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ABSTRACT 

Adaptive neural network is a powerful tool for prediction 
of air pollution abatement scenarios. But it is often diffi-
cult to avoid overfit during the training of adaptive neural 
network. In this paper, based on the wavelet theory, a 
new algorithm is proposed to improve the generalization 
of adaptive neural network during on-line learning. The 
new algorithm trains adaptive wavelet neural network to 
model hourly NOx and NO2 concentrations of variance of 
emission sources. Results show that the new algorithm 
improves the generalization and the convergence velocity 
of adaptive wavelet neural network during on-line learn-
ing.  The simulations also illustrate that adaptive wavelet 
neural network is capable of resolving variance of emis-
sion sources. 

1 INTRODUCTION 

Neural network can model air pollution with more advan-
tages compared with general statistical methods because air 
dynamics encompasses multiple seasonality, long memory 
and heteroscedesticity (Alessandro Fassò, 2002a; 2002b). 
These advantages include: the more flexibility than general 
statistical methods (Marija Božnar1997a; 1997b; Abdul-
Wahab et al. 2002), the ability to make efficient use of proxy 
data when the optimum predictor variables are unavailable 
and the better predictions than those given by other general 
models, e.g. multivariate regression models (Asha B. Che-
lani, 2002), statistical linear models (Gardner and Dor-
ling1999) and even the deterministic modeling system (Ja-
akko, 2003). But, the main advantages of NN are that 
emission factors can be replaced by time of day inputs with-
out any detrimental effects (Gardner and Dorling1998; 
1999) and air pollution concentration can be predicted with 
time series and basic meteorological variables(Claudio, et 
al.2001; Kolehmainen et al.2001). This enables the models 
to be easily constructed, but also intensify the disadvantage 
of NN models, which are not applicable for evaluating air 

 

pollution abatement scenarios, especially variance of emis-
sion source (Garndner, et al., 1999; Jaakko, et al., 2003; 
Weizhen Lu, et al., 2003).  

Adaptive NN is one solution to this problem (Wenjian 
Wang, et al., 2003), but it is often difficult to avoid overfit 
with the methods used in static NN, e.g. division of the 
data into several sets in order to, respectively, train and test 
NN (Marija, et al, 1997; Gardner, et al.1998, 1999; Clau-
dio, et al.2001). RBF networks are often used as ANN in 
order to improve the learning efficiency. T.Poggio and 
F.Girosi (1990a, 1990b) analyze various networks architec-
tures for their approximation abilities and point out that 
RBF networks possess the property of best approximation. 
These advantages are further strengthened with the intro-
duction of wavelet into neural network (Qianhua Zhang, et 
al,1992; Jun Zhang, et al, 1995 ). The wavelet neural net-
work (WNN) is considered as a kind of RBF networks(Jun 
Zhang, et al, 1995) and possesses more advantages than the 
general networks(Qinghua Zhang, et al,1997; Licheng Jiao, 
et al, 2001; Jian-xin Xu, et al, 2001), such as faster conver-
gence, avoiding local minimum, easy decision and adapta-
tion of structure, so it is soon used in online identification 
(Christophe, 1997; Andreas , et al, 1998 ; N. Sureshbabu , et 
al, 1999). Many works (Jian-xin Xu, et al, 2001; Christo-
phe, et al, 1997; N. Sureshbabu , et al, 1999; Robert, et al, 
1995; Jay A. Farrell, et al, 1996a, 1996b; Jinhua Xu ,2002) 
dedicate themselves to the adjustment of the weight and 
structure of WNN. 

This work takes the adaptive wavelet neural network 
(AWNN) as a tool for prediction of NOx and NO2 concen-
trations, and focuses on avoiding overfit during the training 
of AWNN. This work is divided into two parts. The first 
part, consisting of section 2 and 3, proposes the new algo-
rithm. Section 2 discusses the new algorithm of one dimen-
sion. In this section, three theorems are introduced after 
discussion of localization of the energy of WNN in fre-
quency neighborhood. These theorems are dedicated to 
verify the uniqueness and convergence of the approximator 
whose support of Fourier transform is in [ , ]T T

π π− . And 
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then, the new algorithm is proposed based on the conclu-
sions of three theorems. Section 3 extends the new algo-
rithm to higher dimensions. Application of AWNN for 
prediction of NOx and NO2 is stated in the second part con-
sisting of Section 4 and 5. 

