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Abstract
Mobile devices are a special class of resource-
constrained embedded devices. Computing
power, memory, the available energy, and net-
work bandwidth are often severely limited.
These constrained resources require extensive
optimization of a mobile system compared to
larger systems. Any needless operation has to
be avoided. Time-consuming operations have to
be started early on. For instance, loading files
ideally starts before the user wants to access the
file. So-called prefetching strategies optimize
system’s operation. Our goal is to adjust such
strategies on the basis of logged system data. Op-
timization is then achieved by predicting an ap-
plication’s behavior based on facts learned from
earlier runs on the same system. In this paper, we
analyze system-calls on operating system level.
The learned model predicts if a system-call is go-
ing to open a file fully, partially, or just for chang-
ing its rights.

1 Introduction
Users demand mobile devices to have long battery life,
short application startup time, and low latencies. Mobile
devices are constrained in computing power, memory, en-
ergy, and network connectivity. This conflict between user
expectations and resource constraints can be reduced, if we
tailor a mobile device such that it uses its capacities care-
fully for exactly the user’s needs, i.e., the services, that the
user wants to use. Predicting the user’s behavior given pre-
vious behavior is a machine learning task. For example,
based on the learning of most often used file path compo-
nents, a system may avoid unnecessary probing of files and
could intelligently prefetch files. Prefetching those files,
which soon will be read by the user, leads to decreased
startup latencies for applications and, accordingly, conser-
vation of energy.

The resource restrictions of mobile devices motivate the
application of machine learning for predicting user behav-
ior. At the same time, machine learning dissipates re-
sources. There are three critical resource constraints:
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• Data gathering: logging user actions uses processing
capacity.

• Data storage: the training and test data as well as the
learned model use memory.

• Communication: if training and testing is performed
on a central server, sending data and the resulting
model uses the communication network.

• Response time: the prediction of usage, i.e., the model
application, has to happen in short real-time.

The dilemma of saving resources at the device through
learning which, in turn, uses up resources, can be solved
in several ways. Here, we set aside the problem of data
gathering and its prerequisites on behalf of operation sys-
tems for embedded systems [Lohmann et al., 2009] [Tartler
et al., ] [Cantrill et al., 2004].This is an important issue in
its own right. Regarding the other restrictions, especially
the restriction of memory, leads us to two alternatives.

Server-based learning: The learning of usage profiles
from data is performed on a server and only the result-
ing model is communicated back to the device. Learn-
ing is less restricted in runtime and memory consump-
tion. Just the learned model must obey the runtime
and communication restrictions. Hence, a complex
learning method is applicable. Figure 1 shows this
alternative.

Device-based learning: The learning of usage profiles on
the device is severely restricted in complexity. It does
not need any communication but requires training data
to be stored. Data streaming algorithms come into
play in two alternative ways. First, descriptive algo-
rithms incrementally build-up a compact way to store
data. They do not classify or predict anything. Hence,
in addition, simple methods are needed that learn from
the aggregated compact data. Second, simple online
algorithms predict usage behavior in realtime. The lat-
ter option might only be possible if specialized hard-
ware is used, e.g., General Purpose GPUs. Figure 2
shows this alternative.

In this paper, we want to investigate the two alternatives
using logged system calls. Server-based learning is exem-
plified by predicting file-access types in order to enhance
prefetching. It is an open question whether structural mod-
els are demanded for the prediction of user behavior on
the basis of system calls, or simpler models such as Naive
Bayes suffice. Should the sequential nature of system calls
be taken into account by the algorithm? Or is it sufficient to
encode the sequences into the features? Or should features
as well as algorithm be capable of explicitly addressing se-



Figure 1: Server-based Architecture

Figure 2: Device-based Architecture

quences? We investigate the use of two extremes, Con-
ditional Random Fields (CRF) and Naive Bayes (NB). In
particular, we inspect their memory consumption and run-
time, both, for training and applying the learned function.
Section 2 presents the study of server-based learning for
ubiquitous devices. We derive the learning task from the
need of enhancing prefetching strategies, describe the log
data used, and present the learning results together with re-
source consumptions of NB and CRF.

