
MV-ALGEBRAS
A short tutorial

Daniele Mundici
Department of Mathematics “Ulisse Dini”, University of Florence

Viale Morgagni 67/A, 50134 Florence, Italy

mundici@math.unifi.it

May 26, 2007



2

Foreword

An MV-algebra A is an abelian monoid 〈A, 0,⊕〉 equipped with an operation ¬
such that ¬¬x = x, x⊕ ¬0 = ¬0 and, finally,

¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.(1)

An example of an MV-algebra is given by the real unit interval [0, 1] equipped
with the operations ¬x = 1−x and x⊕y = min(1, x+y). Valid equations yield
new valid equations by substituting equals for equals. Chang’s completeness
theorem states that in this way one obtains from the above equations every
valid equation in the MV-algebra [0, 1].

Boolean algebras stand to boolean logic as MV-algebras stand to  Lukasiew-
icz infinite-valued logic. A variable in boolean propositional logic represents a
{0, 1}-valued observable, and identically transforms the output of this observable
into a truth-value. In infinite-valued logic a variable transforms the output of a
real-valued bounded observable into a truth-value lying in the unit real interval
[0, 1]. The completeness theorem for  Lukasiewicz logic states that the rules of
Modus Ponens and substitution are sufficient to obtain all tautologies (i.e., all
equations of the form τ = ¬0 for τ an MV-term) in the infinite-valued calculus of
 Lukasiewicz starting from a few basic tautologies (originally due to  Lukasiewicz)
corresponding to the defining equations of MV-algebras.

The need for infinitely many truth-values naturally arises, e.g., in the Rényi-
Ulam game of Twenty Questions where some of the answers may be erroneous.
Here answers do not obey classical two-valued logic. As a matter of fact, two
equal answers to the same repeated question usually give more information than
a single answer. Using Chang completeness theorem, we shall see that the un-
derlying logic of Rényi-Ulam games is  Lukasiewicz infinite-valued propositional
logic.

Using the completeness theorem we shall also give a short geometric proof of
McNaughton theorem, representing free MV-algebras as piecewise linear func-
tions with integer coefficients. The only prerequisite to understand the proofs
of these main results is some acquaintance with the rudiments of elementary
algebra, topology, and finite-dimensional vector spaces.

In the final sections we shall briefly survey other fundamental results and
applications of MV-algebras, including (i) the extension to infinite-valued  Luk-
asiewicz logic of De Finetti’s no-Dutch-Book criterion for coherent probability
assignments; (ii) the categorical equivalence Γ between MV-algebras and lattice-
ordered abelian groups with order-unit; (iii) the relation between countable
MV-algebras and approximately finite-dimensional C∗-algebras of operators in
Hilbert space (iv) the class of σ-complete MV-algebras. We shall provide ad-
equate references where the interested reader will find complete proofs of all
these results.



Chapter 1

Games and MV-algebras

1.1 Antefact: Twenty Questions with Lies

The crucial problem of interpreting n truth-values when n > 2 vexed, among
others,  Lukasiewicz himself.

As shown in this tutorial, a simple interpretation can be given in the frame-
work of Rényi-Ulam games, the variant of the game of Twenty Questions where
n− 2 lies, or errors, are allowed in the answers. The case n = 2 corresponds to
the traditional game without lies. The game is described by Rényi’s [45, page
47] as a problem of fault-tolerant adaptive search with errors, as follows:

[. . . ] I made up the following version, which I called “Bar-kochba with
lies”. Assume that the number of questions which can be asked to figure
out the “something” being thought of is fixed and the one who answers
is allowed to lie a certain number of times. The questioner, of course,
doesn’t know which answer is true and which is not. Moreover the one
answering is not required to lie as many times as is allowed. For example,
when only two things can be thought of and only one lie is allowed, then
3 questions are needed [. . . ] If there are four things to choose from and
one lie is allowed, then five questions are needed. If two or more lies are
allowed, then the calculation of the minimum number of questions is quite
complicated [. . . ] It does seem to be a very profound problem [. . . ]

The minimization problem for the number of questions is also posed by Ulam
in his book “Adventures of a Mathematician” [51, p.281]:

Someone thinks of a number between one and one million (which is just
less than 220). Another person is allowed to ask up to twenty questions,
to each of which the first person is supposed to answer only yes or no.
Obviously the number can be guessed by asking first: Is the number in the
first half million? then again reduce the reservoir of numbers in the next
question by one-half, and so on. Finally the number is obtained in less
than log2(1000000). Now suppose one were allowed to lie once or twice,
then how many questions would one need to get the right answer?
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The Rényi-Ulam game is an interesting variant of the familiar game of Twenty
Questions. To fix ideas, let Carole (the responder) and Paul (the questioner)
be the two players. From Paul’s viewpoint it is immaterial whether wrong an-
swers arise just because Carole is unable to answer correctly, or because she is
(moderately) mendacious, or else Carole is always sincere and accurate, but dis-
tortion may corrupt up to e of the transmitted bits carrying her yes-no answers.
Thus Ulam–Rényi games are part of Berlekamp’s communication theory with
feedback [1].

Both Rényi and Ulam were interested in the situation where up to e of the
answers may be erroneous/mendacious/inaccurate. The problem is to minimize
the number q of bits transmitted by Carole, while still guaranteeing that the
original message can be recovered by Paul, even if up to e of the bits may
have been distorted. In the particular case when all questions are asked at
the outset, optimal strategies in Ulam–Rényi games are the same as optimal
e-error-correcting codes.

In this tutorial we shall not be interested in the optimization problem posed
by Rényi and Ulam. Interested readers may consult the surveys [7] and [42].
Rather, we intend to show that states of knowledge in every game form an MV-
algebra, just as states of knowledge in the game without lies form a boolean
algebra. Chang completeness theorem will be used to decide when two states of
knowledge are the same in any possible game.

1.2 First properties of MV-algebras

Definition 1.2.1 An MV-algebra 〈A,⊕,¬, 0〉 is a set A equipped with a binary
operation ⊕, a unary operation ¬ and a distinguished constant 0 satisfying the
following equations:

x⊕ (y ⊕ z) = (x⊕ y)⊕ z(1.1)

x⊕ y = y ⊕ x(1.2)

x⊕ 0 = x(1.3)

¬¬x = x(1.4)

x⊕ ¬0 = ¬0(1.5)

¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.(1.6)

A subalgebra of an MV-algebra A is a subset S of A containing the zero element
of A, closed under the operations of A—and equipped with the restriction to S
of these operations.

Examples. Equip the real unit interval [0, 1] = {x ∈ R | 0 ≤ x ≤ 1} with the
operations x⊕ y = min{1, x+ y} and ¬x = 1− x. Then [0, 1] = 〈[0, 1],⊕,¬, 0〉
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is an MV-algebra. For any MV-algebra A and set X, the set AX of all func-
tions f :X → A becomes an MV-algebra if the operations ⊕ and ¬ and the
element 0 are defined pointwise. Given a boolean algebra 〈A,∨,∧,−, 0, 1〉, then
〈A,∨,−, 0〉 is an MV-algebra, where ∨, − and 0 denote, respectively, the join,
the complement and the smallest element in A. The rational numbers in [0, 1],
and, for each integer n ≥ 2, the n-element set

Ln = {0, 1/(n− 1), . . . , (n− 2)/(n− 1), 1}(1.7)

yield examples of subalgebras of [0, 1].

Derived Operations. On any MV-algebra A we define 1 = ¬0. Further, the
operations � and 	 are defined by

x� y = ¬(¬x⊕ ¬y), and x	 y = x� ¬y.(1.8)

The following identities are immediate consequences of (1.4):

¬1 = 0(1.9)

x⊕ y = ¬(¬x� ¬y).(1.10)

Setting y = ¬0 in (1.6) we obtain:

x⊕ ¬x = 1.(1.11)

Direct inspection shows that in the MV-algebra [0, 1], x�y = max{0, x+y−1}
and x	 y = max{0, x− y}.

Notation. For notational simplicity, the ¬ operation will be assumed to be more
binding than any other operation, and the � operation will be more binding
than both ⊕ and 	.

Exercise 1.2.2 For any elements x and y in an MV-algebra A the following
conditions are equivalent:

(i) ¬x⊕ y = 1,

(ii) x� ¬y = 0,

(iii) y = x⊕ (y 	 x),

(iv) There is an element z ∈ A such that x⊕ z = y.

For any x, y ∈ A let us agree to write x ≤ y if x and y satisfy the above
equivalent conditions (i)-(iv). It follows that ≤ is a partial order, called the
natural order of A. Indeed, reflexivity is equivalent to (1.11), antisymmetry
follows from conditions (ii) and (iii), and transitivity follows from condition (iv).
An MV-algebra whose natural order is total is called an MV-chain. Note that,
by (iv), the natural order of the MV-chain [0, 1] coincides with the natural order
of the real numbers.
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Exercise 1.2.3 Let A be an MV-algebra. For each a ∈ A, ¬a is the unique
solution x of the simultaneous equations:{

a⊕ x = 1
a� x = 0 .(1.12)

Exercise 1.2.4 In every MV-algebra A the natural order ≤ has the following
properties:

(i) x ≤ y if and only if ¬y ≤ ¬x;

(ii) If x ≤ y then for each z ∈ A, x⊕ z ≤ y ⊕ z and x� z ≤ y � z;

(iii) If x� y ≤ z then x ≤ ¬y ⊕ z.

Proposition 1.2.5 Let A be an MV-algebra. Then the natural order deter-
mines a lattice structure over A. The join x ∨ y and the meet x ∧ y of the
elements x and y are given by

x ∨ y = (x� ¬y)⊕ y = (x	 y)⊕ y,(1.13)

x ∧ y = ¬(¬x ∨ ¬y) = x� (¬x⊕ y).(1.14)

Proof. We first settle (1.13). From (1.6), (1.11) and 1.2.4(ii) we get x ≤
(x	 y)⊕ y and y ≤ (x	 y)⊕ y. Suppose x ≤ z and y ≤ z. By (i) and (iii)
in 1.2.2, ¬x⊕ z = 1 and z = (z 	 y)⊕ y. From (1.6) we now have

¬((x	 y)⊕ y)⊕ z = (¬(x	 y)	 y)⊕ y ⊕ (z 	 y)

= (y 	 ¬(x	 y))⊕ ¬(x	 y)⊕ (z 	 y)

= (y 	 ¬(x	 y))⊕ ¬x⊕ y ⊕ (z 	 y) = (y 	 ¬(x	 y))⊕ ¬x⊕ z = 1.

Therefore, (x	 y)⊕ y ≤ z, which settles (1.13). We also get (1.14) from (1.13)
and 1.2.4(i).

In the particular case when A is an MV-chain we have

Lemma 1.2.6 In every MV-chain A we have:

(i) If x⊕ y < 1 then x� y = 0,

(ii) If x⊕ y = x⊕ z and x� y = x� z then y = z,

(iii) If x⊕ y = x⊕ z < 1 then y = z,

(iv) If x� y = x� z > 0 then y = z,

(v) x⊕ y = x iff x = 1 or y = 0,
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(vi) x⊕ y = x iff ¬x⊕ ¬y = ¬y,

(vii) If x⊕ y = 1 and x⊕ z < 1 then (x� y)⊕ z = (x⊕ z)� y.

Proof. (i), (ii) and (iii) are immediate. Condition (iv) follows from (iii) by
1.2.4(i). Condition (v) follows from (iii). From (v) one immediately obtains
(vi). Finally, to prove (vii), since by assumption ¬y ≤ x, we get ¬y⊕ (x�y)⊕z
= (¬y ∨ x) ⊕ z = x ⊕ z < 1 and ¬y ⊕ (y � (x ⊕ z)) = ¬y ∨ (x ⊕ z) = x ⊕ z,
whence (vii) follows from (iii).

Turning to the general case, an application of 1.2.4 immediately yields

Proposition 1.2.7 The following equations hold in every MV-algebra:

(i) x� (y ∨ z) = (x� y) ∨ (x� z),

(ii) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z).

Proposition 1.2.8 Every MV-algebra satisfies the equation

(x	 y) ∧ (y 	 x) = 0.(1.15)

Proof. Recalling (1.6) and the basic properties of ⊕ and � we get

(x	 y) ∧ (y 	 x) = (x	 y)� (¬(x	 y)⊕ (y 	 x)) =

x� ¬y � (y ⊕ ¬x⊕ (y 	 x)) = x� (¬x⊕ (y 	 x))� (¬(¬x⊕ (y 	 x))⊕ ¬y) =

(y 	 x)� (¬(y 	 x)⊕ x)� (¬(¬x⊕ (y 	 x))⊕ ¬y) =

y � ¬x� (¬(y 	 x)⊕ x)� ((x� ¬(y 	 x))⊕ ¬y) =

¬x� (x⊕ ¬(y 	 x))� y � (¬y ⊕ (x� (¬y ⊕ x))) =

¬x� (x⊕ ¬(y 	 x))� (x� (¬y ⊕ x))� (¬(x� (¬y ⊕ x))⊕ y) = 0,

since ¬x� x = 0.

Let A be an MV-algebra. For each x ∈ A, we let 0x = 0, and for each integer
n ≥ 0, (n+ 1)x = nx⊕ x.

Using 1.2.4 and Proposition 1.2.7 it is easy to prove

Exercise 1.2.9 Let x and y be elements of an MV-algebra A. If x ∧ y = 0
then for each integer n ≥ 0, nx ∧ ny = 0.
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Chapter 2

Homomorphisms and ideals

Given MV-algebras A and B we assume the reader knows the definition of
homomorphism h:A→ B. The kernel of a homomorphism h:A→ B is the set
Ker(h) = h−1(0) = {x ∈ A | h(x) = 0}. Also, the reader knows the definition
of h being injective (equivalently, an embedding), and surjective. When h is an
isomorphism of A onto B we write A ∼= B. An ideal of an MV-algebra A is a
subset I of A containing 0, closed under minorants and under the ⊕ operation.
The intersection of any family of ideals of A is still an ideal of A. For every
subset W ⊆ A, the intersection of all ideals I ⊇ W is said to be the ideal
generated by W . An ideal I of an MV-algebra A is proper if I 6= A. A proper
ideal I is prime if for all x, y ∈ A, either (x	 y) ∈ I or (y	x) ∈ I. Also, I is
maximal if it is proper and no proper ideal of A strictly contains I. We denote
by I(A), P(A) and M(A) the sets of ideals, prime ideals and maximal ideals,
of A, respectively.