2  ANALYSIS OF WAVELET NETWORK 

We will use standard notation throughout: >⋅⋅< , repre-

sents the 2
nL inner product on maps and Euclidean inner 

product on vectors, ⋅ represents the associated norms and 

the induced norms, and ⋅ represents the absolute value of 
any real number. On vector spaces, the symbol + denotes a 
sum, +& denotes a direct sum, ⊗ represents the tensor 
products on maps and Kronecker product on matrix, nR is 
the vector space of all real n-tuples ( )1, , nx x x= L , 

and { }LL 2,1,0,1,2 −−=Z . 

2.1 Brief Introduction of WNN 

Practically every known wavelet can be constructed with a 
multiresolution ladder. In this work, we restrict attention to 
only those wavelet bases associated with an MRA (mul-
tiresolution analysis). An MRA consists of a sequence of 
successive approximation closed subspaces jv with the 
following properties (1)—(4): 
 
 1 0 1V V V−⊂ ⊂ ⊂ ⊂L L                      
 

 ( ) ( )0 0f x V f x n V n Z∈ ⇒ − ∈ ∈   (1) 
 
 ( ) jVxf ∈ ⇔ ( ) ZjVxf j ∈∈ + ,2 1   (2) 
 

 { }0=
∈

j
Zj
VI , ( )RLVclose j

ZjL
2

2 =







∈
U .  (3) 

 
 There exists a function 2L∈φ (called the scaling 

function or father wavelet), with ( )/ 2
, 2 2j j

j n x nφ φ= − , 

such that { }0, ;n n Zφ ∈ is a basis for 0V  .                          (4) 
Whenever a collection of such subspaces exist, there 

exists a wavelet basis{ }Zkjkj ∈,,,ψ , which can be con-
structed explicitly from the scaling function (Mallat, 2003). 

Indeed, we can write  
 
 1j j jV V W+ = +& ,  (5) 
where jW is generated by the basis functions 

{ }Zkkj ∈,,ψ . It then follows that ( )2
1L R W−=L  

0 1W W+ + +& & &L . That is, the wavelet basis generates a de-

composition of the 2L space. This means that any function 
( )RLf 2∈ can be uniformly approximated using a wave-

let series ( ) ( ), ,, j k j kj k
f x f xψ ψ∞ ∞

=−∞ =−∞
=∑ ∑ % ,where 

( )xkj ,
~ψ is dual wavelet of ( )xkj ,ψ . 

The above properties indicate that any function 
( ) 2Lxf ∈ can be written as a unique linear combination 

of wavelets of different resolutions. That is, we can 
write ( ) ( ) ( ) ( ) LL ++++= − xgxgxgxf 101 , where 

( ) jj Wxg ∈  are unique. Because 1j j jV W W −= + +& & … 

and spaces jV defined in (2) ~ (5) can be generated by the 

father wavelet ( ) 2Lx ∈φ , there exists  
 

 ( ) ( ), ,J k J k jk jk
j J

f x a x cφ ψ∞ ∞

−∞ −∞
≥

= +∑ ∑∑%   (6) 

 

such that 0)(~)( →− xfxf with j converges to infi-

nite. Christophe (1997) also shows that ( )f x =%  

( ), ,J k J k jk jk
j J

a x cφ ψ∞ ∞

−∞ −∞
≥

+∑ ∑∑ is equal to 

 
  ( ) ( ),k j k

k
f x c x Cφ= = Φ∑% .   (7) 

 
(7) is just the approximator of WNN with the structure 
similar to that of Jun Zhang’s work in 1995. 

