternative axiomatic derivation of our mechanism when
accommodating workers with arbitrary beliefs. The derivation involves a “no-free-lunch
axiom” similar to that considered in Chapter 6 and Chapter 7, which when adapted to our
approval-voting based setting is defined as follows. Recall from Section 8.2 that we say that
a worker has “not attempted” a certain question if the worker selects all the B options for
that question; otherwise we say that the worker attempted that question. We will also say
that the response of a worker to a question is “wrong” if the correct option does not lie in
the set of options that the worker selected for that question.

Definition 11 (No-free-lunch axiom). If the response to every attempted question in the
gold standard turns out to be wrong, then the worker gets the minimum payment, namely,

f(x1, . . . , xG) = αmin ∀ (x1, . . . , xG) ∈ {−(B − 1), . . . ,−1, B}G\{B}G.

First, observe that the no-free-lunch axiom is a very mild condition. For instance, even if a
worker selects B

2
options uniformly at random for each question, there is only a 1

2G
chance

that the no-free-lunch axiom will come into play. Second, the axiom is quite intuitive: the
only condition where the axiom applies is when for every question, the worker either does
not attempt or provides the incorrect answer, in which case the worker is providing no useful
information.

The no-free-lunch axiom is quantitatively different from the notions of frugality we stud-
ied earlier in Section 8.3.1. However, both these notions have the same qualitative goal,
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namely to minimize the expenditure when no useful data is obtained, while providing higher
payments to workers providing better data. Interestingly, as we show below, both these
notions lead to the same (unique) strictly proper scoring rule under our setting of approval
voting.

Theorem 24. Consider no assumptions on the minimum value of the belief, and suppose the

workers must be incentivized to select options {1, . . . ,m} where m = arg maxz

(
pz∑z
i=1 pi

> ρ
)

.

Then, Scoring rule 3 is the one and only strictly proper scoring rule that satisfies the no-
free-lunch axiom.

The proof of Theorem 24 relies on the following lemma, which provides another necessary
condition (in addition to Lemma 38) that must necessarily be satisfied by any strictly proper
scoring rule (that may or may not satisfy no-free-lunch).

Lemma 39. Any strictly proper scoring rule f must satisfy

f(x1, . . . , xi−1, xi + 1, xi+1, . . . , xG)

= (1− ρ)f(x1, . . . , xi−1, xi, xi+1, . . . , xG) + ρf(x1, . . . , xi−1,−xi, xi+1, . . . , xG),

for every i ∈ [G] and (x1, . . . , xi−1, xi+1, . . . , xG) ∈ {−(B − 1), . . . ,−1, 1, . . . , B}G−1, xi ∈
[B − 1].

Note that the lemma does not use the no-free-lunch condition. In words, the lemma
considers any arbitrary evaluations of the answers to the gold standard questions {1, . . . , i−
1, i + 1, G}. Fixing the evaluations of these questions, it says that the payment under any
strictly proper scoring rule for the evaluation (xi+1 + 1) of question i must be a convex
combination of the payments under the evaluations xi and −xi for question i. Moreover, the
coefficient in that convex combination must precisely equal the parameter ρ.

The proof of this lemma is provided in Appendix 8.5.6. A repeated application of this
lemma, along with the no-free-lunch axiom, leads to the result of Theorem 24.

8.3.2 Eliciting options with beliefs above a threshold

In this section, we consider the setting of incentivizing the worker to select all options for
which her belief is strictly greater σ, for some fixed parameter σ ∈ (0, 1), as detailed in
Section 8.2.3. We do not assume the restriction of coarseness of the beliefs.

Before proceeding ahead, we must specify certain pedantic details of the problem setting.
Let us define two integers smin and smax as smin = 1{σ < 1

B
} and smax = min{d 1

σ
e − 1, B}.

Consider any question. Observe that if if σ < 1
B

then it is meaningless to let the worker
select zero options since the belief for at least one option must be 1

B
or higher. Also observe

that for any value of σ ∈ (0, 1), it is meaningless to allow the worker to select d 1
σ
e or more

options, since it is mathematically impossible for those many options to have probabilities
more than σ. As a result, we will mandate the worker to select at least smin and at most smax
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options for any question. The goal remains to design the payment function f(x1, . . . , xG)
when |xi| ∈ {smin, . . . , smax} for every i ∈ [G].

Finally, we note some special cases which we exclude from the subsequent analysis. The
case of σ = 0 degenerates to the impossibility result of eliciting the support in the absence of
the course beliefs assumption (Appendix 8.A.1) discussed earlier in Section 8.2.3. If B = 2
or if σ ≥ 1

2
, the setting degenerates to the “skip-based” single-selection setting studied in

Chapter 6. Hence we focus on the case of B ≥ 3 and σ ∈ (0, 1
2
) in the rest of this section.

Proposed scoring rule

Our proposed scoring rule for the setting of this section is provided as Scoring rule 4. For
convenience of notation, we denote this scoring rule as f#.

Scoring rule 4 Incentive mechanism for the alternative problem formulation

• Input: Evaluations of the worker’s answers to the G gold standard questions (x1, . . . , xG)

• Output: The worker’s payment

f#(x1, . . . , xG) = κ#

G∏
i=1

(
(B − |xi| − 1)σ + 1{xi ≥ 1}

)
+ αmin,

where κ# = αmax−αmin

((B−smin−1)σ+1{smin≥1})G

For any question i ∈ [G], the component
(
(B − |xi| − 1)σ + 1{xi ≥ 1}

)
of the scoring

rule f# penalizes the selection of an incorrect option by σ and rewards the selection of the
correct option by 1. The overall payment is then a product of these components over all
gold standard questions. The constant κ# simply serves to scale the payment in order to
accommodate the (αmin, αmax)-requirements.

The following theorem now proves guarantees associated to our scoring rule.

Theorem 25. Consider any σ ∈ (0, 1
2
), N ≥ G ≥ 1 and B ≥ 3. Then Scoring rule 4 is a

strictly proper scoring rule.

The proof of this result first computes the expected payment in case of honest responses,
and then via some algebraic arguments shows that every other response must lead to a
strictly smaller payment.

Uniqueness

In this section, we address our second goal of choosing a strictly proper scoring rule among
many possible options. In particular, we show that the core structure of Scoring rule 4 must
necessarily be a part of any strictly proper scoring rule.
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Theorem 26. Consider any σ ∈ (0, 1
2
) and any B ≥ 3. When G = 1, our proposed scoring

rule, Scoring rule 4, is the one and only possible strictly proper scoring rule upto a constant
shift and positive scaling.

The proof of this result shows that any strictly proper scoring rule f must necessarily
satisfy the following four sets of equations (when G = 1):

f(m+ 1) = (1− σ)f(m) + σf(−m) for all m ∈ {1, . . . , smax − 1},
f(m+ 2) = (1− 2σ)f(m) + 2σf(−m) for all m ∈ {1, . . . , smax − 2},
f(−smax) = f(smax)− f(smax − 1) + f(−(smax − 1)), and

f(0) = σf(1) + (1− σ)f(−1).

These four sets of conditions together leave only two degrees of freedom for the choice of the
payment function f , and hence uniquely characterize the scoring rule upto a constant shift
and scale.

While we do not have a complete answer as to what the “best” or “unique” mechanism is
for general values of N and G, but going by the results in Section 8.3.1, we conjecture that
Scoring rule 4 may also possess some more attractive properties along the lines of Scoring
rule 3.

8.4 Discussion

Our goal is to deliver high quality labels for machine learning applications, at low costs,
by means of incentive mechanisms or aggregation algorithms or both. In this chapter, we
pursue the former approach. We take an approval-voting based means of gathering labeled
data from crowdsourcing. We design an incentive mechanism via a principled theoretical
approach, and prove appealing properties of optimality and uniqueness of our proposed
mechanism. Preliminary experiments conducted on Amazon Mechanical Turk corroborate
the usefulness of this mechanism for practical scenarios. Our mechanism may also draw more
experts to the crowdsourcing platform since their compensation will be significantly higher
than that of mediocre workers, unlike most compensation mechanisms in current use.

Experiments performed on Amazon Mechanical Turk in [237] reveal that (a) workers to
make judicious use of the flexibility offered by the approval voting interface, (b) the presence
of a strictly proper scoring rule does make a statistically significant difference as compared to
a scoring rule that is not strictly proper, and (c) the workers did not have any real objections
to the approval voting interface or the multiplicative mechanism.

We conclude this chapter with a discussion on closely related topics that merit investi-
gation in the future.

Aggregation of labels. For the traditional single-selection setting, there is a long line
of work on statistical methods to aggregate redundant noisy data from multiple workers;
see Chapter 4 for more details. An open problem is the design of aggregation algorithms
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for approval-voting-based data: algorithms that can exploit the specific structure of the re-
sponses that arise as a result of the approval voting interface and the proposed mechanism.
There is indeed work on aggregation algorithms [22, 37, 160, 189] and probabilistic mod-
els [66, 74, 159, 207] for approval-voting in the context of social choice theory; their objective,
however, is primarily of fairness and strategy-proofing of the voting procedure, as opposed
to our goal of denoising data obtained from multiple heterogeneous workers as required for
labeling tasks in crowdsourcing.

Choosing the right interface. There are tradeoffs between various interfaces for crowd-
sourcing. For instance, the approval voting interface elicits the support of the belief whereas
the single selection interface elicits the mode. Choosing among these two interfaces would
depend on the application under consideration, and moreover, one may adaptively switch
between the two depending on the data obtained. A natural question that one may further
ask is, why not elicit the entire belief distribution itself? While the entire belief distribu-
tion seems to supercede the support and the mode, stating the distribution will also require
much more time and effort from the workers, and often also suffer from a higher noise. These
tradeoffs must be taken into account when choosing the interface for the application at hand.

The coarse beliefs parameter. One may wish to evaluate the value of ρ by explicitly
asking workers on the crowdsourcing platform for this value. However, it is noted in the
literature (e.g., see the paper [220] for experiments on Amazon Mechanical Turk) that the
cardinal representations that humans provide are not always consistent with their respective
mental beliefs, and are far noisier. This phenomenon suggests the requirement of developing
alternative methods of evaluating this parameter. Indeed, measurement is considered one of
the most difficult parts of behavioral research.

8.5 Proofs

In this section, we present proofs of the various theoretical results presented in the chapter.

8.5.1 Proof of Lemma 38: The workhorse lemma

Consider any arbitrary strictly proper scoring rule f satisfying the (αmin, αmax) conditions.
Without loss of generality let αmin = 0.

