
Knowledge System Prototyping for Usability Engineering

Martina Freiberg, Johannes Mitlmeier, Joachim Baumeister, Frank Puppe
University of Würzburg

D-97074, Würzburg, Germany
freiberg/joba/puppe@informatik.uni-wuerzburg.de

Abstract
Knowledge-based consultation and documenta-
tion systems are widely distributed in industrial
and medical environments today. Yet, their im-
plementation still is a tedious and costly task.
Furthermore, the aspect of usability—which is
in principle of critical importance for those
systems—is often nearly unconsidered. We ar-
gue, that tailored UI prototyping can help to
tackle both issues. Therefore, we propose a UI
prototyping tool for knowledge-based systems,
intended to enhance knowledge systems engi-
neering in itself, and to foster usability engineer-
ing in that context.

Keywords: Knowledge-based System, User Interface
Prototyping, Usability, Human Computer Interaction

1 Introduction
Knowledge systems (KS)—in the context of our pa-
per knowledge-based consultation and documentation
systems—are applied in various industrial and medical en-
vironments today. Regarding their development, it has
to be differentiated between knowledge system engineer-
ing (KS Engineering) and knowledge engineering (KE).
The former comprises the entire development process of
a knowledge-based system, including especially its UI and
interaction design; the latter specifically addresses the def-
inition and formalization of the required knowledge, e.g.,
the terminology, or explicit problem-solving knowledge.

KS Engineering Pitfalls and SE Solutions
Despite the widespread use of knowledge systems, and
consequently increasing research efforts regarding their de-
velopment in the last decades, KS Engineering still remains
a tedious and complex task. Among the main pitfalls are
high development costs, both in terms of money and time.
Thereby, the sub-task KE alone often causes a major part
of the expenses, hence influencing other KS Engineering
activities:

In many cases, UI- and interaction design in general—or
a more targeted comparison of several equal design
options—would require more attention. For knowledge
based systems, it is further of critical importance, that
they are intuitive and easy to use as to not distract the
users from the often difficult, domain-specific jobs, they
are intended to support (e.g., decision-support in medical
contexts). Yet, despite various recognized general usability
engineering approaches, usability issues often also remain

almost unconsidered. Finally, the often still missing
true understanding of such systems and their benefits on
the side of potential customers, can make it difficult to
promote respective projects in the first place due to the
overall complexity and costs.

In general software engineering (SE) and in human-
computer interaction (HCI), user interface (UI) prototyping
is an established method for iterative specification and
refinement before implementing the productive system [3;
4]. The increased flexibility arising from prototyping-
based specification and design offers the chance to
adapt system (and especially interface) requirements
to changing base requirements or customer wishes in
a more efficient, inexpensive manner. The affordabil-
ity of the approach also permits the early evaluation
and comparison of design alternatives. In providing a
(visual) basis for communication, UI prototyping can
help to specify requirements more precisely. Thus, the
potential risks of fundamental misunderstandings, and a
resulting, more expensive redesign of central conceptions
at a later stage of the project, can be reduced. Also,
the overall system vision can be communicated and re-
fined more easily with the help of an appropriate prototype.

In tailoring UI prototyping for knowledge systems, we
aim at exploiting those advantages. Particularly, we intend
to foster affordable, pragmatic KS Engineering, that both
helps to promote respective projects in the first place, and
alleviates the overall task. Our approach intentionally fo-
cusses on interface and interaction design of KS, and on
an increased integration of usability considerations in the
process. Regarding the specification and formalization of
the required terminology and explicit knowledge of a KS,
there exist various established KE methods today, each of
which can be equally well applied—thus, we do not further
discuss or value their suitability here.

Related Work
In general SE and in HCI there exist numerous classify-
ing approaches regarding prototyping and the prototyping
process, e.g., see [3; 4; 5; 8; 11]. Apart from manifold
general prototyping tools and methodologies available—
see Beaudouin-Lafon and Mackay [4] for an overview—
also tailored tools have been developed in various specific
domains; examples are the field of multimodal interaction
research [12], or the field of cross device interface design
[10]. To the best of our knowledge, no prototyping ap-
proaches or tools exist, that specifically address knowledge
systems according to our definition (see Section 3.1).

