

Using Serious Game Techniques to Simulate Emergency
Situations

Marcelo G. Metello, Marco A. Casanova, Marcelo T. M. Carvalho

Departamento de Informática
Pontifícia Universidade Católica (PUC) – Rio de Janeiro, RJ – Brazil

{metello,casanova}@inf.puc-rio.br, tilio@tecgraf.puc-rio.br

Abstract. This paper presents a simulation engine we implemented to support
an interactive emergency simulation game. We first discuss various issues on
building serious (non-entertainment) games involving the simulation of real
life situations. The discussion also considers the use of geographical
information systems and dynamic modeling techniques. Then, we present the
architecture of the simulation engine and discuss the main aspects regarding
its application to emergency plans. Finally, we briefly describe a prototype
built to validate the proposed architecture and the requirements raised in the
discussion.

Resumo. Neste trabalho apresentamos um simulador implementado para
atender as necessidades de jogos interativos simulando situações de
emergência. Inicialmente, apresentamos os problemas inerentes ao
desenvolvimento de jogos sérios (sem propósito de entretenimento) que
envolvem a simulação de situações do mundo real. A discussão também
considera a adoção de sistemas de informação geográfica e de técnicas de
modelagem dinâmica. Em seguida, apresentamos a arquitetura de um
simulador e discutimos os aspectos principais levantados pela sua aplicação
no contexto de planos de emergência. Por fim, descrevemos brevemente um
protótipo construído para validar a arquitetura proposta e os requisitos
levantados.

1. Introduction
The first computer games were created in the early 1960’s. Since then the computer
game industry grew into a large segment that now plays a relevant role in the evolution
of several areas of Computer Science, such as human-computer interfaces, computer
graphics, artificial intelligence and, more recently, computer networks [Smed et al
2002].

 The widespread adoption of computer games for entertainment purposes, the
continuous decrease of hardware cost and the success in military simulations made
gaming technologies attractive to some “serious” industries such as medicine,
architecture, education, city planning, and government applications [Smith 2007]. The
term serious games [Susi, Johannesson and Backlund 2007] has been used to denote
games used for such non-entertainment purposes. The application of gaming
technologies to these areas presents some peculiar challenges, since their requirements
can be quite different from those of the entertainment industry. Usually, serious games

need to work on models which reproduce certain aspects of reality. On the other hand,
entertainment games have much more freedom to create and modify their own reality,
which can be quite convenient, especially when the developers face technical
limitations. Even though entertainment games may require realistic audiovisual player
experience, they do not need to reproduce realistic situations.

 Apperley (2006) classifies video games into four genres according mainly to the
characteristics of the player interaction. Specifically, the simulation genre better defines
the applications we focus in this paper. Still according to the author, simulation games
can be further analyzed with respect to their degree of realism, which is the main aspect
that characterizes serious games. We will therefore use the term serious simulation
games to denote serious games that belong to the simulation genre.

 The fact that serious games may require realistic simulations justifies the effort
to integrate gaming techniques with traditional geospatial dynamic models. The purpose
of geospatial dynamic models is to describe processes that have some important spatial
aspect. Such processes may include natural phenomena and human action on Earth.
Examples of geospatial dynamic models are extensively found in the literature related to
fields such as hydrology, climate changes, land use, population dynamics and many
others. Such models improve our understanding of dynamic phenomena as they make it
explicit the causal relationships between the elements involved.

 Since geospatial dynamic models attempt to describe real phenomena, they help
meet the requirements of serious games for realism. Hence, the effort to make dynamic
modeling engines interoperate with simulation game engines is perfectly justifiable.
Ideally, the player interaction capabilities of computer games and realistic dynamic
modeling techniques should be integrated in a complementary way.