Consider a real number ρ0 ∈ (ρ, 1
B

), whose precise value will be specified later. Consider

a worker such that for every question i ∈ I, her belief is ρ0 for the first option and 1−ρ0
yi−1

for

each of the last (yi− 1) options. For every question i /∈ I, her belief is uniformly distributed
among the first yi options. Note that this satisfies the coarse beliefs assumption since

1− ρ0

yi − 1

(i)

≥ 1− ρ0

B − 1

(ii)
>

1− 1
B

B − 1
≥ 1

B

(iii)
> ρ,

where the inequality (i) follows from the fact that yi ≤ B, inequality (ii) follows from the
assumption ρ0 <

1
B

, and inequality (iii) is an assumption on ρ (see Definition 9).
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If this worker selects precisely the support of her beliefs for every question then her
expected payment Ψ1 is

Ψ1 =
1(
N
G

) ∑
(j1,...,jG)⊆[N ]

f(yj1 , . . . , yjG). (8.7)

We will compare the aforementioned action to another action, where for each question i ∈ I,
the worker selects only the last y′i = (yi−1) options but not the first option; for each question
i /∈ I, the worker selects the support of her belief. Under this action, the expected payment
Ψ2 equals

Ψ2 =
1(
N
G

) ∑
(j1,...,jG)
⊆[N ]

∑
(ε1,...,εG)

∈{−1,1}G

1{{ji | εi = −1} ⊆ I}(1− ρ0)|I∩{ji|εi=1}|ρ
|I∩{ji|εi=−1}|
0 f(ε1y

′
j1
, . . . , εGy

′
jG

).

(8.8)

In the expression (8.8), the outer summation represents the expectation over the random
choice of the G gold standard questions among the N questions. The inner summation
represents the expectation with respect to the correctness or incorrectness of the answers
to the G gold standard questions: for any question i, εi = 1 captures the event where the
ith question in the gold standard is answered correctly and εi = −1 represents the event of
this question being answered incorrectly. The term 1{{ji | εi = −1} ⊆ I} ensures that only
the questions in I can be wrong, since it is only these questions for which the worker has
selected a subset of her belief’s support.

Since f(x) ≥ 0 for every valid argument x, we can lower bound Ψ2 as

Ψ2 ≥
1(
N
G

) ∑
(j1,...,jG)⊆[N ]

(1− ρ0)|I∩{j1,...,jG}|f(y′j1 , . . . , y
′
jG

). (8.9)

A strictly proper scoring rule must incentivize the worker to perform the first action (over
the second), i.e, must have Ψ1 > Ψ2. Thus from (8.7) and (8.9), we get∑

(j1,...,jG)⊆[N ]

f(yj1 , . . . , yjG) >
∑

(j1,...,jG)⊆[N ]

(1− ρ0)|I∩{j1,...,jG}|f(y′j1 , . . . , y
′
jG

). (8.10)

Note that (8.10) must hold for all ρ0 > ρ. The left hand side of (8.10) does not involve ρ0

whereas the right hand side is continuous in ρ0. It follows that∑
(j1,...,jG)⊆[N ]

f(yj1 , . . . , yjG) ≥
∑

(j1,...,jG)⊆[N ]

(1− ρ)|I∩{j1,...,jG}|f(y′j1 , . . . , y
′
jG

). (8.11)

This proves the first part (8.5) of the lemma.
We now move on to prove the second part (8.6) of the lemma. We prove the claimed result

by means of a contradiction argument. Suppose that f(ε1y
′
j1
, . . . , εGy

′
jG

) is strictly positive
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for some (j1, . . . , jG) ⊆ [N ], {(ε1, . . . , εG) ∈ {−1, 1}G\{1}G | εi = 1 whenever ji /∈ I}. Then
using the fact that f(x) ≥ 0 for all x, from (8.8), we obtain the inequality

Ψ2 ≥
∑

(j1,...,jG)⊆[N ]

(1− ρ0)|I∩{j1,...,jG}|f(y′j1 , . . . , y
′
jG

) + (1− ρ0)|I∩{ji|εi=1}|ρ
|I∩{ji|εi=−1}|
0 f(ε1y

′
j1
, . . . , εGy

′
jG

).

Note that this inequality is the equivalent of (8.9) in the first part of the lemma, but also
accounts for the additional strictly positive term. Following arguments identical to those in
the first part, we have the following tighter version of (8.11):∑

(j1,...,jG)⊆[N ]

f(yj1 , . . . , yjG) ≥
∑

(j1,...,jG)⊆[N ]

(1− ρ)|I∩{j1,...,jG}|f(y′j1 , . . . , y
′
jG

)

+ (1− ρ)|I∩{ji|εi=1}|ρ|I∩{ji|εi=−1}|f(ε1y
′
j1
, . . . , εGy

′
jG

).

Since f(ε1y
′
j1
, . . . , εGy

′
jG

) > 0, we then have∑
(j1,...,jG)⊆[N ]

f(yj1 , . . . , yjG) >
∑

(j1,...,jG)⊆[N ]

(1− ρ)|I∩{j1,...,jG}|f(y′j1 , . . . , y
′
jG

),

thereby contradicting the hypothesis of the equality in (8.5) assumed in the second part of
the lemma, and hence proving the claimed result.

8.5.2 Proof of Theorem 20: Working of our scoring rule

Without loss of generality, we may assume that αmin = 0 since in our setting, the property
of being strictly proper is invariant to any constant shift and positive scale of the payment.
We adopt the succinct notation of α : = αmax − αmin. We also remind the reader that the
“expected payment” always refers to the expectation with respect to the worker’s beliefs
regarding the correctness of various options, and the randomness in the choice of the G gold
standard questions in the N questions.

First consider the case N = G = 1. In this case, Scoring rule 3 reduces to

f ∗(x) = α(1− ρ)(x1−1)1{x1 ≥ 1}.

Suppose without loss of generality that the worker’s beliefs for the B options are p1 ≥ · · · ≥
pm > ρ > pm+1 = · · · = pB = 0 for some m ∈ [B]. A strictly proper scoring rule must
strictly maximize the worker’s expected payment when she selects the support of her belief,
that is, when she selects exactly the options {1, . . . ,m}. The expected payment, Ψ0, under
this selection is

Ψ0 = α
m∑
i=1

pi(1− ρ)m−1

= α(1− ρ)m−1.
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Instead, now suppose the worker selects some other set of options {o1, . . . , o`} ⊆ [B],
{o1, . . . , o`} 6= [m]. Then her expected payment, Ψ1, under the proposed mechanism for this
selection is

Ψ1 = α
∑̀
i=1

poi(1− ρ)`−1

≤ α
∑̀
i=1

pi(1− ρ)`−1, (8.12)

where the final inequality is a result of the ordering p1 ≥ · · · ≥ pB. If ` = m then the
inequality in (8.12) is strict since pj < pi for all (j > m, i ≤ m). Thus the expected payment
under the choice ` = m but with a selection different from the support is strictly smaller than
Ψ0. Also observe that the expected payment when ` > m is upper bounded by α(1− ρ)`−1,
which is strictly smaller than Ψ0. Let us now consider the remaining case of ` < m. Since
pi > ρ for all i ∈ [m], we have

Ψ1 < α

(
m∑
i=1

pi − (m− `)ρ

)
(1− ρ)`−1

= α (1− (m− `)ρ) (1− ρ)`−1

(i)

≤ α(1− ρ)m−`(1− ρ)`−1

= Ψ0,

where inequality (i) follows from the algebraic fact that (1− aw) ≤ (1−w)a for every a ≥ 1
and every w ∈ [0, 1]. This completes the proof for the case N = G = 1.

Let us now consider the case of N = G ≥ 1. By our assumption of the independence of
the beliefs of the worker across the questions, the expected payment equals

G∏
i=1

E
[
α(1− ρ)(xi−1)1{xi ≥ 1}

]
,

where the expectation pertains to the randomness in the signs of x1, . . . , xG. Since the
payments are non-negative, if each individual component in the product is maximized then
the product is also necessarily maximized. Each individual component simply corresponds
to the setting of N = G = 1 discussed earlier. Thus calling upon our earlier result, we get
that the expected payment for the case N = G > 1 is strictly maximized when the worker
acts as desired for every question.

Let us finally consider the case of N > G ≥ 1. Recall from (8.2) that the expected
payment for the general case is a cascade of two expectations: the outer expectation is with
respect to the uniformly random distribution of the G gold standard questions among the N
total questions, while the inner expectation is taken over the worker’s beliefs of the different
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questions conditioned on the choice of the gold standard questions. The arguments above
for the case N = G prove that every individual term in the inner expectation is maximized
when the worker acts as desired. The expected payment is thus maximized when the worker
acts as desired.

8.5.3 Proof of Theorem 21: Minimum pay if all questions
skipped

Without loss of generality, assume that αmin = 0 since in our setting, the property of incentive
compatibility is invariant to any constant shift and positive scale of the payment. We adopt
the succinct notation of α : = αmax − αmin. Consider any strictly proper scoring rule f such
that f(1, . . . , 1) = α. The proof uses Lemma 38, which was stated earlier at the end of
Section 8.3.1 and is proved in Section 8.5.1.
First, a non-strict inequality: Consider any x0 ∈ [B − 1]. Applying Lemma 38 with y =
(x0 + 1, . . . , x0 + 1), y′ = (x0, . . . , x0) and I = [G] gives

f(x0 + 1, . . . , x0 + 1) ≥ (1− ρ)Gf(x0, . . . , x0).

A repeated application of this inequality for every x0 ∈ [B − 1] gives

f(B, . . . , B) ≥ (1− ρ)Gf(B − 1, . . . , B − 1) ≥ · · · ≥ (1− ρ)(B−1)Gf(1, . . . , 1)

= (1− ρ)(B−1)Gα.

Scoring rule 3 achieves this lower bound on f(B, . . . , B) with equality, thereby completing
the proof.
Strict inequality: In the remainder of the proof, we show that any strictly proper scoring
rule that achieves

f(B, . . . , B) = (1− ρ)G(B−1)α

must be identical to our Scoring rule 3. In other words, we show that such a scoring rule f
must satisfy f(x) = f ∗(x) for every evaluation x. We partition the rest of the proof into two
cases, depending on whether xG > 0 or xG < 0.

In what follows, we only consider the set of evaluations x whose elements are non-
decreasing, that is, x1 ≥ x2 ≥ · · · ≥ xG. The proof for any other ordering of the elements
follows in an identical manner.
Case of xG > 0: We first consider any x such that xG > 0. Then due to the monotonicity of
the entries of x, we must have that x1 ≥ · · · ≥ xG > 0. We define the following notation
that we will subsequently use for our induction arguments.

• Let γ(x) denote the number of distinct entries in x:

γ(x) : = 1 +
G−1∑
i=1

1{xi 6= xi+1}
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• Let σ(x) denote the size of the last jump in x:

σ(x) : = xj − xj+1 where j = arg max
i∈[G−1]

xi 6= xi+1

• Let β(x) denote the numeric value of x in a B-ary number system:

β(x) : =
G∑
i=1

BG−i(xi − 1).

