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Chapter One: Ether theoretic accounts of the experiments
of Trouton and Noble

1.0 Introduction: condensers, contractions, and confusion

In the introduction to part one, I already discussed some of the incompatibilities between the

ether theoretic accounts of the experiments of Trouton and Noble due to Larmor and Lorentz

and the relativistic accounts of these experiments. The main emphasis of this chapter will be on

discrepancies among different ether theoretic accounts. These discrepancies, I think, illustrate

just how difficult it is to come to terms with these experiments without the benefit of Laue’s

relativistic mechanics which is tailor-made for this task.

Let me give a brief preview of what I think are the most perplexing discrepancies between

the discussions of Trouton, Larmor, and Lorentz of the Trouton-Noble experiment. All three

agree that, if one does not assume the Lorentz-FitzGerald contraction hypothesis, there will be a

net turning couple on a charged condenser moving through the ether. They even agree on its

size. However, they do not agree on its direction. Trouton believes the electromagnetic energy of

the condenser will have its lowest value if the plates are perpendicular to the direction of motion.

He concludes that the turning couple will try to put the plates at right angles with their velocity.

Larmor believes that the electromagnetic energy will have its lowest value if the plates are

parallel to the direction of motion. He concludes that the turning couple will try to put the plates

in the direction of their velocity. Lorentz agrees with Larmor on this last point. However, his

theory also vindicates Trouton’s conclusion that the electromagnetic energy will have its lowest

value if the plates are perpendicular to the direction of motion. Lorentz never actually did this

calculation, and never commented on this rather counter-intuitive state of affairs in his theory.

Larmor and Lorentz agreed that, if one does assume the Lorentz-FitzGerald contraction

hypothesis, there will be no net turning couple. However, the role of the contraction in Larmor’s

account is very different from its role in Lorentz’s account. According to Larmor (although he

only sketched the argument he thought would justify this claim), the contraction ensures that the

electromagnetic energy of the condenser is independent of the orientation of the plates with

respect to the direction of motion. In Lorentz’s theory, the electromagnetic energy does depend

on the orientation of the plates with respect to the direction of motion, even with the Lorentz-

FitzGerald contraction (although Lorentz never did this calculation). The contraction hypothesis

enters into Lorentz’s account of the Trouton-Noble experiment through one of the hypotheses

from which Lorentz in 1904 wanted to derive the contraction, viz. the hypothesis that motion
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through the ether affects molecular forces in the same way as it affects Coulomb forces. On that

assumption, any turning couple coming from the Coulomb forces will be exactly compensated

by the turning couple coming from the intermolecular forces preventing the condenser from

collapsing under the influence of the Coulomb attraction between its plates. Lorentz never

spelled out this explanation of the Trouton-Noble experiment in any detail (the interpretation

offered here stems from Laue 1911a) and never commented on the fact that his account is at

odds with Larmor’s. These brief comments will already convey how confusing the situation

concerning the Trouton-Noble experiment was in the ether theory of the early years of this

century. It will take a serious effort on the part of the reader, I am afraid, to get it all straight.

Here is how I will proceed. In Section 1.1, I will briefly go over the experiments themselves

and the conclusions drawn from them by the experimenters. This section will also cover

Larmor’s view of the Trouton experiment. To follow Larmor’s reasoning for the Trouton-

Noble experiment, one needs a clear understanding of how ether-theorists like Larmor and

Lorentz exploited the Lorentz invariance of Maxwell’s equations through a calculational device

involving what Lorentz called “corresponding states.” I will introduce this notion in section 1.2

and explain its relation to the notion of rest frames, familiar from special relativity. As an

example of applying this strategy of corresponding states, I will give a simplified version of the

‘forces’-account of the Trouton-Noble experiment due to Laue (1912b). We will then be ready

to tackle Larmor’s ‘energy’-account of the Trouton-Noble experiment (see section 1.3). In

section 1.4, I will present Lorentz’s account of both the Trouton and the Trouton-Noble

experiments in terms of the condenser’s so-called electromagnetic momentum. I will show how