Lim et al. [9] note that in HCI, prototypes to date

mainly are used for evaluation purposes—such as usabil-
ity testing—and that in SE, prototyping mostly constitutes
a means for supporting requirements engineering; in ex-
tension to that, they suggest prototypes as tools for de-
signers to frame, refine, and discover options in a design
space. Regarding an integration of software- and usability
engineering, Memmel et al. [13] similarly claim an incor-
poration of visual requirements engineering—based on ap-
propriate prototypes—much earlier in the overall process.
Merging those insights, we propose UI prototyping as a
rather pragmatic means for KS requirements engineering.
As opposed to the above approaches, we explicitly address
knowledge systems, that exhibit some specific characteris-
tics. First, KS mostly consist of a rather fixed set of UI
elements and user-system interactions; most often, for ex-
ample, questions are presented, answered by the user, and
cause a certain follow-up system (re)action. An adequate
prototyping tool thus firstly should support the design of
such elementary elements as flexibly as possible. For real-
istically emulating actual knowledge systems, additionally
the imitation—or actual integration—of the underlying ex-
plicit knowledge needs to be supported, as to enable a rea-
sonable judgement regarding the applicability and usability
of the overall future system.

When designing with usability in mind, some kind
of iterative process is highly advisable [14]. Angele et
al. [1] introduce a cyclic process model for developing
knowledge-based systems; it incorporates prototyping
techniques, but furthermore also formal specification and
KE activities, thus constituting an entire, rather heavy-
weight engineering approach. Contrastingly, we suggest
an extension of the rather lightweight Agile Process Model
[2]; thereby, the focus is on providing an overall pragmatic
method of KS Engineering and on enabling a rather
inexpensive integration of usability activities.

In summary, we contribute to current research by

• proposing an overall approach that integrates efficient,
affordable KS Engineering and usability engineering.

• introducing the UI prototyping and engineering
tool ProET, specifically tailored for the design of
knowledge-based systems

The remainder of the paper is organized as follows: In Sec-
tion 2, we discuss a customized, prototyping-based KS En-
gineering process, as well as its potential regarding an in-
tegration of usability activities. We present ProET, an UI
prototyping and engineering tool for knowledge-based sys-
tems, in Section 3. In Section 4, we report on experiences
of exemplarily recreating existing knowledge systems with
the tool, and on its consequential current scope and limi-
tations. We conclude with a summary and an outlook to
further research directions in Section 5.

2 Pragmatic KS Engineering for Usability
Regarding knowledge system development and knowledge
engineering, there exist diverse approaches today, such as
CommonKADS, MIKE, or adaptions of the classical stage-
based and incremental software development models. Yet,
for the success of knowledge system projects also and es-
pecially regarding small to mid-sized companies, a prag-
matic approach—affordable and efficient regarding time
and effort—is essential, c.f. [2]. Especially for promoting
such projects in the first place, it is important to quickly

UA1: Prototype
Expert / Hybrid

UA2: Prod. System,
User-based / Hybrid

Integration

System
Metaphor

Planning
Game

Implementation

Tailored
Patterns &
Prototypes

Figure 1: Extended Agile Process Model.

come up with first solutions, e.g., in the form of proto-
types or example implementations. In this respect, we
made positive experiences with applying the Agile Process
Model, described in [2]. However, that model emphasizes
knowledge base development, not yet taking much into ac-
count the design of the target system’s interface, or usabil-
ity traits.

Targeting an overall approach that supports pragmatic,
affordable, and usability-involving KS Engineering, we
propose the extension of the Agile Process Model by
integrating pattern-based design, prototyping, and usability
techniques into the original model. Figure 1 introduces the
entire resulting Extended Agile Process Model. Although
pattern integration and respective activities are included
in the following for reasons of completeness, their more
detailed discussion is part of further work, see [7].

