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Abstract. While model queries are important components in model-
driven tool chains, they are still frequently implemented using tradi-
tional programming languages, despite the availability of model query
languages due to performance and expressiveness issues. In the current
paper, we propose EMF-INCQUERY as a novel, graph-based query lan-
guage for EMF models by adapting the query language of the VIATRA2
model transformation framework to inherit its concise, declarative na-
ture, but to properly tailor the new query language to the modeling speci-
ficities of EMF. The EMF-INCQUERY language includes (i) structural
restrictions for queries imposed by EMF models, (ii) syntactic sugar and
notational shorthand in queries, (iii) true semantic extensions which in-
troduce new query features, and (iv) a constraint-based static type check-
ing method to detect violations of EMF-specific type inference rules.

1 Introduction

Model queries are important components in model-driven tool chains. They are
widely used in model transformations, model execution/simulation, report gener-
ation, or the evaluation of well-formedness constraints. Global model queries can
be evaluated over the entire model to retrieve all results fulfilling the query, while
local model queries retrieve information specific for some given input model ele-
ments. In current industrial applications based on popular modeling frameworks
(e.g. the Eclipse Modeling Framework EM F[I]), model queries are still fre-
quently implemented using a traditional programming language (Java), despite
the availability of more advanced declarative query languages such as OCL [2]
or EMF Model Query [3].

The reasons for this are two-fold. Unfortunately, as observed in tool devel-
opment practice, as well as in benchmark measurements [4], the implementation
infrastructure behind these high level model query languages often has scalabil-
ity issues when large instance models are used, which may effectively rule out
the application of these technologies in certain industrial applications.

Additional issues include expressiveness and learning effort. Simple technolo-
gies (such as EMF Model Query) are not flexible or expressive enough for ad-
vanced use cases involving complex join operations, while complex — and thus
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significantly harder to learn [5] — languages such as OCL still lack important
features despite their higher expressive power. Such important features include
reusable query modularization, recursion and transitive closures, which are not
easily accessible or not supported at all. Finally, there is also a practical need
for the adaptation and extension of compile-time validation techniques, which
are currently in very early stages of development.

In [4], we demonstrated how incremental model transformation techniques of
the VIATRA2 framework can be adapted to efficiently support advanced model
queries over large EMF models and proposed a new runtime model query frame-
work called EMF-INCQUERY. Our initial investigations were focused on provid-
ing high performance for model queries, therefore, we reused the query language
of VIATRA2. However, as the underlying (meta-)modeling foundations for VI-
ATRA2 and EMF are different, the direct reuse of the VIATRA2 graph pattern
language raised usability issues.

In the current paper, we present the query language of EMF-INCQUERY,
which provides an EMF-specific dialect of the graph pattern language of the ViI-
ATRA2 transformation framework. This query language — having its roots in the
graph transformation domain — shares proven concepts from languages of exist-
ing and very powerful tools (e.g. Fujaba, PROGRES, GrGEN, GReAT, VMTS,
AGQG) and is intended to integrate to the industry-standard EMF platform to
reach a broader audience. By adapting the query language of VIATRAZ2, our
goal is (1) to enable that EMF-INCQUERY inherits the declarative nature, con-
ciseness, easy specification and comprehension of the VIATRA2 language, and
(2) to ensure that the new query language is properly tailored to the modeling
specificities of EMF.

In the paper, we report about this adaptation, which includes (i) structural
restrictions for queries imposed by EMF models (e.g. lack of edge variables),
(i) syntactic sugar and notational shorthand in queries (like transitive closure
along edges, simplified attribute conditions) that support more convenient query
specification, and (iii) true semantic extensions to the existing VIATRA2 pattern
language, which introduce new query features (like aggregation, indexing in or-
dered collections, arithmetic assignments). Finally, (iv) a constraint-based static
type checking method is used to detect violations of EMF-specific type inference
rules in the EMF-INCQUERY language. Compared to [4] (which introduced the
runtime incremental matching framework for EMF-INCQUERY together with
performance benchmarks), the current paper focuses exclusively on the EMF-
specific query language itself.