For example, if B = 5, G = 5 and x = (5, 5, 4, 1, 1) then γ(x) = |{5, 4, 1}| = 3, σ(x) =
4− 1 = 3 (where j = 3), and β(x) = 4 · 54 + 4 · 53 + 3 · 52 + 0 · 51 + 0 · 50 = 3075. The proof
involves three nested levels of induction: on γ, on σ and then on β.
Base case for induction on γ: We first induct on γ. The base case is the set {x|γ(x) = 1},
that is, the set of vectors which have the same value for all its components. We now show
that f(x) = f ∗(x) for every x such that γ(x) = 1. To this end, observe that from the
definition of γ, the only values of x that have γ(x) = 1 are those that have all elements
identical. Consider any x0 ∈ [B − 1]. Applying Lemma 38 with y = (x0 + 1, . . . , x0 + 1) and
y′ = (x0, . . . , x0) gives

f(x0 + 1, . . . , x0 + 1) ≥ (1− ρ)Gf(x0, . . . , x0).

Since this inequality is true for every x0 ∈ [B − 1], we have the sandwich inequalities

f(B, . . . , B) ≥ (1− ρ)(B−x0)Gf(x0, . . . , x0) ≥ (1− ρ)(B−1)Gf(1, . . . , 1).

Setting f(B, . . . , B) = (1 − ρ)(B−1)Gα and f(1, . . . , 1) = α implies that each of the above
inequalities is in fact an equality, thereby proving the base case

f(x0, . . . , x0) = (1− ρ)x0Gf(1, . . . , 1) = f ∗(x0, . . . , x0).

Induction step for induction on γ: Now suppose our hypothesis of f(x) = f ∗(x) is true for
all {x|γ(x) ≤ γ0 − 1} for some γ0 ∈ {2, . . . , B}. We will now prove that the hypothesis
f(x) = f ∗(x) is also true for all {x|γ(x) = γ0}. Towards this goal, we now induct on σ, that
is, we prove the hypothesis separately for every value of σ.
Base case for induction on σ: Observe the following set-relation {x|γ(x) = γ0−1} = {x|γ(x) =
γ0, σ = 0}. Due to the assumed induction hypothesis f(x) = f ∗(x) for every {x|γ(x) =
γ0− 1}, we have f(x) = f ∗(x) for every {x|γ(x) = γ0, σ = 0}, thereby proving the base case
of σ = 0.
Induction step for induction on σ: Now suppose that the hypothesis is true for all {x|γ(x) =
γ0, σ(x) ≤ σ0 − 1} for some σ0 ∈ [B − 1]. We will prove that the hypothesis remains true
for all {x|γ(x) = γ0, σ(x) = σ0}. We prove this statement is true for all values of β via an
induction on β.
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Base case for induction on β: Recall that we have restricted our attention to those x which
have their elements in a descending order. Observe that the element with the minimum value
of β in the set {x|γ(x) = γ0, σ(x) = σ0} is (γ0 + σ0 − 1, . . . , σ0 + 1, 1, . . . , 1). We will prove
the hypothesis for this element as the base case for our induction on β. Applying Lemma 38
with y = (γ0 +σ0−1, . . . , σ0 +2, σ0 +1, 1, . . . , 1) and y′ = (γ0 +σ0−1, . . . , σ0 +2, σ0, 1, . . . , 1)
gives the inequality

c1f(γ0 + σ0 − 1, . . . , σ0 + 2, σ0 + 1, 1, . . . , 1) + c′1f(γ0 + σ0 − 1, . . . , σ0 + 2, 1, 1, . . . , 1)

+
∑

s({γ0+σ0−1,...,σ0+2}

(csf(s, 1, 1, . . . , 1) + c′sf(s, σ0 + 1, 1, . . . , 1))

≥ c1(1− ρ)f(γ0 + σ0 − 1, . . . , σ0 + 2, σ0, 1, . . . , 1) + c′1f(γ0 + σ0 − 1, . . . , σ0 + 2, 1, 1, . . . , 1)

+
∑

s({γ0+σ0−1,...,σ0+2}

(csf(s, 1, 1, . . . , 1) + c′s(1− ρ)f(s, σ0, 1, . . . , 1)) , (8.13)

for some positive constants c1, c
′
1, cs, c

′
s (which represent the probabilities of the respective

set of G questions being chosen as the G gold standard questions). Now, for any s ( {γ0 +
σ0− 1, . . . , σ0 + 2}, observe that γ(s, σ0 + 1, 1, . . . , 1) ≤ γ0− 1 and γ(s, σ0, 1, . . . , 1) ≤ σ0− 1.
Thus we have

f(s, σ0 + 1, 1, . . . , 1)
(i)
= f ∗(s, σ0 + 1, 1, . . . , 1)

= (1− ρ)f ∗(s, σ0, 1, . . . , 1)

(ii)
= (1− ρ)f(s, σ0, 1, . . . , 1), (8.14)

where equations (i) and (ii) follow from our induction hypothesis. Also, γ(γ0+σ0−1, . . . , σ0+
2, σ0, 1, . . . , 1) = γ0 and σ(γ0 + σ0 − 1, . . . , σ0 + 2, σ0, 1, . . . , 1) = σ0 − 1. Consequently, our
induction hypothesis yields

f(γ0 + σ0 − 1, . . . , σ0 + 2, σ0, 1, . . . , 1) = f ∗(γ0 + σ0 − 1, . . . , σ0 + 2, σ0, 1, . . . , 1)

= (1− ρ)γ0+σ0−2+···+σ0+1+σ0−1α. (8.15)

Substituting (8.14) and (8.15) in (8.13) and canceling out common terms yields the inequality

f(γ0 + σ0 − 1, . . . , σ0 + 2, σ0 + 1, 1, . . . , 1) ≥ (1− ρ)γ0+σ0−2+···+σ0α

= f ∗(γ0 + σ0 − 1, . . . , σ0 + 2, σ0 + 1, 1, . . . , 1).
(8.16)

We now derive a matching upper bound on f(γ0 + σ0 − 1, . . . , σ0 + 2, σ0 + 1, 1, . . . , 1).
Applying Lemma 38 with y = (γ0 +σ0−1, . . . , σ0 +1, 2, . . . , 2) and y′ = (γ0 +σ0−1, . . . , σ0 +
1, 1, . . . , 1) gives

c1f(γ0 + σ0 − 1, . . . , σ0 + 1, 2, . . . , 2) +
∑

s({γ0+σ0−1,...,σ0+1}

csf(s, 2, . . . , 2)

≥ c1(1− ρ)G−γ+1f(γ0 + σ0 − 1, . . . , σ0 + 1, 1, . . . , 1) +
∑

s({γ0+σ0−1,...,σ0+1}

cs(1− ρ)G−|s|f(s, 1, . . . , 1),

(8.17)
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for some positive constants c1, cs. Now, for any s ( {γ0 + σ0 − 1, . . . , σ0 + 2}, observe that
γ(s, 2, . . . , 2) ≤ γ0 − 1 and γ(s, 1, . . . , 1) ≤ σ0 − 1. Thus we have

f(s, 2, . . . , 2)
(i)
= f ∗(s, 2, . . . , 2) = (1− ρ)G−|s|f(s, 1, . . . , 1)

(ii)
= (1− ρ)G−|s|f(s, 1, . . . , 1),

(8.18)

where equations (i) and (ii) follow from our induction hypothesis. Also note that γ(γ0 +
σ0−1, . . . , σ0 +1, 2, . . . , 2) ≤ γ0 and σ(γ0 +σ0−1, . . . , σ0 +1, 2, . . . , 2) = σ0−1, which allows
us to apply our induction hypothesis to get

f(γ0 + σ0 − 1, . . . , σ0 + 1, 2, . . . , 2) = f ∗(γ0 + σ0 − 1, . . . , σ0 + 1, 2, . . . , 2)

= (1− ρ)γ0+σ0−2+...+σ0+G−γ+1α. (8.19)

Substituting (8.22) and (8.19) in (8.17) and canceling out common terms yields the upper
bound

f(γ0 + σ0 − 1, . . . , σ0 + 2, σ0 + 1, 1, . . . , 1) ≤ (1− ρ)γ0+σ0−2+···+σ0α

= f ∗(γ0 + σ0 − 1, . . . , σ0 + 2, σ0 + 1, 1, . . . , 1)
(8.20)

The bounds (8.16) and (8.20) in conjunction imply that the hypothesis is true for x =
(γ0 + σ0 − 1, . . . , σ0 + 2, σ0 + 1, 1, . . . , 1), which is the base case for our induction on β.
Induction step for induction on β: Now consider some x∗ such that γ(x∗) = γ0, σ(x∗) = σ0

and β(x∗) = β0, for some β0. One can verify that any such x∗ must necessarily take the form

x∗ = (x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗), (8.21)

with x1
∗ ≥ x2

∗ ≥ · · · ≥ xm
∗ > σ0 + xG

∗ for some m ≥ 0, m1 ≥ 1, m+m1 < G.
Suppose the hypothesis f(x) = f ∗(x) is true for every {x|γ(x) = γ0, σ(x) = σ0, β(x) ≤

β0 − 1}. In what follows, we show that we must have f(x) = f ∗(x) for every {x|γ(x) =
γ0, σ(x) = σ0, β(x) = β0}.

Applying Lemma 38 to f with the choices

y = (x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗), and

y′ = (x1
∗, . . . , xm

∗, σ0 + xG
∗ − 1, . . . , σ0 + xG

∗ − 1︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗)
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gives the inequality

c1f(x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗)

+
∑

s({x1∗,...,xm∗,σ0+xG
∗,...,σ0+xG

∗︸ ︷︷ ︸
m1

}

csf(s, xG
∗, . . . , xG

∗)

≥ c1(1− ρ)m1f(x1
∗, . . . , xm

∗, σ0 + xG
∗ − 1, . . . , σ0 + xG

∗ − 1︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗)

+
∑

s({x1∗,...,xm∗,σ0+xG
∗−1,...,σ0+xG

∗−1︸ ︷︷ ︸
m1

}

cs(1− ρ)
∑
i 1{si=σ0+xG

∗−1}f(s, xG
∗, . . . , xG

∗), (8.22)

for some positive constants c1, cs. Recall that x∗ takes the form (8.21) and has γ(x∗) = γ0,
σ(x∗) = σ0 and β(x∗) = β0. Thus we have

γ(x1
∗, . . . , xm

∗, σ0 + xG
∗ − 1, . . . , σ0 + xG

∗ − 1︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗) =

{
γ0 − 1 if σ0 = 1

γ0 otherwise,

and hence the induction hypothesis is satisfied in the first case of σ0 = 1. In the second case
of σ0 6= 1, we have

σ(x1
∗, . . . , xm

∗, σ0 + xG
∗ − 1, . . . , σ0 + xG

∗ − 1︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗) = σ0 − 1,

and hence the induction hypothesis is satisfied in the second case as well. Thus we have

f(x1
∗, . . . , xm

∗, σ0 + xG
∗ − 1, . . . , σ0 + xG

∗ − 1︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗)

= f ∗(x1
∗, . . . , xm

∗, σ0 + xG
∗ − 1, . . . , σ0 + xG

∗ − 1︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗)

= (1− ρ)
∑m
i=1(xi

∗−1)+m1(σ0+xG
∗−2)+(G−m1−m)(xG

∗−1)α. (8.23)

Consider any s ( {x1
∗, . . . , xm

∗, σ0 + xG
∗ − 1, . . . , σ0 + xG

∗ − 1︸ ︷︷ ︸
m1

}. We claim that the induc-

tion hypothesis is satisfied for (s, xG
∗, . . . , xG

∗). To this end, define the quantity m1(s) as

m1(s) : =
∑
i

1{si = σ0 + xG
∗ − 1}.