Lorentz’s account of these experiments should be seen against the background of the debate

over the fate of Newton’s third law in his theory in the period 1895–1904. I will also show how

Lorentz’s account can be used to amend Larmor’s account of the Trouton-Noble experiment so

as to make it compatible with both Lorentz’s theory and special relativity.
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1.1 Moving condensers and torsion balances

Trouton’s original experiment was suggested by G.F. FitzGerald in the fall of 1900. Trouton

was FitzGerald’s assistant at Trinity College in Dublin at the time. The story of this first

experiment is told in a paper that Trouton published in April 1902 (Trouton 1902; see also

Warwick 1992). FitzGerald, Trouton tells us, thought that a condenser moving through the ether

should experience an impulse when it is charged or discharged. Trouton designed an

experiment to detect this effect. The results of this experiment were negative. Trouton does not

spend much time discussing this result in his paper. Instead, he goes on to suggest that one

should look for a turning couple on a carefully insulated charged condenser moving through the

ether rather than for an impulse upon charging or discharging the condenser. Trouton pursued

this idea, first in Dublin and then, together with Noble, in London, where Trouton became a

physics professor at University College in 1903. The results of these experiments were also

negative.
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Figure 1.1 Moving charged condenser.

1.1.1 FitzGerald and the Trouton experiment. Fig. 1.1 illustrates the situation FitzGerald

and Trouton considered. A charged condenser is moving through the ether. Let A be the area of

its plates and let d be the distance between them. Suppose the condenser is moving with velocity

v in the x-direction of a chosen reference frame with its plates parallel to the direction of motion.

It will be convenient to assume that the dielectric constant for the dielectric between the plates is

ε0, the dielectric constant for vacuum, i.e., that it is just as if there were only ether between the

plates. Suppose the top plate carries a positive charge +Q, and the bottom plate a negative

charge –Q. If we ignore edge effects, there will be a homogeneous electromagnetic field

between the condenser plates, and no field outside. As indicated in Fig. 1.1, the electric field E

points in the direction of the negative y-axis of the co-moving Galilean reference frame shown
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in the figure, whereas the magnetic field B points in the direction of the negative z-axis. Both the

presence and the direction of the B-field can be understood by looking upon the two charged

plates as representing two opposite currents. On the basis of this simple picture one can also

understand that there would be no B-field if the condenser were moving with its plates

perpendicular to the velocity (see Fig. 1.3 below). In that case the two currents cancel one

another. One has to be more careful in order to find the magnitude of both the E- and the B-

field (see section 1.4). As we will see, Trouton was not very careful in this respect.1
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Figure 1.2 Trouton’s experimental design to detect an impulse
upon charging or discharging a moving condenser (seen from above).

When, in the fall of 1900, FitzGerald suggested to Trouton that one might be able to detect

the earth’s motion through the ether with the help of a condenser, his reasoning, according to

Trouton, went as follows. When a condenser is charged while it is at rest in the ether, there will

only be an electric field. However, when the condenser is charged while moving through the

ether, there will also be a magnetic field. Where is the energy to build up the magnetic field

coming from? FitzGerald thought that it would come from a decrease in the kinetic energy of

                                                
1 These preliminary remarks are meant only to fix the reader’s intuition about the physics involved and are not
meant as either physically or historically fully accurate statements about the experiments I want to discuss. To
avoid a possible misconception on the part of those readers approaching this subject matter with strong late 20th
century intuitions in physics, I want to emphasize that in pre-relativistic electrodynamics it was commonly and
tacitly assumed—the only exception I am aware of being Poincaré (see chapter three)—that different inertial
observers measure the same E- and B-fields, i.e., the same disturbances in the ether. In modern terms, all inertial
observers measure the E- and B-fields of a frame at rest in the ether. Likewise, a current is understood to be
motion of charges with respect to the ether, not motion with respect to the observer measuring the current.
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the condenser. He therefore expected an impulse, a change of momentum ∆p, upon charging or

discharging the condenser.