For later use, we now collect some easily proved relations between ideals and
kernels of homomorphisms:

Exercise 2.0.10 Let A, B be MV-algebras, and h:A→ B a homomorphism.
Then the following properties hold:

(i) For each J ∈ I(B), h−1(J) = {x ∈ A |h(x) ∈ J} ∈ I(A). Thus in
particular, Ker(h) ∈ I(A).

(ii) h(x) ≤ h(y) iff x	 y ∈ Ker(h).

(iii) h is injective iff Ker(h) = {0}.

(iv) Ker(h) 6= A iff in B the zero element does not coincide with 1 (for short,
B is nontrivial).

(v) Ker(h) ∈ P(A) iff B is nontrivial and the image h(A), as a subalgebra of
B, is an MV-chain. �

9
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Definition 2.0.11 The distance function d:A×A −→ A is defined by

d(x, y) = (x	 y)⊕ (y 	 x).(2.1)

In the MV-algebra [0, 1], d(x, y) = |x−y|. In every boolean algebra the distance
function coincides with the symmetric difference operation. Recalling (1.2.2)-
(1.2.4) we also have

Exercise 2.0.12 In every MV-algebra A we have:

(i) d(x, y) = 0 iff x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, z) ≤ d(x, y)⊕ d(y, z),

(iv) d(x, y) = d(¬x,¬y),

(v) d(x⊕ s, y ⊕ t) ≤ d(x, y)⊕ d(s, t).

Hint for the proof of (iii) and (v). First note the identity ¬(x	 z)⊕ (x	 y)⊕
(y	 z) = (¬x∨¬y)⊕ (z ∨ y) ≥ ¬y⊕ y = 1. Hence, (x	 z) ≤ (x	 y)⊕ (y	 z).
In a similar way we obtain (z	x) ≤ (y	x)⊕ (z	 y), whence (iii) follows from
the monotonicity of ⊕ One similarly proves (v) by observing that ¬((x ⊕ s) 	
(y⊕ t))⊕ (x	 y)⊕ (s	 t) = ¬(x⊕ s)⊕ (x∨ y)⊕ (t∨ s) ≥ ¬(x⊕ s)⊕ x⊕ s = 1.

As an immediate consequence we have

Proposition 2.0.13 Let I be an ideal of an MV-algebra A. Then the binary
relation ≡I on A defined by x ≡I y iff d(x, y) ∈ I is a congruence relation.
(Stated otherwise, ≡I is an equivalence relation such that x ≡I s and y ≡I t
imply ¬x ≡I ¬s and x⊕ y ≡I s⊕ t.) Moreover, I = {x ∈ A | x ≡I 0}.

Conversely, if ≡ is a congruence on A, then {x ∈ A |x ≡ 0} is an ideal,
and x ≡ y iff d(x, y) ≡ 0. Therefore, the correspondence I 7→≡I is a bijection
from the set of ideals of A onto the set of congruences on A. �

Given x ∈ A, the equivalence class of x with respect to ≡I will be denoted
by x/I and the quotient set A/≡I by A/I. Since ≡I is a congruence, defining
on the set A/I the operations

¬(x/I) = ¬x/I and x/I ⊕ y/I = (x⊕ y)/I,(2.2)

the system 〈A/I,⊕,¬, 0/I〉 becomes an MV-algebra, called the quotient algebra
of A by the ideal I. Moreover, the correspondence x 7→ x/I defines a homo-
morphism hI from A onto the quotient algebra A/I, which is called the natural
homomorphism from A onto A/J . Note that Ker(hI) = I.

From the identity Ker(h) = Ker(hKer(h)) we immediately get
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Proposition 2.0.14 For any two MV-algebras A and B, and homomorphism h
of A onto B, there is an isomorphism f :A/Ker(h) → B such that f(x/Ker(h)) =
h(x) for all x ∈ A.

Proposition 2.0.15 If A is an MV-chain, then all proper ideals of A are prime.

The proof immediately follows from 2.0.10(v).

Proposition 2.0.16 Let A be an MV-algebra and J be an ideal A. Then the
map I 7→ hJ(I) determines an inclusion preserving one-one map from the set of
ideals of A containing J onto the set of ideals of the quotient MV-algebra A/J .
The inverse map also preserves inclusions, and is given by taking the inverse
image h−1

J (K) of each ideal K of A/J .

Proof. Let I be an ideal of A with J ⊆ I. Since hJ is onto A/J and Ker(hJ) =
J ⊆ I, by 2.0.10 (ii) we have hJ(I) ∈ I(A/J) and h−1

J (hJ(I)) ⊆ I. We also
have I = h−1

J (hJ(I)). On the other hand, by 2.0.10 (i), h−1
J (K) ∈ I(A) for each

K ∈ I(A/J). It is now sufficient to note that J = h−1
J ({0}) ⊆ h−1

J (K) and
hJ(h−1

J (K)) = K.

Remark: One immediately sees that, when A is an MV-chain the set I(A) is
totally ordered by inclusion.

The next proposition will play an important role in the proof of Chang
Subdirect Representation Theorem.

Proposition 2.0.17 Let A be an MV-algebra. If a ∈ A and a 6= 0 then
there is a prime ideal P of A such that a 6∈ P .

Proof. By hypothesis, a 6∈ {0}. Then by Zorn Lemma there is an ideal I
of A which is maximal with respect to the property that a 6∈ I. We claim
that I is a prime ideal. Let x and y be elements of A, and suppose that both
x 	 y 6∈ I and y 	 x 6∈ I (absurdum hypothesis). Then the ideal generated
by I and x 	 y (i.e., the smallest ideal containing I and x 	 y) must contain
the element a; stated otherwise, a ≤ s ⊕ p(x 	 y) for some s ∈ I and some
integer p ≥ 1. Similarly, there is an element t ∈ I and an integer q ≥ 1
such that a ≤ t ⊕ q(y 	 x). Let u = s ⊕ t and n = max(p, q). Then u ∈ I,
a ≤ u⊕ n(x	 y) and a ≤ u⊕ n(y 	 x). Hence by (1.14) and (1.15), together
with Proposition 1.2.7(ii) and 1.2.9, we have a ≤ (u⊕n(x	y)) ∧ (u⊕n(y	x))
= u⊕ (n(x	 y) ∧ n(y 	 x)) = u, whence a ∈ I, a contradiction.

2.1 Subdirect products

The direct product
∏
i∈I Ai of a family {Ai}i∈I of MV-algebras is the MV-

algebra obtained by endowing the set-theoretical cartesian product of the Ai’s
with the pointwise MV-operations. The zero element of

∏
i∈I Ai is the func-

tion i ∈ I 7→ 0i ∈ Ai. For each i ∈ I, the map πi:
∏
i∈I Ai → Ai is defined by
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stipulating that, for all f ∈
∏
i∈I Ai, πi(f) = f(i). Each πi is a homomorphism

onto Ai, called the ith projection function. In particular, for each MV-algebra
A and each nonempty set X, the MV-algebra AX is the direct product of the
family {Ax}x∈X , where Ax = A for all x ∈ X. An MV-algebra A is a subdi-
rect product of a family {Ai}i∈I of MV-algebras if there exists an injective
homomorphism h:A→

∏
i∈I Ai such that for each i ∈ I, the composite map

πi ◦ h is a homomorphism onto Ai. If A is a subdirect product of the family
{Ai}i∈I , then A is isomorphic to the subalgebra h(A) of

∏
i∈I Ai; moreover,

the restriction of each projection to h(A) must be a surjective mapping.

The following result is a particular case of a theorem of Universal Algebra,
due to Birkhoff. We give the proof for the sake of completeness.

Theorem 2.1.1 An MV-algebra A is a subdirect product of a family {Ai}i∈I
of MV-algebras if and only if there is a family {Ji}i∈I of ideals of A such that

(i) Ai ∼= A/Ji for each i ∈ I

and

(ii)
⋂
i∈I Ji = {0}.

Proof. Let {Ji}i∈I be a family of ideals of A satisfying (i) and (ii). Let
h:A→

∏
i∈I Ai be defined by (h(x))i = x/Ji. It follows from (ii) that Ker(h) =

{0}, whence, by 2.0.10(iii), h is injective. Since for each i ∈ I and α ∈ A/Ji
there is a ∈ A such that α = a/Ji, it follows that πi ◦ h maps A onto A/Ji.
Thus, A is a subdirect product of the family {A/Ji}i∈I , as required.

Conversely, suppose that A is a subdirect product of MV-algebras {Ai}i∈I .
Let h:A→

∏
i∈I Ai be the corresponding 1-1 homomorphism, and, for each

i ∈ I, let Ji = Ker(πi ◦ h). By Proposition 2.0.14, Ai ∼= A/Ji for each i ∈ I.
If x ∈

⋂
i∈I Ji, then πi(h(x)) = 0 for each i ∈ I. Then h(x) = 0, and since h is

injective, x = 0. In conclusion,
⋂
i∈I Ji = {0}, and conditions (i) and (ii) hold

true.

The following result, known as Chang Subdirect Representation Theorem,
is a main ingredient in the proof of Chang Completeness Theorem 7.0.18.

Theorem 2.1.2 Every MV-algebra A is a subdirect product of MV-chains.

Proof. By Theorem 2.1.1 and 2.0.10(v), A is a subdirect product of MV-
chains if there are prime ideals {Pi}i∈I of A with

⋂
i∈I Pi = {0}. Now recall

Proposition 2.0.17.



Chapter 3

MV-equations

We assume the reader has a definition of term in the language of MV-algebras,
for short, MV-term. We write τ(x1, . . . , xn) to mean that the variables occurring
in the term τ are included in the set {x1, . . . , xn}. We shall use the symbols �,
	, ∨, ∧ and 1 to write MV-terms in abbreviated form, in the light of (1.8)-(1.14).

Let A be an MV-algebra, τ an MV-term in the variables x1, . . . , xt, and
assume a1, . . . , at are elements of A. Substituting an element ai ∈ A for all
occurrences of the variable xi in τ , for i = 1, . . . , t, and interpreting the symbols
0, ⊕ and ¬ as the corresponding operations in A, we obtain an element of A,
denoted τA(a1, . . . , at).

An MV-equation (for short, an equation) in the variables x1, . . . , xt is a pair
(τ, σ) of MV-terms in the variables x1, . . . , xt. Following tradition, we shall write
τ = σ instead of (τ, σ). An MV-algebra A satisfies the MV-equation τ = σ, in
symbols, A |= τ = σ, if τA(a1, . . . , at) = σA(a1, . . . , at) for any a1, . . . , at ∈ A.

The following lemma is a particular case of a general well known fact, to the
effect that equations are preserved under subalgebras, quotients and products.

Exercise 3.0.3 Let A, B, Ai (for all i ∈ I) be MV-algebras. We then have

(i) If A |= τ = σ then S |= τ = σ for each subalgebra S of A.

(ii) If h:A→ B is a homomorphism, then for each MV-term τ in the vari-
ables x1, . . . , xs and each s-tuple (a1, . . . , as) of elements of A we have
τB(h(a1), . . . , h(as)) = h(τA(a1, . . . , as)). In particular, when h maps A
onto B, from A |= τ = σ it follows that B |= τ = σ.

(iii) If Ai |= τ = σ for each i ∈ I, then
∏
i∈I Ai |= τ = σ.

Corollary 3.0.4 Let A be a subdirect product of MV-algebras {Ai}i∈I ; let τ = σ
be an MV-equation in the variables x1, . . . , xs. Then A |= τ = σ if and only if
Ai |= τ = σ for each i ∈ I.

From Theorem 2.1.1 we obtain:

13
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Corollary 3.0.5 An MV-equation is satisfied by all MV-algebras if and only if
it is satisfied by all MV-chains.

Corollary 3.0.5 greatly simplifies the proof of many equations, e.g., those in
Proposition 3.0.6 below. In the next chapter we will prove the stronger result
stating that an equation holds in all MV-algebras if and only if it holds in the
algebra [0, 1].

Proposition 3.0.6 The following equations hold in every MV-algebra A:

x⊕ y ⊕ (x� y) = x⊕ y,(3.1)

(x	 y)⊕ ((x⊕ ¬y)� y) = x,(3.2)

(x� y)⊕ ((x⊕ y)� z) = (x� z)⊕ ((x⊕ z)� y).(3.3)

Proof. By Corollary 3.0.5, A may be assumed to be a chain. If x⊕ y = 1, then
(3.1) follows by (1.5). If x⊕ y < 1, then (3.1) follows from Lemma 1.2.6(i). For
a proof of (3.2), if x ≤ y then x 	 y = 0 and x = x ∧ y = (x ⊕ ¬y) � y; if
y < x then (x	 y)⊕ (x ∧ y) = (x	 y)⊕ y = x ∨ y = x.

In order to prove (3.3) we first settle the following equation:

(x� y)⊕ ((x⊕ y)� z) = (x⊕ y)� ((x� y)⊕ z).(3.4)

This equation can be proved arguing by cases: if x⊕ y = 1 then both members
coincide with (x � y) ⊕ z. If x ⊕ y < 1 then by Lemma 1.2.6(i) both members
coincide with (x⊕ y)� z. This settles (3.4).

From (1.4) and (1.10) we also get:

¬((x� y)⊕ ((x⊕ y)� z)) = (¬x� ¬y)⊕ ((¬x⊕ ¬y)� ¬z).(3.5)

We are now in a position to prove (3.3).
Case 1 : x⊕ y ⊕ z < 1.

Then since A is a chain, by Lemma 1.2.6(i), both members of (3.3) are equal
to 0.
Case 2 : ¬x⊕ ¬y ⊕ ¬z < 1.

Same as Case 1, recalling (3.5).
There remains to consider
Case 3 : x⊕ y ⊕ z = 1 and ¬x⊕ ¬y ⊕ ¬z = 1.
Subcase 3.1 : x ⊕ y = 1 and x ⊕ z < 1, or x ⊕ y < 1 and x ⊕ z = 1. It is
enough to consider the case x ⊕ y = 1 and x ⊕ z < 1. Then x � z = 0, and
(3.3) becomes (x� y)⊕ z = (x⊕ z)� y, which follows from Lemma 1.2.6(vii).
Subcase 3.2 : x⊕ y = x⊕ z = 1. Then (3.3) becomes

(x� y)⊕ z = (x� z)⊕ y.(3.6)

This equation certainly holds when x� y = 0 or x� z = 0. Indeed, suppose
x � y = 0. Since x ⊕ y = 1, it follows from 1.2.3 that x = ¬y, whence from
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y = ¬x ≤ z we obtain (x � y) ⊕ z = z = y ∨ z = (¬y � z) ⊕ y = (x � z) ⊕ y.
Similarly, (3.6) holds when x� z = 0.