Observe that if m1(s) > 0 then it must either be that γ(s, xG
∗, . . . , xG

∗) ≤ γ0 − 1 or it must
be that σ(s, xG

∗, . . . , xG
∗) ≤ σ0 − 1; if m1(s) = 0 then γ(s, xG

∗, . . . , xG
∗) ≤ γ0 − 1. Now for
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any value s ( {x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

}, also define the quantity m̃1(s) as

m̃1(s) : =
∑
i

1{si = σ0 + xG
∗}.

Observe that if m̃1(s) > 0 then either γ(s, xG
∗, . . . , xG

∗) ≤ γ0 − 1 or β(s, xG
∗, . . . , xG

∗) ≤
β0 − 1; if m̃1(s) = 0 then γ(s, xG

∗, . . . , xG
∗) ≤ γ0 − 1. Consequently from our induction

hypothesis we have the series of equations∑
s({x1∗,...,xm∗,σ0+xG

∗,...,σ0+xG
∗︸ ︷︷ ︸

m1

}

csf(s, xG
∗, . . . , xG

∗)

=
∑

s({x1∗,...,xm∗,σ0+xG
∗,...,σ0+xG

∗︸ ︷︷ ︸
m1

}

csf
∗(s, xG

∗, . . . , xG
∗)

=
∑

s({x1∗,...,xm∗,σ0+xG
∗−1,...,σ0+xG

∗−1︸ ︷︷ ︸
m1

}

cs(1− ρ)
∑
i 1{si=σ0+xG

∗−1}f ∗(s, xG
∗, . . . , xG

∗)

=
∑

s({x1∗,...,xm∗,σ0+xG
∗−1,...,σ0+xG

∗−1︸ ︷︷ ︸
m1

}

cs(1− ρ)
∑
i 1{si=σ0+xG

∗−1}f(s, xG
∗, . . . , xG

∗).

(8.24)

Substituting (8.23) and (8.24) in (8.22) and canceling out common terms gives

f(x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗)

≥ (1− ρ)m1f(x1
∗, . . . , xm

∗, σ0 + xG
∗ − 1, . . . , σ0 + xG

∗ − 1︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗)

= (1− ρ)
∑m
i=1(xi

∗−1)+m1(σ0+xG
∗−1)+(G−m1−m)(xG

∗−1)α. (8.25)

We now employ Lemma 38 to derive a matching upper bound to (8.25). Setting

y = (x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗ + 1, . . . , xG

∗ + 1), and

y′ = (x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗)



CHAPTER 8. APPROVAL VOTING 253

in Lemma 38 yields the inequality

c1f(x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗ + 1, . . . , xG

∗ + 1)

+
∑

s({x1∗,...,xm∗,σ0+xG
∗,...,σ0+xG

∗︸ ︷︷ ︸
m1

}

csf(s, xG
∗ + 1, . . . , xG

∗ + 1)

≥ c1(1− ρ)m1f(x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗)

+
∑

s({x1∗,...,xm∗,σ0+xG
∗,...,σ0+xG

∗︸ ︷︷ ︸
m1

}

cs(1− ρ)G−|s|f(s, xG
∗, . . . , xG

∗), (8.26)

for some positive constants c1, cs. Observe that

γ(x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗ + 1, . . . , xG

∗ + 1) =

{
γ0 − 1 if σ0 = 1

γ0 otherwise,

and that the induction hypothesis is satisfied in the first case of σ = 1. In the second case
of σ 6= 1, we have

σ(x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗ + 1, . . . , xG

∗ + 1) = σ0 − 1,

and hence the induction hypothesis is satisfied in this case as well. Thus from our induction
hypothesis, we have

f(x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗ + 1, . . . , xG

∗ + 1)

= f ∗(x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗ + 1, . . . , xG

∗ + 1)

= (1− ρ)
∑m
i=1(xi

∗−1)+m1(σ0+xG
∗−1)+(G−m1−m)(xG

∗−2)α. (8.27)

Now consider any s ( {x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

}. We now show that our

induction hypothesis is satisfied for (s, xG
∗, . . . , xG

∗) as well as (s, xG
∗ + 1, . . . , xG

∗ + 1). To
this end, recall our notation of m̃1(s) : =

∑
i 1{si = σ0 +xG

∗}. If σ0 = 1 or if m̃1(s) = 0 then
γ(s, xG

∗+1, . . . , xG
∗+1) ≤ γ0−1; if σ > 1 and m̃1(s) > 0 then γ(s, xG

∗+1, . . . , xG
∗+1) ≤ γ0

and σ(s, xG
∗ + 1, . . . , xG

∗ + 1) ≤ σ0 − 1. If m̃1(s) = 0 then γ(s, xG
∗, . . . , xG

∗) ≤ γ0 − 1,
otherwise γ(s, xG

∗, . . . , xG
∗) ≤ γ0, σ(s, xG

∗, . . . , xG
∗) = σ0 and β(s, xG

∗, . . . , xG
∗) ≤ β0 − 1.
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These terms thus satisfy our induction hypothesis and hence we have

f(s, xG
∗ + 1, . . . , xG

∗ + 1) = f ∗(s, xG
∗ + 1, . . . , xG

∗ + 1)

= (1− ρ)G−|s|f ∗(s, xG
∗, . . . , xG

∗)

= (1− ρ)G−|s|f(s, xG
∗, . . . , xG

∗). (8.28)

Substituting (8.27) and (8.28) in (8.26) gives us an upper bound

f(x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗)

≤ (1− ρ)
∑m
i=1(xi

∗−1)+m1(σ0+xG
∗−1)+(G−m1−m)(xG

∗−1)α

= f ∗(x1
∗, . . . , xm

∗, σ0 + xG
∗, . . . , σ0 + xG

∗︸ ︷︷ ︸
m1

, xG
∗, . . . , xG

∗). (8.29)

The matching bounds (8.25) and (8.29) together complete the proof of induction on β.
Moving back up in our nesting of inductions, this also completes the proof for {x|xi ≥
0 ∀ i ∈ [G]}.
Case of xG < 0: We now address the remaining case of {x | mini∈[G] xi < 0}, and show that
f(x) = f ∗(x) = 0 for all such x. The arguments above for the case {x | mini∈[G] xi > 0}
imply that for any strictly proper scoring rule f , the inequality (8.5) in the statement of
Lemma 38 must be satisfied with an equality. This allows us to employ the second part of
Lemma 38, and we do so in the following manner. For every i ∈ [G], let yi = y′i = xi if xi > 0,
and yi − 1 = y′i = |xi| otherwise; set yi = y′i = B for all i ∈ {G + 1, . . . , N}. Then (8.6) in
the statement of Lemma 38 yields f(x1, . . . , xG) = 0, thus completing the proof.

8.5.4 Proof of Theorem 22: Minimal expenditure under f ∗

In this section, we prove that our Scoring rule 4 makes a minimal payment as compared to
any other strictly proper scoring rule. The proof uses Lemma 38, which was stated earlier
in Section 8.3.1 and is proved in Section 8.5.1.

Proof of part (a)

We assume without loss of generality that αmin = 0.
First consider the case of any x such that xi < 0 for some i ∈ [G]. For this case we have

f(x) ≥ 0 = f ∗(x),

thereby proving our claim.
Now consider the remaining case where xi > 0 for every i ∈ [G]. For the setting N = G

under consideration, the inequality (8.5) simplifies to

f(y1, . . . , yG) ≥ (1− ρ)|I|f(y′1, . . . , y
′
G),
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for any set I ∈ [G], and any y, y′ ∈ [B]G such that yi = y′i + 1 for every i ∈ I and yi = y′i
otherwise. A repeated application of this inequality yields the bound

f(y1, . . . , yG) ≥ (1− ρ)
∑G
i=1(yi−1)f(1, . . . , 1) = (1− ρ)

∑G
i=1(yi−1)αmax = f ∗(y1, . . . , yG),

for any y ∈ [B]G, thereby proving the claimed result.

Proof of part (b)

We assume without loss of generality that αmin = 0. Also assume that N > G, since the
case of N = G follows directly from Theorem 21(a).

First consider the case of any x such that xi < 0 for some i ∈ [G]. For this case we have

f(x) ≥ 0 = f ∗(x),

thereby proving our claim.
Now consider the remaining case where xi > 0 for every i ∈ [G]. Define a function

ν : [B]G → {0, . . . , G} that measures the number of entries equaling 1 in the input, that is,

ν(x) =
G∑
i=1

1{xi = 1},

for every x ∈ [B]G.
First suppose that ν(x) = G. In this case, we must have x = (1, . . . , 1). Consequently,

we have f(x) = αmax = f ∗(x).
Now for some value ν0 ∈ [G], suppose that f(x) = f ∗(x) for every {x | ν(x) ≥ ν0}, as in

the statement of the theorem. In what follows, we show that any x satisfying ν(x) = ν0 − 1
must also satisfy f(x′) > f ∗(x′).

Consider any x ∈ [B]G such that ν(x) = ν0 − 1. We assume, without loss of generality,
that x1 ≥ · · · ≥ xG (≥ 0). Then we have xG−ν0+2 = · · · = xG = 1 and xG−ν0+1 > 1. Define
a vector y = (x, 1, . . . , 1) = (x1, . . . , xG−ν0+1, 1, . . . , 1). We now apply Equation (8.5) from
Lemma 38 with y′ = (x1 − 1, x2, . . . , xG−ν0+1, 1, . . . , 1) and I = {1} to obtain the bound

c1

∑
(j2,...,jG)⊆{2,...,N}

f(x1, yj2 , . . . , yjG) + c2

∑
(j1,...,jG)⊆{2,...,N}

f(yj1 , . . . , yjG)

≥ c1

∑
(j2,...,jG)⊆{2,...,N}

(1− ρ)f(x1 − 1, yj2 , . . . , yjG) + c2

∑
(j1,...,jG)⊆{2,...,N}

f(yj1 , . . . , yjG),

for some constants c1 > 0 and c2 > 0 whose values depend only on N and G. Canceling out
common terms, we are left with∑

(j2,...,jG)⊆{2,...,N}

f(x1, yj2 , . . . , yjG) ≥
∑

(j2,...,jG)⊆{2,...,N}

(1− ρ)f(x1 − 1, yj2 , . . . , yjG). (8.30)



CHAPTER 8. APPROVAL VOTING 256

Both the left and right hand sides of this inequality involve linear combinations of the
function f evaluated at various points. For our chosen values of y and y′, observe that
whenever {2, . . . , G − ν0 + 1} 6⊆ {j2, . . . , jG}, we must have ν(x1, yj2 , . . . , yjG) ≥ ν0 and
ν(x1 − 1, yj2 , . . . , yjG) ≥ ν0. Consequently, for any such value of (j2, . . . , jG), we have

f(x1,yj2 , . . . , yjG) =

f ∗(x1, yj2 , . . . , yjG) = (1−ρ)f ∗(x1 − 1, yj2 , . . . , yjG) = (1−ρ)f(x1 − 1, yj2 , . . . , yjG).

