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Introduction

The book Extending the Linear Model with R (ELM) (Faraway 2006) first appeared in 2005 and was based
on R version 2.2.0. R is updated regularly and so it is natural that some incompatibilities with the current
version have been introduced. For most of the chapters, these changes have been minor and have been
addressed in the errata and/or subsequent reprintings of the text. However, for chapter 8 and 9, the changes
have been much more substantial. These chapters are based on the lme4 (Bates 2005). The package author,
Doug Bates of the University of Wisconsin has made some significant changes to this software since this
time, most particularly in the way that inference is handled for mixed models. Fitting mixed effects models
is a complex subject because of the large range of possible models and because the statistical theory still
needs some development. lme4 is perhaps the best software generally available for fitting such models, but
given the state of the field, there will be scope for significant improvements for some time. It is important to
understand the reason behind these changes. A recent explanation of lme4 can be found (Bates et al. 2014).

For standard linear models (such as those considered in Linear Models with R (Faraway 2005)), the rec-
ommended way to compare an alternative hypothesis of a larger model compared to a null hypothesis of a
smaller model nested within this larger model, is to use an F -test. Under the standard assumptions and
when the errors are normally distributed, the F -statistic has an exact F -distribution with degrees of freedom
that can be readily computed given the sample size and the number of parameters used by each model.

For linear mixed effects models, that is models having some random effects, we might also wish to test fixed
effect terms using an F -test. One way of approaching this is to assume that the estimates of the parameters
characterizing the random effects of the model are in fact the true values. This reduces the mixed models
to fixed effect models where the error has a particular covariance structure. Such models can be fit using
generalized least squares and F -tests can be conducted using standard linear models theory. Several statistics
software packages take this approach including the nlme package developed earlier and still available within
R. Earlier versions of lme4 also took this approach and hence the output seen in the current version of ELM.

However, there are two serious problems with this test. Firstly, the random effects are not actually known, but
estimated. This means that the F -statistic does not follow an F -distribution exactly. In some cases, it may
be a good approximation, but not in general. Secondly, even if one were to assume that the F -distribution
was a sufficiently good approximation, there remains the problem of degrees of freedom. The concept of
“degrees of freedom”, as used in statistics, is not as well defined as many people believe. Perhaps one might
think of it as the effective number of independent observations on which an estimate or test is based. Often,
this is just the sample size minus the number of free parameters. However, this notion becomes more difficult
when considering the dependent and hierarchical data found in mixed effects models. There is no simple way
in which the degrees of freedom can be counted. The degrees of freedom are used here just to select the null
distribution for a test-statistic i.e. they are used as a mathematical convenience rather than as a concept of
standalone value. As such, the main concern is whether they produce the correct null distribution for the
test statistic. In the case of F-statistics for mixed models, there has been substantial research on this — see
(Kenward and Roger 1997) and related — but there is no simple and general solution. Even if there were,
this would still not avoid the problem of the dubious approximation to an F -distribution.

The t-statistics presented in the lme4 model summary outputs are based on the square roots of F -statistics
and so the same issues with testing still arise. In some cases, one may appeal to asymptotics to allow for
simple normal and chi-squared approximations to be used. But it is not simply a matter of sample size —
the number of random effects parameters and the model structure all make a difference to the quality of the
approximation. There is no simple rule to say when the approximation would be satisfactory.
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All this poses a problem for the writers of statistical software for such models. One approach is to simply
provide the approximate solution even though it is known to be poor in some cases. Or one can take the
approach that no answer (at least for now) is better than a possibly poor answer, which is the approach
currently taken in lme4. In some simpler models, specialized solutions are possible. For example, in (Scheffe
1959), F -tests for a range of simple balanced (i.e. equal numbers of observations per group) designs are
provided. For some simple but unbalanced datasets, progress has been made — see (Crainiceanu and Ruppert
2004). However, such straightforward solutions are not available for anything more complex. Such partial
specialized solutions are not satisfactory for a package as general in scope as lme4 — we need a solution that
works reasonable well in all cases.

We do have some viable alternatives. The parametric bootstrap approach based on the likelihood ratio
statistic is discussed in ELM. We can add to this methods based on Markov chain Monte Carlo (MCMC). For
some simple balanced models, solutions are available using the aov() command. The pbkrtest and RLRsim
packages are also discussed.

We present here the changes to the text for chapters 8 and 9. The intent here is to list the changes and
suggest replacements to achieve much the same result. Later, we discuss MCMC methods that might provided
a major alternative to the likelihood-based testing presented in the book. We also present the simpler and
partial aov based solution. Further changes to lme4 may occur so more changes to this document are likely
to be necessary.

To help keep this document up-to-date, it is written using R markdown which inserts the output from R
commands directly into the text. However, this does mean all the output which is sometimes more than the
edited version that appears in the book. In particular, I have modified the printing of some summaries of
lmer fits to prevent the printing of correlation matrices.