Fig. 1.2 schematically shows the experimental setup that Trouton designed to measure the

effect. Trouton constructed a torsion balance with two condensers in it.2 The system is hooked

up to the torsion wire at R. The torsion wire (not shown in the figure) is perpendicular to the

plane of the paper. In other words, it is parallel to the y-axis of the co-moving Galilean reference

frame shown on the left (the plane of the paper coincides with the xz-plane of this coordinate

system). The idea was to get the torsion balance to oscillate in its proper mode by charging and

discharging the condensers at appropriate time intervals. The electrical wiring was such that the

condenser could be charged and discharged without disturbing the motion of the torsion

balance other than through the effect predicted by FitzGerald.3

Trouton did not find any effect. In the paper he published on the experiment, he considers

two possible responses to this negative result. Either the energy for the magnetic field is

supplied in some other way or there is some compensating effect (Trouton 1902, p. 562).

Trouton—probably under Larmor’s influence (see below)—seems to favor the first option. At

the beginning of his paper, before he has even given FitzGerald’s answer to the question where

the energy for the magnetic field is coming from, he notes: “If we attribute it to the electric

generator, say a battery, there is no difficulty indeed” (Trouton 1902, pp. 557–558). FitzGerald

had been of a different opinion. Trouton reports:

On the last opportunity I had of discussing the matter with Professor FitzGerald, preliminary
experiments had been made, giving as far as they went negative results: the final results not
being completed till after Science had to deplore the grievous loss it sustained at his death.
FitzGerald, on that occasion, made a remark which, as well as I remember, was to the effect
that should the negative results then obtained be sustained by further work, he would attribute
the non-occurrence of any observable effect to the same general cause as produced the negative
results in Michelson and Morley’s experiments on the relative motion of the Earth and the
ether by means of the interference of light. (Trouton 1902, p. 562)

As Trouton goes on to explain, “the same general cause” refers to the Lorentz-FitzGerald

contraction. In the next paragraph, Trouton elaborates on FitzGerald’s suggestion: “From

some such cause [i.e., the Lorentz-FitzGerald contraction] a diminution of the electrostatic

energy might be brought about […] just sufficient in amount to provide the energy required for

the magnetic field” (ibid., pp. 562–563). It is not entirely clear whether this elaboration is

Trouton’s or FitzGerald’s. However, no matter whose idea it was, it is hard to see how it could

be made to work.

                                                
2 By the time Trouton made his actual measurements he had only one working condenser left. The others all
broke down under the voltage of 1200 Volts that Trouton was using (Trouton 1902, pp. 558–559). The role of
one of the condensers in Fig. 2.2 was thus reduced to that of a balance-weight.
3 See Trouton’s own drawing of his apparatus (Trouton 1902, p. 560).
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1.1.2 Larmor on the Trouton experiment. Larmor got involved in Trouton’s experiment at

an early stage (see Warwick 1992 for details). He is the only one to get an acknowledgment in

Trouton’s 1902 paper. Larmor also became the editor of FitzGerald’s scientific papers that

were published later in 1902, less than two years after FitzGerald’s death. Larmor included

Trouton’s 1902 paper in this volume and added an interesting note himself (Larmor 1902).

FitzGerald’s original suggestion is dismissed in one short paragraph at the end of this note.

According to Larmor no such effect was ever to be expected. Larmor was very interested though

in the new experiment that Trouton had proposed. I will return to Larmor’s discussion of this

new experiment in section 1.3. At this point, I just want to look at his discussion of Trouton’s

original experiment.

In the last paragraph of his commentary on Trouton’s paper, Larmor offers the following

simple argument to establish that the energy to build up the magnetic field cannot come from

the kinetic energy of the condenser. Larmor writes:

If the condenser AB is held absolutely fixed while it is being charged, any impulsive torque
there might be could do no work; yet the condenser gets its energy. This seems by itself
sufficient to negative the suggestion that the energies of charge and discharge […] have to do
directly with mechanical forces (Larmor 1902, p. 569; italics in the original).