We next claim that if one of the members of (3.6) is equal to 1 then so is
the other. Assume, for instance, (x � y) ⊕ z = 1. Since ¬x ⊕ ¬y ⊕ ¬z = 1 is
equivalent to x� y� z = 0, it follows from 1.2.3 that z = ¬(x� y) = ¬x⊕¬y.
Hence, by Proposition 1.2.7, (x� z)⊕ y = (x� (¬x⊕¬y))⊕ y = (x∧¬y)⊕ y =
(x⊕ y) ∧ (¬y ⊕ y) = 1.

To complete our analysis of Subcase 3.2 we may restrict to the case when
(x�y)⊕z < 1, (x�z)⊕y < 1, x�y > 0, x�z > 0. Then by Lemma 1.2.6(vii)
we obtain x � (z ⊕ (x � y)) = (x � z) ⊕ (x � y) > 0, and x � (y ⊕ (x � z)) =
(x� y)⊕ (x� z). This settles (3.6) in the light of Lemma 1.2.6(iv).
Subcase 3.3 : x⊕ y < 1 and x⊕ z < 1.

Then by Lemma 1.2.6(i), x � y = 0 and x � z = 0, i.e., ¬x ⊕ ¬y = 1
and ¬x⊕ ¬z = 1. Using (3.5) and arguing as in Subcase 3.2 (with ¬x, ¬y, ¬z
instead of x, y, z) we conclude that (3.3) also holds in this case.
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Chapter 4

The role of abelian `-groups

In this chapter we shall give a self-contained proof of Chang completeness the-
orem [5, 6] stating that if an equation holds in the unit real interval [0, 1], then
the equation holds in every MV-algebra. 1 This will give us the opportunity of
introducing the Γ functor, a major tool in the study of MV-algebras.

4.1 The Γ functor

A partially ordered abelian group is an abelian group 〈G,+,−, 0〉 endowed with
a partial order relation ≤ having the following translation invariance property

if x ≤ y then t+ x ≤ t+ y,(4.1)

for all x, y, t ∈ G. The positive cone G+ ofG is defined byG+ = {x ∈ G | 0 ≤ x}.
If the order relation is total, (i.e., when G = G+ ∪ −G+), then G is a totally
ordered abelian group. When the order structure of G determines a lattice
structure, G is called a lattice-ordered abelian group, abbreviated `-group. In
any `-group we have

t+ (x ∨ y) = (t+ x) ∨ (t+ y) and t+ (x ∧ y) = (t+ x) ∧ (t+ y).(4.2)

For each element x of an `-group G, the positive part x+, the negative part x−,
and the absolute value |x| of x are defined as follows:

x+ = 0 ∨ x, x− = 0 ∨ −x, |x| = x+ + x− = x ∨ −x.(4.3)

An order-unit u of G is an element 0 ≤ u ∈ G such that for each x ∈ G, there
is an integer n ≥ 0 such that |x| ≤ nu.

Definition 4.1.1 Let G be an `-group. For any element u ∈ G, u > 0 we let

[0, u] = {x ∈ G | 0 ≤ x ≤ u},
1The completeness of the infinite-valued  Lukasiewicz calculus was first proved by [48] using

heavy syntactical machinery.

17
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and for each x, y ∈ [0, u],

x⊕ y = u ∧ (x+ y), and ¬x = u− x.

The structure 〈[0, u],⊕,¬, 0〉 is denoted Γ(G, u).

Proposition 4.1.2 Γ(G, u) is an MV-algebra.

Proof. We shall only prove that Γ(G, u) satisfies (1.6). For all x, y ∈ [0, u] we
have ¬(¬x ⊕ y) ⊕ y = y ⊕ ¬(y ⊕ ¬x) = u ∧ (y + (u − (u ∧ (y + u − x)))) =
u ∧ (y + u+ (−u ∨ (−y − u+ x))) = u ∧ ((y + u− u) ∨ (y + u− y − u+ x)) =
u ∧ (y ∨ x) = y ∨ x = x ∨ y. This shows that x and y are interchangeable.

Notation. Following common usage, we let R,Q,Z denote the additive groups
of reals, rationals, integers, with the natural order. In the particular case when
G = R, Γ(R, 1) coincides with the MV-algebra [0,1]. We also have Q ∩ [0, 1]
= Γ(Q, 1). Recalling Definition (1.7), for each integer n ≥ 2, we have Ln =
Γ(Z 1

n−1 , 1), where Z 1
n−1 = { z

n−1 | z ∈ Z}.

Definition 4.1.3 Let G and H be `-groups. A function h:G→ H is said to
be an `-group homomorphism if for each x, y ∈ G, h(x − y) = h(x) − h(y),
h(x ∨ y) = h(x) ∨ h(y) and h(x ∧ y) = h(x) ∧ h(y). Suppose that 0 < u ∈ G
and 0 < v ∈ H, and let h:G→ H be an `-group homomorphism such that
h(u) = v. Then h is said to be a unital `-homomorphism.

Letting Γ(h) be the restriction of h to the unit interval [0, u], then Γ(h) is
a homomorphism from Γ(G, u) into Γ(H, v).

As an immediate consequence of the definition we have

Proposition 4.1.4 Let A denote the category whose objects are pairs 〈G, u〉
with G an `-group and u a distinguished order-unit of G, and whose morphisms
are unital `-homomorphisms. Then Γ is a functor from A into the category MV
of MV-algebras. �

This result will be strengthened below in Theorem 6.0.15 and, finally, in
11.1.1.

4.2 Good sequences

Let A be an MV-algebra. Then a sequence a = (a1, a2, . . .) of elements of A is
called good if for each i = 1, 2 . . ., ai⊕ai+1 = ai, and there is an integer n such
that ar = 0 for all r > n. Instead of writing a = (a1, . . . , an, 0, 0, ...) we shall
often abbreviate a = (a1, . . . , an). Thus we have identical good sequences

(a1, . . . , an) = (a1, . . . , an, 0m),(4.4)

where 0m denotes an m-tuple of zeros. For each a ∈ A, the good sequence
(a, 0 . . . , 0, . . .) will be denoted by (a).
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For totally ordered MV-algebras, Lemma 1.2.6(v) yields the following char-
acterization of good sequences:

Proposition 4.2.1 Each good sequence of an MV-chain A has the form

(1p, a) for some integer p ≥ 0 and a ∈ A.(4.5)

Lemma 4.2.2 Suppose that A ⊆
∏
iAi is the subdirect product of a family

{Ai}i∈I of MV-algebras. A sequence a = (a1, . . . , an . . .) of elements of A is a
good sequence if and only if for each i ∈ I the sequence (πi(a1), . . . , πi(an), . . .)
is a good sequence in Ai, and there is an integer n0 ≥ 0 such that whenever
n > n0 then for all i ∈ I, πi(an) = 0.

Proof. Indeed, an ⊕ an+1 = an is the same as πi(an ⊕ an+1) = πi(an) for each
i ∈ I.

Lemma 4.2.3 Let A be an MV-algebra. If a = (a1, . . . , an, . . .) and b =
(b1, . . . , bn, . . .) are good sequences of A, then so is c = (c1, . . . , cn, . . .) given by
cn = an ∨ bn for each n.

Proof. There is an integer n0 such that cn = 0 for all n > n0. By Theorem 2.1.2,
A is a subdirect product of a family {Ci}i∈I of MV-chains. For each i ∈ I
the sequences ai = (πi(a1), . . . , πi(an), . . .) and bi = (πi(b1), . . . , πi(bn), . . .) are
good sequences of Ci. Hence, by Proposition 4.2.1, ai = (1p, αi) and bi =
(1q, βi), where αi and βi are in Ci. Therefore, πi(cn) = 1 if n ≤ max{p, q} and
πi(cn) = 0 if n > max{p, q}+ 1. For n = max{p, q}+ 1, we have πi(cn) = αi if
p > q, πi(cn) = βi if p < q and πi(cn) = max{αi, βi} when p = q. Consequently,
letting ci = (πi(c1), . . . , πi(cn), . . .) it follows that ci is a good sequence for
each i ∈ I, whence we conclude that c is a good sequence of A.

Example. For every real number α ≥ 0 let bαc denote the greatest integer ≤ α,
and 〈α〉 = α− bαc. Then α can be written as

α = 1 + . . .+ 1 + 〈α〉+ 0 + 0 + . . .

with bαc many consecutive 1’s. Considered as elements of the MV-algebra [0, 1],
the above summands α1, α2, . . . of α satisfy αi ⊕ αi+1 = αi for every integer
i ≥ 1. For 0 ≤ β ∈ R, let similarly

β = β1 + . . .+ βm−1 + 〈β〉+ 0 + . . . ,

where β1 = . . . = βm−1 = 1 = α1 = . . . = αn−1, 0 = αn+1 = αn+2 = . . .,
and 0 = βm+1 = βm+2 = . . .. Let γ = α + β. Then γ = γ1 + γ2 + . . . , where
γ1 = . . . = γn+m−2 = 1, γn+m−1 = 〈α〉 ⊕ 〈β〉, γn+m = 〈α〉 � 〈β〉, and 0 =
γn+m+1 = γn+m+2 = . . . . In a more compact notation, for each i = 1, 2, . . .,
the summand γi is given by

γi = αi⊕ (αi−1�β1)⊕ (αi−2�β2)⊕ . . .⊕ (α2�βi−2)⊕ (α1�βi−1)⊕βi.(4.6)

Equations (4.6) and (4.4) motivate the following
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Definition 4.2.4 For any two good sequences

a = (a1, . . . , an) and b = (b1, . . . , bm),

their sum c = a + b is defined by c = (c1, c2, . . .), where for all i = 1, 2, . . .

ci = ai ⊕ (ai−1 � b1)⊕ . . .⊕ (a1 � bi−1)⊕ bi.(4.7)

Since ap = bq = 0 whenever p > n and q > m, then cj identically vanishes for
each j > m+ n. The notation c = (c1, . . . , cn+m) = (a1, . . . , an) + (b1, . . . , bm)
is self-explanatory.

The following immediate consequence of (4.7) will be frequently used to
compute the sum of two good sequences in an MV-chain:

(1p, a) + (1q, b) = (1p+q, a⊕ b, a� b).(4.8)



Chapter 5

Chang monoid MA

Since by equation (3.1), (a⊕b, a�b) is a good sequence, applying Theorem 2.1.2
and Lemma 4.2.2 together with (4.8), we immediately get that the sum of two
good sequences is a good sequence. We denote by MA the set of good sequences
of A equipped with addition.

Proposition 5.0.5 Let A be an MV-algebra A. Then MA is an abelian
monoid with the following additional properties:

(i) (cancellation) For any good sequences a, b, c, if a + b = a + c then
b = c.

(ii) (zero-law) If a + b = (0) then a = b = (0).

Proof. By (4.7), a + (0) = a, addition is commutative, and the zero-law holds.
To prove associativity, by Theorem 2.1.2 we can safely assume A to be totally
ordered. By Proposition 4.2.1 and equation (3.3) in Proposition 3.0.6, letting
a = (1p, a), b = (1q, b), and c = (1r, c), we have the identities

(b + a) + c = (1p+q+r, a⊕ b⊕ c, (a� b)⊕ ((a⊕ b)� c), a� b� c)

= (1p+q+r, a⊕ b⊕ c, (a� c)⊕ ((a⊕ c)� b), a� b� c) = b + (a + c).

Similarly, to prove cancellation, avoiding trivialities, assume that a, b and c
are different from 1. If q = r, then by Lemma 1.2.6(ii), b = c, and we are done.
If q < r − 1 then from the identity (1p+q, a⊕ b, a� b) = (1p+r, a⊕ c, a� c) we
get a � b = 1, i.e., a = b = 1, which is a contradiction. If q = r − 1 then
a� b = a and a⊕ b = 1, which is impossible because these two equalities imply
that b = 1. The cases corresponding to r < q are similarly shown to lead to
contradiction.

Proposition 5.0.6 Let a = (a1, . . . , an) and b = (b1, . . . , bm) be good se-
quences in an MV-algebra A. Recalling (4.4) assume, without loss of generality,
m = n. Then the following are equivalent:

21
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(i) There is a good sequence c such that b + c = a;

(ii) bi ≤ ai for all i = 1, . . . , n.

Proof. (i) ⇒ (ii) is immediate from (4.7). (ii) ⇒ (i). In the light of
Theorem 2.1.2, we can safely assume A to be totally ordered. Using now (ii)
and (vi) in Lemma 1.2.6, we see that (¬bn, . . . ,¬b1) is a good sequence. Let
us denote by c = a − b the good sequence obtained by dropping the first n
terms in (a1, . . . , an)+(¬bn, . . . ,¬b1). We shall prove that c+b = a. By (4.5),
a = (1p, a) and b = (1q, b). To avoid trivialities assume both a and b to be
different from 0 and from 1. Then q ≤ p. Upon rewriting b = (1q, b, 0p−q),
from n = p+ 1 we get (¬bn, . . . ,¬b1) = (1p−q, ¬b, 0q), and hence c is obtained
by dropping the first p+ 1 terms from (12p−q, a⊕ ¬b, a	 b).

In case b ≤ a, we have a ⊕ ¬b = 1, c = (1p−q, a 	 b) and c + b =
(1p, (a	 b)⊕ b, (a	 b)� b) = (1p, b ∨ a, 0) = (1p, a) = a.

In case b > a, we have p > q, a 	 b = 0, c = (1p−q−1, a ⊕ ¬b) and
c + b = (1p−1, a⊕ ¬b⊕ b, (a⊕ ¬b)� b) = (1p, a ∧ b) = (1p, a) = a.