For any remaining value of (j2, . . . , jG) (such that {2, . . . , G − ν0 + 1} ⊆ {j2, . . . , jG}), we
have (yj2 , . . . , yjG) = (x2, . . . , xG−ν0+1, 1, . . . , 1). Substituting these relations in (8.30) and
canceling out common terms leaves us with the bound

f(x1, x2, . . . , xG−ν0+1, 1, . . . , 1) ≥ (1− ρ)f(x1 − 1, x2, . . . , xG−ν0+1, 1, . . . , 1).

A repeated application of this inequality for different values of x1 then yields

f(x1, x2, . . . , xG−ν0+1, 1, . . . , 1) ≥ (1− ρ)x1−1f(1, x2, . . . , xG−ν0+1, 1, . . . , 1)

(i)
= (1− ρ)x1−1f ∗(1, x2, . . . , xG−ν0+1, 1, . . . , 1)

= f ∗(x1, x2, . . . , xG−ν0+1, 1, . . . , 1),

as claimed, where equation (i) is a because ν(1, x2, . . . , xG−ν0+1, 1, . . . , 1) ≥ ν0.

8.5.5 Proof of Theorem 23: Performance in absence of coarse
belief assumption

Without loss of generality, assume that αmin = 0 since in our setting, the property of being
strictly proper is invariant to any constant shift and positive scale of the payment. We adopt
the succinct notation of α : = αmax − αmin.

First consider the case of N = G = 1. For this case, Scoring rule 3 reduces to f ∗(x) =
α(1− ρ)(x1−1)1{x1 ≥ 0}. Suppose without loss of generality that the worker’s beliefs for the

B options are p1 ≥ · · · ≥ pB. Define integer m as m = arg maxz∈[B]

(
p(z)∑z
i=1 p(i)

> ρ
)

.

Suppose a worker decides to select some ` of the B options, say options {o1, . . . , o`} ⊆ [B].
Then it is easy to see that her expected payment,

α
∑̀
i=1

poi(1− ρ)`−1,

is maximized when she selects options {1, . . . , `}, i.e., the ` options that are most likely to
be correct. Under the monotonicity p1 ≥ · · · ≥ pB, it is easy to see that for any fixed choice
of ` ∈ [B], the expected payment is maximized when the worker selects options {1, . . . , `}.
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It remains to show that among all choices of ` ∈ [B], the expected payment is maximized
when the worker selects ` = m. Let Ψ` denote the expected payment when the worker selects
the first ` options:

Ψ` = α
∑̀
i=1

pi(1− ρ)`−1.

Hence for any ` ∈ {2, . . . , B}, we have

Ψ`−1

Ψ`

=
α
∑`−1

i=1 pi(1− ρ)`−2

α
∑`

i=1 pi(1− ρ)`−1
=

1

1− ρ

(
1− p`∑`

i=1 pi

)
.

We know that p`∑`
i=1 pi

< ρ whenever ` > m, and p`∑`
i=1 pi

> ρ when ` = m. Furthermore,

since p` decreases with ` and
∑`

i=1 pi increases with `, it must also be that p`∑`
i=1 pi

> ρ for all

` < m. Thus we have Ψ`
Ψ`−1

> 1 for all ` ≤ m and Ψ`
Ψ`−1

< 1 for all ` > m, or in other words,

we have

· · · < Ψm−2 < Ψm−1 < Ψm > Ψm+1 > Ψm+2 > · · · .

It follows that the worker is incentivized to choose ` = m.
Let us now consider the case of N = G ≥ 1. By our assumption of the independence of

the beliefs of the worker across the questions, the expected payment equals

G∏
i=1

E
[
α(1− ρ)(xi−1)1{xi ≥ 0}

]
.

Since the payments are non-negative, if each individual component in the product is max-
imized then the product is also necessarily maximized. Each individual component simply
corresponds to the setting of N = G = 1 discussed earlier. Thus calling upon our earlier
result, we get that the expected payment for the case N = G ≥ 1 is maximized when the
worker acts as desired for every question.

Let us finally consider the general case of N ≥ G ≥ 1. Recall from (8.2) that the expected
payment for the general case is a cascade of two expectations: the outer expectation is with
respect to the uniformly random distribution of the G gold standard questions among the N
total questions, while the inner expectation is taken over the worker’s beliefs of the different
questions conditioned on the choice of the gold standard questions and restricts attention
to only these G questions. The arguments above for the case N = G prove that every
individual term in the inner expectation is maximized when the worker acts as desired. The
outer expectation does not affect this argument. The expected payment is thus maximized
when the worker acts as desired.
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8.5.6 Proof of Lemma 39: A necessary condition for any strictly
proper scoring rule

First consider the case of G = N . Consider some η, γ ∈ {0, . . . , G − 1} with η + γ < G.
Suppose i = η+γ+1, x1, . . . , xη ∈ [B−1], xη+1, . . . , xη+γ ∈ −[B−1] and xη+γ+2, . . . , xN = B.

For every question j ∈ [η + γ], suppose the worker’s belief is δj ∈ (0, ρ) for the last

option and
1−δj
|xj | each for the first |xj| options. One can verify that since δj < ρ < 1

B
and

|xj| ≤ B − 1, it must be that
1−δj
|xj | > δj, and that the requirement of being a strictly proper

scoring rule requires incentivizing the worker to select the first |xj| options. Suppose the
worker does so. Now for every question j′ ∈ {η + γ + 2, . . . , N}, suppose the belief of the
worker is uniform across all B options. The worker should be incentivized to select all B
options in this case; suppose the worker does so. Finally, for question i, suppose the worker’s
belief is δ ∈ (ρ

2
, 3ρ

2
) for the last option and 1−δ

|xi| each for the first |xi| options. Then the worker

must be incentivized to select the first |xi| options alone if δ < ρ, and select the last option
along with the first |xi| options if δ > ρ.

Define {rj}j∈[η+γ] as rj = δj for j ∈ [η], and rj = 1 − δj for j ∈ {η + 1, η + γ}. Let
ε := {ε1, . . . , εη+γ} ∈ {−1, 1}η+γ. The requirement of incentivizing for question i necessitates

(1− δ)
∑

ε∈{−1,1}η+γ

f(ε1x1, . . . , εηxη, εη+1xη+1, . . . , εη+γxη+γ, xi, B, . . . , B)
∏

j∈[η+γ]

r
1−εj

2
j (1− rj)

1+εj
2


+ δ

∑
ε∈{−1,1}η+γ

f(ε1x1, . . . , εηxη, εη+1xη+1, . . . , εη+γxη+γ,−xi, B, . . . , B)
∏

j∈[η+γ]

r
1−εj

2
j (1− rj)

1+εj
2


δ>ρ

≶
δ<ρ

∑
ε∈{−1,1}η+γ

f(ε1x1, . . . , εηxη, εη+1xη+1, . . . , εη+γxη+γ, xi + 1, B, . . . , B)
∏

j∈[η+γ]

r
1−εj

2
j (1− rj)

1+εj
2

 .

The left hand side of this expression is the expected payment if the worker chooses the first
|xi| options for question (η+ γ+ 1), while the right hand side is the expected payment if she
chooses the first |xi| options as well as the last option. For any real-valued variable q, and
for any real-valued constants a, b and c,

aq
q<c

≶
q>c

b ⇒ ac = b .
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With q = 1− δ in this argument, we get

(1− ρ)
∑

ε∈{−1,1}η+γ

f(ε1x1, . . . , εηxη, εη+1xη+1, . . . , εη+γxη+γ, xi, B, . . . , B)
∏

j∈[η+γ]

r
1−εj

2
j (1− rj)

1+εj
2


+ ρ

∑
ε∈{−1,1}η+γ

f(ε1x1, . . . , εηxη, εη+1xη+1, . . . , εη+γxη+γ,−xi, B, . . . , B)
∏

j∈[η+γ]

r
1−εj

2
j (1− rj)

1+εj
2


−
∑

ε∈{−1,1}η+γ

f(ε1x1, . . . , εηxη, εη+1xη+1, . . . , εη+γxη+γ, xi+1, B, . . . , B)
∏

j∈[η+γ]

r
1−εj

2
j (1− rj)

1+εj
2

=0.

(8.31)

The left hand side of (8.31) represents a polynomial in (η + γ) variables {rj}η+γ
j=1 which

evaluates to zero for all values of the variables within an (η + γ)-dimensional solid ball.
Thus, the coefficients of the monomials in this polynomial must be zero. In particular, the
constant term must be zero. The constant term appears when εj = 1 ∀ j in the summations
in (8.31). Setting the constant term to zero gives

(1− ρ)f(x1, . . . , xη+γ, xη+γ+1, B, . . . , B) + ρf(x1, . . . , xη+γ,−xη+γ+1, B, . . . , B)

− f(x1, . . . , xη+γ, xη+γ+1 + 1, B, . . . , B) = 0

as desired. Since the arguments above hold for any permutation of the N questions, this
completes the proof for the case of G = N .

Now consider the case G < N . Let g : {−(B − 1), . . . ,−1, 1, · · · , B}N → R+ represent
the expected payment given an evaluation of all the N answers, when the identities of
the gold standard questions are unknown. Here, the expectation is with respect to the
(uniformly random) choice of the G gold standard questions. If (x1, . . . , xN) ∈ {−(B −
1), . . . ,−1, 1, · · · , B}N are the evaluations of the worker’s answers to the N questions then
the expected payment is

g(x1, . . . , xN) =
1(
N
G

) ∑
(i1,...,iG)⊆{1,...,N}

f(xi1 , . . . , xiG). (8.32)

Applying the same arguments to g as done to f above, gives

(1− ρ)g(x1, . . . , xη+γ, xη+γ+1, B, . . . , B) + ρg(x1, . . . , xη+γ,−xη+γ+1, B, . . . , B)

− g(x1, . . . , xη+γ, xη+γ+1 + 1, B, . . . , B) = 0.
(8.33)

The proof now proceeds via an induction on the quantity (G− η−γ−1). We begin with
the case of (G− η− γ− 1) = G− 1 which implies η = γ = 0. In this case (8.31) simplifies to

(1− ρ)g(x1, B, . . . , B) + ρg(−x1, B, . . . , B) = g(x1 + 1, B, . . . , B).
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Applying the expansion of function g in terms of function f from (8.32) for some x1 ∈ [B−1]
gives

(1− ρ) (c1f(x1, B, . . . , B) + c2f(B,B, . . . , B)) + ρ (c1f(−x1, B, . . . , B) + c2f(B,B, . . . , B))

= c1f(x1 + 1, B, . . . , B) + c2f(B,B, . . . , B)

for constants c1 > 0 and c2 > 0 that respectively represent the probabilities that the first
question is picked and not picked in the set of G gold standard questions. Cancelling out
the common terms on both sides of the equation, we get the desired result

(1− ρ)f(x1, B, . . . , B) + ρf(−x1, B, . . . , B) = f(x1 + 1, B, . . . , B).