The gray parts of Figure 1 represent the original model,
consisting of the four phases System Metaphor, Planning
Game, Implementation, and Integration. For a detailed dis-
cussion, see [2].

Basically, tailored patterns and prototyping can support
both System Metaphor and Planning Game. In System
Metaphor, the system objectives are defined by developers
and customers. Based on appropriate patterns and corre-
sponding implementation examples, a basic idea can be de-
veloped more easily. Thereby, patterns can be assessed ei-
ther manually, or by using a tailored recommender system,
that suggests patterns matching the target context. Proto-
types, that also provide the relevant user-system interac-
tions, further support that process by presenting a realistic
simulation of a potentially resulting system as opposed to
the static, visual depiction of knowledge system examples
provided by the patterns.

The Planning Game defines the scope and prioritization
of development tasks. Here, patterns ease the analysis and
valuation of system requirements—taking place during
the Exploration sub-phase of the planning game—by
providing clear specifications of required features and
interactions. Additionally, prototyping supports that
task by allowing for actually trying out (and thus better
evaluating) relevant functionalities.

With regards to Usability Activities, the original model
can be extended both regarding Implementation and In-
tegration (Figure 1, UA1, UA2). The basic model de-
fines Implementation as a test-first activity—i.e., before ac-
tually implementing new or additional features, the cor-
responding tests for assuring their correctness are devel-
oped. This can be expanded by an evaluation-first activ-
ity, in the sense that based on the formerly created pro-

totypes, usability issues are assessed and valued first, be-
fore continuing with test-first implementation as defined
by the model. Performing prototype-based usability eval-
uation offers the chance to reveal defects of the design at
early stages. This can considerably lower development
costs, as the adaption/revision of a prototype is rather in-
expensive, in contrast to adapting an preliminarily imple-
mented, or even already productive system. Without going
into detail here, at that stage, expert- or hybrid approaches
(according to a categorization suggested in [6]) seem to
be most appropriate. For example, rather light-weight
techniques—as feature-/consistency inspection—but also
more comprehensive methods—as heuristic evaluation or
expert walkthrough—are performed by the developer (”ex-
pert”). In case even future users—e.g., project partners
or their employees—are available, hybrid methods such as
pluralistic walkthrough or participatory/cooperative heuris-
tic evaluation potentially can provide the most benefits.
However, some of those techniques require at least a
partly functional system—as explained in Section 3, also
fundamental interactions of knowledge systems can be
designed/simulated with the suggested prototyping tool
ProET. Thus, those techniques are (at least partly) appli-
cable to the developed UI prototypes.

During Integration, the implemented functionality is
added to the productive system, using integration tests
for assuring its overall correctness and integrity. Such
testing can be extended by usability evaluation activities
that check, whether the system still meets the specified
usability goals. As Integration results in a running version
of the productive system, it is not only possible, but rather
highly advisable, to evaluate the applicability of the system
in the target context with real users. Thus, not only hybrid,
but also purely user-based usability evaluation techniques
are beneficial—example techniques are querying, user
studies, or controlled experiments. Additionally, again also
Hybrid Approaches may also provide valuable insights
regarding the actual use of the knowledge system and
potential, remaining defects.

The suggested approach aims at turning overall KS
Engineering into a more pragmatic process, equally
suitable for promoting KS projects—by quickly setting
up and presenting actual KS examples (prototypes) to
customers—and for specifying requirements as well as the
system design in a more agile manner. Due to the highly
iterative process, that also involves usability evaluation
activities at specified stages, potential system flaws may be
detected, or even prevented more effectively.

3 The Prototyping Tool ProET
In this section, we introduce the prototyping and engineer-
ing tool ProET, that we are developing to support afford-
able and efficient KS Engineering, as well as to foster an
eased integration of usability-related activities in the over-
all process. Therefore, we first define the specific type of
target systems, as well as typical components those sys-
tems are built of. Afterwards, we introduce ProET and its
workflow of creating prototypes in more detail.