Device-based learning is exemplified by recognizing ap-
plications from system calls in order to prevent fraud. We
apply the data streaming algorithm Hierarchical Heavy Hit-
ters (HHH) yielding a compact data structure for storage.
Using these, the simple kNN method classifies systems
calls. In particular, we investigate how much HHH com-
press data. Section 3 presents the study of device-based
learning using a streaming algorithm for storing compact
data. We conclude in Section 4 by indicating related and
future work.

2 Server-based Learning
In this section we present the first case-study, where log
data are stored and analyzed on a server (data are described
in Section 2.2). Learning aims at predicting file access in
order to prefetch files (see Section 2.1). The learning meth-
ods NB and CRF are introduced shortly in Section 2.3 and
Section 2.4, respectively. The results are shown in Section
2.5.

2.1 File-access pattern prediction
A prediction of file-access patterns is of major importance
for the performance and resource consumption of system
software. For example, the Linux operating system uses a
large “buffer cache” memory for disk blocks. If a requested
disk block is already stored in the cache (cache hit), the op-
erating system can deliver it to the application much faster
and with less energy consumption than otherwise (cache
miss). In order to manage the cache the operating system
has to implement two strategies, block replacement and
prefetching. The block replacement strategy is consulted
upon a cache miss: a new block has to be inserted into the
cache. If the cache is already full, the strategy has to decide

which block has to be replaced. The most effective victim
is the one with the longest forward distance, i.e. the block
with the maximum difference between now and the time of
the next access. This requires to know or guess the future
sequence of cache access. The prefetching strategy proac-
tively loads blocks from disk into the cache, even if they
have not been requested by an application, yet. This of-
ten pays off, because reading a bigger amount of blocks at
once is more efficient than multiple read operations. How-
ever, prefetching should only be performed if a block will
be needed in the near future. For both strategies, block
replacement and prefetching, a good prediction of future
application behavior is crucial.

Linux and other operating systems still use simple
heuristic implementations of the buffer cache management
strategies. For instance, the prefetching code in Linux
[Bovet and Cesati, 2005] continuously monitors read op-
erations. As long as a file is accessed sequentially the read
ahead is increased. Certain upper and lower bounds restrict
the risk of mispredictions. This heuristics has two flaws:

• No prefetching is performed before the first read op-
eration on a specific file, e.g., after “open”, or even
earlier.

• The strategy is based on assumptions on typical disk
performance and buffer cache sizes, in general. How-
ever, these assumptions might turn out to be wrong in
certain application areas or for certain users.

Prefetching based on machine learning avoids both prob-
lems. Prefetching can already be performed when a file is
opened. It only depends on the prediction that the file will
be read. The prediction is based on empirical data and not
on mere assumptions. If the usage data change, the model
changes, as well.

2.2 System Call Data for Access Prediction
We logged streams of system calls of type FILE, which
consist of various typical sub-sequences, each starting with
an open- and terminating with a close-call, like those
shown in Figure 3.We collapsed such sub-sequences to one
observation and assign the class label

• full, if the opened file was read from the first seek (if
any) to the end,

• read, if the opened file was randomly accessed and

• zero, if the opened file was not read after all.

We propose the following generalization of obtained file-
names. If a file is regular, we remove anything except
the filename extension. Directory names are replaced by
”DIR”, except for paths starting with ”/tmp” – those are
replaced by ”TEMP”. Any other filenames are replaced
by ”OTHER”. This generalization of filenames yields
good results in our experiments. Volatile information like
thread-id, process-id, parent-id and system-call parameters
is dropped, and consecutive observations are compound to
one sequence if they belong to the same process. The re-
sulting dataset consists of 673887 observations in 80661
sequences, a snippet1 is shown in Table 1.