Next, we consider the case when (G− η− γ− 1) questions are skipped in the gold standard,
and assume that the result is true when more than (G − η − γ − 1) questions are skipped
in the gold standard. In (8.33), the functions g decompose into a sum of the constituent
f functions. These constituent functions f are of two types: the first where all of the first
(η + γ + 1) questions are included in the gold standard, and the second where one or more
of the first (η + γ + 1) questions are not included in the gold standard. The second case
corresponds to situations where there are more than (G − η − γ − 1) questions skipped in
the gold standard and hence satisfies our induction hypothesis. The terms corresponding to
these functions thus cancel out in the expansion of (8.33). The remainder comprises only
evaluations of function f for arguments in which the first (η + γ + 1) questions are included
in the gold standard. Since the last (N − η − γ − 1) questions are skipped by the worker,
the remainder evaluates to

(1− ρ)c3f(x1, . . . , xη+γ, xi, B, . . . , B) + ρc3f(x1, . . . , xη+γ,−xi, B, . . . , B)

= c3f(x1, . . . , xη+γ, xi + 1, B, . . . , B)
(8.34)

for some constant c3 > 0. Dividing throughout by c3 gives the desired result.
Finally, the arguments above hold for any permutation of the first G questions, thus

completing the proof.

8.5.7 Proof of Theorem 24: Uniqueness under no-free-lunch

Without loss of generality, assume that αmin = 0 since the property of a scoring rule being
a strictly proper is invariant to any constant shift and positive scale of the payment. We
adopt the succinct notation of α : = αmax − αmin.

Consider any strictly proper scoring rule f that satisfies the no-free-lunch condition. We
first show that the mechanism must necessarily make a zero payment when one more more
questions in the gold standard are attempted incorrectly. To this end, observe that since
f ≥ 0 and ρ ∈ (0, 1), the statement of Lemma 39 necessitates that for every i ∈ [G] and
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(x1, . . . , xi−1, xi+1, . . . , xG) ∈ {−(B − 1), . . . , B}G−1, xi ∈ [B − 1]:

If f(x1, . . . , xi−1, xi + 1, xi+1, . . . , xG) = 0

then f(x1, . . . , xi−1, xi, xi+1, . . . , xG) = f(x1, . . . , xi−1,−xi, xi+1, . . . , xG) = 0.

A repeated application of this argument implies:

If f(x1, . . . , xi−1, B, xi+1, . . . , xG) = 0 then f(x1, . . . , xi−1, xi, xi+1, . . . , xG) = 0,

for all xi ∈ {−(B − 1), . . . ,−1, 1, . . . , B − 1}.
Now consider any evaluation (x1, . . . , xG) which has at least one incorrect answer. Sup-

pose without loss of generality that the first question is the one answered incorrectly, i.e.,
x1 ≤ −1. The no-free-lunch condition then makes f(x1, B, . . . , B) = 0. Applying our ar-
guments from above we get that f(x1, x2, . . . , xG) = 0 for every value of (x2, . . . , xG) ∈
{−(B − 1), . . . ,−1, 1, . . . , B}.

Substituting this necessary condition in Lemma 39, we get that for every question i ∈
{1, . . . , G} and every (x1, . . . , xi−1, xi+1, . . . , xG) ∈ [B]G−1, xi ∈ [B − 1], it must be that

f(x1, . . . , xi−1, xi + 1, xi+1, . . . , xG) = (1− ρ)f(x1, . . . , xi−1, xi, xi+1, . . . , xG).

Substituting f(1, . . . , 1) = α, we obtain the claimed result f = f ∗.

8.5.8 Proof of Theorem 25: Strictly proper scoring rule to elicit
thresholded beliefs

Without loss of generality, assume that αmin = 0 since the property of a scoring rule being a
strictly proper is invariant to any constant shift and positive scale of the payment. We adopt
the succinct notation of α : = αmax − αmin. Also recall that the term “expected payment”
always refers to the expectation with respect to the worker’s beliefs regarding the correctness
of various options, and the randomness in the choice of the G gold standard questions in the
N questions.

First consider the case of N = G = 1. Suppose that the worker’s beliefs for the B options
are p1, . . . , pB. It is easy to verify that the expected payment, Ψ0, when the worker selects
the options {o1, . . . , om}, for some m, equals

Bσ +
B∑
i=1

(poi − σ).

Consequently, the selection of any option oi such that poi < σ contributes a term poi −σ < 0
to the expected payment, whereas the selection of any option oj such that poj > σ contributes
a positive amount poi − σ > 0. It follows that the payment is strictly maximized when the
worker selects all options whose beliefs are greater than σ, and does not select any option
whose belief is lower than σ.

The arguments above complete the proof for the case N = G = 1. The extension
to N ≥ G ≥ 1 follow in a manner identical to the analogous extension in the proof of
Theorem 20.
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8.5.9 Proof of Theorem 26: Uniqueness of Scoring rule 4

Let f denote any strictly proper scoring rule. Consider any m ∈ {1, . . . , smax− 1}. Consider
the set of beliefs p1 = σ + δ, p2 = · · · = pm+1 = 1−σ−δ

m
and pm+2 = · · · = pB = 0, for

some value of δ in the neighborhood of 0. For the values of m under consideration, one can
verify that σ < 1−σ

m
< 1. Consequently, there exists some value δmax > 0 such that for every

δ ∈ [−δmax, δmax] we have 0 ≤ σ + δ ≤ 1 and σ < 1−σ−δ
m
≤ 1. In order to achieve the stated

goal, we would thus require to incentivize the worker to select options 1 through (m + 1)
if δ > 0, and select options 2 through (m + 1) if δ < 0. The scoring rule f therefore must
satisfy the pair of inequalities

f(m+ 1)
δ<0

≶
δ>0

(1− σ − δ)f(m) + (σ + δ)f(−m).

Since the right hand side of the expression above is linear in δ but the left hand side is a
constant, we must have

f(m+ 1) = (1− σ)f(m) + σf(−m) for all m ∈ {1, . . . , smax − 1}. (8.35)

We will return to this set of equations later.
Next consider any m ∈ {1, . . . , smax − 2}. Consider the set of beliefs p1 = σ + δ, p2 =

σ + δ, p3 = · · · = pm+2 = 1−2σ−2δ
m

and pm+3 = · · · = pB = 0, for some value of δ in the
neighborhood of 0. For the values ofm under consideration, one can verify that σ < 1−2σ

m
< 1.

Consequently, there exists some value δmax > 0 such that for every δ ∈ [−δmax, δmax] we have
0 ≤ σ + δ ≤ 1 and σ < 1−2σ−2δ

m
≤ 1. In order to achieve the stated goal, we would thus

require to incentivize the worker to select options 1 through (m + 2) if δ > 0, and select
options 3 through (m+ 2) if δ < 0. The mechanism f thus must satisfy

f(m+ 2)
δ<0

≶
δ>0

(1− 2σ − 2δ)f(m) + (2σ + 2δ)f(−m).

Since the right hand side of the expression above is linear in δ but the left hand side is a
constant, we must have

f(m+ 2) = (1− 2σ)f(m) + 2σf(−m) for all m ∈ {1, . . . , smax − 2}. (8.36)

It follows from (8.35) and (8.36) that the values of f(m) for every m ∈ {−(smax −
1), . . . ,−1, 1, . . . , smax− 2} can be expressed in terms of a linear combination of f(smax) and
f(smax − 1). We will now prove that the same holds true for f(−smax) and f(0) as well,
whenever these quantities are defined.

The quantity f(−smax) is defined only when smax < B. The reason is that when smax = B,
f(−smax) = f(−B) corresponds to a scenario where all the options are selected and the
correct option is not, which is impossible. Now consider the set of beliefs p1 = σ + δ,
p2 = · · · = psmax = 1−σ−δ−ε

smax−1
, psmax+1 = ε, and psmax+2 = · · · = pB = 0, for some values of
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ε ≥ 0 and δ in the neighborhood of 0. From the definition of smax, one can easily verify
that σ < 1−σ−ε

smax−1
< 1 whenever smax > 1. Consequently, there exist some values δmax > 0

and εmax ∈ (0, σ) such that for every δ ∈ [−δmax, δmax] and for every ε ∈ [0, εmax], we have
0 ≤ σ + δ ≤ 1 and when smax > 1, we also have σ < 1−σ−δ−ε

smax−1
≤ 1. In order to achieve the

stated goal, we would thus require to incentivize the worker to select options 1 through smax

if δ > 0, and select options 2 through smax if δ < 0. The mechanism f therefore must satisfy

(1− ε)f(smax) + εf(−smax)
δ<0

≶
δ>0

(1− σ − δ − ε)f(smax − 1) + (σ + δ + ε)f(−(smax − 1)).

Since the right hand side of the expression above is linear in δ but the left hand side does
not depend onδ, we must have

(1− ε)f(smax) + εf(−smax) = (1− σ − ε)f(smax − 1) + (σ + ε)f(−(smax − 1)).

Since this equation must be true for every ε ∈ [0, εmax], we must have

−f(smax) + f(−smax) = −f(smax − 1) + f(−(smax − 1)).

Thus the term f(−smax), whenever applicable, can also be written as a linear combination
of f(smax) and f(smax − 1).

The quantity f(0) is defined only when σ > 1
B

. The reason is that when σ ≤ 1
B

, it is
mathematically impossible for the beliefs for all the B options to be less than or equal to
σ (recall our assumption that no belief equals exactly σ). Now consider the set of beliefs
p1 = σ + δ, p2 = · · · = pB = 1−σ−δ

B−1
, for some value of δ in the neighborhood of 0. One

can verify that in this case of σ > 1
B

, it must be that 0 < 1−σ
B−1

< σ. Consequently, there
exists some value δmax > 0 such that for every δ ∈ [−δmax, δmax], we have 0 ≤ σ + δ ≤ 1 and
0 ≤ 1−σ−δ

B−1
< σ. In order to achieve the stated goal, we would thus require to incentivize the

worker to select option 1 if δ > 0, and select no options if δ < 0. The mechanism f therefore
must satisfy

(σ + δ)f(1) + (1− σ − δ)f(−1)
δ<0

≶
δ>0

f(0).

Since the left hand side of the expression above is linear in δ but the right hand side is a
constant, we must have

σf(1) + (1− σ)f(−1) = f(0).

Thus the term f(0), whenever applicable, can also be written as a linear combination of
f(smax) and f(smax − 1).

From the arguments above, we get that the design of f has only two degrees of freedom.
Given that our claim is only up to some shift and scale, the claim is proved.
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8.A Appendix: Auxiliary negative results

In this section we present a pair of auxiliary results that were referred to in the main text
of the chapter.