The rest of the paper is structured as follows. In we introduce a
motivating case study and the existing pattern language of VIATRAZ.
describes the novel language features of EMF-INCQUERY by elaborating the
case study. We present the static type checking feature in and discuss
related work in[Sec. ] concludes the paper with future research directions.
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Fig. 1. Simplified security requirements metamodel

2 Background and Case Study

2.1 Case Study

Problem Domain. Our motivating scenario is from the domain of security
requirements engineering in case of evolving models, inspired by the Air Traffic
Management case study of the SecureChange European FP7 project. A require-
ments model assists security engineers to capture security related aspects of the
system, to analyze the security needs of the stakeholders, and to argue about
potential security threats. The concepts of a security requirements modeling lan-
guage such as SecureTropos [6] typically include actors, resources (e.g. security-
critical information assets) provided by actors, goals (functional, security, etc.
requirements) wanted by actors, and tasks performed by actors. Relationships
include tasks to fulfilling goals; trust relationships between actors; and delegation
of responsibility over resources, goals or tasks. See for the most important
elements of the SecureChange requirements metamodel.

An important role of security requirement models is to support reasoning
about security properties by formal or informal argumentation techniques [7] in
an early phase of system development. To formalize static security properties,
we use graph patterns as a query language in the scope of the project. On
the tooling level, the EMF-INCQUERY framework provides efficient, incremental
constraint evaluation and feedback for the engineers already in the early stages
of requirements modeling.

Analysis Tasks. Early-stage analysis of requirements models is carried out
by (local and global) model queries in the case study of this paper. Support can
range from finding violations of structural semantic constraints that represent
security properties of the model, to generating reports that guide the engineer
to fix these problems.

One challenge where early-stage analysis is beneficial is detecting violations
of the trusted path property. The context is the following: a valuable data asset
is provided by one actor, and is eventually delivered to a recipient actor, through



potentially unreliable intermediate actors. A security goal requires the protec-
tion of the integrity and confidentiality of this data resource. The trusted path
property states that either a trusted actor has to perform an action that explic-
itly fulfills the goal (e.g. time-stamping, digital signature and encryption), or else
the entire data path must be trusted; indirect trust is permitted. The challenge
is to formulate a query which finds the violations of this security property.

A second application of model queries is related to the redundancy property.
Redundancy is important for resilience against failures and attacks, and is there-
fore an integral part of security; thus requirements often have a minimal degree
of redundancy associated with them. For example, the availability requirement
of a service task or data asset can be augmented with the demand of triple
modular redundancy, i.e. 3 replicas of data / service must be available. A goal
with the redundancyRequirement attribute set must be fulfilled by at least this
number of separate tasks (performed by trusted actors). We will formulate two
queries associated with this property: (a) one to find goals whose redundancy
requirement is not met, and (b) a second one that computes an actor-centric
progress indicator that informs of the total number of missing replicas for all the
goals wanted by a given actor.

2.2 Case Study Solution Using the Original VIATRA2 Language

VPM Models. VPM [§], the model representation of the VIATRA2 transforma-
tion framework [9], has a very generic graph structure, similarly to the concept
of clabjects [I0] and ontologies [I1]. A VPM model is a containment hierarchy of
entities (nodes) with interconnecting relations (edges), and some special relation-
ships such as instantiation. Models and metamodels are represented uniformly in
a very flexible multi-typed, multi-level metamodeling paradigm. Nodes and edges
have likewise an identity of their own, with a locally unique name, and possibly
attributes. A model entity, however, can only store a single (unnamed) value,
and therefore multiple attributes are represented by separate relation types and
local wrapper model entities.

Graph Patterns and Model Queries. The VTCL language [9] was origi-
nally designed to support model transformation over VIATRA2’s model represen-
tation VPM. In particular, it offers graph patterns as a mechanism for querying
VPM models; a graph pattern is basically a typed graph-like structure which is
matched against a large model graph. The VIT'CL language defines graph pat-
terns by specifying graph pattern constraints over pattern variables. The pattern
variables here are the nodes and edges of the graph pattern, some of which can
be made externally accessible as symbolic parameters of the pattern. The con-
straints assert the graph structure and types of the pattern (as well as some other
properties). A match of the pattern is a mapping of variables to VPM entities
and relations so that all constraints are satisfied (analogously to a morphism
into the model graph).