Definition 5.0.7 Given any two good sequences a and b of A we write

b ≤ a iff b and a satisfy the equivalent conditions of 5.0.6.(5.1)

Proposition 5.0.8 Let a and b be good sequences.
(i) If b ≤ a then there is a unique good sequence c such that b + c = a. This
c, denoted a− b, is given by

c = (a1, . . . , an) + (¬bn, . . . ,¬b1) omitting the first n terms.(5.2)

(ii) In particular, for each a ∈ A we have

(¬a) = (1)− (a).(5.3)

(iii) The order is translation invariant, in the sense that b ≤ a implies b + d ≤
a + d for every good sequence d.

Proof. By an easy adaptation of the proof of Proposition 5.0.6, together with
Proposition 5.0.5 (i).

Proposition 5.0.9 Let a = (a1, . . . , an, . . .) and b = (b1, . . . , bn, . . .) be good
sequences of an MV-algebra A.
(i) The sequence a ∨ b = (a1 ∨ b1, . . . , an ∨ bn, . . .) is good, and is in fact the
supremum of a and b with respect to the order defined by (5.1).
(ii) Analogously, the good sequence a ∧ b = (a1 ∧ b1, . . . , an ∧ bn, . . .) is the
infimum of a and b.
(iii) For all a, b, c ∈ A we have

((a) + (b)) ∧ (1) = (a⊕ b).(5.4)

Proof. By Lemma 4.2.3, together with Proposition 5.0.6(ii) and (4.7).



Chapter 6

Chang `-group GA

From the cancellative abelian monoid MA, enriched with the lattice-order of
Proposition 5.0.9, one can routinely obtain an `-group GA such that MA is
isomorphic, both as a monoid and as a lattice, to the positive cone GA+. To
this purpose, recalling the construction of Z from N, two pairs (a,b) and (a′,b′)
of good sequences are called equivalent iff a + b′ = a′ + b. Transitivity of this
relation follows from Proposition 5.0.5(i).

Notation. The equivalence class of the pair (a,b) shall be denoted by [a,b].

Definition 6.0.10 Let GA = 〈GA, 0,+,−〉 be the set of equivalence classes
of pairs of good sequences, where the zero element 0 is the equivalence class
[(0), (0)], addition is defined by [a,b] + [c,d] = [a + c,b + d], and subtraction is
defined by −[a,b] = [b,a]. One immediately sees that GA is an abelian group.
GA is called the enveloping group of A.

We shall now equip GA with a lattice-order. Let (a,b) be a pair of good
sequences of the MV-algebra A. By Proposition 5.0.6(i), (a,b) has an equivalent
pair of the form (e, (0)) if and only if a ≥ b. Let M ′

A be the submonoid of GA
given by the equivalence classes of pairs (e, (0)), for all good sequences e. Since
the map e 7→ (e, (0)) induces an isomorphism of the monoid MA onto M ′

A, we
shall freely identify the two monoids MA and M ′

A.

Definition 6.0.11 Let A be an MV-algebra, and a,b, c,d ∈MA. We say that
the equivalence class [c,d] dominates the equivalence class [a,b], in symbols,

[a,b] � [c,d],

if [c,d] − [a,b] = [e, (0)] for some good sequence e ∈ MA. Equivalently,
[a,b] � [c,d] iff a + d ≤ c + b, where ≤ is the partial order of MA given by
Definition 5.0.7.

Proposition 6.0.12 Let A be an MV-algebra.

23
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(i) The relation � is a translation invariant partial order, making GA into
an `-group. Specifically, for any two pairs of good sequences (a,b) and (c,d)
the supremum of their equivalence classes in GA is the equivalence class of
((a+d)∨ (c+b),b+d), where ∨ is the supremum in MA given by Proposition
5.0.9. In symbols,

[a,b]
∨

[c,d] = [(a + d) ∨ (c + b),b + d].(6.1)

(ii) Similarly, the infimum [a,b]
∧

[c,d] is given by

[a,b]
∧

[c,d] = [(a + d) ∧ (c + b),b + d].(6.2)

(iii) The map a ∈ MA 7→ [a, (0)] is an isomorphism between the monoid
MA, equipped with the lattice-order of Proposition 5.0.9, and the positive cone
GA

+ = {[c,d] ∈ GA | c ≥ d}, with the lattice-order inherited by restriction of
�.

Proof. (i) The proof that � is a translation invariant partial order on GA
is routine. In order to prove (6.1), first of all, from the inequality a + d ≤
(a+d)∨(c+b) we obtain [a,b] � [(a+d)∨(c+b),b+d], and, symmetrically,
[c,d] � [(a + d) ∨ (c + b),b + d]. Thus, [(a + d) ∨ (c + b),b + d] is an upper
bound of [a,b] and [c,d]. To show that this is indeed the least upper bound,
for any upper bound [p,q] we must find an element z ∈MA such that

p + d + b = z + q + ((a + d) ∨ (b + c)).(6.3)

By hypothesis, there are x,y ∈ MA such that p + b = x + q + a and p + d =
y + q + c. Let z ∈ MA be such that x + y = z + (x ∨ y); the existence of z
is ensured by the inequality x + y ≥ x ∨ y, using Propositions 5.0.6 and 4.2.3.
One now establishes (6.3) using the cancellation property of MA, as follows:

2p + b + d = 2q + a + c + x + y = 2q + a + c + z + (x ∨ y)

= z + q + ((x + q + a + c) ∨ (y + q + a + c))

= z + q + ((p + b + c) ∨ (p + d + a)) = p + z + q + ((b + c) ∨ (d + a)).

One similarly proves (ii). Finally, (iii) is an immediate consequence of the
definitions of the partial orders ≤ and �.

Definition 6.0.13 The `-group GA with the above lattice-order is called the
Chang `-group of the MV-algebra A.1

Recalling Definition 6.0.11 we immediately have

Proposition 6.0.14 The element [(1), (0)] is an order-unit of the `-group GA.

1Chang [6] only dealt with the totally ordered case.
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A crucial property of the `-group GA is given by the following result:

Theorem 6.0.15 For every MV-algebra A the correspondence a 7→ ϕA(a) =
[(a), (0)] defines an isomorphism from A onto Γ(GA, [(1), (0)]).

Proof. One first notes that [(0), (0)] � [a,b] � [(1), (0)] iff there is c ∈ A such
that (a,b) is equivalent to ((c), (0)). Thus, ϕA maps A onto the unit interval
[[(0), (0)], [(1), (0)]] of GA. It is easy to see that this map is one-one. By (5.4),
ϕA(a ⊕ b) = (ϕA(a) + ϕA(b))

∧
[(1), (0)], and by (5.3), ϕA(¬a) = [(1), (0)] −

ϕA(a). Therefore, ϕA is a homomorphism of A onto Γ(GA, ((1), (0))).

Remark: An MV-algebra A is a chain if and only if GA is totally ordered.
Indeed, if A is totally ordered, then it follows from Proposition 5.0.6(i) that
MA is totally ordered, and this implies that GA is a totally ordered group. The
converse is an immediate consequence of Theorem 6.0.15.
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Chapter 7

Chang completeness

An `-group term in the variables x1, . . . , xt is a string of symbols over the al-
phabet {x1, . . . , xn, 0,−,+,∨,∧, (, )} which is obtained by the same inductive
procedure used in Chapter 1.4 to define MV-terms. Let τ be an `-group term in
the variables x1, . . . , xt and G be an `-group. Substituting an element ai ∈ G
for all occurrences of the variable xi in τ , for i = 1, . . . , t, and interpreting the
symbols 0, −, +, ∨ and ∧ as the corresponding operations in G, we obtain an
element of G, denoted τG(a1, . . . , at). To each MV-term τ in the n variables
x1, . . . , xn we associate an `-group term τ̂ in the n+ 1 variables (x1, . . . , xn, y),
according to the following stipulations: (i): x̂i = xi, for each i = 1, . . . , n; (ii):
0̂ = 0; (iii): ¬̂σ = (y − σ̂); (iv): ̂(ρ⊕ σ) = (y ∧ (ρ̂+ σ̂)). The mapping τ 7→ τ̂
is well defined. We then have a purely syntactic counterpart of the mappings
(G, u) 7→ Γ(G, u) and A 7→ GA, in a sense that is made precise by the following
two propositions:

Proposition 7.0.16 If G is a totally ordered abelian group, 0 < u ∈ G, 0 ≤
g1, . . . gn ≤ u and A = Γ(G, u), then for every MV-term τ(x1, . . . , xn) we have
τA(g1, . . . , gn) = τ̂G(g1, . . . , gn, u).

Proof. By a trivial induction on the number of operation symbols in τ .

Conversely, upon identifying (via Proposition 6.0.12(iii)) MA with the posi-
tive cone of GA, we have:

Proposition 7.0.17 If A is an MV-chain, a1, . . . , an ∈ A, G = GA is the
Chang `-group of A, and τ(x1, . . . , xn) is an MV-term, then the one-term good
sequence (τA(a1, . . . , an)) ∈ G coincides with τ̂G((a1), . . . , (an), (1)).

Proof. By induction on the number of operation symbols in τ , using equations
(5.2) and (5.3).

Theorem 7.0.18 (Completeness Theorem) An equation holds in [0, 1] if and
only if it holds in every MV-algebra.
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Proof. Suppose an equation fails in an MV-algebra A. By Corollary 3.0.5, A
may be assumed to be totally ordered. Using the distance function, we may
safely assume that the equation has the form τ(x1, . . . , xn) = 0. There are
elements a1, . . . , an ∈ A such that τA(a1, . . . , an) > 0. Letting GA denote
the Chang `-group of A, and again using the identification MA = G+

A, by
Proposition 7.0.17 we have 0 < τ̂GA((a1), . . . , (an), (1)) ≤ (1). It is not hard
to see that GA, is torsion-free. Let S be the subgroup of GA generated by
the elements (a1), . . . , (an), (1), with the induced total order. Then S can be
identified with the free abelian group Zr, for some integer r ≥ 1; its elements
(a1), . . . , (an) and (1) are concretely represented as vectors a1, . . . ,an,an+1 ∈
Zr; the positive cone of S is a submonoid P of Zr such that P ∩ −P = {0}
and P ∪ −P = Zr. If r = 1 we are done. So let’s assume r > 1. For any
two vectors a,b ∈ Zr we write a ≤P b iff b − a ∈ P. Let us display the
subterms σ1, σ1, . . . , σt of τ̂ as follows: σ1 = x1, . . . , σn = xn, σn+1 =
y, σn+2, σn+3, . . . , σt−1, σt = τ̂ . We can safely assume that the list contains
the zero term. The map x1 7→ a1, . . . , xn 7→ an, y 7→ an+1 uniquely extends to
an interpretation σj 7→ aj (j = 1, . . . , t) of each subterm of τ̂ into an element of
the totally ordered group T = (Zr,≤P ). In particular we have the inequalities

0 ≤P a∀j ≤P an+1, 0 <P at = τ̂T (a1, . . . ,an,an+1).(7.1)

Let ω be a permutation of {1, . . . , t} such that aω(1) ≤P aω(2) ≤P . . . ≤P aω(t).
By a small perturbation we shall replace ≤P by another total order ≤P ′ over
Zr in such a way that the above inequalities still hold with respect to ≤P ′ , and
the ordered group (Zr,≤P ′) is isomorphic to a subgroup of the additive group
R with the natural order. To this purpose, for each j = 2, . . . , t, let the vector
dj ∈ P be defined by dj = aω(j) − aω(j−1). Embedding Zr into Rr, we define
the positive and the negative span of the dj ’s as follows:

P ∗ = {
t∑

j=2

λjdj | 0 ≤ λj ∈ R}, N∗ = −P ∗.(7.2)

Then P ∗ is a closed and convex subset of Rr, and whenever a ∈ P ∗ and 0 ≤ α ∈
R, then αa ∈ P ∗. It is not hard to see that 0 is an extremal point of P ∗; (For
otherwise, let I be a minimal subset of {1, . . . , t} such that 0 =

∑
j∈I λjdj for

some 0 < λj ∈ R and dj 6= 0. Then the tuple (λj)j∈I is uniquely determined
up to multiplication by a constant factor 0 < γ ∈ R. Since 0 ≤P dj ∈ Zr,
there are integers 0 < nj such that 0 =

∑
j∈I njdj . By definition of P , for

each i ∈ I we have di ≤P
∑
j∈I njdj , whence di = 0, a contradiction). A

similar argument shows that

P ∗ ∩ P = P ∗ ∩ Zr and P ∗ ∩N∗ = {0}.(7.3)

For any i, j = 1, . . . , t we then obtain ai ≤P aj iff aj − ai ∈ P ∗.

Claim.1 For some vector g ∈ Rr, the hyperplane πg = {v ∈ Rr | g · v = 0}
separates P ∗ and N∗, in the sense that πg ∩ P ∗ = {0} = πg ∩N∗.

1This is a classical result. We include a proof for the sake of completeness. As usual, we
denote by a · b the scalar product of vectors a,b ∈ Rr.
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The proof is by induction on r. The basis is trivial. For the induction step,
assume r ≥ 2 and let δ be the boundary of the unit ball in Rr. Then for
some vector w ∈ δ, the line ρw = {λw | λ ∈ R} is such that ρw ∩ P ∗ = {0}.
(For otherwise, since by (7.3) P ∗ contains no line, each vector u ∈ δ belongs
to exactly one of P ∗ and N∗; recalling that P ∗ and N∗ are closed, we obtain
a partition of δ into disjoint closed sets δ ∩ P ∗ and δ ∩N∗, thus contradicting
the connectedness of δ). Let P ∗w be the projection of P ∗ into the (r − 1)-
dimensional subspace πw = {v ∈ Rr | w · v = 0}. Then P ∗w can be identified
with a closed convex subset of Rr−1 having 0 as an extremal point, and such
that whenever a ∈ P ∗w and 0 ≤ α ∈ R, then αa ∈ P ∗w. By induction hypothesis,
there is a hyperplane π in Rr−1 such that π ∩ P ∗w = {0}. It follows that the
hyperplane π + ρw of Rr intersects P ∗ only in 0, as required. Picking now a
vector g = (γ1, . . . , γr) ∈ Rr such that π + ρw = πg, our claim is settled.

As an equivalent reformulation of our claim, in the light of the convexity of
P ∗, we can safely write g ·dj > 0 for all nonzero vectors dj , j = 2, . . . , t. By
continuity, and recalling that r > 1, g can be assumed to be in general position,
in the sense that γ1, . . . , γr are linearly independent over Q. Let

π+
g = {(ζ1, . . . , ζr) ∈ Rr |

∑
γiζi ≥ 0}, and P ′ = π+

g ∩ Zr.