2.2 The Frequency Neighborhood of WNN 

Wavelet is the function f whose energy is well localized in 

time and whose Fourier transform f̂ has an energy concen-
trated in a small frequency neighborhood. So, for any 
given small number 0wε > , there exist wa and wb such that 
 

 2ˆ| ( ) |f w dw
∞

−∞
=∫ 2

1 2
ˆ| ( ) |w

w

b

w wa
f w dw ε ε+ +∫   

                      2ˆ| ( ) |w

w

b

wa
f w dw ε≤ +∫ ,  (8) 
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where 1wε =  2ˆ| ( ) |wa
f w dw

−∞∫ and 2
2

ˆ| ( ) |
w

w b
f w dwε

+∞
= ∫ . 

 
Let 
 
 ,( ) ( )j k j kk

g t c xψ=∑   (9) 

 
where ( )xψ is a mother wavelet with /2

, ( ) 2 (2 )j j
j k x x kψ ψ= + .   

Then 
 

/2
2 2

ˆ( ) ( )exp( ) 2 ( ) exp( )j j
j w kwi

j j k
k

G w g t iwt dt cψ
∞ −

−∞
= − = ∑∫   

and 2 21
2| ( )| | ( )|jg t dt G w dwπ

∞ +∞

−∞ −∞
=∫ ∫

2 21
2 2

( | ( ) |
j

w

j
w

b

a
G w dwπ= ∫   

     + / 2 2 2
2 22

ˆ| 2 ( ) | | exp( ) |j jj
w

j w kwi
kb

k
c dwψ

+∞ − ⋅ ∑∫ +  

 
2 / 2 2 2 1

22 2
ˆ| 2 ( ) | | exp( ) | ) (

j
w

j j

a j w kwi
k

k
c dw πψ−

−∞
⋅ ≤∑∫   

   
2 2 2

1 22
| ( ) | ( | |) ( ))

j
w

j
w

b

k w wa
k

G w dw c ε ε+ +∑∫ .  (10) 

 
(10) implies that the energy of ( )jg t concentrates in 

the frequency neighborhood [2 ,2 ]j j
w wa b if there exists 

constant M such that 2( | |)k
k

c M<∑ since 1wε and 2wε  

are small enough. 
Since the father wavelet is an aggregation of wavelet 

at scales larger than 1 and 1j j jV W W −= + +& &L (Mal-
lat,2003), the energy of WNN concentrates in the inter-

val [2 , 2 ]
j

j j
w wa b

−∞
∪ . Because of symmetric Fourier trans-

form of real function, the energy of WNN concentrates in 
the frequency band [ 2 ,2 ]j j

w wb b− when the real father 
wavelet is used as active function; therefore, we can think 
the Fourier transform of ( )f x% satisfies supp( ( ))f w ⊆%  

[ 2 , 2 ]j j
w wb b− . 

2.3 Prevention of Overfit 

Let 2
kk

y e=∑  be cost function. Then, WNN may overfit 

only if the weights of WNN converge to different points 
with cost function converging to minimum. This section 
verifies that overfit of WNN is avoided only if the input 
weights are chosen correctly. 
Theorem 1     Assume | ( ) |f kT < +∞∑ , then there 

exists a unique function ( )f x% with its Fourier trans-

form ( )f w%  such that Tsupp( ( )) [- , ]Tf w π π⊆% and 

( ) ( )f kT f kT=% . 
Proof  Let 

 

 
1 [ , ]

( )
0 [ , ]

T T

T T

w
s w

w

π π

π π

∈ −
=  ∉ −

  (11) 

 
There exist ( )f w% and ( )f x% such that ( )f w =%  

( ( )exp( )) ( )
k

T f kT iwkT s w− ⋅∑ and 1
2( ) ( )f x f wπ

∞

−∞
= ∫%  

exp( )iwx dw since | ( ) | | ( )exp( ) |
k

Tf w f kT iwKT= − ⋅∑%  

| ( ) | ( ) | ( ) |
k

Ts w s w f kT≤ < +∞∑  and 1
2| ( ) | | ( )f x f wπ

∞

−∞
= ∫% %  

exp( ) |iwx dw 1
2 | ( ) |T

T

f w dw
π

ππ −
< ∫ % | ( ) |

k
f kT≤ < +∞∑ . 