Let’s start by loading the packages we need and verifying the version of R and lme4:

library(faraway)
library(lme4)
sessionInfo("lme4")

R version 3.1.1 (2014-07-10)
Platform: x86_64-apple-darwin13.1.0 (64-bit)

locale:
[1] C

attached base packages:
character(0)

other attached packages:
[1] lme4_1.1-7

loaded via a namespace (and not attached):
[1] MASS_7.3-33 Matrix_1.1-4 RColorBrewer_1.0-5
[4] Rcpp_0.11.1 base_3.1.1 colorspace_1.2-4
[7] compiler_3.1.1 datasets_3.1.1 dichromat_2.0-0

[10] digest_0.6.4 evaluate_0.5.3 faraway_1.0.6
[13] formatR_0.10 ggplot2_0.9.3.1 grDevices_3.1.1
[16] graphics_3.1.1 grid_3.1.1 gtable_0.1.2
[19] htmltools_0.2.4 knitr_1.6 labeling_0.2
[22] lattice_0.20-29 methods_3.1.1 minqa_1.2.3
[25] munsell_0.4.2 nlme_3.1-117 nloptr_1.0.4
[28] plyr_1.8.1 proto_0.3-10 reshape2_1.2.2
[31] rmarkdown_0.2.68 scales_0.2.3 splines_3.1.1

2

http://rmarkdown.rstudio.com


[34] stats_3.1.1 stringr_0.6.2 tools_3.1.1
[37] utils_3.1.1 yaml_2.1.11

We also set the seed on the random number generator to ensure exact repeatability for the bootstraps and
other simulations:

set.seed(123)

Revisions to Chapter 8

8.1 Estimation

The first call to lmer occurs on p157 where the output now becomes:

mmod <- lmer(bright ~ 1+(1|operator), pulp)
summary(mmod)

Linear mixed model fit by REML ['lmerMod']
Formula: bright ~ 1 + (1 | operator)

Data: pulp

REML criterion at convergence: 18.6

Scaled residuals:
Min 1Q Median 3Q Max

-1.467 -0.759 -0.124 0.628 1.601

Random effects:
Groups Name Variance Std.Dev.
operator (Intercept) 0.0681 0.261
Residual 0.1062 0.326

Number of obs: 20, groups: operator, 4

Fixed effects:
Estimate Std. Error t value

(Intercept) 60.400 0.149 404

In the fixed effects part of the output, there is no longer a degrees of freedom and a p-value. In this case, we
do not miss the test because the t-value is so large and the intercept so obviously different from zero. The
following maximum likelihood based version of the output is also changed:

smod <- lmer(bright ~ 1+(1|operator), pulp, REML=FALSE)
summary(smod)

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: bright ~ 1 + (1 | operator)

Data: pulp

AIC BIC logLik deviance df.resid
22.5 25.5 -8.3 16.5 17
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Scaled residuals:
Min 1Q Median 3Q Max

-1.5055 -0.7812 -0.0635 0.6585 1.5623

Random effects:
Groups Name Variance Std.Dev.
operator (Intercept) 0.0458 0.214
Residual 0.1062 0.326

Number of obs: 20, groups: operator, 4

Fixed effects:
Estimate Std. Error t value

(Intercept) 60.400 0.129 467

In addition to the the changes to the df and p-value, there are also smaller numerical changes to the random
effects estimates due to improvements in the fitting algorithm. Also the way to specify that maximum
likelihood estimates are required has changed from method="ML" to REML=FALSE.

8.2 Inference

Nested hypotheses can still be tested using the likelihood ratio statistic. The chi-squared approximation can
be quite innaccurate, giving p-values that tend to be too small. The parametric bootstrap requires much
more computation, but gives better results.

The current text also proposed the use of F- or t- statistics, but as explained above, these are no longer
provided in the current version of lme4. It would be possible to fit most of the models in this chapter
using the older nlme package, which has a somewhat different syntax, and thereby obtain these F -statistic.
Alternatively, it is possible, as we shall demonstrate, to reconstruct these tests from the output. However,
one should realize that these may give poor results and we do not recommend doing this in general.

8.3 Predicting Random Effects

No change.

8.4 Blocks as Random Effects

The output of the model on p164 becomes:

op <- options(contrasts=c("contr.sum", "contr.poly"))
mmod <- lmer(yield ~ treat + (1|blend), penicillin)
print(summary(mmod),correlation=FALSE)

Linear mixed model fit by REML ['lmerMod']
Formula: yield ~ treat + (1 | blend)

Data: penicillin

REML criterion at convergence: 106.6

Scaled residuals:
Min 1Q Median 3Q Max
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-1.415 -0.502 -0.164 0.683 1.284

Random effects:
Groups Name Variance Std.Dev.
blend (Intercept) 11.8 3.43
Residual 18.8 4.34

Number of obs: 20, groups: blend, 5

Fixed effects:
Estimate Std. Error t value

(Intercept) 86.00 1.82 47.3
treat1 -2.00 1.68 -1.2
treat2 -1.00 1.68 -0.6
treat3 3.00 1.68 1.8

options(op)

Again we note the lack of p-values for the t-statistics. If one still wanted to perform a t-test, we could use
the normal approximation on the t-statistics. Since the three treatment statistics here are well below 2 in
absolute value, we might conclude that these treatment effects are not significant. However, providing a more
precise p-value is problematic and for t-statistics around 2 or so, some better method of testing would be
needed.

The ANOVA table at the top of p165 becomes:

anova(mmod)

Analysis of Variance Table
Df Sum Sq Mean Sq F value

treat 3 70 23.3 1.24

We no longer have a p-value so we can no longer perform the test in this way. The LRT-based test that
follows remains unchanged.