Then from (7.2) it follows that P ∗ ⊆ π+
g and N∗ ⊆ −π+

g . Consider now the
totally ordered abelian group T ′ = (Zr,≤P ′). By (7.3), for all i, j = 1, . . . , t we
have

ai ≤P aj iff aj − ai ∈ P ∗ iff aj − ai /∈ N∗ iff ai ≤P ′ aj .(7.4)

For any vectors b1, . . . ,bn,bn+1 ∈ Zr, the map x1 7→ b1, . . . , xn 7→ bn, y 7→
bn+1 uniquely extends to an interpretation σj 7→ bj , j = 1, . . . , t of all
subterms σj of τ̂ into elements bj of T ′. In the particular case when b1 =
a1, . . . ,bn+1 = an+1, arguing by induction on the number of operation symbols
occurring in σj , from (7.4) we obtain bj = aj for all j = 1, . . . , t; indeed, all
inequalities in (7.1) are still valid with respect to the new total order relation
≤P ′ over Zr. From the independence of the γ’s over Q, it follows that the
totally ordered group T ′ is isomorphic to the subgroup U = Zγ1 + . . . +
Zγr of R generated by γ1, . . . , γr, with the natural order. An isomorphism is
given by the map θ : b = (b1, . . . , br) ∈ T ′ 7→ b · g = b1γ1 + · · · + brγr ∈ U.
Since the inequalities in (7.1) are preserved under isomorphism, letting κ1 =
θ(a1), . . . , κn = θ(an), κn+1 = θ(an+1), . . . , κt = θ(at) we get 0 ≤ κ1, . . . , κn ≤
κn+1 and 0 < κt ≤ κn+1. Assuming without loss of generality, κn+1 = 1, we
have κt = τ̂U (κ1, . . . , κn, 1) > 0. By Proposition 7.0.16, in the MV-algebra
B = Γ(U, 1) we have τB(κ1, . . . , κn) 6= 0, whence, a fortiori, the equation
τ = 0 fails in the MV-algebra [0, 1]. 2

2By continuity, the equation fails in the rational MV-algebra Q ∩ [0, 1]. Taking the least
common multiple of the denominators of the rational numbers witnessing that the equation
fails in Q ∩ [0, 1], we also see that the equation fails in some finite chain Ln.



30 CHAPTER 7. CHANG COMPLETENESS



Chapter 8

Free MV-algebras

Knowledge of free MV-algebras is a useful tool for a full understanding of “conse-
quence” in infinite-valued  Lukasiewicz logic (see [10, Section 4, especially 4.6]),
and to evaluate the computational complexity of the tautology problem (Theo-
rem 13.1.1 below). Further, the ideal theory of free MV-algebras yields charac-
terization theorems for important classes of MV-algebras. As will be shown in
this chapter, free MV-algebras consist of McNaughton functions. The latter are
a source of geometric inspiration not only for MV-algebras, but also for algebras
arising from other many-valued logics, and even for `-groups.

8.1 McNaughton theorem

Let κ ≥ 1 be a cardinal. For each ordinal α < κ let [0, 1]κ be the (Tichonov)
κ-cube and πα: [0, 1]κ → [0, 1] be the αth projection (= coordinate, = iden-
tity) function. As a routine consequence of the completeness theorem, the free
MV-algebra Freeκ over κ many free generators is the smallest MV-algebra of
[0, 1]-valued functions defined over [0, 1]κ containing all projections πα, for each
ordinal α < κ, and closed under the pointwise operations. Moreover, the πα’s
constitute a free generating set in Freeκ. To get a concrete realization of the
free MV-algebra Freeκ we prepare

Definition 8.1.1 Let n = 1, 2, 3, . . .. A function f : [0, 1]n → [0, 1] is a Mc-
Naughton function over [0, 1]n if f is continuous with respect to the natural
product topology of [0, 1]n, and there are linear polynomials l1, . . . , lu with in-
teger coefficients, such that for each y ∈ [0, 1]n there is j ∈ {1, . . . , u} with
f(y) = lj(y). For λ an infinite cardinal, we say that g: [0, 1]λ → [0, 1] is a
McNaughton function over [0, 1]λ if there are ordinals α(1) < . . . < α(m) < λ
and a McNaughton function f over [0, 1]m such that for each x ∈ [0, 1]λ, g(x)
= f(xα(1), . . . , xα(m)).

We next give a short, self-contained and constructive proof of McNaughton
representation Theorem [30] for free MV-algebras.
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Theorem 8.1.2 The free MV-algebra Freeκ coincides with the MV-algebra of
McNaughton functions over [0, 1]κ with pointwise operations.

Proof. Let f : [0, 1]n → [0, 1] be a McNaughton function. Let l1, . . . , lu be the
distinct linear pieces of f . Our aim is to show that f is obtainable from the
identity functions πi via a finite number of applications of the operations ¬ and
⊕. To this purpose, for any permutation σ of the set {1, . . . , u}, we define the
closed convex polyhedron Pσ by

Pσ = {x ∈ [0, 1]n | lσ(1)(x) ≤ lσ(2)(x) ≤ · · · ≤ lσ(u)(x)}.

Let Ω be the set of permutations σ such that Pσ is n-dimensional. A moment’s
reflection shows that [0, 1]n =

⋃
σ∈Ω Pσ. Let ξ be an arbitrary permutation in

Ω. In the interior int Pξ of Pξ the above inequalities are strict, lξ(1) < lξ(2) <
· · · < lξ(u). Therefore, there is a unique index i = iξ such that f coincides with
lξ(iξ) over int Pξ; thus, lξ(i) > f for i > iξ and lξ(i) < f for i < iξ. Let the
function gξ: [0, 1]n → R be defined by gξ =

∧
i≥iξ lξ(i).

Claim 1. gξ ≤ f over [0, 1]n.
Otherwise (absurdum hypothesis) we have

gξ(z) > f(z) for some z ∈ [0, 1]n.(8.1)

By continuity, we can assume z to lie in the interior of Pζ for some permutation
ζ ∈ Ω. Pick x ∈ int Pξ, and let w be the unit vector in Rn in the direction
from x to z. Let the two points X and Z in Rn+1 be given by X = (x, f(x))
and Z = (z, f(z)). By (8.1) for all small ε > 0 the point (x+ εw, f(x+ εw)) lies
above the segment XZ, and the point (z−εw, f(z−εw)) lies below the segment
XZ. There certainly exists a point y with x < y < z such that (y, f(y)) lies
on XZ and (y + ηw, f(y + ηw)) lies below XZ for all small η > 0. It follows
that f at y coincides with some lj such that lj(x) > f and lj(z) < f , thus
contradicting (8.1).

Having thus settled our claim we have the identity f =
∨
ξ∈Ω

∧
i≥iξ lξ(i) over

the whole cube [0, 1]n. To complete the proof of the theorem is suffices to settle
the following

Claim 2. Let the function l: [0, 1]n → R be given by l(x) = b+m1x1+· · ·+mnxn,
with m1, . . . ,mn, b ∈ Z. Let l] = (l ∨ 0) ∧ 1. Then l] is obtainable from the
projections πi via a finite number of applications of the operations ¬ and ⊕.

We argue by induction on m = |m1| + . . . + |mn|. The basis m = 0
is trivial. For the induction step, it is no loss of generality to assume that
max(|m1|, . . . , |mn|) = |m1|.
Case 1. m1 > 0.

Then let h = l− x1. By induction the claim holds for both functions h] and
(h+ 1)]. We shall prove the identity

l] = (h+ x1)] = (h] ⊕ x1)� (h+ 1)] ∀x = (x1, . . . , xn) ∈ [0, 1]n.(8.2)
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Firstly, the identity trivially holds for all x is such that h(x) > 1, or h(x) < −1.
Secondly, if h(x) ∈ [0, 1], then h](x) = h(x), and (h(x) + 1)] = 1. Since
0 ≤ x1 ≤ 1, (h(x) + x1)] = h(x) ⊕ x1, which establishes (8.2). Finally, if
h(x) ∈ [−1, 0], then h](x) = 0 and (h(x) + 1)] = h(x) + 1, whence (8.2) follows
from the identities (h(x)+x1)] = max(0, h(x)+x1) = max(0, x1 +h(x)+1−1)
= x1 � (h(x) + 1).

Case 2. m1 < 0
Then one simply notes that ¬(1 − g)] = 1 − (1 − g)] = g] and that, by the

analysis of Case 1, (1− g)] is obtainable from the projection functions πi via a
finite number of applications of the operations ¬ and ⊕.

Exercise 8.1.3 Modifying the proof of Proposition 2.0.17, prove the Subdirect
Representation Theorem for `-groups. From the proof of Chang completeness
theorem extract a proof that if an equation fails in an `-group, then it fails in
the additive group R of real numbers, and also fails in Z. Modify the proof of
McNaughton theorem to show that the free n-generator abelian `-group precisely
consists of all continuous real-valued piecewise linear homogeneous functions
over Rn, where each piece has integer coefficients.
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Chapter 9

Logic of Rényi-Ulam games

Closing a circle of ideas, let us inspect a round of Ulam game: Initially, the two
players agree to fix a nonempty finite set S of numbers, called the search space,
and an integer e ≥ 0. Then Carole chooses a number xsecret ∈ S. Paul must
find xsecret by asking yes-no questions. Carole is allowed at most e errors/lies
in her answers. By definition, a question is a subset of S: thus for instance,
the question ′′is xsecret odd?′′ is nothing else but the set of all odd numbers
in S. We shall conveniently identify ourselves with Paul. Carole’s answers are
propositions of either form “yes, (it is even)”, or “no, (it is odd)”. Our current
state of knowledge about xsecret is uniquely determined by recording Carole’s
answers.

9.1 The MV-algebra of states of knowledge

In the familiar game of Twenty Questions, a complete record R of our knowledge
of xsecret is provided by the current set of Carole’s answers—two equal answers
carrying the same information as one. To see when two records are equivalent,
let the function R#:S → {0, 1} tell us the current truth-value of every z in the
search space S, as recorded by R. In detail, the truth-value of z is the quantity

1 −̇ |{answers ∈ R falsified by z}|,(9.1)

where −̇ denotes truncated addition, and |X| denotes the number of elements
of X. Stated otherwise, for each z ∈ S, R#(z) = 1 iff z does not falsify any
answer; R#(z) = 0 iff z falsifies at least one answer. Then it is immediately
seen that two records R and P are equivalent iff R# = P#. For example, the
record R = {xsecret is odd, xsecret is between 4 and 8} is equivalent to the record
{xsecret is either 5 or 7}.

Also in the game with e ≥ 1 lies, our knowledge about xsecret is given by the
record R of Carole’s answers. However, R is now a multiset—because repeated
equal answers to the same repeated question carry more information than single
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answers.1 Thus each answer A has a multiplicity, telling us how many times
it occurs in the multiset R. The union R′ ^ R′′ of two records is the record
obtained by giving each answer A ⊆ S a multiplicity equal to the sum of its
multiplicity in R′ plus its multiplicity in R′′. With each record R we associate
the truth-value function

R#:S → {0, 1
e+ 1

,
2

e+ 1
, . . . ,

e

e+ 1
, 1}

measuring (in units of e + 1) the distance of each z ∈ S from the condition of
being discarded as a candidate for xsecret . Thus for every z ∈ S we have

R#(z) = 1 −̇ |{answers ∈ R falsified by z}|
e+ 1

.(9.2)

As in the error-free case, equivalence of two records R and P is defined by

R ≡ P iff R#(x) = P#(x) ∀x ∈ S.(9.3)

For notational simplicity, the equivalence class [R] of R shall be denoted by r.

Definition 9.1.1 A state of knowledge in a Rényi-Ulam game over the search
space S with e lies is an equivalence class r of records. The initial state of
knowledge 1 is the equivalence class of the empty record (Paul has received no
answers yet.) The incompatible state 0 is the equivalence class of the record
containing e + 1 copies of the empty set. We let KS,e denote the set of states.
Given states of knowledge r = [R] and p = [P ] we write r ≤ p (read: “r is more
restrictive than p”) iff R# ≤ P#.

Direct inspection shows that KS,e has an interesting algebraic structure:

Proposition 9.1.2 1. The binary relation ≤ is a partial order over the set
KS,e of states;

2. The union operation ^ of records induces a well defined operation � on
KS,e with an operation by the stipulation

r � p = [R]� [P ] = [R ^ P ].

The � operation is commutative, associative, and the initial state 1 is the
neutral element for �; further r � 0 = 0 for all r ∈ KS,e;

3. Among all states of knowledge in KS,e that are incompatible with a state r
there is a least restrictive one, denoted ¬r; thus, r�¬r = 0, and whenever
a state s satisfies s� r = 0 then s ≤ ¬r;

1To see this, let us assume that Carole can only lie at most once. Suppose we ask twice the
following question “is the secret number even ?” . If Carole’s answer is “yes” in both cases,
then xsecret must be even. However, after the first answer we are not certain that xsecret is
even.
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4. The ¬ operation equips the abelian monoid KS,e with an involution: r =
¬¬r; further, ¬0 = 1 and ¬(¬r � s)� s = ¬(¬s� r)� r;

5. The structure 〈KS,e,�,¬, 1〉 is an MV-algebra.2

6. The partial order over KS,e is definable in terms of the operations � and
¬ by r ≤ p iff r � ¬p = 0.

9.2 Main results

As we have just seen, the involutive monoidal structure of KS,e is sufficiently rich
to reconstruct the order structure of states of knowledge. One is then naturally
led to study the class of MV-algebras KS,e, where S and e range over all possible
Rényi-Ulam games.

The following nontrivial consequence of Chang Completeness Theorem gives
a natural semantics for the infinite-valued  Lukasiewicz calculus [50]:

Theorem 9.2.1 Given MV-terms σ = σ(x1, . . . , xn) and τ = τ(x1, . . . , xn),
the following conditions are equivalent for the equation σ = τ :

(i) For every finite set S and integer e ≥ 0, the equation is valid in the
MV-algebra KS,e (thus, letting the xi range over all possible states in the
Rényi-Ulam game over search space S with e errors.)

(ii) For every integer e ≥ 0 and singleton set {j}, the equation holds in the
MV-algebra K{j},e.