We used two feature sets for the given task. The first en-
codes information about sequencing as features, resulting
in 24 features, namely ft, ft−1, ft−2, ft−2/ft−1, ft−1/ft,

1The final dataset is available at:
http://www-ai.cs.tu-dortmund.de/
PUBDOWNLOAD/MUSE2010



1,open,1812,179,178,201,200,eclipse,/etc/hosts,524288,438,7 : 361, full
2,read,1812,179,178,201,200,eclipse,/etc/hosts,4096,361
3,read,1812,179,178,201,200,eclipse,/etc/hosts,4096,0
4,close,1812,179,178,201,200,eclipse,/etc/hosts

Figure 3: A sequence of system calls to read a file. The data layout is: timestamp, syscall, thread-id, process-id, parent,
user, group, exec, file, parameters (optional) : read bytes, label (optional)

user group exec file label
20005 10000 firefox-

bin
cookies.sqlite-
journal

zero

20005 10000 firefox-
bin

default zero

20005 10000 firefox-
bin

hosts full

20005 10000 firefox-
bin

hosts full

20005 10000 multiload-
apple

mtab full

10028 10000 kmail png zero

Table 1: Snippet of the final dataset.

predicted\true full zero read
full 0 2 1
zero 5 0 4
read 4 2 0

Table 2: Cost matrix

ft−2/ft−1/ft, with f ∈ {user, group, exec, file}. The
second feature set simply uses two features exect−1/exect
and filet−2/filet−1/filet as its only features.

Errors in predicting the types of access result in different
degrees of failure. Predicting a partial caching of a file, if
just the rights of a file have to be changed, is not as prob-
lematic as predicting a partial read if the file is to be read
completely. Hence, we define a cost-matrix (see Table 2)
for the evaluation of our approach.

2.3 Naive Bayes Classifier
The Naive Bayes classifier [Hastie et al., 2003] assigns la-
bels y ∈ Y to examples x ∈ X . Each example is a vector
of m attributes written here as xi, where i = 1...m. The
probability of a label given an example is according to the
Bayes Theorem:

p(Y |x1, x2, ..., xm) =
p(Y )p (x1, x2, ..., xm|Y )

p (x1, x2, ..., xm)
(1)

Domingos and Pazzani [Domingos and Pazzani, 1996]
rewrite eq. (1) and define the Simple Bayes Classifier
(SBC):

p(Y |x1, x2, ..., xm) =
p(Y )

p (x1, x2, ..., xm)

n∏
j=1

p (xj |Y )

(2)
The classifier delivers the most probable class Y for a given
example x = x1 . . . xm:

arg max
Y

p(Y |x1, x2, ..., xm) =

p(Y )
p (x1, x2, ..., xm)

m∏
j=1

p (xj |Y )
(3)

The term p (x1, x2, ..., xm) can be neglected in eq. (3) be-
cause it is a constant for every class y ∈ Y . The decision
for the most probable class y for a given example x just de-
pends on p(Y ) and p (xi|Y ) for i = 1 . . .m. These proba-
bilities can be calculated after one run on the training data.
So, the training runtime is O(n), where n is the number of
examples in the training set. The number of probabilities
to be stored during training are |Y| + (

∑m
i=1 |Xj | ∗ |Y|),

where |Y| is the number of classes and |Xi| is the number
of different values of the ith attribute. The storage require-
ments for the trained model are O(mn).

It has often been shown that SBC or NBC perform quite
well for many data mining tasks [Domingos and Pazzani,
1996; Huang et al., 2003; Frank and Asuncion, 2010].

2.4 Linear-chain Conditional Random Fields
Linear-chain Conditional Random Fields, introduced by
Lafferty et al. [Lafferty et al., 2001], can be understood as
discriminative, sequential version of Naive Bayes Classi-
fiers. The conditional probability for an actual sequence
of labels y1,y2, ...,ym, given a sequence of observa-
tions x1,x2, ...,xm is modeled as an exponential family.
The underlying assumption is that a class label at the cur-
rent timestep t just depends on the label of its direct ances-
tor, given the observation sequence. Dependency among
the observations is not explicitly represented, which allows
the use of rich, overlapping features. Equation 4 shows the
model formulation of linear-chain CRF

pλ (Y = y|X = x) =

1
Z (x)

T∏
t=1

exp

(∑
k

λkfk (yt, yt−1,x)