Since{exp( ), }iwkT k Z∈ is a set of orthogonal basis 

of [ , ]T Tw π π∈ − , then 2( ) ( ( )exp( ))T

T

T

k

f lT f kT iwkT
π

ππ −
= −∑∫%  

exp( )iwlT dw = 2 ( ) exp( ( ))T

T

T

k
f kT iw lT kT dw

π

ππ −
−∑∫

= ( )f lT . 

Assume there are two functions ( )f x% and ( )g x%  such 

that ( ) ( ) ( )f kT g kT f kT= =% %  , supp( ( )) [ , ]T Tf w π π⊆ −%  , 

and supp( ( )) [ , ]T Tg w π π⊆ −% .  

Then, 1
2( ) ( ) ( ( ) ( ))T

T

f kT g kT f w g w
π

ππ −
− = −∫  

exp( )iwkT dw 0= , so ( ) ( )f w g w= . □ 

By theorem 1, there is a unique function ( )f x
)

such 

that supp( ( )) [ , ]T Tf w π π⊆ −
)

and ( ) ( )f kT f kT=
)

. 

suppose that ( )f kT is produced by ( )f x
)

. Then ( )f x
)

can 

be approximated by WNN ( )f x% for 2( ) ( )f x L R∈
)

. So, 

for any given small number 0ε > , there exists ( )f x% such 

that 22 || ( ) ( ) ||f x f xπ −
)

% = 2|| ( ) ( ) ||f w f w−
)

% < ε . 

Since 2 2
1 2|| ( ) ( ) || | ( ) ( ) |T

T

f w f w f w f w dw F F
π

π−
− = − + +∫
) )

% %  
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where 2
1 | ( ) |TF f w dw

π−

−∞
= ∫ % , 2

2 | ( ) |
T

F f w dw
π

+∞
= ∫ % . Then 

2
1 20 ( ) | ( ) ( ) |T

T

F F f w f w dw
π

π
ε

−
< + < − −∫

)
% . Since 

20 | ( ) ( ) |T

T

f w f w dw
π

π−
≤ −∫

)
% , then 1 20 ( )F F ε< + <  , 

which means that the energy of ( )f x% concentrates 

in [ , ]T T
π π− . So, the sample errors are small enough 

if supp( ( ))f w% is limited to[ , ]T T
π π− . On the other hand, 

supp( ( )) [ , ]T Tf w π π⊆ −% ensures the uniqueness of ( )f x%  

with ( ) ( )f kT f kT=% , which helps WNN avoid local 
minimum. So suppose that the input weights are chosen to 
limit the energy of approximator to[ , ]T T

π π−  prior to train-

ing since the frequency band [ 2 ,2 ]j j
w wb b− of WNN is 

only decided by input weights. 
The training of WNN with fixed input weights can be 

represented as follows: 
 
 ( 1) ( 1)e k f C k+ = − Φ + ,    (12) 
 
 ( 1) ( ) ( )C k C k Ae k+ = +  ,   (13) 
 
where ,( )i k m nϕ ×Φ = , , , ( )i k j l ixϕ φ= , 1, ,k = L  

(max( ) min( ) 1)l l− + . 
The course of training is just choice of matrix A to 

make 2 2( 1) ( )l l
l l

e k e k+ <∑ ∑ . The following theorems 

ensure the convergence of iteration(12), (13). 
Theorem 2     For any n , ( )j k xφ  with ,supp( ( ))j k wφ  

][ ,T T
π π⊆ −  , let ,( )i k n nB b ×= , and , , ( )i k j k ib xφ=  where 

1| |i ix x T+ − =  and ,supp( )i j kx φ∈∪ , i=1…n, then 

 ( )rank B n= . 

Proof  Suppose ,{ ; }j n n Zφ ∈ is a basis for ,j nV . Since 

, ]( ) [ ,j k T Tw π πφ ⊆ − ,  then by theorem 1, there is a unique 

set of coefficients{ }kc such that 
 
 ,( ) ( )i k j k i

k
f x c xφ=∑ , i.e. f BC=  ,  (14) 

 
where ,( ) j nf x V∈ , 1[ ( ) ( )]Tnf f x f x= L and 1 2[ ]TC c c= L . 