 This paper illustrates the combination of these two approaches to simulate an
emergency response activity. An emergency situation occurs when an incident can
cause damage to human health and the environment. Once it occurs, the best approach
to control it is to respond quickly and in a well organized manner. Testing the
performance of an emergency response team is mandatory to ensure minimum impact of
the incident. Testing usually takes the form of field exercises, but simulation has also
been successfully used. We discuss the advantages of adding simulation capability to an
emergency information management system, such as InfoPAE [Carvalho et al. 2001], a
system used to manage emergency situations at Petrobras, the Brazilian oil company.

 The paper is organized as follows. Section 2 lists the requirements for serious
simulation games. Section 3 describes a simulation engine that integrates traditional
dynamic models, and discusses issues related to player interaction in simulation games
with geospatial aspects. Section 4 presents the emergency simulation game. Finally,
Section 5 contains the conclusions and enumerates future work.

2. Requirements for Serious Simulation Games
This section lists some of the requirements for serious simulation games that are not
fundamental to other classes of computer games.

2.1. Realism

There should be a minimum acceptable degree of realism in serious simulation games.
This suggests that the simulations involved in this kind of game should run on data that
represents real objects, which is precisely the difference between graphical and
geographical data.

 In many cases, the ability to access data in existing systems, such as
geographical information systems (GIS), will work as a subrequisite to realism. Indeed,
in order to create a realistic simulation, the system has to work with real data, which is
likely to be stored in existing information systems and databases.

2.2. Time Flow Control

The ability to stop, accelerate and go back in time can be quite important when
designing serious simulation games. It is not difficult to imagine situations where it
would be desirable to pause or to replay a simulation multiple times from a given point.
In other situations, it may be desirable to accelerate the time flow, especially in periods
without much player activity.

 This requisite says that serious simulation games may require much more
control over the time flow than entertainment games. Some serious simulation games
may require that entire simulations be recorded for future replays.

2.3. Learning Support

Simulation games devoted to training require player evaluation as part of the learning
process [Borodzicz and van Haperen 2002]. In many cases, this requirement means that
the system should be able to play back a simulation for evaluation purposes, which
involves saving simulation data.

 Apart from simply saving simulation data, the system may be required to trace
back player decisions for payoff evaluation [Zagal et al 2006]. In this case, the
underlying simulation system should be aware of the player action model.

 There are also cases where organizations will have predefined procedures and
protocols. When this happens, it may be necessary to match the sequence of player
actions to these predefined procedures to check whether each player acted as expected
by the organization. Going one step further, the simulations can be used to evaluate the
effectiveness of the predefined procedures, detect their flaws and help with their
evolution [Smith 2004].

 It should be noted that the requirement of learning support is not limited to
individual learning. The evaluation of the effectiveness of predefined procedures
represents some kind of collective or institutional learning.

3. The Simulation Engine
This section provides a high level description of the architecture of the implemented
simulation engine, and discusses some interesting issues related to it.

 In the context of this work, a simulation refers to a set of elements and events
evolving in a spatio-temporal representation of the world. That is, the world state is
represented by spatial and non-spatial data, and the state changes as time flows. The

changes in the state of the world are affected by input given by the players, which in
part justifies why the simulation engine may also be considered a game engine.

3.1. Architecture

Figure 1 illustrates the high level architecture of the system. The simulation engine is
responsible for continuously updating the state of the world as the simulation time
flows. The renderer is responsible for generating visual input for the players, and is not
considered as part of the simulation engine. This makes it possible to implement a
multiplayer game with different renderers for different players, and to generate different
views for each player, according to which information they are allowed to see.

 Figure 1. The high level architecture of the system.

 All changes in the world state are carried out by special entities called events.
There are two types of events: player events and system events. Player events represent
player activity in the world. The way player input alters the state of the world is always
defined by player events. On the other hand, system events represent all activity that is
not directly caused by any player.

 Events have duration. Therefore each event has a start time and a finish time. As
an example, the event of moving a boat to a specified location at sea would start at the
moment the order to move is given and finish at the time the boat gets to the specified
location.