)
(4)

with the observation-sequence dependent normalization
factor

Z (x) =
∑
y

T∏
t=1

exp

(∑
k

λkfk (yt, yt−1,x)

)
(5)

The sufficient statistics or feature functions fk are most
often binary indicator functions which evaluate to 1 only
for a single combination of class label(s) and attribute
value. The parameters λk can be regarded as weights or
scores for this feature functions. In linear-chain CRF, each
attribute value usually gets |Y| + |Y|2 parameters, that is
one score per state-attribute pair as well as one score for
every transition-attribute triple, which results in a total of∑m
i=1 |Xi|

(
|Y|+ |Y|2

)
model parameters, where |Y| is the

number of classes, m is the number of attributes and |Xi|
is the number of different values of the ith attribute. Notice
that the feature functions explicitly depend on the whole
observation-sequence rather than on the attributes at time
t. Hence, it is possible and common to involve attributes
of preceding as well as following observations from the
current sequence into the computation of the total score



exp (
∑
k λkfk (yt, yt−1,x)) for the transition from yt−1 to

yt given x.
The parameters are usually estimated by the maximum-

likelihood method, i.e., maximizing the conditional like-
lihood (Eq. 6) by quasi-Newton [Malouf, 2002], [Sha
and Pereira, 2003], [Nocedal, 1980] or stochastic gradi-
ent methods [Vishwanathan et al., 2006], [Schraudolph and
Graepel, 2002], [Schraudolph et al., 2007].

L (λ) =
N∏
i=1

pλ(Y = y(i)|X = x(i)) (6)

The actual class prediction for an unlabeled observation-
sequence is done by the Viterbi algorithm known from Hid-
den Marcov Models [Sutton and McCallum, 2007], [Ra-
biner, 1989].

Although CRF in general allow to model arbitrary de-
pendencies between the class labels, efficient exact infer-
ence can solely be done for linear-chain CRF. This is no
problem here, because they match the sequential structure
of our system-call data, presented in section 2.2.

2.5 Results of Server-based Prediction
Comparing the prediction quality of the simple NB models
and the more complex CRF models, surprisingly, the CRF
are only slightly better when using the two best features
(see Tables 3 and 5). CRF outperforms NB when using
all features (see Tables 4 and 6). These two findings in-
dicate that the sequence information is not as important as
we expected. Neither encoding the sequence into features
nor applying an algorithm which is made for sequential in-
formation outperforms a simple model. The Tables show
that precision, recall, accuracy, and misclassification cost
are quite homogeneous for CRF, but vary for NB. In par-
ticular, the precision of predicting “read” and the recall of
class “zero” differs from the numbers for the other classes,
respectively. This makes CRF more reliable.

Inspecting resource consumption, we stored models of
the two methods for both feature sets and for various num-
bers of examples to show the practical storage needs of
the methods.Table 9 presents the model sizes of the naive
Bayes classifier on both feature sets and for various exam-
ple set sizes. We used the popular open source data min-
ing tool RapidMiner2 for these experiments. Table 9 also
shows the model sizes of CRF on both feature sets and var-
ious example set sizes.

We used the open source CRF implementation CRF++3

with L2-regularization, σ = 1 and L-BFGS optimizer in
all CRF experiments. Obviously, the storage needs for a
model produced by a NB classifier are lower than those for
a CRF model. This is the price to be paid for more reliable
prediction quality. CRF don’t scale-up well. Considering
training time, the picture becomes worse. Table 10 shows
the training time of linear-chain or HMM-like CRF con-
suming orders of magnitude more time than NB.