8.A.1 Impossibility of support elicitation without the coarse
belief assumption

In the setting of eliciting support of beliefs (Section 8.2.3 and Section 8.3.1), we made a
coarse-beliefs assumption that the probability of correctness of any option, according to the
worker’s belief, must either be zero or exceed a certain threshold ρ. The following proposition
shows that there exists no strictly proper scoring rule in the absence of this assumption.

Proposition 13. For any N , G and B ≥ 2, there is no strictly proper scoring rule towards
incentivizing the worker to select precisely the support of her distribution for each question.

To put this negative result in perspective with the positive results of Section 8.3.1, observe
that ρ = 0 reduces Scoring rule 3 to f ∗(x1, . . . , xG) = κ∗

∏G
i=1 1{xi ≥ 1} + αmin. One can

see that it no longer remains a strictly proper scoring rule: the worker is incentivized to
simply select all options for every question. The impossibility result of Theorem 13 proves
that every possible mechanism must necessarily suffer this fate.

Proof of Proposition 13

We assume that there indeed exists some strictly proper scoring rule f , and prove a contra-
diction.

Let us first consider the special case of N = G = 1 and B = 2. Since N = G = 1, there
is only one question. Let p1 > 0.5 be the probability, according to the belief of the worker,
that option 1 is correct; the worker then believes that option 2 is correct with probability
(1− p1).

When p1 = 1, we need the worker to select option 1 alone. Thus we need

f(1) > f(2).

When p1 ∈ (0.5, 1), we require the worker to select options 1 and 2, as opposed to selecting
option 1 alone. For this we need

p1f(1) + (1− p1)f(−1) < f(2)

It follows that we need

(1− p1)(f(1)− f(−1)) > f(1)− f(2). (8.37)
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However, the inequality (8.37) is satisfied only when f(1) > f(−1) and (1− p1) > f(1)−f(2)
f(1)−f(−1)

.

Thus for any given payment function f , a worker with belief (1 − p1) ∈ (0, f(1)−f(2)
f(1)−f(−1)

) will
not be incentivized to select the support of her belief. This yields a contradiction.

We now move on to the general case of N ≥ G ≥ 1 and B ≥ 2. Consider a worker who is
clueless about questions 2 through N (i.e., her belief is uniform across all options for these
questions). Suppose this worker selects all B options for these questions as desired. For the
first question, suppose that the worker is sure that options 3, . . . , B are incorrect. We are
now left with the first question and the first two options for this question. Letting X denote
a random variable representing the evaluation of the worker’s response to the first question,
the expected payment then is

G

N
E[f(X,B, . . . , B)] + (1− G

N
)f(B, . . . , B).

The expectation in the first term is taken with respect to the randomness in X. Defining

f̃(X) : =
G

N
f(X,B, . . . , B) + (1− G

N
)f(B, . . . , B),

and applying the same arguments to f̃ as those for f for the case of N = G = 1, B = 2
above gives the desired contradiction. This thus completes the proof of impossibility.

8.A.2 Impossibility of thresholded-belief elicitation when a belief
exactly equals the threshold

Recall that when defining a strictly proper scoring rule for the setting of eliciting options
with beliefs above a certain threshold σ (Section 8.2.3), we did not restrict the scoring rule
to any specific choice when the probability of the correctness of an option equaled exactly
σ. This is because, as one would intuitively expect, incentivizing a certain action at the
boundary value of σ may not be possible. The following proposition provides a formal proof
for this claim.

Proposition 14. For any N ≥ G ≥ 1, there is no strictly proper scoring rule in the absence
of this assumption.

The remainder of this section is devoted to the proof of this claim.

Proof of Proposition 14

Let us first prove the result for the case of N = G = 1. The result of Theorem 26 implies
that if there does exist a strictly proper scoring rule for this setting, then it must be Scoring
rule 4 up to a constant shift and positive scale. Consider a worker with the belief p1 = 1−σ,
p2 = σ and p3 = · · · pB = 0. Since σ < 1

2
, under a strictly proper scoring rule, the expected

payment must be strictly larger if the worker selects only option 1 as compared to the
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expected payment when the worker selects options 1 and 2. However, one can compute that
under Scoring rule 4, the expected payment in the two cases is identical. It follows that
under any possible strictly proper scoring rule, the expected payment must be identical in
the two following two actions of the worker (a) selecting only option 1, and (b) selecting
options 1 and 2. It follows that there is no strictly proper scoring rule.

We now move on to the general case of N ≥ G ≥ 1. Let f denote any strictly proper
scoring rule for the setting at hand. Consider a worker who knows the answers to questions
2 through N with a belief of 1 in each case. Suppose that for each of these (N−1) questions,
this worker selects the respective options that she thinks are correct. We are now left with
the first question. Letting X denote a random variable representing the evaluation of the
worker’s response to the first question, the expected payment from the worker’s point of view
is

G

N
E[f(X, 1, . . . , 1)] + (1− G

N
)f(1, . . . , 1).

The expectation in the first term is taken with respect to the randomness in X. Defining

f̃(X) : =
G

N
f(X, 1, . . . , 1) + (1− G

N
)f(1, . . . , 1),

and applying the same arguments to f̃ as those for f for the case of N = G = 1 above gives
the desired contradiction. This completes the proof.
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Part III

Conclusions
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Chapter 9

Conclusions

“Please stop attributing your made up quotes to my fellow
scientists.”

– Issac Newton

Learning from people is the next frontier for data science. There are two primary chal-
lenges associated to learning from people. One challenge is to design estimation algorithms
that are robust to modeling assumptions. To address this challenge, in this thesis we propose
permutation-based models and estimators which we prove provide strong guarantees under
very little assumptions. We show that this permutation-based approach has a multitude
of benefits as compared to the classical approach involving restrictive parameter-based as-
sumptions. The second challenge is to elicit high quality data from people, and in this thesis
we design multiplicative incentives that we prove are the one and only mechanisms that can
provably guarantee that the natural requirements of crowdsourcing platforms are met. All
in all, this thesis contributes to the fundamental understanding of the problems in this area,
designs algorithms that yield notable improvements in practice, and has also had real-world
immediate impact.

The general principles of permutation-based models and estimators and unique multi-
plicative mechanisms have implications well beyond our present motivation of crowdsourc-
ing. In many applications in machine learning and statistics, one often assumes models
that are of the parameter-based form. Such models are popular partly because they are
quite intuitive to write down, and partly because they are often analytically more tractable.
However, instead if one were to consider rich enough models like permutation-based models
then one can obtain a broader perspective and richer insights into the problem that can lead
to obtain superior results. As an illustration, Appendix 9.A presents a permutation-based
generalization of the classical normal means model. Moving on to game theory and decision
theory, it is often the case that a mechanism is employed because it is incentive compatible
or because truth telling is an equilibrium. However, it is usually the case that the mechanism
employed may be just one of many possible mechanisms that has this property; it is seldom
established that there is no other mechanism that can dominate the one under consideration.
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Our simple no-free-lunch requirement and associated proof techniques are tools that can be
valuable towards this goal in many applications. For instance, in Appendix 9.B we show how
our proof techniques and ideas can be used to design unique grading schemes for objective
examinations.

There are several open problems that emanate from this thesis, and we enumerate a few
of them here. In Part I, we primarily considered a “random design” setting where the choice
of the pairs compared or questions asked or entries observed is made uniformly at random.
It remains to evaluate the performance of permutation-based models for other observation
models such as weighted random sampling, fixed design, streaming or active learning, or
biased observation models. In our paper [100], we have made progress in this front for
the problem of ranking in an active setting where the pairs to be compared can be chosen
based on outcomes of past comparisons. We show that even in this active setting, the same
story holds: the restrictive assumptions of parameter-based models offer very little help as
compared to the permutation-based models.

A second open problem is to close the gap between the error guarantees of the statistically
optimal estimators and what can be achieved by computationally efficient estimators in the
settings of Chapters 2, 4, and 5. We do not know at this point whether this gap is really
fundamental or whether there exist computationally efficient estimators that can achieve
the statistically optimal rates. There are however two key exceptions on such a gap. For
the problem of minimizing the sample complexity of ranking, we know from Chapter 3 and
our paper [100] that there is no gap – the statistically optimal algorithm (up to logarithmic
factors) is also computationally efficient. On the other hand, for estimation of pairwise
comparison probabilities in a manner that can adapt to underlying smoothness in the true
probabilities, we know from our companion paper [223] that there is indeed a provable gap
(conditioned on the planted clique hardness conjecture).

In Part II of this thesis, we designed incentive mechanisms that operate using some
gold standard questions in the tasks. However, it is often the case that there are no gold
standard questions available or that gold standard questions are too expensive to create. An
interesting problem is to construct mechanisms that operate in the absence of gold standard
questions, for instance, by comparing the answers of a worker to those of others in some
fashion. There is a long line of literature on this topic [57, 171, 188, 190, 191, 239]. However,
unlike the multiplicative mechanisms of this thesis, to the best of our knowledge none of the
incentive-compatible mechanisms for settings without gold standard questions are simple
enough to be understood by workers on crowdsourcing platforms like Amazon Mechanical
Turk. In some of our own recent work [115], we have obtained mechanisms that are simper
than the rest, but we still think there is a long way to go.

A second open problem that concerns practical deployment of incentive mechanisms is
that of choosing the hyperparameters in the various mechanisms. In this thesis, we assumed
that the threshold for skip, number and thresholds of confidence levels, the maximum pay
for a task, and the number of gold standard questions in a task are all given to us. It is not
known how to choose these values in a principled manner, possibly in a way that can adapt
across tasks.
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The final open problem we discuss is that of designing estimation and aggregation schemes
that operate mindful of the incentive mechanisms used to collect the data as well as any ad-
ditional information obtained from the interface used. For instance, the questions skipped in
the skip-based mechanism of Chapter 6 are not skipped randomly but depend on the under-
lying question itself. Likewise, the self-reported confidences in the mechanism of Chapter 7
and the set of selected options in the mechanism of Chapter 8 are all driven by the underly-
ing mechanism and interface. In contrast, the estimation algorithms designed in Chapter 4
for labeling tasks as well as in other chapters of Part I operate agnostic of this information.
Establishing the fundamental limits of the use of this information in the estimation process
and designing practical algorithms for this purpose remain worthwhile open problems.

We conclude with two longer-term directions of future research. The first direction is
on robust statistics and machine learning. In various problems in machine learning and
statistics, one often makes many assumptions that may not be fundamental to the problem.
These include assumptions of existence of specific parameters or utility functions or specific
priors etc. In order to remove these restrictive assumptions, it is of interest to identify the
fundamental requirements of any such problem, and design models and estimation algorithms
that provide maximal accuracy under minimal assumptions. In other words, it will be
useful to design algorithms that are provably pareto optimal in the tradeoff between the
modeling assumptions and the error under the assumed model. Secondly, in this thesis
we considered settings with structured data of the form of ranking and classification. An
important direction of future research is learning from unstructured human data. Human-
centered systems with such unstructured data have massive potential, but also face many
tall challenges. Such data arises in citizen science, healthcare, search and rescue, language
translation, as well as in artificial intelligence in terms of imitation learning. It is of interest to
approach these problems from a foundational mathematical perspective, and use the insights
obtained therein to design practical algorithms for these practically useful settings.