 The lifecycle of a player event starts when the player issues a command to
execute it. The player event then starts its activities by generating a series of
instructions. Each instruction is basically a piece of code that somehow alters the state
of the world in the simulation. The instructions are always instantaneous with respect to
simulation time. Each instruction is assigned a timestamp, which will provide a means
of ordering instructions originated from different concurrent events. In the case of the
moving boat player event, each instruction would change the location of the boat to the
next point in its trajectory to its destination. Note that, since each player event generates
its instructions, they are responsible for determining the granularity of their execution. It
is also possible for a player to have multiple events running at the same time.

 There are three possible outcomes of the execution of a player event. It may
finish its execution successfully, it may be cancelled or it may fail. A player event can

current
events

renderer

world
state

simulation engine

executing

requested
to cancel cancelled

failed

finishedcancel
completed

error

cancelled

race
conditions

commands

inactive
execute

simulation
finished

player

be cancelled in three situations. The player may issue a command to cancel one of his
running player events. If the player issues a command to execute one player event that
conflicts with another player event, one of them is cancelled by the system. As an
example, if the player has ordered a boat to go to location L and, before the boat gets to
L, he orders the same boat to go to another location L’, the event of moving the boat to
L is cancelled. As the last possibility, when the simulation finishes, all running events
are cancelled. Fig 2 illustrates the state diagram for player events.

 The event model implemented by the simulation engine should be general
enough to implement various kinds of serious games. One possible indication of this
generality is that it is very similar to John Sowa’s process model [Sowa 2000].

Figure 2. The state diagram of player events.

3.2. Issues related to dynamic modeling

Dynamic modeling frameworks, such as PCRaster [van Deursen 1995], Swarm [Minar
et al 1996] and Nested-CA [Carneiro 2006] usually provide or use a specific language
to describe dynamic models and an engine to run these models on real data, usually
provided by GIS.

 Since the event model used to implement the simulation engine is very generic,
it is usually possible to implement most dynamic models as system events. In fact, it
should be possible to emulate any dynamic model engine inside one system event. In
this case, the event would issue an instruction every time the dynamic model engine
should alter the state of the world. In fact, this is how the simulation engine proposed in
this paper integrates traditional dynamic modeling and games.

 Another issue is related to running time. Simulation engines and frameworks
designed for dynamic modeling seldom show any concern for running the models in
real time, which is a requirement for interactive games. The term real time is used here
to denote that the time flow in the execution of a temporal model should be
synchronized with the real time flow for better user experience.

 The technology developed by the gaming industry is focused on displaying data
in real time for highly interactive gaming. If we go through the process of game
development, there is a continuous attention on performance requirements in almost
every part of the code. Performance improvements are tried everywhere to keep an

acceptable frame rate for better user experience. This objective is always present
throughout the game development process.

 If the dynamic models and the spatial data are not too complex, the real time
requirement can be implemented simply by adding a time controller to an existing
dynamic modeling engine. However, since GIS are known for their heavy datasets,
techniques for optimizing spatio-temporal data manipulation may be necessary
[Wolfson et al 1998, Siebeck 2004].

3.3. Issues related to GIS

GIS have been traditionally more concerned with displaying spatial data than temporal
data. Only recently the major GIS, other than military and flight simulators, started to
take into account time and user experience, much in the same way as for the gaming
industry. The increasing popularity of training games certainly contributes to this
change.

 GIS are known for their heavy spatial datasets. This is certainly one of the main
reasons why it is difficult to display animated GIS data at a minimum acceptable frame
rate. Metello et al. (2007) show how the fast computer graphics techniques used in
gaming may be used to display GIS data at higher frame rates.

3.4. Issues related to multithreading

Most information systems and GIS follow a single-thread paradigm in their software
architecture. The paradigm is characterized by a synchronous model of work where the
user issues a command and waits for the response of the system before he can issue
more commands. This type of architecture is clearly not adequate for interactive
simulations, since the simulation should be run in real time and cannot afford waiting
for user input. The simulation must continue even if the user does not issue any
command. Besides, the system must also support multiple players, which is another
argument against the single-thread paradigm.