3 Device-based Learning
In this section, we present the second case-study, where
streams of log data are processed in order to store patterns

2RapidMiner is available at:
http://www.rapidminer.com

3CRF++ is available at:
http://crfpp.sourceforge.net/

predicted\true full zero read prec.
full 1427467 19409 3427 98.43
zero 12541 2469821 40258 97.91
read 80872 217380 2467695 89.22
recall 93.86 91.25 98.26

Table 3: Result of Naive Bayes Classifier on best two fea-
tures, 10x10-fold cross-validated, accuracy: 94.45 ± 0.00,
missclassification costs: 0.152 ± 0.001

full zero read prec.
1426858 21562 22717 96.99
15392 2371009 97566 95.45
78630 314039 2391097 85.89
93.82 87.60 95.21

Table 4: Result of Naive Bayes Classifier on all 24 fea-
tures, 10x10-fold cross-validated, accuracy: 91.84 ± 0.00,
missclassification costs: 0.218 ± 0.002

predicted\true full zero read prec.
full 1446242 7123 29051 97.56
zero 19452 2639097 133007 94.54
read 55186 60390 2349322 95.31
recall 95.09 97.51 93.55

Table 5: Result of HMM-like CRF on the best two fea-
tures, 10x10-fold cross-validated, accuracy: 95.49 ± 0.00,
missclassification costs: 0.150 ± 0.000

full zero read prec.
1450147 8335 25629 97.71
14563 2639724 126403 94.93
56170 58551 2359348 95.36
95.35 97.53 93.95

Table 6: Result of HMM-like CRF on all 24 features,
10x10-fold cross-validated, accuracy: 95.70 ± 0.00, miss-
classification costs: 0.143 ± 0.000

predicted\true full zero read prec.
full 1467440 4733 7503 99.17
zero 10883 2659294 108340 95.71
read 42557 42583 2395537 96.57
recall 96.49 98.25 95.39

Table 7: Result of linear-chain CRF on the best two fea-
tures, 10x10-fold cross-validated, accuracy: 96.79 ± 0.00,
missclassification costs: 0.112 ± 0.000

full zero read prec.
1468095 4117 5022 99.38
10306 2662966 107859 95.75
42479 39527 2398499 96.69
96.53 98.39 95.51

Table 8: Result of linear-chain CRF on all 24 features,
10x10-fold cross-validated, accuracy: 96.89 ± 0.00, miss-
classification costs: 0.110 ± 0.000

of system use. The goal is to aggregate the streaming sys-
tem data. A simple learning method might then use the ag-
gregated data. The method of Hierarchical Heavy Hitters
(HHH) is defined in Section 3.1. The log data are shown in
Section 3.2. For the comparison of different sets of HHH,
we present a distance measure that allows for clustering or
classifying sets of HHH. In addition to the quality of our
HHH application, its resource consumption is presented in
Section 3.3.

3.1 Hierarchical Heavy Hitters
The heavy hitter problem consists of finding all frequent el-
ements and their frequency values in a data set. According



#Att.\#Seq. 0 67k 135k 202k 270k 337k 404k 472k 539k 606k 674k
2 nB 2 78 100 118 132 143 154 161 169 176 181
24 nB 5 247 310 355 392 417 448 469 488 505 517
2 CRF++ (HMM) 5 247 366 458 490 512 569 592 614 634 649
24 CRF++ (HMM) 12 615 878 1102 1170 1216 1367 1420 1463 1521 1551
2 CRF++ 6 523 776 978 1043 1089 1213 1260 1299 1345 1378
24 CRF++ 19 1339 1914 2415 2559 2652 2988 3095 3184 3303 3365

Table 9: Storage needs (in kB) of the naive Bayes (nB), the HMM-like CRF (CRF++ (HMM)) and the linear-chain CRF
(CRF++) classifier model on different numbers of sequences and attributes.

#Att.\#Seq. 0 67k 135k 202k 270k 337k 404k 472k 539k 606k 674k
2 nB < 1 < 1 < 1 < 1 1 < 1 < 1 < 1 < 1 < 1 < 1
24 nB < 1 < 1 < 1 1 < 1 1 1 1 1 2 1
2 CRF++ (HMM) < 1 9.09 28.56 44.08 60.1 75.76 107.28 127.04 149.95 165.94 199.2
24 CRF++ (HMM) < 1 27.92 55.9 103.24 153.53 160.33 230.7 273.29 232.84 309.19 317.62
2 CRF++ < 1 16.69 50.23 85.18 113.21 145.96 173.56 200.98 234.65 260.56 325.54
24 CRF++ < 1 41.06 105.29 156.67 296.31 300.83 343.28 433.03 440.88 463.84 632.96

Table 10: Training time (in seconds) of the naive Bayes (nB), the HMM-like CRF (CRF++ (HMM)) and the linear-chain
CRF (CRF++) classifier model on different numbers of sequences and attributes.

to Cormode [Cormode et al., 2003], given a (multi)set S of
size N and a threshold 0 < φ < 1, an element e is a heavy
hitter if its frequency f(e) in S is not smaller than bφNc.
The set of heavy hitters is then HH = {e|f(e) ≥ bφNc}.