9.A Appendix: Permutation-based generalization of

the normal means model

In this section we consider the classical setup of the normal means model. In the normal
means model, there are d latent “means” m : = [m1, . . . ,md]

T ∈ Rd that are required to be
estimated. The setting assumes to make n independent observations of each mean value, that
is, observe Y ∈ Rn×d where the entries of Y are mutually independent and Yij ∼ N (mi, 1).

In accordance with the motivation of this section to connect with Part I, we assume
that the vector of unknown means m has entries bounded as ||m||∞ ≤ 1. We comment on
removing this assumption later. Then we define the normal means model CNORM as

CNORM : = {M ∈ [0, 1]n×d |M = 1mT for some m ∈ [−1, 1]d}.

The normal means model is useful for a variety of settings. For instance, consider the
problem of modeling and estimating the average profit due to various items in a store chain
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(such as Walmart). Here d represents the number of items, mj represents the true latent
mean of the profit due to item j ∈ [d], and the n associated observations Y1j, . . . , Ynj represent
the actual profits associated to item j in n different branches of the store.

Observe that in the example application of the store chain, the standard normal means
setting implies the assumption that for each item, every branch of the store chain has the
same latent expected profit. This assumption may often be (severely) violated, for instance,
if one branch is in a highly populated area while another is in an area with a lower population
density. In this case, it may be reasonable to assume that the relative profits of any two
items are consistent across the branches, and that the relative profits in any two branches
are consistent across the different products.

The observations above leads us to the following “permutation-based” relaxation of the
normal means model. Consider a matrix M∗ ∈ Rn×d of the underlying means of profits
across branches and products, where [M∗]ij represents the latent mean profit due to product
i ∈ [n] in branch j ∈ [n] of the store. Formalizing the above discussion, we assume that
M∗ ∈ CPERM, where CPERM is defined as

CPERM : = {M ∈ [−1, 1]n×d |Mij ≥Mi′j′ whenever π(i) < π(i′)and σ(j) < σ(j′),

for some permutations π and σ}.

As before, the observation consists of a matrix Y ∈ Rn×d with Yij ∼ N ([M∗]ij, 1) for every
pair (i, j), independent of all else.

It is easy to see that the permutation-based model is more general than the classical
model. The following theorem now presents bounds relating to estimation of the vector
m∗ ∈ CNORM and more generally the matrix M∗ ∈ CPERM.

Proposition 15. (a) Suppose that m∗ is known to follow the normal means model CNORM,
and consider any estimator m̂ for m∗. The estimator must incur an average per-entry error
of at least

sup
m∗∈CNORM

E
[1
d

d∑
j=1

(m̂j −m∗j)2
]
≥ c2

1

n
.

(b) Suppose that d ≥ n. Then over the permutation-based normal means model, the average

per-entry error of the least squares estimator M̂LS : = arg minM∈CPERM
|||Y −M |||F is at most

sup
M∗∈CPERM

E
[ 1

n

n∑
j=1

1

d

d∑
i=1

([M̂LS]ij −M∗
ij)

2
]
≤ c1

1

n
log2 d.

Returning to our example applications of the store-chain, the number of items d in a
typical store will generally outnumber the number of branches n. The bounds of parts (a)
and (b) are tight in this regime, showing that the average per-entry error in either case is of
the order of 1

n
. A consequence of this result is that if one is fine with a possible logarithmic
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factor increase in the error, then from a statistical viewpoint, the permutation-based normal
means model may be preferable due to its added generality and comparable error.

The proof of Proposition 15(a) is standard folklore, and can be established through the
framework of Fano’s inequality that is used in most proofs of lower bounds in Part I this
thesis. The proof of Proposition 15(b) is similar to the analysis of the least squares estimator
in Theorem 1(a) with one exception. The bound (2.30) in the proof of Theorem 1(a) relies
on the fact that the entries of the noise are bounded in the interval [−1, 1] thereby allowing
for the use of the relevant concentration bounds from [144, Theorem 5.9], [213]; in order
to accommodate the present setting with (unbounded) normally distributed noise, we must
instead use the tail bound [136, Theorem 2.2]. Finally, one may remove the assumption that
M∗ is bounded by considering a an estimator that finds the least squares estimate within a
infinity norm ball of polylog(n, d) around the observed matrix Y , along with the monotonicity
constraints. Using the fact that the maximum of nd standard normal variables is at most
polylog(n, d) with high probability, the bound of Proposition 15(b) may be worsened by at
most logarithmic factors.

All in all, we see that even though the setting of the classical normal means model that
is not naturally connected to the theme of learning from people explored in this thesis, the
high-level uses and benefits of permutation-based models and estimators carry over naturally.

9.B Appendix: Unique grading schemes for objective

examinations

Consider the grading of a homework or an examination. Consider a given grading scheme
that evaluates every question as either “correct” or “incorrect”, and computes the score
of a student based on the evaluation of his/her answers to the set of questions asked. This
grading scheme may have been designed and revised over the years to ensure that it possesses
many appealing properties. Now suppose you wish to extend this setting to one where the
student gets an option to skip any question that she is not confident about. (The meanings
of confidence and incentivization are as defined earlier in Part II.) Is there a rigorous way
to extend the original grading scheme to this new setting, while preserving the appealing
properties of the original grading scheme, and incentivizing the students to skip questions
(only) when their confidence is below a certain threshold? In this section, we answer this
question in the affirmative, and show that there is one and only one way to do so.

Consider an exam or a homework with N questions. An evaluation of an answer as
correct is denoted by +1 and as incorrect is denoted by −1. Let g : {−1, 1}N → R denote
the grading scheme that takes as input the evaluation of the student’s responses to the N
questions and outputs the final score. The only requirement on g that we impose is that if
a student knows the answer to a question and is 100% confident about it, then the scheme
g must incentivize the student to provide the answer she thinks is correct. Note that under
this setting, a question that is skipped by a student is considered as answered incorrectly.



CHAPTER 9. CONCLUSIONS 273

Now suppose you wish to extend this setting to one where the student gets an option to
skip any question she is not sure of. In particular, we consider some threshold T ∈ (0, 1) such
that we want the student to skip a question if her confidence about the answer is smaller
than T and answer if it is greater than T . We take an axiomatic approach towards the design
of the grading scheme for this setting, and impose two simple and natural conditions on the
grading scheme. The goal is to design a grading scheme f : {−1, 0, 1}N → R that satisfies
the two following requirements:
• Backward compatibility: When no questions are skipped, the grade should be identical

to what the grading scheme g would have given, that is, f(x1, . . . , xN) = g(x1, . . . , xN)
for every (x1, . . . , xN) ∈ {−1, 1}N . This requirement ensures that all the features of the
earlier grading scheme are retained.
• Skipping criterion: For a fixed threshold T ∈ (0, 1), for any question, if the student’s

confidence in any answer is more than T then the student should be incentivized to give
that answer, otherwise the student should be incentivized to skip the question.
In what follows, we present an algorithm to obtain a grading scheme that incorporates

skipping of questions from a grading scheme without it, and prove that this is the only
scheme that is backward compatible and satisfies the skipping criterion.

Unique grading scheme

The proposed grading scheme f is constructed follows. Consider any set of evaluations
(y1, . . . , yN) ∈ {−1, 0, 1}N . For every i ∈ {1, . . . , N}, let Ai = {−1, 1} if yi = 0 and
Ai = {yi} otherwise. Finally, set

f(y1, . . . , yN) =
∑

(x1,...,xN )∈A1×···×AN

g(x1, . . . , xN)T
∑N
i=1 1{xi=1, yi=0}(1− T )

∑N
i=1 1{xi=−1, yi=0}.

The expression for f in the proposed scheme may appear somewhat complicated at first,
but it has a quite simple interpretation. For every question that is skipped by a student, take
the convex combination of the scores for the case where the student answers that question
correctly, with a weight T , and the case where the student answers that question incorrectly,
with a weight (1 − T ). In other words, the scheme may equivalently be written in the
following recursive form:

f(y1, . . . , yi−1, 0, yi+1, . . . , yN)

= Tf(y1, . . . , yi−1, 1, yi+1, . . . , yN) + (1− T )f(y1, . . . , yi−1,−1, yi+1, . . . , yN).

The following theorem proves that our proposed grading scheme is the one and only
solution.

Proposition 16. The proposed grading scheme is the one and only grading scheme that is
backward compatible and satisfies the skipping criterion.
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The proof of this result follows directly from the results established earlier in this chapter.
The proof that it satisfies the skipping criterion follows by simply evaluating the expected
score under various actions as done in the proof of Theorem 16. The uniqueness follows from
a recursive application of Lemma 33.

Finally, we note that the proposed unique grading scheme f is as simple or complex as
the original scheme g. For instance, the range of scores provided under the new scheme is
identical to the range under the original scheme. The following pair of important subclasses
illustrate additional interesting properties.

Homogeneous grading scheme: Let us consider a popular subclass where the original
grading scheme g puts an equal weight on every question, that is, g(x1, . . . , xN) = ĝ(r, w)
where r =

∑N
i=1 1{xi = 1} is the number of right answers and w =

∑N
i=1 1{xi = −1} is the

number of wrong answers.
Proposition 16 then implies that the one and only grading scheme f that meets the

skipping criterion and is backward compatible is as follows:

f̂(r, w, s) =
s∑

k=0

(
s

k

)
T k(1− T )s−kg(r + k, w + s− k),

where s =
∑N

i=1 1{xi = 0} is the number of skipped questions. Observe that this scheme is
also homogeneous, that is, the final score depends only on the number of right, wrong, and
skipped answers.

Let us first interpret this resulting scheme. Consider some values of r, w and s. If the
student had attempted and answered all the s skipped questions incorrectly then her score
would have been g(r, w + s). On the other hand, if the student had attempted answered all
the s skipped questions correctly then her score would have been g(r+s, w). The score in the
case when the student skips these s questions is simply a convex combination of these two
terms and all the terms in between. In particular, our provably unique scheme when applied
to r correct and s skipped answers, simply equals the expected value of the score under the
original scheme g if each skipped question was actually attempted and each provided answer
independently had a probability T of being correct.

Additive grading scheme: Next we consider a subclass in which each question is allowed
to be evaluated in a different manner, but the final score is a sum of the scores in each
individual question, that is, g(x1, . . . , xN) = g̃0 +

∑N
i=1 g̃i(xi), for some constant g̃0 ∈ R and

functions g̃1, . . . , g̃N : {−1, 1} → R.
Proposition 16 then implies that the one and only grading scheme f that meets the

skipping criterion and is backward compatible is:

f(y1, . . . , yN) = f̃0 +
N∑
i=1

fi(yi),
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where f̃0 = g̃0, and for every i ∈ {1, . . . , N},

fi(yi) =

{
g̃i(yi) if yi ∈ {−1, 1}
T g̃i(1) + (1− T )g̃i(−1) otherwise.

The additive nature of the original scheme is thus retained.
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