 In more dynamic applications, such as entertainment action games, the system
executes a process continuously, regardless of commands input by the user in an
asynchronous way. The differences in the execution flow of both kinds of architectures
are illustrated in Fig. 3. In the workflow on the right, there are two processes running
asynchronously. In the simulation engine, the interaction between these two processes is
handled simply by queuing player events when they are created by a player. Of course,
the queue must be thread-safe.

 Figure 3. The kind of architecture required for interactive simulations (right)

4. The Interactive Emergency Simulation Game
In order to validate the proposed architecture, a game was implemented with the
objective of simulating some specific emergency situations. In the context of this paper,
an emergency is an incident, like an oil spill, that requires response action to be
controlled and to mitigate effects, as loss of life or damage to property and natural
resources.

 Preventing the incident is always the best for avoiding damage to human health
and the environment. However, once an emergency occurs, the best approach to control
it is to respond quickly and in a well organized manner. This will happen if response
strategies have been planned ahead of time. One of the elements for this planning is the
emergency plan, which comprises a set of instructions that outline the steps that should
be taken before, during, and after an emergency. The emergency plan is based on a risk
assessment that looks at all the possibilities of what could go wrong. To assist and
support a better response action, the plan contains, besides the set of instructions, the
response strategies, a list of contacts and personnel, a material resource list, and refers
to a vast documentation.

 After the plan is developed, it is important to test it to check whether it works as
expected and to train and evaluate the operational readiness of responders. Testing
usually takes the form of an exercise or drill, what can be very time consuming and
expensive to organize periodically. Another point to consider is the difficulty for
representing detailed and realistic situations required to effectively test the emergency
plan. Use of simulation games in these cases can be helpful.

 This section further discusses the motivation outlined above and the
implementation of a simulator.

4.1. Representation versus simulation: limitations of planning response ahead of
time

In [Frasca 2003], the author discusses two different approaches for modeling knowledge
about dynamic phenomena: representation and simulation. According to the author, the

check
for user

input

update
world
state

update
user

interface

wait for
user
input

update
user

interface

process
user

command

Typical Information System or GIS Interactive Simulation Engine

main difference between both forms is that simulation attempts to model the behavior of
the elements involved in the phenomenon while representation is limited to retaining the
perceptual characteristics of it. To make it clear, the author gives the example of a plane
landing procedure. A representation of a specific landing could be a film where an
observer would be incapable of interfering. On the other hand, a flight simulator would
allow the player to modify the behavior of the system in a way that simulates the real
plane. This flexibility is only possible due to the simulation characteristic of modeling
the behavior of the elements independently of any specific scenario.

 An emergency plan takes, traditionally, a more representational form. It contains
response strategies planned for different type of scenarios, but it cannot tell whether the
plans are well suited for all cases. The set of instructions contained in an emergency
plan consists basically of workflows of actions. They do not take into consideration the
preconditions or durations of each action. Moreover, they do not take into consideration
the specific spatial characteristics of all scenarios. For example, a plan can describe the
action of sending two boats to intercept an oil spot. However, it may not be possible to
do that before the oil reaches the coast in some specific conditions. If emergency
managers were able to simulate the whole process in a more realistic way, it would
certainly make the emergency plans more reliable.

 In order to meet all these needs, a simulator was developed with the purpose of
simulating emergency scenarios. Some of the main advantages of building an
emergency simulator and integrating it with an emergency management system include:

• Simulations help finding flaws in emergency plans

• Testing whether available emergency response resources configuration are
enough to handle any scenario requirements

• Simulation games provide training that help improve personnel performance

• Computer simulation cost are significantly lower than functional or full scale
exercises

 The first scenario considered to test the simulator was the spill of a considerable
volume of oil into the ocean. This scenario was chosen because it involves elements of
dynamic modeling and user actions that interfere with each other.