(iii) The equation holds in the standard MV-algebra over the rational unit in-
terval 〈Q ∩ [0, 1],�,¬, 1〉, where, as usual, x� y = max(0, x+ y − 1).

(iv) The equation holds in every MV-algebra.

Proof. The equivalence (i) ⇔ (ii) follows from 3.0.3(iii), because KS,e is a
product of |S| many copies of the chain K{j},e = Le+2. For the equivalence
(ii) ⇔ (iii) one notes that the final part of the proof of Chang Completeness
Theorem 7.0.18 shows that, if an equation fails in Q∩[0, 1], then it fails in a finite
subalgebra of the form Le+2, for some e = 0, 1, 2, . . .. Finally, the equivalence
(iii) ⇔ (iv) is a reformulation of Chang Completeness Theorem.

Examples. The equation x� x = x, holds in all Rényi-Ulam games with e = 0
and does not hold when e > 0. The weaker equation x�x�x = x�x precisely
holds in all Rényi-Ulam games with one lie. By adding suitable variants of the
above equations one can thus formalize Rényi-Ulam games with e = 2, 3, . . .
errors.

2The MV-algebra KS,e is here defined in terms of ¬,� and 1, rather than on ¬,⊕ and
0. All readers who have followed us thus far will easily reconstruct the appropriate (¬,�, 1)-
redefinition of MV-algebra, by a suitable dualization of the (¬,⊕, 0)-axioms (1.1)-(1.6)
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Corollary 9.2.2 There is a Turing machine deciding which equations are valid
in the MV-algebra KS,e for all possible S and e.

Proof. We shall describe a Turing machine T yielding a decision procedure for
the problem. Using the distance function, it is enough to consider equations of
the form σ = 1. T consists of two parts, T1 and T2, where T1 lexicographically
enumerates all proofs obtainable from the MV-axioms by repeated application
of the familiar rules of equational logic (substitutions of equals by equals) and
halts iff a proof of σ = 1 is obtained. On the other hand, T2 enumerates all
n-tuples (r1, . . . , rn) of rational numbers in [0,1], and halts iff there is an n-tuple
(r1, . . . , rn) such that σ(r1, . . . , rn) 6= 1. By the above theorem, precisely one of
T1 and T2 halts within a finite number of steps. In case T1 halts, by (iv) above,
the equation σ = 1 is valid in all Rényi-Ulam games; in the other case, by (iii)
the equation is not.

One can now pose the problem of giving a game semantics to various many-
valued logics in terms of suitable variants of the Rényi-Ulam game. One may
also ask what is the relation between the above algorithm to test equivalence of
two MV-terms—and “MV-algebraic equational logic”, i.e., the usual substitu-
tion of equals for equals, starting from the defining equations of MV-algebras.
From a general result of Birkhoff in Universal Algebra, together with Chang
completeness theorem, it follows that MV-algebraic equational logic yields a
method to compute all valid equations. As explained in [10, Chapter 4], writ-
ing x → y instead of ¬x ⊕ y one may ask which (¬,→)-terms are tautologies
(i.e., are equivalent to 1) in  Lukasiewicz infinite-valued propositional logic; then
Chang completeness shows that Modus Ponens and Substitution are all we need
to compute every tautology.



Chapter 10

Betting on [0, 1]-events

In the remaining sections of this tutorial we will proceed at a more
rapid pace. For complete proofs the interested reader will be ad-
dressed to the relevant literature.

A natural framework for introducing probability in classical and non-classical
logic is as follows: Suppose two players Ada (the bookmaker) and Blaise (the
bettor) wager money on the occurrence of the events described by formulas
ψ1, . . . , ψn. Thus, after Ada has assigned a “betting odd” βi ∈ [0, 1] to each ψi,
Blaise chooses “stakes” σ1, . . . , σn ≥ 0, and pays Ada σiβi, with the stipulation
that he will get σiV (ψi) from her in the “possible world” V where the truth-
value V (ψi) is known. If the ψi are two-valued, Blaise will receive the full stake
σi if V evaluates ψi to 1, and otherwise Blaise will receive nothing.

While real bookmakers never accept “reverse bets”, Ada is willing to do
so: in other words, she also accepts negative stakes σi, to the effect that she
must pay Blaise |σi|βi, to receive from him |σi|V (ψi) in the possible world
V . No matter the signs of the stakes σi, the total balance of Ada’s “book”
{〈ψi, βi〉 | i = 1, . . . , n} is given by the formula

n∑
i=1

σi(βi −V (ψi)),(10.1)

where money transfers are oriented in such a way that “positive” means “Blaise-
to-Ada”.

As a matter of practical necessity, Ada will arrange her book in such a way
that Blaise cannot choose stakes σ1, . . . , σn ensuring him to win money in every
possible world V . The non-existence of real numbers σ1, . . . , σn ∈ R ensuring
0 >

∑n
i=1 σi(βi − V (ψi)) for every V , is known as De Finetti’s (no-Dutch-

Book) coherence criterion for probability assignments. As shown by De Finetti
himself, [11, pp. 311-312], [12, pp. 85-90] this criterion is necessary and sufficient
for the βi to be extendable to a finitely additive measure on the (boolean algebra
generated by these) formulas.
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De Finetti conceived of the no-Dutch-Book criterion as a tool for dealing with
probability without making any assumption on the repeatability of events, and
on their logic-algebraic structure. Thus it is quite natural to investigate Dutch
Books for non-tarskian semantics. In his paper [41] Paris asks for a generaliza-
tion of the no-Dutch-Book theorem to  Lukasiewicz infinite-valued propositional
calculus. The problem is quite interesting, because (i) infinite-valued events,
and their possible worlds, can be defined no less precisely in  Lukasiewicz logic
than yes-no events are definable in two-valued logic, and (ii) we do bet and
reason on such events very often.

Thus for instance, the “possible worlds” for the event ψ “Philip will soon be
appointed Foreign Minister” are all instants V between “today” and “two years
from now”. In the possible world V1 = “today”, the truth-value V1(ψ) is 1, in
the possible world V2 = “two years from now” V2(ψ) = 0, and in all intermediate
possible worlds the truth-value is given by, say, linear interpolation. The precise
definition of how V assigns a truth-value to ψ must be explicitly stated in Ada’s
book. If Ada’s belief of the event ψ is β = 1/10 and Blaise sets a stake of
1000 euro, then Blaise pays now 100 euro, and he will receive 1000 × V (ψ)
euro once V (ψ) is known. Precisely as in the classical yes-no case, the stake is
paid proportionally to Ada’s belief β and is returned, in the opposite direction,
proportionally to the truth-value V (ψ); when Blaise bets on several items in
Ada’s book, the total balance is still given by (10.1).

In the  Lukasiewicz infinite-valued calculus, letting Form(X1, . . . , Xk) denote
the set of MV-terms (called here “formulas”) in the variables X1, . . . , Xk, a
“possible world” is rigorously defines as a valuation, i.e., a function

V : Form(X1, . . . , Xk) → [0, 1]

such that V (¬φ) = 1 − V (φ), and V (φ ⊕ ψ) = min(1,V (φ) + V (ψ)). Two
formulas φ, ψ ∈ Form(X1, . . . , Xk) are equivalent if V (φ) = V (ψ) for all val-
uations V . The equivalence class of φ is denoted fφ. The set of equivalence
classes of formulas over k variables, equipped with the operations ¬fφ = f¬φ
and fφ ⊕ fψ = fφ⊕ψ, forms an MV-algebra denoted Lk. 1

The following result [37] solves Paris’ problem:

Theorem 10.0.3 Let ψ1, . . . , ψn ∈ Form(X1, . . . , Xk) and β1, . . . , βn ∈ [0, 1].
Then the following are equivalent:

(i) The set {〈ψi, βi〉 | i = 1, . . . , n} satisfies the condition

for no σ1, . . . , σn ∈ R, 0 >
n∑
i=1

σi(βi−V (ψi)) for every valuation V .

(ii) βi = s(fψi) for some state s of Lk i.e., a map s:Lk → [0, 1] satisfying the
conditions of normality: s(1) = 1, and additivity: s(f ⊕ g) = s(f) + s(g)
whenever f � g = 0.

1It is not hard to see that Lk is the free MV-algebra over k generators.



41

One can similarly deal with infinite sets of formulas, and with the case when
the formulas ψi are subject to logical constraints, such as “ψ1 implies ψ2”, or
“ψ1 is incompatible with ψ2”. When the βi are rational numbers and the ψi are
subject to a finite number of logical constraints, there is an algorithm to decide
whether or not Ada’s book is Dutch.
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Chapter 11

Γ, with applications

In every `-group G with order-unit u one automatically has such desirable prop-
erties as the existence of maximal `-ideals and of unit-preserving `-homomor-
phisms into the reals. Further, (G, u) is representable as an `-group of (possibly
nonstandard) real-valued functions; when the intersection of its maximal `-ideals
is zero, (G, u) can be identified with an `-group of continuous real-valued func-
tions over a compact Hausdorff space, with the constant function 1 in place of u.
In general, `-groups do not have these properties—but they form an equational
class; by contrast, the archimedean property of the order-unit is not even defin-
able in first-order logic. MV-algebras are doubly blessed: they are defined by a
small number of simple equations, and they also enjoy all dividends offered by
order-units: existence of maximal ideals and of homomorphisms into [0, 1], func-
tional representation, and much more. This wealth of structure in MV-algebras
is an effect of their being essentially the same as `-groups with order-unit.

11.1 MV-algebras and `-groups with order-unit

The categorical equivalence Γ. As we have seen in Proposition 4.1.4, Γ is a
functor from unital `-groups into MV-algebras. Conversely, for any MV-algebra
A, let Λ(A) be the Chang `-group of A with the one-term good sequence 1 = (1)
as a distinguished positive element. By the Subdirect Representation Theorem,
together with our analysis of Chang `-group, Λ(A) is a unital `-group. Given
MV-algebras A and B and a homomorphism θ:A→ B, let

Λ(θ): Λ(A) → Λ(B)

be the canonical extension of the map sending any good sequence (x1, x2, . . .) ∈
MA into the good sequence (θ(x1), θ(x2), . . .) ∈ MB . In this way we obtain a
functor Λ from MV-algebras into unital `-groups.

The following strengthening of Theorem 6.0.15 was originally proved in [31].
A simpler proof can be found in [10, Corollary 7.1.8]). 1

1The result has been generalized to noncommutative unital lattice-ordered groups by
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Theorem 11.1.1 The Γ functor is a categorical equivalence between unital `-
groups and MV-algebras. The lattice-order of A agrees with that of Λ(A).

This theorem has many important consequences, both for MV-algebras and
for `-groups, with or without order-unit. For instance, using the amalgamation
property for `-groups [43], we easily get

Corollary 11.1.2 The variety of MV-algebras has the amalgamation property.

11.2 Maximal spectral theory

For any MV-algebra A we let M(A) denote its maximal ideal space equipped
with the spectral topology: a basis of closed sets for M(A) is given by the
zerosets Za = {m ∈ M(A) | a ∈ m}, letting a range over all elements of A.
Equivalently, a basis of open sets is given by all sets of the form support(a) =
{m ∈M(A) | a 6∈ m}. This definition is similar in spirit to the usual definition of
“hull-kernel” topogy for `-groups, or for rings. As a straightforward consequence
of the definition one obtains

Lemma 11.2.1 M(A) is a nonempty compact Hausdorff space

Proof. Essentially, [10, 3.4.3].

For any compact Hausdorff space X we denote by Cont(X) the MV-algebra
of all continuous [0, 1]-valued functions on X with the pointwise operations of
[0, 1], ¬x = 1− x and x⊕ y = min(1, x+ y).

Lemma 11.2.2 Suppose X is a compact Hausdorff space and D is a separating
subalgebra of Cont(X), in the sense that for any two distinct x, y ∈ X there is
g ∈ D such that g(x) = 0 and g(y) > 0. Then the map ι:x ∈ X 7→ {f ∈ D |
f(x) = 0} is a homeomorphism of X onto M(D).

Proof. Essentially, [10, 3.4.4].

In the particular case of free MV-algebras, arguing as in [10, 3.4.6-3.4.9] we have

Lemma 11.2.3 For any cardinal κ we have:

1. Freeκ is a separating subalgebra of Cont([0, 1]κ).

2. Each finitely generated ideal of Freeκ is an intersection of maximal ideals.

An MV-algebra A is simple if its only ideal is {0}. The preparatory lemmas
above yield the following characterization:

Theorem 11.2.4 [10, Section 3.5] Up to isomorphism we have:

Dvurečenskij and, further, by Tsinakis and Galatos.
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(i) Every finite simple MV-algebra coincides with some finite chain Ln.

(ii) Finite MV-algebras are the same as finite products of finite chains.

(iii) Simple MV-algebras are the same as subalgebras of [0, 1].

Part (ii) in the theorem above yields
An MV-algebra A is said to be semisimple if for each nonzero x ∈ A there

is a homomorphism η:A→ [0, 1] with η(x) 6= 0. Equivalently,
⋂
M(A) = {0}.

Lemma 11.2.5 (i) For any MV-algebra A and ideal m ∈ M(A), there is an
isomorphism m of the quotient A/m onto a subalgebra of [0, 1].
(ii) If in addition, A is semisimple the map a ∈ A 7→ fa ∈ [0, 1]M(A) defined
by fa(m) = m (a/m), is an isomorphism of A onto a separating subalgebra A∗

of Cont(M(A)).

Proof. Respectively from [10, 1.2.10, 3.5.1] and [10, 3.6].

In conclusion we have

Theorem 11.2.6 [6], [10, Corollary 3.6.8] The following conditions are equiv-
alent for any MV-algebra A:

(i) A is semisimple.

(ii) Up to isomorphism, A is an MV-algebra of [0, 1]-valued functions over
some set X.

(iii) Up to isomorphism, A is a separating MV-algebra of continuous [0, 1]-
valued functions over some compact Hausdorff space X.

Owing to the archimedean property of real numbers, the MV-algebra [0, 1] is
semisimple. Therefore, any MV-algebra of [0, 1]-valued functions over some set
X, with the pointwise MV-operations of [0, 1], is semisimple. The lemma above
states that there are no other examples of semisimple MV-algebras: Intuitively,
boolean algebras stand to {0, 1}-valued functions as semisimple MV-algebras
stand to [0, 1]-valued functions.