If the elements in S originate from a hierarchical domain
D, one can state the following problem [Cormode et al.,
2003]:

Definition 1 (HHH Problem) Given a (multi)set S of size
N with elements e from a hierarchical domain D of height
h, a threshold φ ∈ (0, 1) and an error parameter ε ∈
(0, φ), the Hierarchical Heavy Hitter Problem is that of
identifying prefixes P ∈ D, and estimates fp of their as-
sociated frequencies, on the first N consecutive elements
SN of S to satisfy the following conditions:

• accuracy: f∗p − εN ≤ fp ≤ f∗p , where f∗p is the true
frequency of p in SN .

• coverage: all prefixes q 6∈ P satisfy φN >
∑
f(e) :

(e � q) ∧ (6 ∃p ∈ P : e � p).
Here, e � p means that element e is generalizable to

p (or e = p). For the extended multi-dimensional heavy
hitter problem introduced in [Cormode et al., 2004], el-
ements can be multi-dimensional d-tuples of hierarchical
values that originate from d different hierarchical domains
with depth hi, i = 1, . . . , d. There exist two variants of
algorithms for the calculation of multi-dimensional HHHs:
Full Ancestry and Partial Ancestry, which we have both im-
plemented. For a detailed description of these algorithms,
see [Cormode et al., 2008].

3.2 System Call Data for HHH
The kernel of current Linux operating systems offers about
320 different types of system calls to developers. Having
gathered all system calls made by several applications, we
observed that about 99% of all calls belonged to one of the
54 different call types shown in Table 11. The functional
categorization of system calls into five groups is due to [Sil-
berschatz et al., 2010]. We focus on those calls only, since
the remaining 266 call types are contained in only 1% of
the data and therefore can’t be frequent.

HHHs can handle values that have a hierarchical struc-
ture. We have utilized this expressive power by represent-
ing system calls as tuples of up to three hierarchical feature
values. Each value originates from a taxonomy (type, path
or sequence) that either can be derived dynamically from

FILE COMM PROC INFO DEV
open recvmsg mmap2 access ioctl
read recv munmap getdents
write send brk getdents64
lseek sendmsg clone clock gettime
llseek sendfile fork gettimeofday
writev sendto vfork time
fcntl rt sigaction mprotect uname
fcntl64 pipe unshare poll
dup pipe2 execve fstat
dup2 socket futex fstat64
dup3 accept nanosleep lstat
close accept4 lstat64

stat
stat64
inotify init
inotify init1
readlink
select

Table 11: We focus on 54 system call types which are
functionally categorized into five groups. FILE: file sys-
tem operations, COMM: communication, PROC: process
and memory management, INFO: informative calls, DEV:
operations on devices.

the data itself or has to be defined explicitly by the user.
The groups introduced in Table 11 form the top level of
the taxonomy for the hierarchical variable type (see Fig. 4).
The socket call is a child of group COMM and FILE
is the parent of calls like open and fcntl64. Subtypes
of system calls can be defined by considering the possi-
ble values of their parameters. For example, the fcntl64
call which operates on file descriptors has fd, cmd and arg
as its parameters. We have divided the 16 different nominal
values of the cmd parameter into seven groups — notify,
dflags, duplicate, sig, lock, fflags and lease
— that have become the children of the fcntl64 sys-
tem call in our taxonomy (see Fig. 4). One may further
divide fcntl64 calls of subtype fflags by the values
F SETFL and F GETFL of the arg parameter. In the same
way, we defined parents and children for each of the 54 call
types and their parameters.

