
  

Using Serious Game Techniques to Simulate Emergency 
Situations 

Marcelo G. Metello, Marco A. Casanova, Marcelo T. M. Carvalho 

Departamento de Informática 
Pontifícia Universidade Católica (PUC) – Rio de Janeiro, RJ – Brazil 

{metello,casanova}@inf.puc-rio.br, tilio@tecgraf.puc-rio.br 

Abstract.  This paper presents a simulation engine we implemented to support 
an interactive emergency simulation game. We first discuss various issues on 
building serious (non-entertainment) games involving the simulation of real 
life situations. The discussion also considers the use of geographical 
information systems and dynamic modeling techniques. Then, we present the 
architecture of the simulation engine and discuss the main aspects regarding 
its application to emergency plans. Finally, we briefly describe a prototype 
built to validate the proposed architecture and the requirements raised in the 
discussion. 

Resumo.  Neste trabalho apresentamos um simulador implementado para 
atender as necessidades de jogos interativos simulando situações de 
emergência. Inicialmente, apresentamos os problemas inerentes ao 
desenvolvimento de jogos sérios (sem propósito de entretenimento) que 
envolvem a simulação de situações do mundo real. A discussão também 
considera a adoção de sistemas de informação geográfica e de técnicas de 
modelagem dinâmica. Em seguida, apresentamos a arquitetura de um 
simulador e discutimos os aspectos principais levantados pela sua aplicação 
no contexto de planos de emergência. Por fim, descrevemos brevemente um 
protótipo construído para validar a arquitetura proposta e os requisitos 
levantados. 

1. Introduction 
The first computer games were created in the early 1960’s. Since then the computer 
game industry grew into a large segment that now plays a relevant role in the evolution 
of several areas of Computer Science, such as human-computer interfaces, computer 
graphics, artificial intelligence and, more recently, computer networks [Smed et al 
2002]. 

  The widespread adoption of computer games for entertainment purposes, the 
continuous decrease of hardware cost and the success in military simulations made 
gaming technologies attractive to some “serious” industries such as medicine, 
architecture, education, city planning, and government applications [Smith 2007]. The 
term serious games [Susi, Johannesson and Backlund 2007] has been used to denote 
games used for such non-entertainment purposes. The application of gaming 
technologies to these areas presents some peculiar challenges, since their requirements 
can be quite different from those of the entertainment industry. Usually, serious games 



  

need to work on models which reproduce certain aspects of reality. On the other hand, 
entertainment games have much more freedom to create and modify their own reality, 
which can be quite convenient, especially when the developers face technical 
limitations. Even though entertainment games may require realistic audiovisual player 
experience, they do not need to reproduce realistic situations. 

 Apperley (2006) classifies video games into four genres according mainly to the 
characteristics of the player interaction. Specifically, the simulation genre better defines 
the applications we focus in this paper. Still according to the author, simulation games 
can be further analyzed with respect to their degree of realism, which is the main aspect 
that characterizes serious games. We will therefore use the term serious simulation 
games to denote serious games that belong to the simulation genre. 

 The fact that serious games may require realistic simulations justifies the effort 
to integrate gaming techniques with traditional geospatial dynamic models.  The purpose 
of geospatial dynamic models is to describe processes that have some important spatial 
aspect. Such processes may include natural phenomena and human action on Earth. 
Examples of geospatial dynamic models are extensively found in the literature related to 
fields such as hydrology, climate changes, land use, population dynamics and many 
others.  Such models improve our understanding of dynamic phenomena as they make it 
explicit the causal relationships between the elements involved. 

 Since geospatial dynamic models attempt to describe real phenomena, they help 
meet the requirements of serious games for realism. Hence, the effort to make dynamic 
modeling engines interoperate with simulation game engines is perfectly justifiable. 
Ideally, the player interaction capabilities of computer games and realistic dynamic 
modeling techniques should be integrated in a complementary way. 

 This paper illustrates the combination of these two approaches to simulate an 
emergency response activity. An emergency situation occurs when an incident can 
cause damage to human health and the environment. Once it occurs, the best approach 
to control it is to respond quickly and in a well organized manner. Testing the 
performance of an emergency response team is mandatory to ensure minimum impact of 
the incident. Testing usually takes the form of field exercises, but simulation has also 
been successfully used. We discuss the advantages of adding simulation capability to an 
emergency information management system, such as InfoPAE [Carvalho et al. 2001], a 
system used to manage emergency situations at Petrobras, the Brazilian oil company. 