Graph patterns support parametrizable queries by evaluating the entire match
set of a pattern globally in the model, or by binding one or more pattern pa-
rameters as input elements and only retrieving the local matches of the pattern.
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Listing 1 Violations of the trusted path property, original syntax

shareable pattern noTrustedPath(ConcernedActor ,SecGoal ,Asset,UntrustedActor)={
Actor .wants (WantsEdge ,ConcernedActor ,SecGoal);
SecurityGoal (SecGoal);
SecurityGoal.protects (ProtectsEdge,SecGoal, Asset);
Actor .provides (ProvidesEdge ,ProviderActor ,Asset);
find transitiveDelegation(ProviderActor ,UntrustedActor ,Asset);
neg find transitiveTrust (ConcernedActor ,UntrustedActor);
neg find trustedFulfillment (ConcernedActor ,AnyActor ,AnyTask,SecGoal);
}

We now present a solution using graph patterns in the VI'CL language to
address the trusted path property, as the redundancy property heavily relies on
arithmetic computations that are not expressible in the original VT CL language.

Basic Pattern Elements. Pattern noTrustedPath in [Lst. I| captures the
violations of the trusted path security property using the original VT CL syntax.
The symbolic parameters of the pattern are ConcernedActor, SecGoal, Asset,
UntrustedActor; there are also local variables ProtectsEdge, ProviderActor, etc.
The pattern constraints include a mode constraint on line 3 that asserts that
variable SecGoal must be mapped to a node of type SecurityGoal. Lines 2,4 and
5 are edge constraints; e.g. the first of them asserts that the variable WantsEdge be
an edge of type Actor.wants (i.e. the wants reference of class Actor), leading from
ConcernedActor to SecGoal. As demonstrated by line 5, edges can be navigated
in both directions.

To conform to a typical engineer’s intuition, patterns are normally injective,
i.e. object variables within a pattern will be matched to different model elements;
unless the pattern is declared shareable, when two pattern variables may store
/ share the same model element, or explicit variable assignment (see is
used. Here the shareable keyword is used in the definition of noTrustedPath, as
the pattern must allow the special case where ConcernedActor and ProviderActor
are the same.

Pattern Composition. An important type of pattern constraint is pattern
composition or pattern call, denoted by the find keyword. A pattern call reuses
a called pattern inside the body of the calling pattern (possibly recursively).
Line 6 of provides an example that asserts that the tuple (ProviderActor,
UntrustedActor, Asset) must be a match of a pattern called transitiveDelegation.

The three patterns called from noTrustedPath are defined in The dis-
Jjunctive pattern trustedFulfillment finds trusted actors that fulfill a given goal.
The recursive pattern transitiveTrust captures the transitive closure of the
Actor.trusts edges. Pattern transitiveDelegation is also recursive, in a more
complex way.

Negation. Node and edge constraints, as well as pattern calls can be pre-
fixed by the neg keyword to express negation, resulting in a negative applica-
tion condition (NAC). A match of the enclosing pattern is considered invalid
if the NAC is satisfiable. Lines 7 and 8 of provide examples: the pattern
noTrustedPath matches only if there is no transitive trust between ConcernedActor
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Listing 2 Trusted path helper patterns

pattern trustedFulfillment (TrustingActor ,FulfillerActor ,Task,Goal)={
find actorFulfillsGoal (FulfillerActor ,Task,Goal);
find transitiveTrust (TrustingActor ,FulfillerActor);

} or {
find actorFulfillsGoal (FulfillerActor ,Task,Goal);
TrustingActor = FulfillerActor; // ezplicit wariable assignment

}

pattern transitiveTrust (TrustingActor ,Trustee)={
Actor.trusts (TrustEdge , TrustingActor ,Trustee);

} or {
find transitiveTrust (TrustingActor ,MiddleMan);
Actor.trusts (TrustEdge ,MiddleMan , Trustee) ;

}

pattern transitiveDelegation(Delegator ,Receiver ,Dependum)={
find directDelegation(Delegator ,Receiver ,Dependum);

} or {
find transitiveDelegation(Delegator ,MiddleMan ,Dependum) ;
find directDelegation(MiddleMan ,Receiver ,Dependum);

} or {
find transitiveDelegation(Delegator ,Receiver ,SuperDependum);
find decomposeDirect (SuperDependum,Dependum);

and UntrustedActor; and there is no such AnyActor and AnyTask that ConcernedActor,

AnyActor, AnyTask, SecGoal would form a match of pattern trustedFulfillment.