I take it that by ‘absolutely fixed,’ Larmor means ‘fixed with respect to the laboratory,’ i.e., not

freely suspended on a torsion wire as in the actual experiment. The alternative reading ‘fixed

with respect to the ether’ does not seem to make sense, since the problem only arises for a

moving condenser. At first glance, Larmor’s argument is a gross non-sequitur. It is perfectly

consistent to maintain that the energy for building up the magnetic field in the case where the

condenser is fixed to the laboratory comes from an ever so slight decrease of the kinetic energy

of the earth as a whole.

Andrew Warwick and John Stachel4 have both suggested (different) more charitable

reconstructions of the argument Larmor offers in this passage. On the reading suggested above,

Larmor missed a very obvious point, viz. that if the condenser is not freely suspended in the

laboratory, a decrease in its kinetic energy would have to be accompanied by a (tiny) decrease in

the kinetic energy of the earth. Warwick and Stachel do not believe Larmor could have

overlooked such an obvious point, and suggest that his reductio is, in fact, to the absurdity of the

notion that the earth’s kinetic energy would decrease in the experiment. Unfortunately, Larmor

fails to spell out exactly why he believed this was so absurd (if indeed he held this belief).

Warwick and Stachel offer different reconstructions of the reasons behind Larmor’s

conjectured belief.

                                                
4 Private communications.



7

Warwick points out that Larmor believed that it was impossible to extract energy from an

object’s motion through the ether, except maybe a very small amount, proportional to some

higher power of v/c, the ratio of the object’s velocity with respect to the ether and the velocity of

light. Otherwise, Larmor believed, the whole universe would have long come to rest in the ether.

If FitzGerald were right, the energy extracted from the motion of the condenser and the earth

through the ether in the Trouton experiment would be of order v2/c2. Larmor’s belief that this

would be impossible is illustrated by his attitude toward the new experiment Trouton proposed.

In a passage that I will analyze in more detail in section 2.3, a passage written before the

experiment was even performed, Larmor writes: “Thus the energy of motion of the Earth

through the æther is available for mechanical work to an unlimited extent, unless [...] the

FitzGerald-Lorentz contraction is a fact” (Larmor 1902, p. 568).5 Larmor appears to be quite

confident that the result of the experiment will be negative. This would seem to support

Warwick’s interpretation of Larmor’s response to Trouton’s original experiment. There is an

important difference though between Larmor’s responses to these two experiments. In the case

of the new experiment Trouton suggests, Larmor offers a detailed explanation (viz. the

FitzGerald-Lorentz contraction) to explain why it will be impossible to extract energy from the

earth’s motion through the ether in this experiment. In the case of Trouton’s original

experiment, we find no such thing. Instead, Larmor simply dismisses FitzGerald’s idea out of

hand (“This seems by itself sufficient to negative the suggestion ...”). This suggests that

Larmor had some other reason for believing FitzGerald’s idea to be absurd.

Stachel has suggested such a reason. If the fully isolated system of the earth and the

condenser were to change its velocity upon charging or discharging the condenser, we would

have a blatant violation of a basic theorem in mechanics according to which the center of mass

of a fully isolated system cannot change its state of motion. It seems very plausible to me that

this violation of the center of mass theorem is indeed the absurdity that Larmor sensed in

FitzGerald’s proposal. In that case, it has to be said that he would prove to be dead on.

However, the connection between the Trouton experiment and the center of mass theorem would

prove to be considerably more complex than Larmor, given the extreme brevity of his dismissal

of FitzGerald’s idea, can possibly have realized at the time.