11.3 Γ and the spectral topology

The topology of M(A) of Lemma 11.2.1 turns out to be the MV-algebraic
counterpart of the spectral topology of the maximal ideal space M(G) of the
unital `-group (G, u) corresponding to A via the Γ functor, [2], [10, 7.2.3].

Using [10, 7.2.6], Lemma 11.2.5 and Theorem 11.2.6 can be strengthened as
follows:

Theorem 11.3.1 For any MV-algebra A and ideal m ∈ M(A), there is a
unique isomorphism m of the quotient A/m onto a subalgebra of [0, 1]. When A
is semisimple, the map a ∈ A 7→ fa ∈ [0, 1]M(A) defined by fa(m) = m (a/m), is
an isomorphism of A onto a separating subalgebra A∗ of Cont(M(A)).
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States and maximal ideals. Following [21] and [18], for any `-group G with
order-unit u, let S(G, u) denote the convex set of states of (G, u), i.e., the unit-
preserving order-preserving homomorphisms of (G, u) into (R, 1). Let ∂eS(G, u)
denote the set of extremal states of (G, u). One immediately sees that ∂eS(G, u)
is a closed subspace of the product space

∏
a∈G[−na, na], whence ∂eS(G, u) is a

compact Hausdorff space. As proved in [20, 3.2], ∂eS(G, u) coincides with the
set of all `-homomorphisms χ:G→ R such that χ(u) = 1. Further, the map

χ 7→ ker(χ)(11.1)

induces a one-one correspondence between ∂eS(G, u) and the maximal `-ideal
space M(G). In particular, ∂eS(G, u) is nonempty. The inverse map sends each
m ∈M(G) to the homomorphism χ:G→ R given by the quotient map

χ(g) = g/m ∈ R, (g ∈ G).(11.2)

Here we are tacitly using the `-group-theoretical counterpart of Theorem 11.3.1,
namely Hölder theorem [2]: the latter states that that any `-group without non-
zero `-ideals is isomorphic to R, and the isomorphism is unique, if it is required
to preserve units.

Let now S(A) (resp., ∂eS(A)) denote the convex set of states (resp., ex-
tremal states) of an MV-algebra A. With a little more effort one can show

Theorem 11.3.2 Let (G, u) be a unital σ`-group and A = Γ(G, u). Then the
map χ 7→ ker(χ) is a homeomorphism of ∂eS(G, u) onto M(G). The map
χ 7→ kerχ ∩ [0, u] is a homeomorphism of ∂eS(G, u) onto the maximal ideal
space M(A).

If-then-else Consider the following generalized definition by cases:
if h1 holds then e1 follows,

else if h2 holds then e2 follows,
. . . . . . . . . . . .
else if hn holds then en follows.

(11.3)

In many concrete cases, the hypotheses hi do not form a boolean partition,
but they are still thought of as forming an irredundant and exhaustive set of
incompatible propositions in some logic L: working within L one may wish to
establish some kind of logical interrelation between “causes” {h1, ..., hn} and
“effects” {e1, ..., en}, generalizing what is done in the boolean case. It turns out
that this program is feasible when L is the infinite-valued calculus of  Lukasie-
wicz. Indeed, in every MV-algebra A one has a satisfactory generalization of
the notion of boolean partition: by Theorem 11.1.1 A can be realized as the
unit interval A = [0, u] = Γ(G, u) of a unique abelian lattice-ordered group
G with a distinguished order-unit u. Thus we can say that a set of elements
h1, . . . , hn ∈ A forms a (nonboolean) partition iff h1 + . . .+ hn = u, and the set
h1, . . . , hn is linearly independent (in G). For more information on MV-algebraic
partitions see [34].
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From MV-algebras to `-groups via Γ. Since this tutorial is about MV-
algebras, we shall mention only two applications of Γ-functor theory to `-groups.
These are given by exporting to `-groups the notion of Schauder basis associated
to a unimodular triangulation of the k-cube [0, 1]k.

We refer to [10, 3.2, 9.1, 9.2] for the elementary notions and facts about poly-
hedra used in the following lines. All polyhedra considered here are contained
in the k-cube [0, 1]k, and all vertices of all polyhedra have rational coordinates.
Suppose [0, 1]k is triangulated by a simplicial complex Σ: in other words, any
two simplexes of Σ intersect in a common face, and the point-set union of the
simplexes in Σ coincides with [0, 1]k . For short, we say that Σ is a triangulation
of [0, 1]k.

For z a vertex of (some simplex in) Σ, let dz be the least common denomina-
tor of the coordinates of z. Then the hat at z (over Σ) is the uniquely determined
continuous piecewise linear function hz: [0, 1]k → [0, 1] which attains the value
1/dz at z, vanishes at all remaining vertices of Σ, and is linear on each simplex
of Σ. We say that Σ is unimodular if each hat hz happens to be a McNaughton
function.2 In this case hz is said to be a Schauder hat. The Schauder basis HΣ

over Σ is the set of Schauder hats {hz | z is a vertex of Σ}.
Schauder bases in free MV-algebras, as well as their homogeneous linear

counterparts in `-groups, are the key tool for the proof of the following two
results:

Theorem 11.3.3 [33] Every free `-group G is ultrasimplicial, in the sense that
for any finite set of elements p1, . . . , pk ∈ G+ there is a finite set B ⊆ G+ of
independent elements such that every pi lies in the monoid generated by B.

This result was extended by Marra to all `-groups [28], thus solving a long-
standing problem by Handelman.

Theorem 11.3.4 [27] An `-group is finitely generated and projective iff it is
presentable by a single word in the language of lattices.

The celebrated Baker-Beyon theory [17] only yields that G is finitely gener-
ated and projective iff it is presented by an `-group word.

For more information on unimodular triangulations and their associated
bases of Schauder hats, see [27, 29, 35, 36, 39].

2This definition is equivalent to the usual one [10, 9.1.1].
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Chapter 12

σ-complete MV-algebras

As we have seen, every MV-algebra A carries a definable lattice structure, which
turns out to coincide with the restriction of the lattice structure of its corre-
sponding unital `-group. A is said to be σ-complete if so is its underlying lattice;
σ-complete MV-algebras have a central role in the generalization of boolean al-
gebraic probability theory (see [47] and references therein). The Γ-equivalents
of σ-complete MV-algebras are known as Dedekind σ-complete `-groups with
order-unit (for short, unital σ`-groups). As shown in [21, Section II, 13-14], and
[20], unital σ`-groups naturally arise1 from an interesting class of ℵ0-continuous
regular rings, and finite Rickart algebras. Unital σ`-groups are interesting ob-
jects per se, and as such they are attracting increasing attention, [44], [8].

Since every σ-complete MV-algebra A is semisimple [10, 6.6.2], the map
a 7→ fa of Lemma 11.2.5 is an isomorphism of A onto the subalgebra A∗ ⊆
Cont(M(A)). For each maximal ideal m be a of A we can safely identify A
with A∗, and A/m with m(A/m) ⊆ [0, 1]. Then for each f ∈ A the quotient map
f 7→ f/m amounts to evaluating f at m, in symbols, f/m = f(m). Accordingly,
the basic open sets of M(A) can be realized as the sets of the form

support(f) = {m ∈M(A) | f(m) > 0, where f ∈ A}.

Following [10, 1.5.2, 1.5.4] let B(A) denote the subalgebra of A given by the
boolean elements of A, those b ∈ A such that b ⊕ b = b. In the particular case
when A is σ-complete, a trivial adaptation of the proof of [10, 6.6.5(i)] shows
that B(A) is a σ-complete boolean algebra; further, for any sequence bi ∈ B(A)
the supremum of the bi in B(A) coincides with their supremum in A.

The mutual relations between A, B(A) and Cont(M(A)) are summarized in
the following proposition, which follows from various results proved in [18] for
Dedekind σ-complete unital `-groups:

Proposition 12.0.5 For any σ-complete MV-algebra A we have
(i) The map ξ: m 7→ m∩B(A) is a homeomorphism of M(A) onto the Stone

space M(B(A));
1via Grothendieck functor K0
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(ii) M(A) is a basically disconnected (compact Hausdorff) space, in the
sense that the closure of every open Fσ-set in M(A) is open.

(iii) Identifying A with the subalgebra A∗ ⊆ Cont(M(A)) of Lemma 11.2.5
and supposing f ∈ A to be the supremum in A of a sequence of elements ai of
A, it follows that the supremum of the ai in Cont(M(A)) exists and equals f .

Combining the Γ functor with the celebrated Goodearl-Handelman-Lawren-
ce functional representation theorem [21, Proposition 1.4.7, Theorem 1.9.4], [18,
9.12-9.15] we have the following result:

Theorem 12.0.6 Let A be a σ-complete MV-algebra. Let

A′ = {f ∈ Cont(M(A)) | f(m) ∈ m(A/m) ∀m ∈M(A)},

where m is the canonical isomorphism of Lemma 11.2.5(i). Then the map a 7→
fa of Lemma 11.2.5(ii) is an isomorphism of A onto A′.

12.1 Bounded finite rank

Let A be a σ-complete MV-algebra. A maximal ideal m of A is said to have
finite rank if for some integer n ≥ 1 the quotient A/m is (isomorphic to) the
finite  Lukasiewicz chain Z 1

n ∩ [0, 1]. When this is the case we write rank(m) = n.
Otherwise we say that m has infinite rank, and we write rank(m) = ∞. It is
well known that if m has infinite rank then A/m is uniquely isomorphic to [0, 1],
via the map m̄ of Lemma 11.2.5(i).

The numerical spectrum of a σ-complete MV-algebra A is the set of integers
r ≥ 1 such that there is m ∈ M(A) of rank r. A is said to have bounded finite
rank if there is an upper bound to the cardinality of its finite maximal quotients.
Note that having bounded finite rank does not exclude the possibility that some
(possibly every) maximal ideal of A has infinite rank. Similarly, a unital σ`-
group (G, u) is said to have bounded finite rank if there is an upper bound on the
integers n such that G/m ∼= Z 1

n , letting m range over M(G). Unital σ`-groups
with bounded finite rank strictly include σ`-groups (G, u) with order-unit of
finite index. By [19, 4.4] (also see the main result of [4]) any such (G, u) can be
written as (K0(R), [R]) for some regular, biregular ring with bounded index of
nilpotency, satisfying suitable continuity properties.

The category W. Following [8] we let DED denote the category whose objects
are Dedekind σ-complete `-groups with a distinguished order-unit, and whose
morphisms are the unit preserving `-group homomorphisms that also preserve
all denumerable infima and suprema. We further denote by Γ(DED) the corre-
sponding category of MV-algebras. It is not hard to see that objects in Γ(DED)
are precisely the σ-complete MV-algebras, and morphisms are those homomor-
phisms that preserve all denumerable infima and suprema. The full subcategory
of DED whose objects are the σ`-groups of bounded finite rank will be denoted
by BFR. By Γ(BFR) we shall denote the category of σ-complete MV-algebras
with bounded finite rank.
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In the rest of this section we shall define a duality between Γ(BFR) and a
category W whose objects are given by the following definition (morphisms will
be defined in 12.1.3 below):

Definition 12.1.1 Objects of W are triples 〈X,S, ϕ〉 such that X is a basically
disconnected compact Hausdorff space, S is a (possibly empty) set of natural
numbers and ϕ is a one-one map from S into the set of subsets of X satisfying
the following three conditions for all m,n ∈ S:

(A1) ϕ(n) is a non-empty special closed subset of X;

(A2) ϕ(n) %
⋃
{ϕ(j) : j ∈ S, j < n, j divides n};

(A3) ϕ(m) ∩ ϕ(n) =
⋃
{ϕ(j) : j ∈ S, j is a common divisor of m and n}.

Notation: For each object 〈X,S, ϕ〉 in W, and n ∈ S, we let

ϕ(n)′ = ϕ(n) \
⋃
{ϕ(i) : n > i ∈ S and i divides n}.

Lemma 12.1.2 Let 〈X,S, ϕ〉 be an object in W. For each x ∈
⋃
n∈S ϕ(n) there

is nx ∈ S with x ∈ ϕ(nx) having the additional property that for every m ∈ S,
x ∈ ϕ(m) if and only if nx divides m. In other words, nx is the minimum n ∈ S
such that x ∈ ϕ(n).

Let 〈X,S, ϕ〉 be an object in W and let x ∈ X. In the light of Lemma 12.1.2,
we define the virtual rank vrank(x) of x as the minimum n ∈ S such that
x ∈ ϕ(n) in case x ∈

⋃
n∈S ϕ(n), and we set vrank(x) = ∞ otherwise.

It follows that, for each n ∈ S, ϕ(n)′ = {x ∈ X : vrank(x) = n}. Hence
(A2) asserts that there is at least one x ∈ X such that vrank(x) = n.

Given basically disconnected spaces X,Y , we say that a function f :X → Y
is σ-continuous if it is continuous, and for each sequence (Un : n ∈ N) of clopen
subsets of Y , we have the identity

int

(⋂
n∈N

f−1(Un)

)
= f−1

(
int

(⋂
n∈N

Un

))
.(12.1)

Note that f :X → Y is σ-continuous if and only if it induces a σ-homomorphism
from the dual σ-boolean algebra of Y into the dual σ-boolean algebra of X
(cf.[49, §22]).

We can now complete the definition of the category W:

Definition 12.1.3 Whenever 〈X,S, ϕ〉 and 〈Y, T, ψ〉 are objects in W, by a
morphism 〈X,S, ϕ〉 → 〈Y, T, ψ〉 we understand a σ-continuous function

f :X → Y

such that for every x ∈ X, if vrank (x) <∞, then vrank (f(x)) divides vrank (x).
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Theorem 12.1.4 [8] let Wfin be the full subcategory of W whose objects are all
triples 〈X,S, ϕ〉 with S finite. There is an equivalence between Wfin and the
opposite of Γ(BFR).

For σ-complete MV-algebras with bounded finite rank one has an alternative
functional representation, besides the one given in Theorem 12.0.6, as follows:
For every topological space X, a function f :X → [0, 1] is called rectangular if
there is a clopen C ⊆ X such that f is equal to a constant over C and zero over
the complementary set X \ C.