The path variable is filled whenever a system call ac-
cesses a file system path. Its hierarchy comes naturally
along with the given path hierarchy of the file system.
The sequence variable expresses the temporal order of calls
within a process. The directly preceding call is the highest,
less recent calls are at deeper levels of the hierarchy.

We collected system call data from eleven applications



Memory Run-time Similarity
Min Max Avg Min Max Avg Avg Dev

T 19 151 111 16 219 79 0.997 0.006
FA TP 25 9,971 5,988 31 922 472 0.994 0.003

TPS 736 73,403 48,820 78 14,422 6,569 0.987 0.008
T 7 105 70 15 219 74 0.985 0.010

PA TP 7 4,671 2,837 31 5,109 2,328 0.957 0.017
TPS 141 18,058 10,547 78 150,781 74,342 0.921 0.026

Table 12: Memory consumption (number of stored tupels), run-time (milliseconds) and similarity to exact solution of the
Full Ancestry (FA) and Partial Ancestry (PA) algorithms (ε = 0.0005, φ = 0.002). Minimum (Min), maximum (Max)
and average (Avg) values were calculated over measurements for the first log file of all eleven applications with varying
dimensionality of the element tupels (T = type hierarchy, P = path hierarchy, S = sequence hierarchy).

*

COMM FILE PROC INFO DEV

socket open fcntl64

duplicate dflagsnotify sig log fflags lease

Figure 4: Parts of the taxonomy we defined for the hierar-
chical variable type.

(like Firefox, Epiphany, NEdit, XEmacs) with the strace
tool (version 4.5.17) under Ubuntu Linux (kernel 2.6.26, 32
bit). All child processes were monitored by using option
-f of strace. For each application, we logged five times
five minutes and five times ten minutes of system calls if
they belonged to one of the 54 types shown in Table 11,
resulting in a whole of 110 log files comprising about 23
million of lines (1.8 GB).

3.3 Resulting Aggregation through Hierarchical
Heavy Hitters

We have implemented the Full Ancestry and Partial An-
cestry variants of the HHH algorithm mentioned in Sec-
tion 3.1. The code was integrated into the RapidMiner
data mining tool. Regarding run-time, all experiments were
done on a machine with Intel Core 2 Duo E6300 processor
with 2 GHz and 2 GB main memory.

Since we want to aggregate system call data on devices
that are severely limited in processing power and available
memory, measuring the resource usage of our algorithms
was of paramount importance. Table 12 shows the run-time
and memory consumption of the Full Ancestry and Partial
Ancestry algorithms using only the type hierarchy, the type
and path hierarchy, or the type, path, and sequence hier-
archy. Minimum, maximum and averages were calculated
over a sample of the ten gathered log files for each of the
eleven application by taking only the first log file for each
application into account.

Memory consumption and run-time increase with the di-
mensionality of the elements, while at the same time ap-
proximation quality decreases. Quality is measured as sim-
ilarity to the exact solution. Full Ancestry has a higher ap-
proximation quality in general. The results correspond to
observations made by Cormode and are probably due to the
fact that Partial Ancestry outputs bigger HHH sets, which
was the case in our experiments, too. Note that approxima-
tion quality can always be increased by changing parameter
ε to a smaller value at the expense of a longer run-time.

Even for three-dimensional elements, memory consump-
tion is quite low regarding the number of stored tuples. The
largest number of tuples, 73,403, only equates to a few hun-
dred kilobytes in main memory! The longest run-time of
150,781 ms for Partial Ancestry in three dimensions relates
to the size of the biggest log file (application Rhythmbox).

Figure 5 shows the behaviour of our algorithms on the
biggest log file (application Rhythmbox) for three dimen-
sions with varying ε and constant φ. Memory consumption
and quality decrease with increasing ε, while the run-time
increases. So the most important trade-off involved here
is weighting memory consumption against approximation
quality — the run-time is only linearly affected by param-
eter ε. Again, Full Ancestry shows a better approximation
quality in general.