8.5 Split plots

On p168, the first model fails with an error. The try command is useful when you suspect a command may
cause an error and you do not want to interrupt the execution of a batch of commands.

tt <- try(lmod <- lmer(yield ~ irrigation * variety +
(1|field) +(1|field:variety),data=irrigation))

cat(tt)

Error in checkNlevels(reTrms$flist, n = n, control) :
number of levels of each grouping factor must be < number of observations

The reason, as explained in the text, is that this model is over-parameterised. Except now the model fails to
fit at all, which is actually helpful since it alerts us to the problem. The second (correct) model does fit:

lmodr <- lmer(yield ~ irrigation * variety + (1|field),data=irrigation)
logLik(lmodr)
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'log Lik.' -22.7 (df=10)

Note the change in the degrees of freedom. The subsequent model summary is:

print(summary(lmodr),correlation=FALSE)

Linear mixed model fit by REML ['lmerMod']
Formula: yield ~ irrigation * variety + (1 | field)

Data: irrigation

REML criterion at convergence: 45.4

Scaled residuals:
Min 1Q Median 3Q Max

-0.745 -0.551 0.000 0.551 0.745

Random effects:
Groups Name Variance Std.Dev.
field (Intercept) 16.20 4.02
Residual 2.11 1.45

Number of obs: 16, groups: field, 8

Fixed effects:
Estimate Std. Error t value

(Intercept) 38.50 3.03 12.73
irrigationi2 1.20 4.28 0.28
irrigationi3 0.70 4.28 0.16
irrigationi4 3.50 4.28 0.82
varietyv2 0.60 1.45 0.41
irrigationi2:varietyv2 -0.40 2.05 -0.19
irrigationi3:varietyv2 -0.20 2.05 -0.10
irrigationi4:varietyv2 1.20 2.05 0.58

As before, the p-values are gone. Note that the t-statistics for the fixed effects are all small and give us a
good indication that there are no significant fixed effects here. The subsequent ANOVA table is:

anova(lmodr)

Analysis of Variance Table
Df Sum Sq Mean Sq F value

irrigation 3 2.46 0.818 0.39
variety 1 2.25 2.250 1.07
irrigation:variety 3 1.55 0.517 0.25

Again, no p-values. For this dataset, the small t-values are sufficient to conclude that there are no significant
fixed effects. This can be confirmed by computing the LRT and estimating its p-value via the parametric
bootstrap.

8.6 Nested Effects

The first model output on p171 becomes:
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cmod <- lmer(Fat ~ 1 + (1|Lab) + (1|Lab:Technician) + (1|Lab:Technician:Sample), data=eggs)
summary(cmod)

Linear mixed model fit by REML ['lmerMod']
Formula:
Fat ~ 1 + (1 | Lab) + (1 | Lab:Technician) + (1 | Lab:Technician:Sample)

Data: eggs

REML criterion at convergence: -64.2

Scaled residuals:
Min 1Q Median 3Q Max

-2.0410 -0.4658 0.0093 0.5971 1.5428

Random effects:
Groups Name Variance Std.Dev.
Lab:Technician:Sample (Intercept) 0.00306 0.0554
Lab:Technician (Intercept) 0.00698 0.0835
Lab (Intercept) 0.00592 0.0769
Residual 0.00720 0.0848

Number of obs: 48, groups:
Lab:Technician:Sample, 24; Lab:Technician, 12; Lab, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 0.388 0.043 9.02

Again the same changes as seen before. The output of the random effects at the top of p172 becomes:

cmodr <- lmer(Fat ~ 1 + (1|Lab) + (1|Lab:Technician), data=eggs)
VarCorr(cmodr)

Groups Name Std.Dev.
Lab:Technician (Intercept) 0.0895
Lab (Intercept) 0.0769
Residual 0.0961

which is effectively the same information as in the text.

8.7 Crossed Effects

On p173, the ANOVA becomes:

mmod <- lmer(wear ~ material + (1|run) + (1|position), abrasion)
anova(mmod)

Analysis of Variance Table
Df Sum Sq Mean Sq F value

material 3 4621 1540 25.1

which is again without the p-values. The model output is:
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print(summary(mmod),correlation=FALSE)

Linear mixed model fit by REML ['lmerMod']
Formula: wear ~ material + (1 | run) + (1 | position)

Data: abrasion

REML criterion at convergence: 100.3

Scaled residuals:
Min 1Q Median 3Q Max

-1.090 -0.302 0.027 0.422 1.210

Random effects:
Groups Name Variance Std.Dev.
run (Intercept) 66.9 8.18
position (Intercept) 107.1 10.35
Residual 61.3 7.83

Number of obs: 16, groups: run, 4; position, 4

Fixed effects:
Estimate Std. Error t value

(Intercept) 265.75 7.67 34.7
materialB -45.75 5.53 -8.3
materialC -24.00 5.53 -4.3
materialD -35.25 5.53 -6.4

Again, the p-values are gone. However, note that the large size of the t-statistics means that we can be
confident that there are significant material effects here. This could verified with an LRT with parametric
bootstrap to estimate the p-value but is hardly necessary given the already convincing level of evidence.

8.8 Multilevel Models

The linear models analysis remains unchanged. The first difference occurs at the top of p177 where the
ANOVA table becomes:

jspr <- jsp[jsp$year==2,]
mmod <- lmer(math ~ raven*social*gender+(1|school)+(1|school:class),data=jspr)
anova(mmod)

Analysis of Variance Table
Df Sum Sq Mean Sq F value

raven 1 10218 10218 374.40
social 8 616 77 2.82
gender 1 22 22 0.79
raven:social 8 577 72 2.64
raven:gender 1 2 2 0.09
social:gender 8 275 34 1.26
raven:social:gender 8 187 23 0.86

We no longer have the p-values. We can reconstruct these as:
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round(pf(anova(mmod)[,4],anova(mmod)[,1],917,lower.tail=FALSE),4)

[1] 0.0000 0.0043 0.3738 0.0072 0.7639 0.2605 0.5524

The degrees of freedom for the denominator of 917 can be obtained by summing the degrees of freedom from
the ANOVA table and subtracting an extra one for the intercept:

nrow(jspr)-sum(anova(mmod)[,1])-1

[1] 917

Now, as pointed out earlier, there is good reason to question the results of such F -tests. In this case, the
nominal degrees of freedom is large. Given that the number of random effects is not particularly large, the
“true” degrees of freedom will still be large. This suggests that these particular p-values will be fairly accurate.