NACs do not define new variables in their header arguments, they are either
input or quantified. Input variables of a NAC are those arguments that are
defined somewhere else (e.g. at a positive edge or node constraint); the rest of the
variables are non-existentially quantified, and are not allowed to be referenced
anywhere else. The NAC states that no substitution of the quantified variables
can satisfy a match of the NAC, given the value of the input variables. In the
previous example, AnyActor and AnyTask were quantified variables, and the other
two were obtained as input argument of the NAC.

3 The Language of EMF-INCQUERY

EMF-INCQUERY is a framework with a language for defining declarative local
and global queries over EMF models, and a runtime engine for executing them ef-
ficiently without manual coding. The query language of EMF-INCQUERY reuses
the concepts of graph patterns VIATRA2 as a concise and easy way to specify
complex structural model queries. However, while in [4], we simply restricted
the VI'CL language, this paper provides a more systematic design of a graph
query language for EMF models to provide high level of expressiveness but also
to overcome language usability issues we experienced in [4].

After a brief introduction to EMF, we present the syntax of EMF-INCQUERY
step-by-step. The new language introduces some significant semantic extensions,
as well as syntactic sugar for conciseness. The two main areas where EMF-
INCQUERY differs from the original VT'CL syntax are the structural /navigational
language elements and the handling of attributes and arithmetic expressions.



©Oo0O~N®U P WN -

Listing 3 Violations of the trusted path property, EMF-specific syntax

shareable pattern noTrustedPath(ConcernedActor ,SecGoal ,Asset,UntrustedActor)={
Actor.wants (ConcernedActor ,SecGoal);
SecurityGoal (SecGoal);
SecurityGoal.protects (SecGoal, Asset);
Actor .provides (ProviderActor ,Asset);
find transitiveDelegation(ProviderActor ,UntrustedActor ,Asset);
neg Actor.trust*(ConcernedActor ,UntrustedActor);
neg find trustedFulfillment (ConcernedActor ,AnyActor ,AnyTask,SecGoal);

3.1 Background Technology: the Eclipse Modeling Framework

The EMF ecosystem provides automated code generation and tooling (e.g. noti-
fication, editor) for model representation in Java. EMF models consist of a con-
tainment hierarchy of model elements (EObjects) with cross-references — some
of which may only be traversed by programs in one direction (unidirectional
references). Objects also have a number of attributes (primitive data values).
EMF uses Ecore metamodels to describe the abstract syntax of a model-
ing language. The main elements of Ecore are EClass (graphically depicted as
a box), EReference (depicted as an edge between boxes), and EAttribute (de-
picted within the middle compartment of a box). EClasses define the types of
EODbjects, enumerating EAttributes to specify attribute types of class instances
and EReferences to define association types to other EObjects. EReferences and
EAttributes can be multi-valued and ordered. Some EReferences can addition-
ally imply containment. Inheritance may be defined between classes (depicted by
an arrow ending in a hollow triangle), which means that the inherited class has
all the properties its parent has, and its instances are also instances of the ances-
tor class, but it may further define some extra features. Each instance EObject
has exactly one EClass type, and the metamodel is well-separated from instance
models. The ECore diagram of the casestudy metamodel is depicted in

3.2 Structural Constraints

We now demonstrate the structural pattern constraints of the EMF-INCQUERY
language using the trusted path property, captured in[Lst. 3} The graph pattern
based query language of EMF-INCQUERY references EClasses as node types,
EReferences and EAttributes as edge types. Pattern variables will be mapped to
EODbjects of the instance model or attribute values. For example in line 3
seeks for an EObject of type SecurityGoal and stores the corresponding element
in variable SecGoal. Line 2 navigates from the ConcernedActor (also appearing
as a symbolic parameter) along an EReference of type wants, and the EObject
reached that way should be the one stored by variable SecGoal.