4.2. The Oil Spill Scenario

In a typical oil spill scenario, the initial goals are to attempt to control the leak at the
source of the spill, and to limit the propagation of the floating oil as much as possible.
These goals are typically achieved by using containment, recovery and clean-up
strategies, which are implemented through specific operational procedures. These
procedures, however, depend on the characteristics of the scenario, such as:

• Type of oil and its characteristics

• Local of the source of the leak and its nearest landmark

• Estimation of the amount of oil spilled

• Weather and sea conditions

• Characteristics of the shoreline that may be affected

4.3. The Emergency Simulator

The first simulation implemented considers the oil spill scenario after the leak has
stopped and focuses on oil contention in water bodies. Clean-up operations for oil that
reached the coast were also not considered. The goal of this simulation is to test
emergency plans for leaked oil containment. The simulator is expected to uncover
possible flaws in the plans as well as to help planning equipment installation and
location.

 The initial conditions of the simulation are specified in a document which is read
by the system. This document includes the location, amount and type of leaked oil,
maps of the affected area, the location of all available equipment and weather
conditions. The dynamic elements of the simulation are described next.

 The leaked oil is represented by a hexagonal cell space, where each cell stores
the amount of oil in it. The movement of oil is modeled using a cellular automaton,
which considers not only the state of each cell but also the weather conditions, such as
the wind direction and speed, for example. Currently, weather conditions are globally
defined.

 The oil movement model must also consider elements that will act as obstacles,
such as shorelines and barriers used to contain the oil spilled. Both are represented as
polylines in the simulation and have similar treatment. Each cell that intersects either a
barrier or a coast line is considered an obstacle cell.

 When the oil reaches the coast, its movement must take into consideration the
type of the coast. For example, sand coasts absorb oil in a much greater amount than
rocky coasts. It will be helpful to use a detailed map of coast types for all locations that
can be reached by the oil spill. Likewise, different types of barriers have different
absorption and containment capabilities.

 Each cell in the cellular space must contain information as whether it represents
an obstacle or not. Note that this state may change during the simulation when barriers
are used. Since different obstacles have different containment and absorption
characteristics, the obstacle cells must also keep this information. All the information
about obstacle cells is of course used as input to the cellular automaton as well.

 The main dynamic elements in the simulation other than the oil itself are the
boats used to support operational response to the emergency situation. Boats are
responsible for placing barriers to contain oil. They may also carry some oil recovery
equipment, such as pumps and skimmers. The initial location of the boats is defined in
the document that describes the initial conditions for the simulation.

 The movement of the boats is simulated by taking into account their speed and
cargo capacities, as well as weather conditions, such as wind, sea currents and tide.
During the simulation, players guide the boats through way-points. They may place
way-points wherever they want and send the boats to any of them. Of course, boats may
also encounter obstacles such as islands. In this case, they just stop and wait for further
instructions.

 The placement of barriers is an operation executed by two boats. Each boat
holds one end of the barrier. The idea is that, when the oil spot passes between the
boats, it gets blocked by the barrier. After that, the recovery operation starts. The

command to place a barrier needs some parameters, such as which barrier should be
used, the angle at which it should be put, the distance the boats should keep from each
other and the curvature that should be kept. In order to execute the action of placing the
barrier, some preconditions must be met. The two boats must not be too far away, the
barrier must be long enough for the distance and curvature given as parameters, and the
weather conditions must not prevent the placement of the barrier.

5. Conclusion and Future Work
The architecture used in the simulation engine proved to be a way of integrating
traditional dynamic modeling with interactive computer games. This is crucial to give
proper realism to a simulation, as an emergency response simulation.

 Although the simulator described helps training and evaluating emergency
plans, the analysis of the performance of the players is still a manual process. Future
versions should consider the possibility of integrating the flow of player actions with
the predefined workflows in emergency plans in an automatic way.

 Another issue of interest is to integrate the simulator with an emergency
information management system, which usually holds a detailed database of emergency
plans for different types of scenarios, but claims for representing detailed and realistic
situations where to test emergency plans. InfoPAE [Carvalho et al. 2001] provides an
example of such systems. InfoPAE was designed to manage emergency situations at
Petrobras, the Brazilian oil company. Besides the emergency plans, the database also
provides detailed data about procedures, material resources, facilities, available
equipment and geographical data.