Another possibility is to compute LRTs. For example, we can test the three-way interaction term by fitting
the model with and without this term and computing the test:

mmod <- lmer(math ~ (raven*social*gender)^2+
(1|school)+(1|school:class),data=jspr,REML=FALSE)

mmod2 <- lmer(math ~ (raven+social+gender)^2+
(1|school)+(1|school:class),data=jspr,REML=FALSE)

anova(mmod,mmod2)

Data: jspr
Models:
mmod2: math ~ (raven + social + gender)^2 + (1 | school) + (1 | school:class)
mmod: math ~ (raven * social * gender)^2 + (1 | school) + (1 | school:class)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
mmod2 31 5958 6108 -2948 5896
mmod 39 5967 6156 -2944 5889 7.1 8 0.53

We notice that the p-value of 0.53 is quite similar to the 0.55 produced by the F -test. For larger datasets
where the residual standard error is estimated fairly precisely, the denominator of the F -statistic has little
variability so that the test statistic becomes close to chi-squared distributed, just like the LRT. They will not
be numerically identical, but we might expect them to be close.

Implementing the parametric bootstrap to estimate the p-value is possible here:

nrep <- 1000
lrstat <- numeric(nrep)
for(i in 1:nrep){

rmath <- unlist(simulate(mmod2))
rmmod <- lmer(rmath ~ (raven*social*gender)^2+(1|school)+(1|school:class),

data=jspr,REML=FALSE)
rmmod2 <- lmer(rmath ~ (raven+social+gender)^2+(1|school)+(1|school:class),

data=jspr,REML=FALSE)
lrstat[i] <- 2*(logLik(rmmod)-logLik(rmmod2))

}
2*(logLik(mmod)-logLik(mmod2))

'log Lik.' 7.095 (df=39)
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mean(lrstat > 7.0954)

[1] 0.542

Unsurprisingly, given the sample size, the results are very similar to that obtained by the chi-squared
approximation.

If you need to consider more than just two models and wish to select a model, it is typically better to use a
criterion-based variable selection methods. Here we can use the AIC to select the model. The computation
of the AIC does require the specification of the number of parameters, which could be problematic if we
also consider the random effects parameters. However, if we only consider models where the fixed effect are
different, the issue does not arise when comparing such models. We fit a sequence of such models here:

mmod <- lmer(math ~ raven*social*gender+(1|school)+(1|school:class),data=jspr)
AIC(mmod)

[1] 5970

mmod <- lmer(math ~ raven*social+(1|school)+(1|school:class),data=jspr)
AIC(mmod)

[1] 5963

mmod <- lmer(math ~ raven+social+(1|school)+(1|school:class),data=jspr)
AIC(mmod)

[1] 5950

mmod <- lmer(math ~ raven+(1|school)+(1|school:class),data=jspr)
AIC(mmod)

[1] 5966

mmod <- lmer(math ~ social+(1|school)+(1|school:class),data=jspr)
AIC(mmod)

[1] 6227

We see that the main effects model that uses raven and social gives the lowest AIC. We can examine this
fit using the same centering of the Raven score as used in the book:

jspr$craven <- jspr$raven-mean(jspr$raven)
mmod <- lmer(math ~ craven+social+(1|school)+(1|school:class),jspr)
print(summary(mmod),correlation=FALSE)

Linear mixed model fit by REML ['lmerMod']
Formula: math ~ craven + social + (1 | school) + (1 | school:class)

Data: jspr

10



REML criterion at convergence: 5924

Scaled residuals:
Min 1Q Median 3Q Max

-3.943 -0.548 0.147 0.631 2.853

Random effects:
Groups Name Variance Std.Dev.
school:class (Intercept) 1.03 1.02
school (Intercept) 3.23 1.80
Residual 27.57 5.25

Number of obs: 953, groups: school:class, 90; school, 48

Fixed effects:
Estimate Std. Error t value

(Intercept) 32.0108 1.0350 30.93
craven 0.5841 0.0321 18.21
social2 -0.3611 1.0948 -0.33
social3 -0.7768 1.1649 -0.67
social4 -2.1197 1.0396 -2.04
social5 -1.3632 1.1585 -1.18
social6 -2.3703 1.2330 -1.92
social7 -3.0482 1.2703 -2.40
social8 -3.5473 1.7027 -2.08
social9 -0.8864 1.1031 -0.80

Now that there are only main effects without interactions, the interpretation is simpler but essentially similar
to that seen in the book. We do not have p-values in the table of coefficients. However, the sample size is
large here and so a normal approximation could be used to compute reasonable p-values:

tval <- summary(mmod)$coef[,3]
pval <- 2*pnorm(abs(tval),lower=FALSE)
cbind(summary(mmod)$coef,"p value"=round(pval,4))

Estimate Std. Error t value p value
(Intercept) 32.0108 1.03499 30.9285 0.0000
craven 0.5841 0.03208 18.2053 0.0000
social2 -0.3611 1.09477 -0.3298 0.7415
social3 -0.7768 1.16489 -0.6668 0.5049
social4 -2.1197 1.03963 -2.0389 0.0415
social5 -1.3632 1.15850 -1.1767 0.2393
social6 -2.3703 1.23302 -1.9224 0.0546
social7 -3.0482 1.27027 -2.3997 0.0164
social8 -3.5473 1.70273 -2.0833 0.0372
social9 -0.8864 1.10314 -0.8035 0.4217

Of course, there are the usual concerns with multiple comparisons for the nine-level factor, social. The
reference level is social class I and we can see significant differences between this level and levels IV, VII and
VIII.