A function f :M(A) → [0, 1] is said to be A-admissible if for each m ∈M(A)
with rank(m) = r < ∞, f(m) is an integer multiple of 1/r. Identifying A with
A∗ ⊆ Cont(M(A)) we immediately see that all elements of A are A-admissible.

Theorem 12.1.5 Suppose A is a σ-complete MV-algebra with bounded finite
rank. Canonically identify A with the algebra A∗ ⊆ Cont(M(A)) of Lemma
11.2.5. A function f :M(A) → [0, 1] belongs to A if and only if f is continuous
and A-admissible. Specifically, every function f ∈ A is the supremum in A of
a countable sequence of rational-valued, rectangular, A-admissible functions; f
also coincides with the supremum of these functions in Cont(M(A)).

Problem. Extend the last two theorems to larger classes of σ-complete MV-
algebras.



Chapter 13

Miscellanea

In this chapter various kinds of results are collected, in order to show the flexibil-
ity of MV-algebras and their deep connections with other mathematical areas.

13.1 The word problem for MV-algebras

Consider the following problem:

INSTANCE: An MV-term τ = τ(x1, . . . , xn).
QUESTION: Does the identity τ = 0 identically hold in all MV-algebras ?
(Equivalently, does the identity hold in the free MV-algebra Freen over n free
generators ? Equivalently, does it hold in [0, 1]?)

We shall give a short proof that the problem is co-NP-complete, i.e., its
complementary problem is NP-complete.1 Letting the variable Xi represent the
ith projection function πi, and proceeding as in Section 3, τ will represent in
Freen a McNaughton function τFreen = fτ (x1, . . . , xn). Let occ(τ) denote the
number of occurrences of variable symbols in τ . For all points x,y ∈ [0, 1]n with
x 6= y, the one-sided derivative of fτ at x along direction d = y − x is defined
by

f ′τ (x; d) = lim
ε↓0

fτ (x + εd)− fτ (x)
ε

.

We let ||d|| denote the euclidean norm of d ∈ Rn. Arguing by induction on
occ(τ) we immediately get

|f ′τ (x; d)| ≤ ||d|| · occ(τ).(13.1)

Let p(x1, . . . , xn) = c + m1x + · · · + mnxn be a linear polynomial with integer
coefficients c,m1, . . . ,mn. Suppose fτ coincides with p over an n-dimensional
simplex T ⊆ [0, 1]n. Then by (13.1), max(|m1|, . . . , |mn|) ≤ occ(τ). Assume
fτ does not identically vanish over [0, 1]n. Then fτ attains its maximum at

1Readers of this section should have some familiarity with computational complexity theory
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some point z ∈ [0, 1]n where n + 1 linear pieces of fτ have the same value
(with a trivial modification in case z lies on a face of [0, 1]n). Elementary
linear algebra, together with Hadamard’s determinant inequality yields a point
z∗ = (a1/b, . . . , an/b) ∈ [0, 1]n with ai, b ∈ Z and 0 ≤ ai ≤ b (i = 1, . . . , n), such
that fτ (z∗) > 0 and 0 < b < 2(4 occ(τ)2).

Theorem 13.1.1 [32] The tautology problem for the infinite-valued calculus of
 Lukasiewicz (i.e., the problem of deciding if an MV-term is identically equal to
1) is co-NP-complete.

Proof. We shall deal with the dual problem of deciding in τ = 0.
Claim 1. The problem is in co-NP.

Indeed, after guessing a rational point z∗ = (a1/b, . . . , an/b) ∈ [0, 1]n such
that fτ (z∗) > 0 and 0 < b < 2(4 occ(τ)2), we quickly check that fτ (z∗) > 0 as
follows: we write each coordinate ai/b as a pair of binary integers; denoting by
[[ai]] and [[b]] the number of bits of ai and b, we have [[ai]] ≤ [[b]] ≤ 4 occ(τ)2

for all i = 1, . . . , n. Once z∗ is written down as a sequence of pairs of binary
numbers, its length [[z∗]] will satisfy the inequalities

[[z∗]] ≤ 1 + n(2 + [[b]] + max
i

[[ai]]) ≤ 1 + n(2 + 8 occ(τ)2) ≤ 11 occ(τ)3.

Since the operations of negation and truncated addition do not increase denom-
inators, for some fixed polynomial q (independent of τ) the value fτ (z∗) is com-
putable a deterministic Turing machine within a number of steps ≤ q( occ(τ)).

Having thus settled our first claim, in order to prove co-NP-hardness, for
all integers i ≥ 1 and t ≥ 2 we define the MV-terms ψi,t, and ρn,t by ψi,t =
(Xi ∨ ¬Xi) � . . . � (Xi ∨ ¬Xi) (t times), and ρn,t = ψ1,t � . . . � ψn,t. We
shall write fn,t to denote the McNaughton function corresponding to fρn,t . Let
v1, . . . ,v2n be the vertices of the cube [0, 1]n. Let Ej1, . . . , Ejn be the edges of
[0, 1]n adjacent to vj . For each i = 1, . . . , n and t ≥ 2 let yji be the point lying
on edge Eji at a distance 1/t from vj . Let Tj be the n-simplex with vertices
vj ,yj1, . . . ,yjn. Then a tedious but straightforward verification shows that
(i) fn,t(vj) = 1;
(ii) fn,t(yji) = 0;
(iii) fn,t is linear over each simplex Tj ;

(iv) fn,t vanishes over [0, 1]n \
⋃2n

j=1 Tj .

Claim 2. Let φ = φ(X1, . . . , Xn) be an MV-term, and suppose t = occ(φ) with
t ≥ 2. Then φ (with ⊕ read as boolean disjunction) is a tautology in the boolean
calculus iff ¬ρn,t⊕φ is a tautology in the infinite-valued calculus (iff fn,t ≤ fφ).

One direction is trivial. For the converse, assume φ to be a tautology in
the boolean calculus. By (iv) above, the inequality fn,t ≤ fφ. holds over the
set [0, 1]n\

⋃
j Tj . By way of contradiction, assume fn,t(x) > fφ(x) for some

j = 1, . . . , 2n and x ∈ Tj . By continuity we can assume x to be in the interior of
Tj , whence in particular, x 6= vj . Let w be the unit vector in the direction from
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x to vj . By (iii), f ′n,t(y; w) ≥ t for each point y 6= vj lying in the interval [x,vj ].
On the other hand, by (13.1), f ′φ(y; w) ≤ t, whence f ′n,t(y; w) ≥ f ′φ(y; w).
By our assumption about φ, fn,t(vj) = fφ(vj) = 1. Since fn,t is linear on
the interval [vj ,x] and fφ is (continuous and) piecewise-linear on [vj ,x], we
conclude that fn,t ≤ fφ over [x,vj ], a contradiction.

We have exhibited a polytime reduction of the boolean tautology problem
to the tautology problem for the infinite-valued  Lukasiewicz calculus. This
completes the proof.

13.2 Finite-valued MV-algebras.

Chang Completeness Theorem states that the MV-algebra [0, 1] generates the
variety (= equational class) of all MV-algebras. One can similarly study the
variety MVn generated by the MV-algebra Ln, n = 2, 3, . . . . A complete ax-
iomatization of MVn was given by Grigolia as follows:

Theorem 13.2.1 [23], [10, 8.5] An MV-algebra A is a member of MVn iff it
satisfies (n − 1)x = nx, together with the equations pxp−1 = nxp, for every
integer p = 2, 3, . . . , n− 2 not dividing n− 1. In particular, MV2 coincides with
the variety of boolean algebras. Also, an MV-algebra is in MV3 iff it satisfies
x⊕ x⊕ x = x⊕ x.

Corollary 13.2.2 Fix n = 2, 3, . . .. Given MV-terms σ and τ , the following
conditions are equivalent for the equation σ = τ :

(i) The equation holds in the MV-algebra Ln.

(ii) The equation follows from the equations in Theorem 13.2.1, via substitu-
tions of equals for equals.

13.3 The most general MV-algebra.

Di Nola’s representation theorem, yields a functional representation for the most
general MV-algebra. The proof requires familiarity with Γ-functor theory [10,
Section 7] and model-theory, with particular reference to elementary ultraprod-
uct embeddings, and to the elementary theory of totally ordered divisible abelian
groups:

Theorem 13.3.1 [10, 9.5.1] Up to isomorphism, every MV-algebra A is an
algebra of [0, 1]∗-valued functions over some set, where [0, 1]∗ is an ultrapower
of [0, 1] only depending on the cardinality of A.

Proof. By Theorem 2.1.2, A is embeddable into the MV-algebra
∏
{A/I | I ∈

P(A)}. For each prime ideal I of A there is a (uniquely determined) totally
ordered abelian group GI with order-unit uI satisfying Γ(GI , uI) ∼= A/I. We
canonically embed GI into a totally ordered divisible abelian group KI with the
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same strong unit uI . It follows that A/I is embeddable into the MV-algebra
DI = Γ(KI , uI). Since any totally ordered divisible abelian group is elemen-
tarily equivalent to the additive group R of real numbers with natural order,
it follows that the MV-algebras DI and [0, 1] are elementarily equivalent. By
Frayne theorem, DI is elementarily embeddable in an ultrapower [0, 1]∗I of [0, 1].
The joint embedding property of first-order logic now yields an ultrapower [0, 1]∗

(only depending on the cardinality of A), such that every MV-algebra [0, 1]∗I

is elementarily embeddable into [0, 1]∗. Thus every quotient MV-algebra A/I is
embeddable into [0, 1]∗, whence the desired conclusion immediately follows.

13.4 MV-algebras and AF C*-algebras.

An approximately finite-dimensional C*-algebra (for short, AF C*-algebra) [3] is
the norm closure of the union of a sequence F1 ⊆ F2 ⊆ . . . of finite-dimensional
C*-algebras, where each Fi is a *-subalgebra of Fi+1. Among others, AF C∗-
algebras are used for a rigorous description of infinite spin systems. Elliott’s
celebrated classification of AF C∗-algebras goes back to his 1976 paper [15]. We
shall give a succinct presentation of the relations between AF C∗-algebras and
countable MV-algebras, as follows:

Given an AF C*-algebra A, two projections2 p, q ∈ A are equivalent iff there
exists an element v ∈ A such that vv∗ = p and v∗v = q. We denote by [p] the
equivalence class of p, and by L(A) the set of equivalence classes of projections
of A. The Murray-von Neumann order over L(A) is defined by: [p] ≤ [q] iff p is
equivalent to a projection r such that rq = r.

Elliott partial addition is the partial operation + on L(A) obtained by adding
two projections whenever they are orthogonal. This operation is associative,
commutative, monotone, and has the following residuation property: For every
projection p ∈ A, among all classes [q] such that [p] + [q] = [1A] there is a
smallest one, denoted ¬[p], namely the class [1A− p]. Here 1A denotes the unit
element of A. As a corollary of the main results of [31], in [38] one finds a proof
of the following

Theorem 13.4.1 For every AF C*-algebra A we have:
(i) There is at most one extension of Elliott partial addition to an associa-

tive, commutative, monotone operation ⊕ over L(A), satisfying the residuation
property. Such extension ⊕ exists iff L(A) is a lattice.

(ii) Letting K(A) = (L(A), [0],¬,⊕) the map A 7→ K(A) is a one-
one correspondence between (all isomorphism classes of) AF C*-algebras whose
Murray-von Neumann order over L(A) is a lattice, and countable MV-algebras.

(iii) In particular, the map A 7→ K(A) determines a one-one correspondence
between commutative AF C*-algebras and countable Boolean algebras, between
finite-dimensional C∗-algebras and finite MV-algebras, between Glimm’s UHF
algebras [14] and rational subalgebras of [0, 1].

2a projection p is a self-adjoint idempotent element p = p∗ = p2
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Subsequent work by Effros, Handelman, Shen, Goodearl and others showed
that Elliott’s partial monoid can be replaced by a certain class of countable
partially ordered abelian groups, called dimension groups, and that the classify-
ing functor is (a suitable order-theoretic enrichment of) Grothendieck’s functor
K0. Since dimension groups are a generalization of unital `-groups, the one-one
correspondence of Theorem 13.4.1 turns out to be induced by the composite
functor Γ ◦K0.

Since countable MV-algebras are the algebras of  Lukasiewicz infinite-valued
calculus over countably many variables [10, 4.6.9], the combinatorial and algo-
rithmic machinery of  Lukasiewicz logic can be transferred to AF C∗-algebras via
the inverse of Γ ◦K0, [9, 35]. Remarkably enough, countable free MV-algebras
are transformed by the inverse of Γ◦K0 into AF C∗-algebras with universal AF
C∗-algebraic properties, [31, Corollary 8.8]. Last, but not least, Marra’s ultra-
simplicial theorem [28] yields a functor U from countable unital `-groups to AF
C∗-algebras A whose Murray-von Neumann order of projections is a lattice, in
such a way that U(K0(A)) ∼= A.

Further Reading
In the last 20 years the literature devoted to MV-algebras has been rapidly
increasing.3 Here we shall only quote a few selected examples of surveys and
monographs. In the book [10], which is entirely devoted to  Lukasiewicz logic
and MV-algebras, one can find self-contained proofs of all fundamental theorems
about MV-algebras and  Lukasiewicz logic. Hájek’s monograph [25] devotes am-
ple space to MV-algebras, and so does Gottwald’s book [22]. In the second
edition of the Handbook of Philosophical Logic, Urquhart’s classical chapter
has been updated and expanded [52]. Further, one finds there a new chap-
ter, by Hähnle [24], on the complexity of many-valued proof-theory. As shown
in the monograph [13] and in the pioneering textbook [46], MV-algebras and
their states also yield an important specimen of “quantum structures”. The
second volume of the Handbook of Measure Theory [40] includes a chapter en-
tirely devoted MV-algebraic probability theory [47] and other chapters where
MV-algebras have an important role for the non-boolean approach to algebraic
measure theory á la Carathéodory. The survey [16] gives a detailed account
of the universal algebraic properties of the equational class of MV-algebras.
The survey [29] is especially devoted to the relationship between MV-algebras
and lattice-ordered groups. One can also find in the literature several surveys
and original papers devoted to the Rényi-Ulam game-theoretic interpretation of
infinite-valued logic, and its applications to error-correcting codes, fault-tolerant
search, algorithmic learning and logic programming [42, 7, 26].

3The literature has expanded so rapidly that in the year 2000 the AMS Classification Index
introduced the special item 06D35 for MV-algebras.
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