3.1 Target Knowledge Systems and Components
By knowledge system, we understand systems that may
implement various forms of knowledge—such as rules,
or covering models—to support the user as efficiently

as possible in performing the task at hand. Thereby,
we specifically think of consultation and documentation
tasks—in the first case, the system provides decision-
support or recommendations regarding a specified problem
area (e.g., in medical or fault detection contexts); in the
second case, users are assisted in entering a certain set of
data and the system ensures its quality (e.g., measured by
completeness and correctness). The initial capabilities of
the tool are based on our past experiences with developing
knowledge-based systems. For the greater part, those
were implemented as web-based systems—not necessarily
meaning they are made available to large masses of users
via internet, but in the general sense of ”running in a
browser”. Thus, the tool specifically supports web-based
consultation and documentation systems engineering.

For those target systems, typically a certain set of visible
knowledge components can be identified:
- Questions: Requesting required input data from the user
- Questionnaires: May be used to group the (potentially
large set of) questions
- Answers: A fixed set of reasonable input data (answer
alternatives) to choose from, or free text input facilities
- Solutions: Fault or medical diagnoses, or action recom-
mendations, that are derived by the included diagnosis
knowledge (invisible knowledge components, e.g., rules)
- Ancillary Information: Informal knowledge repre-
sentations, detailed elaborations of questions/solutions,
or add-on information regarding the overall consulta-
tion/documentation progress.

Those components form the conceptual basis of the wid-
gets currently supported by ProET. Thus, they constitute
the elementary items that are to be specified in the declara-
tive prototype specification file (as described in the follow-
ing section in more detail).

3.2 Introducing ProET
The prototyping and engineering tool ProET is an UI
prototyping tool specifically tailored for web-based consul-
tation and documentation systems. Thereby, prototyping is
supported gradually: First, exemplary system definitions
(and corresponding templates/styles) allow for quickly
and easily creating and exploring the basic collection
of knowledge systems supported so far. Based on those
available specifications, adapted KS prototypes can be
created in a copy & modify manner, where the degree of
modification can vary arbitrarily. With the extensibility
of the tool, finally also entirely different interfaces/UI
components can be developed and integrated, if required
(see Section ”Extending ProET”).

The tool supports two basic modes of prototyping: Com-
plete specification of all textual elements, as well as their
(partly or entire) auto-generation.

The first variant is useful for prototyping and evaluating
concrete KS ideas. The required visible knowledge com-
ponents (such as questions, answers...) are defined in the
declarative prototype specification file. As also elementary
interactions—e.g. coloring the next suggested question, or
hiding/unfolding parts of the dialog—are available, future
knowledge systems can be simulated rather realistically.
Thus, it can be examined whether a chosen UI/interaction
design is suitable in a given, domain-specific context.

The option of auto-generating textual elements, further-

more allows for a more design-oriented prototyping: Not
having to consider the specification of actually reasonable
knowledge base elements simplifies the concentration on
UI/interaction design questions. This can be helpful in
case several designs are to be compared against each other,
or provided that general design issues need to be evaluated,
independent from any future system.

Technical Basis
ProET is a JAVA application that integrates several
web-based technologies for engineering UI prototypes of
web-based knowledge systems. The created prototype
is HTML-based, enriched by JavaScript/AJAX for inter-
activity and styled by CSS. The tool is probably most
comfortably used from within some kind of IDE—such as
Eclipse1—that supports editing of the required file formats,
as well as an easy management of the project itself.

Prototyping Workflow
To provide a first impression, Figure 2 presents a
questionary-style, partly auto-generated consultation sys-
tem prototype. Figure 2 (A) displays a page containing
concretely specified questions and answers; another page
of the same prototype, with auto-generated textual ele-
ments, is shown in Figure 2 (B). Prototyping with ProET
currently is purely text-based. We use the above prototype
as a running example when introducing the three types of
specification files required for prototyping with ProET:

• An XML-based specification file (central prototype-
and textual content specification)

• String Template files (creating HTML-/JavaScript-
based fragments for each defined component)

• CSS files (design definition of specified components)

Once the specification via these files is finished, the proto-
type is assembled: Filling in the textual contents from the
XML specification, HTML-/JavaScript-based component
representations are created using the String Templates for
the framework and CSS for the concrete styling.