Classification results
For the 110 log files of all applications, we determined the
HHHs, resulting in sets of frequent tupels of hierarchical
values. Interpreting each HHH set as an example of appli-
cation behaviour, we wanted to answer the question if the
profiles could be separated by a classifier. So we estimated
the expected classification performance by a leave-one-out
validation for kNN.

Therefore, we needed to define a distance measure for
the profiles determined by HHH algorithms. The data
structures of HHH algorithms contain a small subset of pre-
fixes of stream elements. The estimated frequencies fp are
calculated from such data structure by the output method
and compared to φ, thereby generating a HHH set. The
similarity measure DSM operates not on the HHH sets, but
directly on the internal data structures D1, D2 of two HHH
algorithms:

sim(D1, D2) =

∑
p∈P1∩P2

contribDSM(p)
|P1 ∪ P2|

.

Be f ip the estimated frequency of prefix p for data struc-
ture Di as normally calculated by the HHH output method.
The contribution of individual prefixes to overall similarity
can then be defined as

contribDSM(p) =
2 ·min(f1

p , f
2
p )

min(f1
p , f

2
p ) + max(f1

p , f
2
p )
.

The so defined similarity measure is independent from
the choice of φ, as no HHH sets need to be calculated.

The classification errors for different values of k, hierar-
chies and distance measures are shown in Table 13. The
new DSM distance measure which is independent of pa-
rameter φ shows the lowest classification error in all vali-
dation experiments. As a baseline, we also determined the
relative frequencies (TF, term frequencies) of call types per



T TS
k DSM TF DSM TF
3 10.3 17.0 7.7 17.0
5 12.7 18.7 8.7 18.7
7 14.0 21.7 8.7 21.7
9 14.0 21.0 9.0 21.0

Table 13: Results for kNN (k = 3, 5, 7, 9), ε = 0.0005, φ =
0.002 and distance measures DSM and TF, when only the
type hierarchy or type and sequence hierarchy together are
used.

log file and classified them using kNN (with Euclidean dis-
tance). The error for profiling by HHH sets is significantly
lower than for the baseline.

4 Conclusion
Server-based and device-based learning has been investi-
gated regarding resource constraints. memory consump-
tion. Aggregation using HHH worked successfully for the
classification of applications. Further work will exploit
HHH aggregation for other learning tasks and inspect other
data streaming algorithms. Concerning server-based learn-
ing, we may now answer the questions from the introduc-
tion, whether structural models are demanded for the pre-
diction of user behavior on the basis of system calls, or
simpler models such as Naive Bayes suffice. Should the
sequential nature of system calls be taken into account by
the algorithm? Or is it sufficient to encode the sequences
into the features? Or should features as well as algorithm
be capable of explicitly addressing sequences? We have
compared CRF and NB with respect to their model quality,
memory consumption, and runtime. Neither encoding the
sequence into features nor applying an algorithm which is
made for sequential information (i.e., CRF) outperforms a
simple model (i.e., NB).

This is in contrast with studies on intrusion detection,
where it was shown advantageous to take into account the
structure of system calls, utilizing Conditional Random
Fields (CRF) [Gupta et al., 2007] and special kernel func-
tions to measure the similarity of sequences [Tian et al.,
2007]. Structured models in terms of special tree kernel
functions outperformed n-gram representations when de-
tecting malicious SQL queries [Bockermann et al., 2009].
Possibly, for prefetching strategies, the temporal order of
system calls is not as important as we expected it to be.
In the near future the resulting improvements in terms of
cache hit rate and file operation latencies will be evaluated
systematically based on a cache simulator and by modify-
ing the Linux kernel.

Given regular processors, CRF are only applicable in
server-based learning. Possibly, the integration of special
processors into devices and a massively parallel training
algorithm could speed up CRF for device-based learning.
Further work will implement CRF on a GPGPU (general
purpose graphic processing unit). GPGPUs will soon be
used by mobile devices. It has been shown that their en-
ergy efficiency is advantagous [Timm et al., 2010].
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Figure 5: Memory consumption (a, b), run-time (c, d) and similarity to exact solution (e, f) of HHH algorithms (three-
dimensional) with varying ε, φ = 0.001 on biggest log file of application Rhythmbox.
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