SinceC  is unique for ,( ) j nf x V∈ , then ( )rank B n= . □ 
By theorem2, any n row vectors of m n×Φ are linear in-
dependent and, by theorem1, there exists at most one set of 
c with C fΦ = for supp( ( )) [ ],T Tf w π π⊆ −% , so 

( )m nrank n×Φ = and n m≤ . Then it can be verified that 
iteration of (12) and (13) converges to a fixed point and 

2
k

k

e∑ reaches the minimum value at the fixed point.  

Theorem 3    Let ( 1) ( 1)e k f C k+ = − Φ + and 

( 1) ( ) ( )C k C k Ae k+ = + . If ( )m nrank n×Φ = , then 

there exists the matrix A to make the iteration converge to 
a fixed point. 

Proof  (12) is substituted into(13); then ( 1)C k +  

( ) ( )I A C k Af= − Φ + . Since ( )m nrank n×Φ = , then 

m n×Φ has the form of QR-Decomposition. Let m n×Φ =  

QR , where TQ Q I= and R is a no-singular and upper 

triangular matrix. Let 1 T
n n n mA R Qλ −
× ×= , then I A− Φ =  

1 =TI R Q QRλ −−  (1 )Iλ− . Based on contraction map-
ping theorem, if |1 | 1λ− < , then there exists a unique 

fixed point 1 TC R Q f−= of iteration convergence. 
For e f C f QRC= − Φ = − , let L QRC=  and 

2 2( )k k k
k

y e f l= = −∑ ∑ . If k kf l= , then 2(
k k
y
l f∂

∂ = −  

) 0kl− = and
2

2 2 0
k

y
l

∂
∂ = > . This indicates that f L= , i.e. 

1 TC R Q f−= , is the minimum point of y , which implies 

( )Te I QQ f= −  at this point. □ 

By theorem3, there exists a neighborhood 0D =  

0| |C C L− <  such that 0C D∈  and 2( | |)k
k

c M<∑ dur-

ing training if the initial values of iteration are limited, 
where 1

0
TC R Q f−= . This satisfies the requirement of 

the energy of WNN localized in[ 2 ,2 ]j j
w wb b− . 

Theorem1 and theorem3 mean that the iteration of 
(12), (13)converges to a fixed point at which the cost func-
tion is small enough only if supp( ( )) [ , ]T Tf w π π⊆ −% . By 
Shannon theorem, for the approximator with small enough 
sample errors and the support of Fourier transform 
in [ , ]T T

π π− , errors between samples are decided on 
whether the energy of approximated function is concen-
trated in the frequency neighborhood[ , ]T T

π π− . This im-

plies that overfit is avoided only if supp( ( ))f w ⊆%  
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[ , ]T T

π π−  during training. By the analysis of section 2.2, 

supp( ( ))f w%  is only decided by the input weights, so the 
new algorithm is that only output weights are trained by 
errors back propagation, and the input weights are only de-
cided by sample period, but not sample errors. we can 
choose the correct input weights to make[ 2 ,2 ]j j

w wb b−  

[ , ]T T
π π≈ − .  

3 MULTIDIMENSIONAL WAVELET  
NEURAL NETWORK 

Multidimensional father wavelet can be built with one-
dimensional father wavelet by tensor product 
 
 ( )

1 1 2, , , 1 , ,, ,
nj k k n j k j kx xφ φ φ= × ×L L L .  (15) 

 
The multidimensional approximator is written as: 
 
  ( ) ( ) ( )

1 1 1

1

1 , , 1, ,
n n n

n

n k k j k j k n
k k

f x x c x xφ φ=∑ ∑ L
% L L L .  (16) 

 
For the special property of tensor product, the approxima-
tor ( )1, , nf x x% L can be represented in another form 
 
 ( ) ( ) ( )( )1 1 1, , n n nf x x x x C= Φ ⊗ ⊗Φ% L L ,  (17) 
 

where ( )( )
1i i

i
i j k i m

xφ
×

Φ = . 