XML-based, Elementary Prototype Specification The
elementary prototype specification—i.e., its skeletal struc-
ture, consisting of the textual elements as well as of their
basic UI properties (e.g., whether the question-style is one-
choice or multiple-choice)—is provided in an XML-based
format. For each of the visible (textual) knowledge sys-
tem components, matching tags are provided—e.g., an
<answer> tag is used for defining answers. Within
those tags, the fundamental UI properties are specified as
attributes—a multiple choice question, for example, is de-
fined using <question answer-type=’mc’>. Fur-
thermore, the XML specification references the respective
template- and CSS files, that are additionally required for
creating the prototype.

Figure 2 (C) presents an excerpt of the file used for
specifying the prototype shown in (A). Excluding the
standard XML-header, the framing <dialog...> tag
is the topmost element; there, the knowledge system
type—here: type=’gen’, referring to a predefined,
(partly) auto-generated prototype style—is defined, as
well as references to the respective template namespace,

1http://www.eclipse.org/

and style files. Figure 2 (D) exemplifies the specifi-
cation of a questionnaire (here still named page) that
consists of several questions; due to space reasons, only
the detailed definition of the first question is printed
completely. The example illustrates the specification
of the question Do you like surveys?, the set-
ting of its basic UI style by answer-type=’oc’,
as well as of its three answer alternatives Yes, No,
Neither...Nor. Furthermore, the definition of gen-
erated textual elements is exemplified in Figure 2 (E).
This is achieved by using <generate> tags, that can
be attributed by the desired number of questions of the
generated page (num-questions=’3’) and respective
answer alternatives (num-answers=’3’), by the text
lengths (question-/answer-length=’...) or
by the basic answer-style (as above). Regarding the
auto-generation, it is possible to either define the number
of questions (answers, text/answer length) strictly—e.g.
num-questions=’3’—or to specify a more flexible
range—e.g. num-questions=’2-5’—resulting in
randomly calculated minimum of two and maximum of
five questions.

String Templates String Template files provide the
HTML-counterparts for each of the defined knowledge
system components. When creating a prototype, one fram-
ing template is defined for the dialog as a whole—Figure 2
(F)—which contains the skeletal HTML-framework. From
there, sub-templates are referenced, that define the HTML
fragment of the respective components separately—in
the figure, $children$ means that the also depicted
template for the children of the dialog-content element—
which are pages—is inserted at this point. Splitting the
UI templates into framing- and sub-templates, according
to the corresponding component definitions, provides the
advantage that the separate component templates, e.g. for
a page, can be reused in several different prototypes.

CSS for UI styling The actual styling/design of the
components is finally specified using standard CSS. Most
basically, each knowledge system component can be
globally styled by a CSS class with a matching name—
e.g., common properties of all questions can be set by a
.question class. Yet, a more fine-granular styling is
also possible—additional, element-specific CSS classes or
IDs can be set within the template files, and then can also
be specified separately in the CSS file.

Interactivity With ProET not only static UI designs can
be created, but also elementary interactivity that would
be expected of an actually implemented knowledge sys-
tem. Examples are the interactive coloring of questions
(or solutions) according to their current status—e.g., an-
swered/suggested next (or established/excluded)—or hid-
ing parts of the questions until another defined question was
answered by the user. Such interactive behavior is achieved
by the usage of JavaScript in ProET. The required func-
tionality thereby is defined in separate JS files, whereas the
corresponding function calls are inserted in the String Tem-
plate file where needed—e.g., if a given element should
provide some interactivity on mouse-click, in the template
file like onClick="javascript:doSomething()
is inserted within the respective tag defining that element.

C

D

E

B

A

F

Figure 2: Partly auto-generated prototype of a questionary-like consultation system—manually entered questions (A),
auto-generated questions (B), the corresponding prototype specification (C), and an exemplary template file (F).