When testing the compositional effects, we need to make two changes. Firstly, we have decided not to have
the interaction between Raven score and social class, consistent with the analysis above. Secondly, we cannot
use the F -test to make the comparison. We replace this with an LRT:
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schraven <- lm(raven ~ school, jspr)$fit
mmod <- lmer(math ~ craven+social+(1|school)+(1|school:class),jspr, REML=FALSE)
mmodc <- lmer(math ~ craven+social+schraven+(1|school)+

(1|school:class), jspr,REML=FALSE)
anova(mmod,mmodc)

Data: jspr
Models:
mmod: math ~ craven + social + (1 | school) + (1 | school:class)
mmodc: math ~ craven + social + schraven + (1 | school) + (1 | school:class)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
mmod 13 5954 6018 -2964 5928
mmodc 14 5956 6024 -2964 5928 0.18 1 0.67

As before, we do not find any compositional effects.

Revisions to Chapter 9

9.1 Longitudinal Data

On p186, the function lmList() in lme4, can be used for the computation of linear models on groups within
the data. For now, the computation in the book is simpler.

On p189, the output of the model becomes:

psid$cyear <- psid$year-78
mmod <- lmer(log(income) ~ cyear*sex +age+educ+(cyear|person),psid)
print(summary(mmod),correlation=FALSE)

Linear mixed model fit by REML ['lmerMod']
Formula: log(income) ~ cyear * sex + age + educ + (cyear | person)

Data: psid

REML criterion at convergence: 3820

Scaled residuals:
Min 1Q Median 3Q Max

-10.231 -0.213 0.079 0.415 2.825

Random effects:
Groups Name Variance Std.Dev. Corr
person (Intercept) 0.2817 0.531

cyear 0.0024 0.049 0.19
Residual 0.4673 0.684

Number of obs: 1661, groups: person, 85

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.6742 0.5433 12.28
cyear 0.0853 0.0090 9.48
sexM 1.1503 0.1213 9.48
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age 0.0109 0.0135 0.81
educ 0.1042 0.0214 4.86
cyear:sexM -0.0263 0.0122 -2.15

The omission of p-values is noted. Given the sample size, the normal approximation for the computation of
p-values for the t-statistics would be acceptable.

9.2 Repeated Measures

The model output on p193 becomes:

mmod <- lmer(acuity~power+(1|subject)+(1|subject:eye),vision)
print(summary(mmod),correlation=FALSE)

Linear mixed model fit by REML ['lmerMod']
Formula: acuity ~ power + (1 | subject) + (1 | subject:eye)

Data: vision

REML criterion at convergence: 328.7

Scaled residuals:
Min 1Q Median 3Q Max

-3.424 -0.323 0.011 0.441 2.466

Random effects:
Groups Name Variance Std.Dev.
subject:eye (Intercept) 10.3 3.21
subject (Intercept) 21.5 4.64
Residual 16.6 4.07

Number of obs: 56, groups: subject:eye, 14; subject, 7

Fixed effects:
Estimate Std. Error t value

(Intercept) 112.643 2.235 50.4
power6/18 0.786 1.540 0.5
power6/36 -1.000 1.540 -0.6
power6/60 3.286 1.540 2.1

The omission of p-values is noted. The ANOVA table becomes:

anova(mmod)

Analysis of Variance Table
Df Sum Sq Mean Sq F value

power 3 141 46.9 2.83

We would like to know whether the power is statistically significant but no longer have the p-value from
F -statistic available. We can use the LRT and parametric bootstrap as follows:
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nrep <- 1000
mmod <- lmer(acuity~power+(1|subject)+(1|subject:eye),vision,REML=FALSE)
nmod <- lmer(acuity~1+(1|subject)+(1|subject:eye),vision,REML=FALSE)
as.numeric(2*(logLik(mmod)-logLik(nmod)))

[1] 8.262

pchisq(8.2625,3,lower=FALSE)

[1] 0.04089

lrstat <- numeric(nrep)
for(i in 1:nrep){

racuity <- unlist(simulate(nmod))
rnull <- lmer(racuity~1+(1|subject)+(1|subject:eye),vision,REML=FALSE)
ralt <- lmer(racuity~power+(1|subject)+(1|subject:eye),vision,REML=FALSE)
lrstat[i] <- as.numeric(2*(logLik(ralt)-logLik(rnull)))

}
(pval <- mean(lrstat > 8.2625))

[1] 0.057

Using the chi-squared approximation gives a p-value of 0.041 while the parametric bootstrap gives 0.057.
These are close to the p-value of 0.048 from the F -statistic. Thus the result is borderline.

We can repeat the calculations for when the 43rd observation is omitted:

mmodr <- lmer(acuity~power+(1|subject)+(1|subject:eye),vision,subset=-43)
anova(mmodr)

Analysis of Variance Table
Df Sum Sq Mean Sq F value

power 3 89.2 29.8 3.6

Again we lack the p-values we had before. However, we do have have sufficient sample size to conclude that a
t-statistic of 3 is sufficient to indicate the significance of the highest power relative to the baseline. The same
would be true for the calculations based on the Helmert contrasts.