Two major limitations of the core EMF API are the lack of (i) efficient
enumeration of all instances of a class regardless of location, and (ii) backwards
navigation along uni-directional references. As seen here, the structural graph
constraints of EMF-INCQUERY can provide these missing features.
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Listing 4 Helper pattern dependent on EMF edge ordering

pattern directDelegation(Delegator ,Receiver ,Dependum)={
Delegation(Delegation);
Delegation.elements [0] (Delegation,Delegator);
Delegation.elements [1] (Delegation ,Receiver);
Delegation.elements [2] (Delegation ,Dependum) ;

Binary Edge Constraints. Edge constraints in EMF-INCQUERY (lines
2,45 in look more simple than in VIATRA2; binary edge constraints
only use the variables representing the source and the target of the edge, and
edge variables are altogether omitted from the pattern. This language design
choice was made to reflect that EMF, does not assign edges an identity of their
own. Instance model edges are characterized only by their source object, their
EReference type (defined or inherited by the EClass of the source object) and
the target object, but the reference itself does not have a corresponding EObject
on instance-level.

Transitive Closure. The most frequent use case of recursion in queries is
to capture transitive closure. For more convenient definition of queries, a concise
syntax is proposed for the transitive closure of an edge type: by postfixing the
type name by an asterisk (%), its transitive closure can be used without defin-
ing a recursive pattern for it. Similarly, the closure of a binary pattern can be
defined in the same way, by putting an asterisk between the pattern name and
arguments in a find clause. Such a binary pattern emulates a pseudo-edge of
the graph, while encapsulating an arbitrarily complex relationship between its
pseudo-source and pseudo-target. Line 7 of applies the transitive closure
operator to the edge type Actor.trust, eliminating the need for the separate pat-
tern transitiveTrust (given that trustedFulfillment is also modified this way).
However, as transitiveDelegation captures a more complex recursive relation-
ship, it cannot be expressed using this shorthand.

Accessing Ordered Edges by Index. The directDelegation pattern
called by transitiveDelegation hides a further layer of complexity. Delegation is
a ternary relation; the metamodel includes a separate Delegation class with ref-
erences to the delegator, the receiver and the dependum. Although shows
these as three distinct EReferences, in practice often there is only a single or-
dered EReference, and the three instance-level links are distinguished according
to their order in the list. Such a solution may not be elegant, but it is still fre-
quent (industrial) practice (e.g. with a metamodel generated from a grammar).

For this purpose, EMF-INCQUERY offers an optional ordering index qualifier
to capture the position of the edge within the ordered collection at the source
object. Pattern directDelegation in takes advantage of this feature and
binds the index to the constant values 0, 1, and 2, respectively to capture a
direct delegation relation.
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Listing 5 Violations of the redundancy property

pattern redundancyViolated(CA,RG)={
find redundantReplicas (CA,RG,Degree0fRedundancy ,RequiredRedundancy);
// check (toInteger(value(DegreelfRedundancy)) <
// toInteger (value (RequiredRedundancy))); -- 0ld VICL syntaz
check (DegreeOfRedundancy < RequiredRedundancy);
}
pattern redundantReplicas(CA,RG,Degree0OfRedundancy ,RequiredRedundancy)={
Actor.wants (CA,RG);
Goal.redundancyRequirement (RG,RequiredRedundancy) ;
let DegreeOfRedundancy = count with find
trustedFulfillment (CA, AnyFulfillerActor ,AnyTask,RG);

3.3 Attribute and Arithmetic Constraints

We now demonstrate the attribute and arithmetic constraints of EMF-INCQUERY
by formalizing the redundancy property of the case study. As defined in
the redundancy property states that a goal RG with a redundancyRequirement
attribute must be fulfilled at least as many times (by trusted actors) as specified
by the attribute value. The pattern redundancyViolated described in iden-
tifies violations of this property, using a helper pattern. The secondary challenge
is to provide an actor-centric indicator report on the number of missing replicas;
the solution is shown in In the sequel, we will gradually explain these
patterns when introducing the new language features.