Extending ProET
Apart from just adapting existing system tem-
plates/designs, it is also possible to extend the tool
by defining entirely new elements. Thereby it has to
be differentiated between rather simple extensions—
such as new, XML-based prototype specifications—and
more sophisticated extensions regarding entirely novel
components—for example, progress indicators or the like
as separate elements.

Regarding the definition of a new prototype, simply a
new XML specification is created, using the available set
of tags and corresponding attributes. New/adapted String
Templates for components can be introduced by providing
a corresponding type attribute within the dialog tag and a
corresponding String Template file; the type-value then
is matched by a certain mechanism with potential templates
until the most appropriate one is found; due to space rea-
sons, the entire naming-and-matching mechanism is not ex-
plained in detail here. Finally, to modify not the basic form
of prototype but only its UI design, additional CSS files
may be created and just referenced in the <dialog...>
tag of the specification. This permits an easy exchange and
comparison of several design options.

The extension of the tool by entirely new components, on
the other hand, also is possible, yet more complex. This ad-
ditionally requires an adaption of the underlying Java code
(e.g., create new container classes for the element, adapt
the XML parsers to correctly parse that new elements, and
so on). The details of this entire extension process, how-
ever, would fall out of the scope of this paper.

4 Experiences with ProET
For a preliminary assessment of the capabilities of ProET,
we recreated knowledge systems that have been developed
by our department in the past. Thereby, the first goal was
to match those original systems as closely as possible.
Figures 3 and 4 present the outcome of replicating two
rather different systems; each figure shows both the origi-
nal system in the background (A) and the prototype in the
foreground (B). In the following, we first shortly introduce
each system and summarize the insights regarding its
replication with ProET. Based on that, we discuss the
scope and limitations of the tool in the subsequent section.

4.1 Knowledge System Replication
The Consultation on Rheumatic Disease, Figure 3, served
as the first case study. Based on the entered symptoms, that
system consults the user as to whether a rheumatic disease
is probable. Basically, a questionary-style is implemented,
meaning that the system presents more than one question
at a time to the user. Thereby, a certain coloring metaphor
is applied for supporting an answering of the questions in
the most reasonable sequence: Questions, that are already
answered are colored gray; not yet answered questions are
colored yellow, and the suggested next question is colored
green.

This coloring-based interactivity is also mirrored in the
prototype. There, JavaScript-based techniques are used to
change the coloring according to the user’s actions. Thus,
the basic system interaction and styling can be realized by
the means of the prototyping tool quite well. In some mi-
nor aspects, however, the prototype differs from the orig-
inal system. First, a seemingly more loosely assembled
interface appearance; whereas in the original system kind

of a (visible) table-based layout was used, the prototype
builds on a CSS-based layout, defining questions as sepa-
rate elements and rendering them without using tables at
all. If desired, however, it is with some effort possible,
to adapt the template files as to also use (visible) tables
for element arrangement. Furthermore, the original system
provides a progress bar at the top of the dialog, indicating
feedback on the proportion of already processed questions.
Such feedback components are currently not yet included
in ProET—by using JavaScript techniques, and by defin-
ing a corresponding component type and respective tem-
plates/styles, such or similar interactive feedback elements
could be added in the future.

As a second case study, we chose the Labour Legislation
Consultation, that in contrast to the rheumatic consultation
implements a fundamentally different, hierarchy-based in-
teraction style. There, the problem to solve—in this case
the question, whether an employment contract was termi-
nated legitimately—is displayed as the top element in the
hierarchy (see Figure 4) and its current rating (e.g., estab-
lished/suggested/excluded) is indicated by its coloring. On
the next hierarchical sub-layer, questions are displayed that
help to clarify that problem—in the example, the second
item from the top ”Compliance with form...”, and all items
on the same hierarchical level. If reasonable, those ques-
tions are further subdivided—for example, question ”Dis-
missal was not prohibited...” (third item from the top) is
subdivided into eight further questions, that describe more
detailed aspects of the parent question. Thus, the user can
choose, whether to answer the more abstract questions, or
rather the more refined ones. Based on the provided an-
swers, the system calculates ratings regarding the problem
statement; those ratings of the sub-questions are accumu-
lated into one rating, that is then presented for the parent
question—this propagation proceeds up through the com-
plete hierarchy to the main problem statement/solution.