8.3 Multiple Response Multilevel Models

The ANOVA table at the top of page 197 can be reconstructed as follows:

jspr <- jsp[jsp$year==2,]
mjspr <- data.frame(rbind(jspr[,1:6],jspr[,1:6]),

subject=factor(rep(c("english","math"),c(953,953))),
score=c(jspr$english/100,jspr$math/40))

mjspr$craven <- mjspr$raven-mean(mjspr$raven)
mmod <- lmer(score ~ subject*gender+craven*subject+social+ (1|school)+(1|school:class)+(1|school:class:id),mjspr)
sigmaerr <- attributes(VarCorr(mmod))$sc
(fstat <- anova(mmod)[,3]/sigmaerr^2)
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[1] 3953.673 7.464 444.628 6.469 28.225 15.987

nrow(mjspr)-sum(anova(mmod)[,1])-1

[1] 1892

(pvals <- pf(fstat,anova(mmod)[,1],1892,lower.tail=FALSE))

[1] 0.000e+00 6.352e-03 8.023e-89 2.470e-08 1.207e-07 6.624e-05

cbind(anova(mmod),fstat,pvalue=round(pvals,3))

Df Sum Sq Mean Sq F value fstat pvalue
subject 1 53.7368 53.73683 3953.673 3953.673 0.000
gender 1 0.1015 0.10145 7.464 7.464 0.006
craven 1 6.0432 6.04322 444.628 444.628 0.000
social 8 0.7034 0.08792 6.469 6.469 0.000
subject:gender 1 0.3836 0.38363 28.225 28.225 0.000
subject:craven 1 0.2173 0.21728 15.987 15.987 0.000

In this case, there are a large number of degrees of freedom for the error and the approximation will be
good here, just as in the analysis of this data in the previous chapter. In any case, the interaction terms are
clearly significant. The subsequent model summary will lack p-values but these are not necessary for our
interpretation. If we wanted them, a normal approximation would suffice.

Inference via MCMC

An alternative way of conducting inference is via Bayesian methods implemented via Markov chain Monte
Carlo (MCMC). A general introduction to these methods may be found in texts such as (Gelman et al. 2004).
The idea is to assign a non-informative prior on the parameters of the mixed model and then generate a
sample from their posterior distribution. This method is no longer available in the current version of lme4.
As the help page states:

One of the most frequently asked questions about 'lme4' is "how do
I calculate p-values for estimated parameters?" Previous versions
of `lme4` provided the `mcmcsamp` function, which efficiently
generated a Markov chain Monte Carlo sample from the posterior
distribution of the parameters, assuming flat (scaled likelihood)
priors. Due to difficulty in constructing a version of 'mcmcsamp'
that was reliable even in cases where the estimated random effect
variances were near zero (e.g. <https://stat.ethz.ch/pipermail/r-sig-mixed-models/2009q4/003115.html>
`mcmcsamp` has been withdrawn (or more precisely, not updated to
work with `lme4` versions greater than 1.0.0).

Inference with AOV

The aov() function can be used to fit simple models with a single random effects component. The results are
reliable only for balanced data. We can illustrate this with the penicillin data:
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lmod <- aov(yield ~ treat + Error(blend), penicillin)
summary(lmod)

Error: blend
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 4 264 66

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

treat 3 70 23.3 1.24 0.34
Residuals 12 226 18.8

We see that the test of the significance for the fixed effects which is effectively the same as the original F -test
presented in ELM. Note that the p-values are provided only for the fixed effects terms. The fixed effect
coefficients may be obtained as

coef(lmod)

(Intercept) :
(Intercept)

86

blend :
numeric(0)

Within :
treatB treatC treatD

1 5 2

The irrigation data can also be fit using aov:

lmod <- aov(yield ~ irrigation*variety + Error(field), irrigation)
summary(lmod)

Error: field
Df Sum Sq Mean Sq F value Pr(>F)

irrigation 3 40.2 13.4 0.39 0.77
Residuals 4 138.0 34.5

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

variety 1 2.25 2.250 1.07 0.36
irrigation:variety 3 1.55 0.517 0.25 0.86
Residuals 4 8.43 2.107

The analysis takes account of the fact that the irrigation does not vary within the field. Note that the
F -statistics are the same as the ANOVA table obtained originally from lmer.
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pbkrtest package

The pbkrtest package provides two ways in which the fixed effects terms in a linear mixed model may be tested.
One method is based on the F-statistic. In some cases where a balanced layout exists, the F-statistic has an
exact null distribution which has an F-distribution with degrees of freedom as expected. For unbalanced
data, the degrees of freedom are not correct and the null-distribution may not follow the F-distribution
exactly. (Kenward and Roger 1997) proposed a method of adjusting the degrees of freedom to obtain better
approximations to the null distribution. This method has been implemented in (Halekoh and Højsgaard
2014).

Penicillin Data

For the penicillin data, we test the treatment effect using:

library(pbkrtest)
amod <- lmer(yield ~ treat + (1|blend), penicillin, REML=FALSE)
nmod <- lmer(yield ~ 1 + (1|blend), penicillin, REML=FALSE)
KRmodcomp(amod, nmod)

F-test with Kenward-Roger approximation; computing time: 0.11 sec.
large : yield ~ treat + (1 | blend)
small : yield ~ 1 + (1 | blend)

stat ndf ddf F.scaling p.value
Ftest 1.24 3.00 12.00 1 0.34

The results are identical to the original output in the text and to the aov output because the data are
balanced in this example.