(17) indicates that the good prediction of WNN de-
pends on good properties of every input direction and mul-
tidimensional wavelet neural network overfits only if one 
direction ix overfits, so the condition of multidimensional 
wavelet neural network without overfit is 
[ 2 , 2 ] [ , ]

i i

j j
wi wi T Tb b π π− ⊆ − in every direction ix , where 

iT is the sample period in the direction ix . 

4 SIMULATION DATA 

Hourly NOx and NO2 are obtained from the monitoring site 
of the Bureau of the Environment of Heilong Jiang in 
Jiamu Si City in 1995 and 1998. The hourly metrological 
data are obtained for the same period from the Bureau of 
the Weather of Heilongjiang. About 39000 data are taken 
to train or test AWNN, for some data are missed or obvi-
ously wrong. The meteorological variables used in this 
work are similar to that used by Gardner(1999). They are 
Low cloud amount (LOW): oktas; Base of lowest cloud 
(BASE): synoptic code shown in Table 1; Visibility (VIS): 
synoptic code shown in Table 2; Dry bulb tempera-
ture(DRY): 0C ; Vapour pressure(VP): mbar; Wind 
speed(WS): ms-1. Instead of the emission factors, the net-
work is given two additional time of day inputs consisting 
of the sine and cosine of the time of day normalized be-
tween 0 and 24 h(Gardner, 1998). 

 
Table1: Synoptic Code for Reporting Height of Lowest 
Cloud 

Code                 Height/(m) 
           0                    0-50 
          1                    50-100 
          2                    100-200 
          3                    200-300 
          4                    300-600 
          5                    600-1000 
          6                    1000-1500 
          7                    1500-2000 
          8                    2000-2500 
          9                    Above 2500m or no clouds 

 
Table 2: Synoptic Code for Reporting Visibility 

Code            Visibility 
00               Visibility<0.1km 
01-50         Visibility over the range 0.1-5.0 km. at 

0.1 km intervals e.g. 01=0.1 km. 
02=0.2 km and 50=5.0 km 

60-80          Visibility over the range 10-30 km. at 1 
km intervals e.g. 60=10 km. 70=20 
km and 80=30 km 

81-88          Visibility over the range 35-37 km. at 5 
km intervals e.g. 81=35 km. 82=40 
km and 88=70 km 

89               >70 km 
 
In order to be used with the adaptive neural networks, 

all data were normalized into the range -1.0+1.0 except of 
height of lowest cloud and visibility. This is carried out by 
determining the maximum and minimum values of each 
variable over the whole data period and calculating 
normalized variables using the following formula: 

min

max min

( )
( )2 ( ) 1.0x x

norm x xx −
−= × − . 

Observations of the height of the low cloud base are not 
made during times of very poor visibility. In this work miss-
ing low cloud base information is substituted by a value of 
+1.0 which is the maximum value the normalized value can 
attain and represents a cloud base above 2500m or no cloud. 

5 SIMULATION 

5.1 Choice of Father Wavelet 

The 3th order box spline father wavelet is used as the ac-
tive function of AWNN for its Fourier transform with lin-
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ear phase and symmetry, which are suitable for training 
and decision of wb in this new algorithm. The Fourier trans-

form of 3th order box spline is sin( / 2) 3
/ 2( ) ( )w

wwφ = . wb is 

taken as 4 so that 2

4
| ( ) |  =0.0029w dwφ

+∞

 is small 

enough. The Synoptic codes of the height of lowest cloud 
and the visibility are directly used as inputs of neural net-
work. Other input meteorological variables which are nor-
malized into the range -1.0+1.0 are round off to one deci-
mal place. Then, let 
 
 2log ( )

w ii b Tj π
×= ,   (18) 

 
where ij  and iT are the dilation coefficient and sample pe-

riod corresponding to input variable ix , respectively. It 

should be pointed out that ij is not required to be a integer.  

5.2 Result of Simulation 

The samples are divided into two sets—training set and 
checking set. The data in the training set are sampled in 
1995; the data sampled in 1998 are in the checking set, 
which are used to check the adaptive performance of 
AWNN because two new roads were built near the monitor 
site in 1997, which led to variance of emission sources. 
The MAE-mean absolute error is used as performance sta-
tistics calculated over the whole year. 