Figure 4 shows, that this system type is matched
well by the tool. Also the necessary interactivity—
unfolding sub-hierarchies of questions by mouse-click,
coloring the questions depending on the answer, and
accumulating/propagating solution states throughout the
hierarchy—is supported. One minor difference between
the original system and the prototype again concerns the
interface design: First, the ”+” and ”-” signs—indicating
whether a question can be further subdivided—are not
integrated in ProET. Also, the coloring of the questions
does not end with the last character of the question as in
the original, but spans a defined width.

4.2 ProET: Scope and Limitations
First replication case studies so far revealed the need to
extend ProET with further components and templates, as
to be able to recreate the chosen initial set of knowl-
edge systems completely. Examples are aforementioned
feedback components (e.g., progress bars), or further op-
tions/templates regarding the general layout (e.g., table-
based, or multi-column layouts). Despite such minor short-
comings, ProET currently comprises a reasonable set of
widgets, as well as exemplary prototype specification files,
that enable the near-complete recreation of many knowl-
edge systems, developed by our department in the past.
Their replication, as well as adapting the given system
specifications and corresponding template/style files for ex-
amining alternative designs, was rather unproblematic.

A

B

Figure 3: Consultation on rheumatic diseases—an example of a standard questionary-style consultation system. Original
system (A, in german) and recreated prototype (B)

A

B

Figure 4: Labour legislation consultation—an example of a hierarchical-style consultation system. Original system (A, in
german) and recreated prototype (B).

Yet, the different KS types and by default available wid-
gets that can be prototyped without (major) tool exten-
sions is limited. This is due to the fact that we explic-
itly chose web-based consultation and documentation sys-
tems for defining the initial set of features supported by
the tool. Apart from the static widgets, so far also only
selected interaction forms are supported. This mainly en-
ables the creation of two basic system styles at the moment:
Questionary-based (Figure 3) and navigable hierarchy-
based (Figure 4). Those elementary styles can be adapted
with regards to various aspects, such as grouping questions
into questionnaires, optionally showing side panels that for
a direct navigation of the pages, the presentation of solu-
tions and their derivation states, or different forms of de-
signing header and footer elements.

We are aware, that there surely exist other equally rele-
vant knowledge system types and respective designs devel-
oped outside our department; yet, a more comprehensive
investigation of such external systems, the identification of
additional, fundamental KS components, and the appropri-
ate extension of ProET is subject of further research.

5 Conclusion
In this paper, we introduced the tool ProET for develop-
ing knowledge system prototypes. We introduced a tai-
lored process model for pattern-based, prototyping- and
usability-integrating KS Engineering, and we discussed po-
tential benefits as well as how the approach can be ap-
plied for pragmatically promoting and conducting respec-
tive projects.

First experiences with ProET revealed the need of its fur-
ther extension. Apart from systems created by our depart-
ment, also externally developed knowledge systems will be
examined as to identify further relevant components and in-
teractions; a more extensive classification of fundamental
elements—in terms of a widget ”language”/library—will
be defined, leading to an extension of ProET as to match
that ”language”. Also, prototyping with ProET is currently
purely text-based. Extending the tool to allow also for a
more visual form of prototyping—e.g., assembling proto-
type elements via drag & drop—is another interesting re-
search issue, as this provides the chance to render the pro-
totyping process per se much more intuitive.

Another open question is, whether usability evaluation
components can and should be directly integrated into
ProET (e.g., integrating some tailored logging mechanism
to track the ”usage” of the prototype). A further idea is in-
corporating tailored usability guidelines/heuristics into the
tool in the form of interactive questionnaires, that can be
optionally rendered integrated with the prototype, enabling
its rather straightforward evaluation.