Scalar Variables and EAttribute Edges. EMF attribute values are
stored directly within an EObject, as a separate member variable for each at-
tribute type defined or inherited by the EClass. Therefore edge constraints rep-
resenting EMF EAttributes immediately point to the raw data value. In case
of asserting the equality of two attributes, the attribute edge constraints may
simply share the same target variable. Such raw data values that are not model
elements (EObjects) will be referred to as scalar variables, while variables that
will be substituted with EObjects are object variables, which distinction was not
originally part of VTCL. See line 7 of as an example edge constraint ex-
tracting an attribute value from an EObject; RequiredRedundancy will therefore
be a scalar variable (as well as Degree0fRedundancy, MR and TMR).

VTCL includes a special type of pattern constraint denoted by check() that
checks arithmetic conditions based on attribute values; see line 3 in or
line 9 in for example usage.

Scalar variables are not subject to injectivity checks and can be mapped
to the same value by default. This semantic distinction of scalar and object
variables introduces additional static type inference challenges as well, which
will be discussed later in

Arithmetic Evaluation and Assignment. As scalar variables were not
available previously, the pattern language of VI'CL only allowed arithmetic ex-
pressions within check() pattern constraints. With the introduction of the class
of scalar patterns, a straightforward semantic extension is the introduction of
arithmetic expression evaluation constraints. An eval constraint evaluates an
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Listing 6 Missing replicas per actor and goal

pattern totalMissingReplicas (CA,TMR)={
Actor (CA);
let TMR = sum(MR) with find
missingReplicas (CA,AnyGoal ,MR);
}
pattern missingReplicas (CA,RG,MR)={
find redundantReplicas (CA,RG,Degree0fRedundancy ,RequiredRedundancy);
let MR = eval(RequiredRedundancy - DegreeOfRedundancy);
check (MR > 0);
}

arithmetic expression based on referenced scalar variables, and assigns the re-
sult to a scalar variable. Line 8 in[Lst. 6] provides an example, where the difference
between two integer scalar variables is assigned to variable MR. The result scalar
variable can be used just as freely as an attribute value, e.g. it can appear as a
symbolic parameter to be used externally. Note however that EMF-INCQUERY
is not an equation solver, so circular references in expressions are disallowed.

Aggregation. The language EMF-IncQuery also includes an aggregation
pattern constraint similar to e.g. aggregation functions of SQL. An aggregation
is a pattern call that aggregates (counts, sums, etc.) matches of the called pattern
with some given input parameters. More precisely, except for match counting,
an arithmetic expression based on the match of the called pattern is aggregated
over the matches. The resulting aggregate value is either specified in the calling
pattern as a numeric constant, or captured in a scalar variable. For example,
lines 8-9 in count the number of trusted fulfillments of the goal, and store
the result in DegreeOfRedundancy; likewise lines 3-4 in assign TMR to the
sum of the computed MR values for each goal of the actor.

The following incrementally maintainable aggregator functions are supported:

— count that returns the number of matches of the called pattern (with the
given values of its referenced variables),

— sum(expr) that computes the sum of the evaluations of expression expr over
each match,

— avg(expr) that returns the average of expr,

— min(expr) and max(expr) that respectively return the minimal and maximal
value among evaluations of expr over the matches.

If the called pattern has no matches, count and sum(expr) return a default value
of 0, while the other aggregation constraints will not be satisfied (i.e. the enclos-
ing pattern will fail to match).

Similarly to NACs, aggregations do not define the variables in their argu-
ments (except for the aggregate result), they are either input or quantified. It is
worth noticing that NAC is a special case of match counting, with the aggregate
value bound to 0; and match counting itself is a special case of summation, where
a constant 1 is being summed over the matches.



Intent Feature EMF VPM Origin

enumeration node constraint Yes Yes Originally available
edge constraints Binary Ternary EMF adaptation
edge indices Yes No EMF adaptation
navigation graph structure Yes Yes Originally available
recursion Yes Yes Originally available
transitive closure Yes Yes Syntactic sugar
filter negative application condition Yes Yes Originally available
attribute checks Scalars Wrappers EMF adaptation
. arithmetic evaluation Scalars Wrappers Semantic Extension
computation . . . .
counting and aggregation Yes Yes Semantic Extension
reuse pattern composition Yes Yes Originally available

Table 1. Language features

The preceding discussion of the case study solution presented some aspects
of the language design of EMF-INCQUERY. shows an overview of some
important language features.