Figure 1 and Figure 2 show the static performance of 
AWNN during January 1995 comparing with adaptive per-
formance of AWNN shown in Figure 3 and Figure 4. We let 
the model work well in 1995, and then the model is used to 
predict pollutant concentrations of 1998. MAE of NO2 and 
NOx of AWNN in 1995 is 9.9 and 38.0, respectively, com-
pared to 9.8 and 38.5 presented in the work of Gard-
ner(1999), which means that the static performance of 
AWNN is similar to that of MLP model, but Gardner (1999) 
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Figure 1:  The Predicted NO2 Concentration Com-
pared to Actual Concentration 
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Figure 2: The Predicted NOx Concentration Com-
pared to Actual Concentration 

 
have used the MLP trained by samples from 1990 to pre-
dict the air pollution of 1991and point out that the static 
model can not deal with the new conditions in 1991, which 
do not appear in 1990. 

Due to these two roads built in1997, the surroundings 
of minor site varies much with the variance of emission 
sources. AWNN has to adjust itself by on-line learning in 
order to catch up with actual line. Figure 3 and Figure 4 
show that the accuracy of AWNN is low in the beginning 
of learning, but the errors gradually decrease after about 
seven days learning. Figure 3 and Figure 4 also show that 
the predicted line derives from the actual line between 
about 10-15 January because the windy weather is very 
different from that of early month, which forces AWNN to 
learn again to suit the new weather condition; in the same 
time, this also indicates AWNN can predict well again af-
ter several days learning when it meets a new condition. 
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Figure 3: The Predicted NO2 Concentration for 
AWNN in the New Condition  
 
Figure 5 and Figure 6 show the performance of 

AWNN of which  the input weights and output weights are 
trained by error back-propagation. First, the data from 
1995 are divided into three partitions— a training,  valida- 
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Figure 4: The Predicted NOx Concentration for 
AWNN in the New Condition  

 
tion and test sets. The training set forms the bulk of the data. 
The validation set is used during training in order to check 
the generalization performance. Training can be stopped 
when the performance on the validation data reaches a maxi-
mum. The test data are the data upon which the final model 
is tested. Then the model trained by the data from 1995 is  
used to predict the air pollution of 1998 and, in order to 
judge the generalization, the middle points between samples 
from 1998 calculated by model compare with the line cross-
ing the two samples. The simulations show that AWNN 
trained by error back-propagation is difficult to avoid overfit 
especially when the initial values of input weight are big 
during on-line learning, though it works well as a static 
model in 1995. The error back-propagation can make the 
sample errors very small (sometimes zero) during the on-line 
learning, but the errors between predicted line and actual 
line often become large with decrease of sample errors. The 
new algorithm ensures generalization of AWNN, so AWNN 
based on the new algorithm does not overfit during training. 
In the same time, the velocity of convergence is improved, 
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Figure 5: AWNN Trained by Error Back-Propagation 
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Figure 6: Overfit of AWNN in the New Condition 
 
which help WNN suit the new conditions faster for the new 
algorithm only need adjustment of output weights instead of 
both input and output weights. 

6 CONCLUSIONS 

Adaptive neural network is a powerful tool for prediction 
of air pollution abatement scenarios. But, the same meth-
ods used by static NN often can not ensure generalization 
of adaptive neural network. To solve this problem, a new 
algorithm is proposed based on Fourier transform and 
wavelet theory. Through analysis of theory, this work pro-
poses that choice of correct input weights can ensure gen-
eralization of AWNN without any other measures, so the 
new algorithm only trains the output weights, and the input 
weights are decided by sample period. This ensures sim-
plicity of the structure and the algorithm of AWNN, which 
improves the efficiency of on-line learning. On the other 
hand, the new algorithm only trains output weights, so the 
velocity of convergence is faster than that of general NN. 

This new algorithm is applied to AWNN for predic-
tion of NO2 and NOx concentration. Results show that 
WNN can work as well as other static NN when the condi-
tion of prediction is stable. Results also show the new algo-
rithm ensures good generalization of AWNN during on-
line learning when the condition of prediction is unstable,  
but the classic algorithm can not ensure the generalization 
during the same course. 
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