Also, the direct linking of the d3web toolkit2 to ProET
is under way. d3web facilitates the development of deploy-
able knowledge bases, thereby supporting various problem-
solving methods (e.g., heuristic rules, or set-covering mod-
els). This coupling first enables the integration of deploy-
able knowledge bases with ProET, permitting an easy in-
vestigation, which KS type and corresponding (interaction)
design is suitable for a given knowledge base—e.g., devel-
oped in the course of actual projects—or also more gen-
erally, for a specific knowledge representation. The long-
term objective is to extend UI prototypes into productive
knowledge systems with no or minimum additional effort.

2http://d3web.sourceforge.net/

References
[1] J. Angele, D. Fensel, D. Landes, R. Studer, Developing

Knowledge-Based Systems with MIKE, Automated Soft-
ware Engg. 5 (4) (1998) 389–418.

[2] J. Baumeister, D. Seipel, F. Puppe, Agile development of
rule systems, in: Giurca, Gasevic, Taveter (eds.), Handbook
of Research on Emerging Rule-Based Languages and Tech-
nologies: Open Solutions and Approaches, IGI Publishing,
2009.

[3] Bäumer, Dirk and Bischofberger, Walter R. and Lichter,
Horst and Züllighoven, Heinz, User Interface Prototyping—
Concepts, Tools, and Experience, in: ICSE ’96: Proceed-
ings of the 18th international conference on Software engi-
neering, 1996, pp. 532–541.

[4] M. Beaudouin-Lafon, W. Mackay, Prototyping tools and
techniques, in: The human-computer interaction handbook:
fundamentals, evolving technologies and emerging applica-
tions, L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 2003,
pp. 1006–1031.

[5] C. Floyd, A Systematic Look at Prototyping, in: Approaches
to Prototyping, Springer-Verlag New York, Inc., 1984.

[6] M. Freiberg, J. Baumeister, A survey on usability evalua-
tion techniques and an analysis of their actual application,
Tech. Rep. 450, Institute of Computer Science, University
of Würzburg, Germany (2008).

[7] M. Freiberg, J. Baumeister, F. Puppe, Interaction pat-
tern categories—pragmatic engineering of knowledge-
based systems, in: Proceedings of the 6th Workshop on
Knowledge Engineering and Software Engineering (KESE-
2010) at the 33rd German Conference on Artificial Intelli-
gence, 2010.

[8] H. Lichter, M. Schneider-Hufschmidt, H. Züllighoven, Pro-
totyping in industrial software projects—bridging the gap
between theory and practice, in: ICSE ’93: Proceedings of
the 15th international conference on Software Engineering,
1993, pp. 221–229.

[9] Y.-K. Lim, E. Stolterman, J. Tenenberg, The anatomy of
prototypes: Prototypes as filters, prototypes as manifesta-
tions of design ideas, ACM Trans. Comput.-Hum. Interact.
15 (2) (2008) 1–27.

[10] J. Lin, J. A. Landay, Employing patterns and layers for
early-stage design and prototyping of cross-device user in-
terfaces, in: CHI ’08: Proceeding of the twenty-sixth an-
nual SIGCHI conference on Human factors in computing
systems, 2008, pp. 1313–1322.

[11] M. McCurdy, C. Connors, G. Pyrzak, B. Kanefsky, A. Vera,
Breaking the fidelity barrier: an examination of our current
characterization of prototypes and an example of a mixed-
fidelity success, in: CHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems, 2006,
pp. 1233–1242.

[12] M. R. McGee-Lennon, A. Ramsay, D. McGookin, P. Gray,
User evaluation of OIDE: a rapid prototyping platform for
multimodal interaction, in: EICS ’09: Proceedings of the 1st
ACM SIGCHI symposium on Engineering interactive com-
puting systems, ACM, New York, NY, USA, 2009, pp. 237–
242.

[13] T. Memmel, H. Reiterer, A. Holzinger, Agile methods and
visual specification in software development: a chance to
ensure universal access, in: UAHCI’07: Proceedings of the
4th international conference on Universal access in human
computer interaction, Springer-Verlag, Berlin, Heidelberg,
2007, pp. 453–462.

[14] J. Nielsen, Iterative User Interface Design, IEEE Computer
26 (11) (1993) 32–41.