4 Static Type Checking for the Query Language

As the EMF-INCQUERY query language uses complex structures (such as path
expressions or transitive closures), it is possible to write erroneous queries that
may lead to unexpected runtime behavior or exceptions. These mistakes can be
detected by using static analysis techniques without the costly execution of the
transformation. In the current work, we focus on type errors (e.g. using a pattern
variable with incompatible types) that are hard to detect manually, because they
may not cause runtime errors during execution, but rather result in an empty
match set being returned. In our experience, such mistakes are very common (e.g.
calling a pattern with invalid parameters, or parameters in an invalid order).
For example, the CA and AnyGoal parameters of the missingReplicas pattern
call are switched in in [Lst. 7 In this case, the pattern is called with its RG
parameter bound to a variable with the Actor type, and as a result, the pattern
will never match (and the variable TMR will always contain the integer scalar 0).
To detect such problems, we propose a constraint-based static type checking
framework for graph patterns, adapting a type checking approach for partially
typed graph transformation programs [12]. For pattern constraints (see
expressing graph structure (e.g. in |Line 2: , the type information that has to be
checked for consistency is always available. However, in the case of pattern com-
position, as pattern parameters are dynamically typed, pattern parameter type
inference is necessary (see the call of missingReplicas pattern in . We
encode type inference as constraint satisfaction problems and apply a constraint
solver to propagate the available type information to calls where type inference
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Listing 7 Erroneous version of missing replica counter pattern

pattern totalMissingReplicas (CA, TMR)={
Actor (CA);
//Error: CA and AnyGoal parameters switched during pattern composition
let TMR = sum(MR) with find
missingReplicas(AnyGoal,CA,MR);
b
pattern missingReplicas(CA,RG,MR)={
find redundantReplicas (CA,RG,Degree0fRedundancy ,RequiredRedundancy);
let MR = eval(RequiredRedundancy - DegreeOfRedundancy);
check (MR > 0);

}

Line [Type Constraints [Comments
Line & typeO f(CA) = Actor Inferable from pat-

typeO f(RG) = Goal tern call, not detailed

typeO f(DegreeO f Redundancy) = int here
typeO f(RequiredRedundacy) = int
Line O typeO f(MR) = int eval with integer op-
typeO f(RequiredR) = int eration
typeO f(DegreeO fR) = int

Line 10| typeO f(M R) € {int, double} Number comparison

Table 2. Type inference in the missing replicas pattern

is needed. To improve performance, the type constraints are generated and eval-
uated for each pattern separately (by the generating type contracts), and these
partial results are combined to generate the type constraints for pattern calls.

To give an overview of the analysis framework, we demonstrate its capabilities
using the erroneous patterns in [Lst. 7]

The type constraints generated from the missing replicas pattern in
[ble 2] The first column selects a line from the pattern, the second describes
the generated type constraints, while the third shows related comments. Aggre-
gating the type constraints shows no contradiction and the following result is
calculated for the pattern parameters: typeO f(CA) = Actor A typeO f(RG) =
Goal A typeO f(M R) = int.

The generated type constraints for the total missing replicas pattern are listed
in However, the aggregation detects contradicting constraints for the
variable CA, as there is no type that is both an Actor and Goal. As a result, an
error is detected and reported to the developer.

5 Related Work

Model Queries over EMF. OCL [I3] is a navigation-based query language,
applicable over a range of modeling formalisms. OCL is more expressive in cer-
tain cases than EMF-INCQUERY, considering e.g. the iterate construct. On the
other hand it lacks query compositionality (helper operations can work around



Line ‘Type Constraints ‘Comments
Line 2 typeO f(CA) = Actor Pattern condition
Line 4 typeO f(TMR) € {int, double} Scalar variables are
typeO f(MR) € {int, double} summed
typeO f(TMR) = typeO f(MR)
Line 5 AnyGoal — CA = typeO f(AnyGoal) = Actor .\/arlable aSSIgnmentiS
CA— RG = typeOf(CA) = Goal |/ Pattern composi-
MR — MR = typeOf(MR) = int tion