 The paper is organized as follows. Section 2 lists the requirements for serious 
simulation games. Section 3 describes a simulation engine that integrates traditional 
dynamic models, and discusses issues related to player interaction in simulation games 
with geospatial aspects. Section 4 presents the emergency simulation game. Finally, 
Section 5 contains the conclusions and enumerates future work. 

2. Requirements for Serious Simulation Games 
This section lists some of the requirements for serious simulation games that are not 
fundamental to other classes of computer games. 



  

2.1. Realism 

There should be a minimum acceptable degree of realism in serious simulation games. 
This suggests that the simulations involved in this kind of game should run on data that 
represents real objects, which is precisely the difference between graphical and 
geographical data. 

 In many cases, the ability to access data in existing systems, such as 
geographical information systems (GIS), will work as a subrequisite to realism. Indeed, 
in order to create a realistic simulation, the system has to work with real data, which is 
likely to be stored in existing information systems and databases. 

2.2. Time Flow Control 

The ability to stop, accelerate and go back in time can be quite important when 
designing serious simulation games. It is not difficult to imagine situations where it 
would be desirable to pause or to replay a simulation multiple times from a given point. 
In other situations, it may be desirable to accelerate the time flow, especially in periods 
without much player activity. 

 This requisite says that serious simulation games may require much more 
control over the time flow than entertainment games. Some serious simulation games 
may require that entire simulations be recorded for future replays. 

2.3. Learning Support 

Simulation games devoted to training require player evaluation as part of the learning 
process [Borodzicz and van Haperen 2002]. In many cases, this requirement means that 
the system should be able to play back a simulation for evaluation purposes, which 
involves saving simulation data. 

 Apart from simply saving simulation data, the system may be required to trace 
back player decisions for payoff evaluation [Zagal et al 2006]. In this case, the 
underlying simulation system should be aware of the player action model.  

 There are also cases where organizations will have predefined procedures and 
protocols. When this happens, it may be necessary to match the sequence of player 
actions to these predefined procedures to check whether each player acted as expected 
by the organization. Going one step further, the simulations can be used to evaluate the 
effectiveness of the predefined procedures, detect their flaws and help with their 
evolution [Smith 2004]. 

 It should be noted that the requirement of learning support is not limited to 
individual learning. The evaluation of the effectiveness of predefined procedures 
represents some kind of collective or institutional learning. 

3. The Simulation Engine 
This section provides a high level description of the architecture of the implemented 
simulation engine, and discusses some interesting issues related to it. 

 In the context of this work, a simulation refers to a set of elements and events 
evolving in a spatio-temporal representation of the world. That is, the world state is 
represented by spatial and non-spatial data, and the state changes as time flows. The 



  

changes in the state of the world are affected by input given by the players, which in 
part justifies why the simulation engine may also be considered a game engine. 

3.1. Architecture 

Figure 1 illustrates the high level architecture of the system. The simulation engine is 
responsible for continuously updating the state of the world as the simulation time 
flows. The renderer is responsible for generating visual input for the players, and is not 
considered as part of the simulation engine. This makes it possible to implement a 
multiplayer game with different renderers for different players, and to generate different 
views for each player, according to which information they are allowed to see. 

 
 Figure 1. The high level architecture of the system. 

 All changes in the world state are carried out by special entities called events. 
There are two types of events: player events and system events. Player events represent 
player activity in the world. The way player input alters the state of the world is always 
defined by player events. On the other hand, system events represent all activity that is 
not directly caused by any player. 

 Events have duration. Therefore each event has a start time and a finish time. As 
an example, the event of moving a boat to a specified location at sea would start at the 
moment the order to move is given and finish at the time the boat gets to the specified 
location. 

 The lifecycle of a player event starts when the player issues a command to 
execute it. The player event then starts its activities by generating a series of 
instructions. Each instruction is basically a piece of code that somehow alters the state 
of the world in the simulation. The instructions are always instantaneous with respect to 
simulation time. Each instruction is assigned a timestamp, which will provide a means 
of ordering instructions originated from different concurrent events. In the case of the 
moving boat player event, each instruction would change the location of the boat to the 
next point in its trajectory to its destination. Note that, since each player event generates 
its instructions, they are responsible for determining the granularity of their execution. It 
is also possible for a player to have multiple events running at the same time. 