The pbkrtest package also implements the parametric bootstrap. The idea is the same as explained in the text
but the implementation in this package saves us the trouble of explicitly coding the procedure. Furthermore,
the package makes it easy to take advantage of the multiple processing cores available on many computers.
Given that the parametric bootstrap is expensive to compute, this is well worthwhile for very little additional
effort for the user. We set up the computing clusters:

library(parallel)
nc <- detectCores()
clus <- makeCluster(rep("localhost", nc))

We execute the parametric boostrap:

pmod <- PBmodcomp(amod, nmod, cl=clus)
summary(pmod)

Parametric bootstrap test; time: 10.25 sec; samples: 1000 extremes: 349;
large : yield ~ treat + (1 | blend)
small : yield ~ 1 + (1 | blend)

stat df ddf p.value
PBtest 4.05 0.35
Gamma 4.05 0.36
Bartlett 3.22 3.00 0.36
F 1.35 3.00 9.77 0.31
LRT 4.05 3.00 0.26
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Several different ways of computing the p-value are shown. First, the proportion of bootstrap samples in
which the bootstrapped test statistic exceeds the observed value is given. This results in a p-value of 0.36.
Next three different ways of approximating the null distribution are presented, all giving similar but not
identical results. The default number of boostrap samples is 1000. On today’s computers this will take
only a few seconds. In this example, the estimated p-value is far from 0.05 so there is no doubt about the
statistical significance. We certainly did not need more than 1000 samples and could have survived with
less. However, for more complex models involving larger datasets, computational time may become a more
important consideration. The approximations, if appropriate, will require fewer samples to work. This would
motivate us to consider this approach. But in this example, we can afford to be profligate.

Finally, the outcome of LRT is reported which matches our earlier calculations.

Irrigation Data

We can apply the same methods to the split plot example. First we test the interaction effect term:

lmodr <- lmer(yield ~ irrigation * variety + (1|field),data=irrigation)
lmoda <- lmer(yield ~ irrigation + variety + (1|field),data=irrigation)
KRmodcomp(lmodr, lmoda)

F-test with Kenward-Roger approximation; computing time: 0.06 sec.
large : yield ~ irrigation * variety + (1 | field)
small : yield ~ irrigation + variety + (1 | field)

stat ndf ddf F.scaling p.value
Ftest 0.25 3.00 4.00 1 0.86

Because of the balance in the data, the F-test requires no adjustment and the outcome is identical with that
presented in the printed textbook. We can also test the main effect terms although we are not able to exactly
reproduce the results in the text because we must frame the test as model comparisons in contrast to the
ANOVA table in text.

First we test the variety term by removing it from the main effects model and making the comparison.

lmodi <- lmer(yield ~ irrigation + (1|field),data=irrigation)
KRmodcomp(lmoda, lmodi)

F-test with Kenward-Roger approximation; computing time: 0.06 sec.
large : yield ~ irrigation + variety + (1 | field)
small : yield ~ irrigation + (1 | field)

stat ndf ddf F.scaling p.value
Ftest 1.58 1.00 7.00 1 0.25

The test-statistic and p-value are not identical with the text because the ANOVA table uses the denominator
mean square and degrees of freedom from the full model with the interaction. We can test the irrigation
effect in the same way:

lmodv <- lmer(yield ~ variety + (1|field),data=irrigation)
KRmodcomp(lmoda, lmodv)

F-test with Kenward-Roger approximation; computing time: 0.06 sec.
large : yield ~ irrigation + variety + (1 | field)
small : yield ~ variety + (1 | field)

stat ndf ddf F.scaling p.value
Ftest 0.39 3.00 4.00 1 0.77
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In this case, it is clear that neither irrigation or variety have an impact on the yield. The parametric bootstrap
method can also be used here.

Abrasion data

We can apply these methods to the crossed effects example like this:

mmod <- lmer(wear ~ material + (1|run) + (1|position), abrasion,REML=FALSE)
nmod <- lmer(wear ~ 1+ (1|run) + (1|position), abrasion,REML=FALSE)
KRmodcomp(mmod, nmod)

F-test with Kenward-Roger approximation; computing time: 0.09 sec.
large : wear ~ material + (1 | run) + (1 | position)
small : wear ~ 1 + (1 | run) + (1 | position)

stat ndf ddf F.scaling p.value
Ftest 25.1 3.0 6.0 1 0.00085

The test results for the main effect are identical with the aov() output but not the original anova() output.
The former result is best in this balanced data example.

JSP data

We can test the fixed effects in this model by a sequence of comparison. First we can test the three way
interactions:

mmod <- lmer(math ~ raven*social*gender+(1|school)+(1|school:class),data=jspr,REML=FALSE)
mmod2 <- lmer(math ~ (raven+social+gender)^2+(1|school)+(1|school:class),data=jspr,REML=FALSE)
KRmodcomp(mmod, mmod2)

F-test with Kenward-Roger approximation; computing time: 0.29 sec.
large : math ~ raven + social + gender + (1 | school) + (1 | school:class) +

raven:social + raven:gender + social:gender + raven:social:gender
small : math ~ (raven + social + gender)^2 + (1 | school) + (1 | school:class)

stat ndf ddf F.scaling p.value
Ftest 0.85 8.00 895.01 1 0.56

We see that the outcome is very similar to that seen in the text although due to the imbalance we do not
expect an exact match. Several additional comparisons would be necessary to test all the terms.