Table 3. Type inference in the total missing replicas pattern

Intent Feature Model Query [3] Xpand[15] EOL [14] MDT-OCL [2]
enumeration node constraint Yes Yes Yes Yes
edge constraints Yes Yes Yes Yes
edge indices No Yes Yes Yes
navigation graph structure Tree only Yes Yes Yes
recursion No No Well-founded Well-founded
transitive closure No No No Non-standard
filter NAC Yes Yes Yes Yes
attribute checks Single node only Yes Yes Yes
. arithmetic evaluation No Yes Yes Yes
computation ) .
counting and aggregation No Yes Yes Yes
reuse pattern composition Yes No Operation Operation

Table 4. Comparison of query language features

this); only well-founded recursive queries are supported this way (e.g. transitive
closure of non-DAG graphs, such as the network of trust between actors, is not
expressible); and the language is arguably less declarative than that of graph
patterns. A precise comparison of expressivity is left as non-trivial future work.

There are several technologies that support model querying over EMF, see
for a comparison showing whether features of EMF-INCQUERY can be
replicated by a given tool. The Epsilon Object Language (EOL) [14], disregard-
ing its Javascript-like imperative features, can be considered very similar to OCL.
M2T Xpand’s Expressions [15] is also roughly equivalent to OCL, but it does
not contain any method of reuse. MDT-OCL [2] is the canonical OCL imple-
mentation for EMF. While general recursion is still not supported, the closure
construct is provided as a non-standard extension to OCL, which is essentially
a least fix point operator capable of expressing certain recursive queries such
as transitive closure. Model Query [3] has significantly lower expressivity than
EMF-INCQUERY or any of the above: it cannot capture graph-like (circular)
relationships, or compare attribute values; however, it can be extended by OCL.

There are also several tools [I6/TTITI8| that adapt graph transformation con-
cepts to EMF, although for model transformation, not as a query language. These
approaches do not include any of the rich language features of EMF-INCQUERY



such as composition, recursion, aggregation or edge indices. Furthermore, there
is a wide range of existing graph transformation tools (e.g. Fujaba, PROGRES,
GrGEN, GReAT, VMTS, AGG) which offer some of the advanced features of
EMF-INCQUERY without supporting queries directly over EMF models.

Although not aimed at model-driven purposes, SPARQL [19] is an important
query language. Comparison and benchmarking is planned for a future paper.

Incrementality. From a performance viewpoint, incremental query eval-
uation has a significant impact on the scalability of technologies that build
on queries (model transformations, well-formedness validators, simulators etc.).
In [4], we demonstrated that the supporting infrastructure of EMF-INCQUERY
scales up to provide instantaneous results for queries over large models with mil-
lions of model elements. Related work on other incremental evaluators (for OCL
and other query/transformation languages) is also discussed in detail in [4].

Language Specialization. An important challenge of the current paper
was to adapt a general-purpose transformation language to a restricted tech-
nological domain, focusing on a well-defined feature subset, retaining the best
characteristics, and maximizing usability in practical applications. While such
language reusability engineering practices are well known in the domain-specific
language engineering community [20] (e.g. based on software product line tech-
niques [21]), to our best knowledge, no adaptation experience across such dif-
ferent modeling platforms has been reported yet for model transformation lan-
guages.

6 Conclusion

We have introduced a graph pattern based query language for EMF-INCQUERY,
a technology for model queries over EMF models, with use-cases ranging from
model validation to on-the-fly model synchronization. The proposed language
is derived from the graph pattern fragment of VIT'CL and tailored to the task
of querying EMF models, with additional significant semantic extensions to its
predecessor. The query language is complemented by a static type inference
mechanism that is necessary to guide the interpretation of queries in some cases;
additionally it can detect certain classes of developer errors (and can also provide
valuable information to the code generator component of EMF-INCQUERY).

The language extends a core graph pattern formalism (with nested negation)
by rich attribute handling and aggregation. Query capabilities also include re-
cursion and transitive closure, which is frequently needed but (in the general
case) inexpressible in many query languages. The expressivity of the language is
complemented by the beneficial performance characteristics discussed in [4].

As future work, we are planning to provide streamlined integration of the
query system into a fully featured model validation framework. We also envision
declarative support for incremental model transformation driven by query re-
sults, using the graph transformation formalism. Finally, we plan to extend the
scope of queries from a single model state to the evolution of the model, in order
to support change-driven transformations [22].
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