 There are three possible outcomes of the execution of a player event. It may 
finish its execution successfully, it may be cancelled or it may fail. A player event can 
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be cancelled in three situations. The player may issue a command to cancel one of his 
running player events. If the player issues a command to execute one player event that 
conflicts with another player event, one of them is cancelled by the system. As an 
example, if the player has ordered a boat to go to location L and, before the boat gets to 
L, he orders the same boat to go to another location L’, the event of moving the boat to 
L is cancelled. As the last possibility, when the simulation finishes, all running events 
are cancelled. Fig 2 illustrates the state diagram for player events. 

 The event model implemented by the simulation engine should be general 
enough to implement various kinds of serious games. One possible indication of this 
generality is that it is very similar to John Sowa’s process model [Sowa 2000]. 

 
 

 

 

 

 

 

Figure 2. The state diagram of player events. 

3.2. Issues related to dynamic modeling 

Dynamic modeling frameworks, such as PCRaster [van Deursen 1995], Swarm [Minar 
et al 1996] and Nested-CA [Carneiro 2006] usually provide or use a specific language 
to describe dynamic models and an engine to run these models on real data, usually 
provided by GIS. 

 Since the event model used to implement the simulation engine is very generic, 
it is usually possible to implement most dynamic models as system events. In fact, it 
should be possible to emulate any dynamic model engine inside one system event. In 
this case, the event would issue an instruction every time the dynamic model engine 
should alter the state of the world. In fact, this is how the simulation engine proposed in 
this paper integrates traditional dynamic modeling and games. 

 Another issue is related to running time. Simulation engines and frameworks 
designed for dynamic modeling seldom show any concern for running the models in 
real time, which is a requirement for interactive games.  The term real time is used here 
to denote that the time flow in the execution of a temporal model should be 
synchronized with the real time flow for better user experience. 

 The technology developed by the gaming industry is focused on displaying data 
in real time for highly interactive gaming. If we go through the process of game 
development, there is a continuous attention on performance requirements in almost 
every part of the code. Performance improvements are tried everywhere to keep an 



  

acceptable frame rate for better user experience. This objective is always present 
throughout the game development process. 

 If the dynamic models and the spatial data are not too complex, the real time 
requirement can be implemented simply by adding a time controller to an existing 
dynamic modeling engine. However, since GIS are known for their heavy datasets, 
techniques for optimizing spatio-temporal data manipulation may be necessary 
[Wolfson et al 1998, Siebeck 2004]. 

3.3. Issues related to GIS   

GIS have been traditionally more concerned with displaying spatial data than temporal 
data. Only recently the major GIS, other than military and flight simulators, started to 
take into account time and user experience, much in the same way as for the gaming 
industry. The increasing popularity of training games certainly contributes to this 
change.  

 GIS are known for their heavy spatial datasets. This is certainly one of the main 
reasons why it is difficult to display animated GIS data at a minimum acceptable frame 
rate. Metello et al. (2007) show how the fast computer graphics techniques used in 
gaming may be used to display GIS data at higher frame rates. 

3.4. Issues related to multithreading 

Most information systems and GIS follow a single-thread paradigm in their software 
architecture. The paradigm is characterized by a synchronous model of work where the 
user issues a command and waits for the response of the system before he can issue 
more commands. This type of architecture is clearly not adequate for interactive 
simulations, since the simulation should be run in real time and cannot afford waiting 
for user input. The simulation must continue even if the user does not issue any 
command. Besides, the system must also support multiple players, which is another 
argument against the single-thread paradigm. 

 In more dynamic applications, such as entertainment action games, the system 
executes a process continuously, regardless of commands input by the user in an 
asynchronous way. The differences in the execution flow of both kinds of architectures 
are illustrated in Fig. 3. In the workflow on the right, there are two processes running 
asynchronously. In the simulation engine, the interaction between these two processes is 
handled simply by queuing player events when they are created by a player. Of course, 
the queue must be thread-safe. 