 Using the simulator with such systems will provide a good environment to test
the emergency management circular process through which managers prepare for
emergencies, respond to them, recover from them and mitigate their effects, and prevent
future emergencies from occurring. In this sense, simulation plays a critical role to
assess, improve performance and prepare for future emergencies.

 The scenarios used to test out prototype were derived from the InfoPAE
databases. It might be interesting to create a script language for defining different
emergency scenarios, even if they are hypothetical. This could help improving the
training process by generating sequences of scenarios with increasing difficulty levels,
just like in entertainment games.

References
Apperley, T. (2006) “Genre and game studies: Toward a critical approach to video

game genres”. Simulation & Gaming, 37(1), 6-23

Borodzicz, E. and van Haperen, K. (2002) “Individual and Group Learning in Crisis
Simulations”. Journal of Contingencies and Crisis Management 10 (3), 139–147
doi:10.1111/1468-5973.00190

Carneiro, T. (2006) “Nested-CA: A Foundation for Multiscale Modelling of Land Use
and Land Cover Change”. Doctorate Thesis from the Post Graduation Course in
Applied Computer Science, INPE - Sao Jose dos Campos, Brazil

Carvalho, M.T.; Freire, J.; Casanova, M.A. (2001) “The Architecture of an Emergency
Plan Deployment System”. Proc. III Workshop Brasileiro de GeoInformática, Rio de
Janeiro, Brasil, Oct. 2001.

Frasca, G. (2003) "Simulation versus Narrative: Introduction to Ludology". In: Wolf &
Perron (Eds.) The Video Game Theory Reader. Routledge.

Metello, M, et al. (2007) “Continuous Interaction with TDK Improving the User
Experience in Terralib”. Proc. IX Brazilian Symposium on GeoInformatics.

Minar, N., Burkhart, R., Langton, C. and Askenazi, M. (1996). “The Swarm Simulation
System: A Toolkit for Building Multi-agent Simulations”. Working Paper 96-06-042,
Santa Fe Institute, Santa Fe.

Siebeck, J. (2004) “Concepts for the Representation, Storage, and Retrieval of Spatio-
Temporal Objects in 3D/4D Geo-Information-Systems”. Rheinische Friedrich-
Wilhelms-Universitat Bonn, Diss.

Smed, J., Kaukoranta, T., Hakonen, H. (2002) “Aspects of Networking in Multiplayer
Computer Games”. The Electronic Library, Volume 20, Number 2, 2002, pp. 87-
97(11)

Smith, D. (2004) “For Whom the Bell Tolls: Imagining Accidents and the Development
of crisis Simulation in Organizations”, Simulation & Gaming, 35(3): 347-362

Smith, R. (2007) “Game Impact Theory: Five Forces That Are Driving the Adoption of
Game Technologies within Multiple Established Industries”. Games and Society
Yearbook.

Sowa, J. (2000) “Knowledge Representation: Logical, Philosophical, and
Computational Foundations”. Brook/Cole, a division of Thomsom Learning: Pacific
Grove, CA.

Susi, T., Johannesson, M., Backlund, P. (2007) “Serious Games – An Overview”.
Technical Report HS-IKI-TR-07-001, School of Humanities and Informatics,
University of Skövde, Sweden

Van Deursen, W.P.A. (1995) “Geographical Information Systems and Dynamic
Models”. Ph.D. thesis, Utrecht University, NGS Publication 190, 198 pp.
Electronically available through www.carthago.nl

Wolfson, O., Xu, B., Jiang, L., Chamberlain, S. (1998) “Moving Objects Databases:
Issues and Solutions”. SSDBM, p. 111, 10th International Conference on Scientific
and Statistical Database Management

Zagal, J.P., Rick, J., Hsi, I. (2006) “Collaborative games: Lessons learned from board
games”, Simulation & Gaming, 37(1), 24-40