Several of the subsequent test can be executed using this method. For example, we can test the compositional
effect:

schraven <- lm(raven ~ school, jspr)$fit
jspr$craven <- jspr$raven-mean(jspr$raven)
mmod <- lmer(math ~ craven+social+(1|school)+(1|school:class),jspr, REML=FALSE)
mmodc <- lmer(math ~ craven+social+schraven+(1|school)+ (1|school:class), jspr,REML=FALSE)
KRmodcomp(mmodc,mmod)

F-test with Kenward-Roger approximation; computing time: 0.24 sec.
large : math ~ craven + social + schraven + (1 | school) + (1 | school:class)
small : math ~ craven + social + (1 | school) + (1 | school:class)

stat ndf ddf F.scaling p.value
Ftest 0.18 1.00 55.35 1 0.68
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The outcome is almost the same as before.

PSID data

We can test the terms in the model using the KR adjustment:

psid$cyear <- psid$year-78
mmod <- lmer(log(income) ~ cyear*sex +age+educ+(cyear|person),psid, REML=FALSE)
mmodr <- lmer(log(income) ~ cyear + sex +age+educ+(cyear|person),psid, REML=FALSE)
KRmodcomp(mmod,mmodr)

F-test with Kenward-Roger approximation; computing time: 0.33 sec.
large : log(income) ~ cyear + sex + age + educ + (cyear | person) + cyear:sex
small : log(income) ~ cyear + sex + age + educ + (cyear | person)

stat ndf ddf F.scaling p.value
Ftest 4.61 1.00 81.33 1 0.035

The result is very close to the p-value obtained for the t-test of this term in the printed output.

Acuity data

It is easy to excute the KR adjusted test in this example:

mmod <- lmer(acuity~power+(1|subject)+(1|subject:eye),vision,REML=FALSE)
nmod <- lmer(acuity~1+(1|subject)+(1|subject:eye),vision,REML=FALSE)
KRmodcomp(mmod, nmod)

F-test with Kenward-Roger approximation; computing time: 0.09 sec.
large : acuity ~ power + (1 | subject) + (1 | subject:eye)
small : acuity ~ 1 + (1 | subject) + (1 | subject:eye)

stat ndf ddf F.scaling p.value
Ftest 2.83 3.00 39.00 1 0.051

The p-value exceeding 5% is interesting since it contrasts with the previous results being just below 5%. In
truth, the result is borderline either way but of course, which side of the fence you are on will matter greatly
to some. We might also try the parametric bootstrap.

JSP example continued

We can reconstruct an F-test of the subject by craven term in the model using the KR adjustment.

jspr <- jsp[jsp$year==2,]
mjspr <- data.frame(rbind(jspr[,1:6],jspr[,1:6]), subject=factor(rep(c("english","math"),c(953,953))), score=c(jspr$english/100,jspr$math/40))
mjspr$craven <- mjspr$raven-mean(mjspr$raven)

mmod <- lmer(score ~ subject*gender+craven*subject+social+ (1|school)+(1|school:class)+(1|school:class:id),mjspr, REML=FALSE)
mmodr <- lmer(score ~ subject*gender+craven+subject+social+(1|school)+(1|school:class)+(1|school:class:id),mjspr, REML=FALSE)
KRmodcomp(mmod, mmodr)
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F-test with Kenward-Roger approximation; computing time: 0.84 sec.
large : score ~ subject + gender + craven + social + (1 | school) + (1 |

school:class) + (1 | school:class:id) + subject:gender +
subject:craven

small : score ~ subject * gender + craven + subject + social + (1 | school) +
(1 | school:class) + (1 | school:class:id)

stat ndf ddf F.scaling p.value
Ftest 16 1 950 1 6.9e-05

The outcome is very similar to the printed result. This is not surprising given the larger size of the sample.

Comment on PB and KR

The LRT and unadjusted F-test give results which cannot be universally trusted in the small to moderate
sample size situation. In balanced data examples, the aov() approach gives reliable results but its range
of application is limited. The KR adjustment offers a significant improvement but the problem remains
that it is still an approximation and it is difficult to specify exactly when the results are trustworthy.
Parametric bootstrap is better still but even this method is subject to assumptions which may not be reliable.
Computatation times for bootstrap times can be a concern. However, the use of parallel cores available on
many computers today ameliorates this problem. One might also point out that if the result of this analysis
matters greatly, then the inconvenience of waiting a few more minutes or hours should not be an obstacle.

RLRsim package

The RLRsim package offers a convenient way of testing the random effects. For more details, see (Scheipl,
Greven, and Kuechenhoff 2008). Here’s how we use it on the pulp data:

library(RLRsim)
smod <- lmer(bright ~ 1+(1|operator), pulp, REML=FALSE)
nullmod <- lm(bright ~ 1, pulp)
exactLRT(smod, nullmod)

simulated finite sample distribution of LRT. (p-value based on
10000 simulated values)

data:
LRT = 2.568, p-value = 0.0245

This is the same approach used as the parametric bootstrap described in the text. However, this implementation
is easier to use and is computationally more efficient. In this case, the results are very similar to those in the
text as we would expect.

We can execute the test of the random effect blend in the penicillin example:

pmod <- lmer(yield ~ treat + (1|blend), penicillin, REML=FALSE)
lmod <- lm(yield ~ treat, penicillin)
exactLRT(pmod, lmod)
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simulated finite sample distribution of LRT. (p-value based on
10000 simulated values)

data:
LRT = 3.454, p-value = 0.0403

Again the results are much the same as in the text. There is a slight difference in that here we have used the
ML estimate whereas we used REML version in the text.

Sadly, RLRsim only deals with cases where a single random effect term is being tested so it cannot help us in
testing the terms in the crossed or nested examples in this chapter.
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