 



  

 
 Figure 3. The kind of architecture required for interactive simulations (right) 

  

4. The Interactive Emergency Simulation Game 
In order to validate the proposed architecture, a game was implemented with the 
objective of simulating some specific emergency situations. In the context of this paper, 
an emergency is an incident, like an oil spill, that requires response action to be 
controlled and to mitigate effects, as loss of life or damage to property and natural 
resources. 

 Preventing the incident is always the best for avoiding damage to human health 
and the environment. However, once an emergency occurs, the best approach to control 
it is to respond quickly and in a well organized manner. This will happen if response 
strategies have been planned ahead of time. One of the elements for this planning is the 
emergency plan, which comprises a set of instructions that outline the steps that should 
be taken before, during, and after an emergency. The emergency plan is based on a risk 
assessment that looks at all the possibilities of what could go wrong. To assist and 
support a better response action, the plan contains, besides the set of instructions, the 
response strategies, a list of contacts and personnel, a material resource list, and refers 
to a vast documentation. 

 After the plan is developed, it is important to test it to check whether it works as 
expected and to train and evaluate the operational readiness of responders. Testing 
usually takes the form of an exercise  or drill, what can be very time consuming and 
expensive to organize periodically. Another point to consider is the difficulty for 
representing detailed and realistic situations required to effectively test the emergency 
plan. Use of simulation games in these cases can be helpful.  

 This section further discusses the motivation outlined above and the 
implementation of a simulator. 

4.1. Representation versus simulation: limitations of planning response ahead of 
time 

In [Frasca 2003], the author discusses two different approaches for modeling knowledge 
about dynamic phenomena: representation and simulation. According to the author, the 
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main difference between both forms is that simulation attempts to model the behavior of 
the elements involved in the phenomenon while representation is limited to retaining the 
perceptual characteristics of it. To make it clear, the author gives the example of a plane 
landing procedure. A representation of a specific landing could be a film where an 
observer would be incapable of interfering. On the other hand, a flight simulator would 
allow the player to modify the behavior of the system in a way that simulates the real 
plane. This flexibility is only possible due to the simulation characteristic of modeling 
the behavior of the elements independently of any specific scenario. 

 An emergency plan takes, traditionally, a more representational form. It contains 
response strategies planned for different type of scenarios, but it cannot tell whether the 
plans are well suited for all cases. The set of instructions contained in an emergency 
plan consists basically of workflows of actions. They do not take into consideration the 
preconditions or durations of each action. Moreover, they do not take into consideration 
the specific spatial characteristics of all scenarios. For example, a plan can describe the 
action of sending two boats to intercept an oil spot. However, it may not be possible to 
do that before the oil reaches the coast in some specific conditions. If emergency 
managers were able to simulate the whole process in a more realistic way, it would 
certainly make the emergency plans more reliable. 

 In order to meet all these needs, a simulator was developed with the purpose of 
simulating emergency scenarios. Some of the main advantages of building an 
emergency simulator and integrating it with an emergency management system include: 

• Simulations help finding flaws in emergency plans 

• Testing whether available emergency response resources configuration are 
enough to handle any scenario requirements 

• Simulation games provide training that help improve personnel  performance 

• Computer simulation cost are significantly lower than functional or full scale 
exercises 

 The first scenario considered to test the simulator was the spill of a considerable 
volume of oil into the ocean. This scenario was chosen because it involves elements of 
dynamic modeling and user actions that interfere with each other. 

4.2. The Oil Spill Scenario 

In a typical oil spill scenario, the initial goals are to attempt to control the leak at the 
source of the spill, and to limit the propagation of the floating oil as much as possible. 
These goals are typically achieved by using containment, recovery and clean-up 
strategies, which are implemented through specific operational procedures. These 
procedures, however, depend on the characteristics of the scenario, such as: 

• Type of oil and its characteristics 

• Local of the source of the leak and its nearest landmark 

• Estimation of the amount of oil spilled 

• Weather and sea conditions 

• Characteristics of the shoreline that may be affected 



  

4.3. The Emergency Simulator 

The first simulation implemented considers the oil spill scenario after the leak has 
stopped and focuses on oil contention in water bodies. Clean-up operations for oil that 
reached the coast were also not considered. The goal of this simulation is to test 
emergency plans for leaked oil containment. The simulator is expected to uncover 
possible flaws in the plans as well as to help planning equipment installation and 
location.  

 The initial conditions of the simulation are specified in a document which is read 
by the system. This document includes the location, amount and type of leaked oil, 
maps of the affected area, the location of all available equipment and weather 
conditions.  The dynamic elements of the simulation are described next. 

 The leaked oil is represented by a hexagonal cell space, where each cell stores 
the amount of oil in it. The movement of oil is modeled using a cellular automaton, 
which considers not only the state of each cell but also the weather conditions, such as 
the wind direction and speed, for example. Currently, weather conditions are globally 
defined. 

 The oil movement model must also consider elements that will act as obstacles, 
such as shorelines and barriers used to contain the oil spilled. Both are represented as 
polylines in the simulation and have similar treatment. Each cell that intersects either a 
barrier or a coast line is considered an obstacle cell. 

 When the oil reaches the coast, its movement must take into consideration the 
type of the coast. For example, sand coasts absorb oil in a much greater amount than 
rocky coasts. It will be helpful to use a detailed map of coast types for all locations that 
can be reached by the oil spill. Likewise, different types of barriers have different 
absorption and containment capabilities. 

 Each cell in the cellular space must contain information as whether it represents 
an obstacle or not. Note that this state may change during the simulation when barriers 
are used. Since different obstacles have different containment and absorption 
characteristics, the obstacle cells must also keep this information. All the information 
about obstacle cells is of course used as input to the cellular automaton as well. 

 The main dynamic elements in the simulation other than the oil itself are the 
boats used to support operational response to the emergency situation. Boats are 
responsible for placing barriers to contain oil. They may also carry some oil recovery 
equipment, such as pumps and skimmers.  The initial location of the boats is defined in 
the document that describes the initial conditions for the simulation. 

 The movement of the boats is simulated by taking into account their speed and 
cargo capacities, as well as weather conditions, such as wind, sea currents and tide. 
During the simulation, players guide the boats through way-points. They may place 
way-points wherever they want and send the boats to any of them. Of course, boats may 
also encounter obstacles such as islands. In this case, they just stop and wait for further 
instructions. 

 The placement of barriers is an operation executed by two boats. Each boat 
holds one end of the barrier. The idea is that, when the oil spot passes between the 
boats, it gets blocked by the barrier. After that, the recovery operation starts. The 



  

command to place a barrier needs some parameters, such as which barrier should be 
used, the angle at which it should be put, the distance the boats should keep from each 
other and the curvature that should be kept. In order to execute the action of placing the 
barrier, some preconditions must be met. The two boats must not be too far away, the 
barrier must be long enough for the distance and curvature given as parameters, and the 
weather conditions must not prevent the placement of the barrier. 

5. Conclusion and Future Work 
The architecture used in the simulation engine proved to be a way of integrating 
traditional dynamic modeling with interactive computer games. This is crucial to give 
proper realism to a simulation, as an emergency response simulation.   

 Although the simulator described helps training and evaluating emergency 
plans, the analysis of the performance of the players is still a manual process. Future 
versions should consider the possibility of integrating the flow of player actions with 
the predefined workflows in emergency plans in an automatic way. 

 Another issue of interest is to integrate the simulator with an emergency 
information management system, which usually holds a detailed database of emergency 
plans for different types of scenarios, but claims for representing detailed and realistic 
situations where to test emergency plans. InfoPAE [Carvalho et al. 2001] provides an 
example of such systems. InfoPAE was designed to manage emergency situations at 
Petrobras, the Brazilian oil company. Besides the emergency plans, the database also 
provides detailed data about procedures, material resources, facilities, available 
equipment and geographical data. 

 Using the simulator with such systems will provide a good environment to test 
the emergency management circular process through which managers prepare for 
emergencies, respond to them, recover from them and mitigate their effects, and prevent 
future emergencies from occurring. In this sense, simulation plays a critical role to 
assess, improve performance and prepare for future emergencies.  

 The scenarios used to test out prototype were derived from the InfoPAE 
databases. It might be interesting to create a script language for defining different 
emergency scenarios, even if they are hypothetical. This could help improving the 
training process by generating sequences of scenarios with increasing difficulty levels, 
just like in entertainment games. 
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