The center of mass theorem is closely related to Newton’s third law, the principle that action

equals reaction, which, in turn, is closely related to the conservation of momentum. When

Larmor wrote his comment on FitzGerald’s idea, the status of momentum conservation in its

                                                
5 The following passage in Trouton’s paper may actually reflect discussions between Trouton and Larmor over
this issue: “Should this turning moment be proved to operate, instead of being masked by some compensating
effect, it would open up a road leading to illimitable possibilities, for it would at once remove from the category
of utter hopelessness the idea of mankind ever being able to utilize the vast store of energy in the Earth’s
motion through space” (Trouton 1902, p. 564).
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various guises in theories positing a stationary ether, such as the theories of Lorentz and

Larmor, had been the subject of some serious debate, notably between Lorentz and Poincaré. In

1902, the situation was unclear at best.6 Moreover, even if we set aside the doubts about the

universal validity of momentum conservation that were not uncommon at the time, the

connection between the Trouton experiment and the center of mass theorem is far from

straightforward. That this could have appeared to be otherwise to Larmor in 1902 is only

because he was blissfully ignorant of two complicating factors to be introduced in the years just

ahead.

First, Abraham (1903) introduced the notion of electromagnetic momentum. When the role

this quantity plays in the Trouton experiment is taken into account, it looks as if momentum

conservation is violated if the effect predicted by FitzGerald does not occur. As we will see in

section 1.4, this is the conclusion that Lorentz reached in 1904. Second, Einstein (1905b, 1906)

introduced the equivalence of mass and energy. When both electromagnetic momentum and the

inertia of energy are taken into account, Larmor’s intuition proves to be right, and momentum

conservation rules out the effect predicted by FitzGerald. No one, to my knowledge, least of all

Larmor, ever drew attention to this rather complicated state of affairs.

Whatever the correct interpretation of these comments by Larmor I quoted—whether it is

simply the gross non-sequitur it appears to be at first sight or whether there is some sound

physical intuition behind it—they seem to have sealed the fate of the experiment FitzGerald had

suggested to Trouton. Both Larmor and Trouton were convinced that the effect predicted by

FitzGerald could not possibly occur. However, Trouton, probably with Larmor’s help, had

already thought of a more promising way to detect etherdrift with the help of condensers.

1.1.3 The Trouton-Noble experiment. As was noticed above, there will be no magnetic field

when the condenser is moving with its plates perpendicular to the velocity. More generally,

drawing on the simple picture of the moving condenser as two opposite currents, Trouton found

that the magnetic field will be proportional to cos θ, where θ is the angle between the plates of

the condenser and its velocity. In Fig. 1.3 the extreme cases (θ = 0 and θ = π/2) are shown.

Trouton refers to these two cases as “edgewise” and “flatwise,” respectively (Trouton 1902,

p. 563); Larmor uses “longitudinal” and “transverse,” instead (Larmor 1902, p. 568).

Trouton asked where the energy for the magnetic field is coming from when we charge a

moving condenser in the ‘flatwise’ position with no B-field, then disconnect the condenser

from the power supply, and rotate it over 90 degrees to the ‘edgewise’ position with B-field.

FitzGerald presumably would have answered “from the condenser’s kinetic energy,” but given

                                                
6 I will return to this issue in section 1.4 and chapter two.
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the negative result of Trouton’s original experiment and Larmor’s alleged reductio of

FitzGerald’s reasoning this possibility was not seriously entertained.7 Trouton’s answer was

that the rotation must be resisted by a turning couple, so that we must do work to turn the

condenser into a state with a stronger B-field.

 

vv

Figure 1.3 On the left: condenser moving “flatwise” (Trouton), “transversal” (Larmor), θ = π/2.
On the right: condenser moving “edgewise” (Trouton), “longitudinal” (Larmor), θ = 0.

Trouton also calculated how big this turning couple would be. He followed essentially the

same path as the one followed by Larmor that I briefly described in the introduction. Like

Larmor, Trouton only considered the electromagnetic energy of the moving condenser; and like

Larmor, he tacitly assumed that only the electromagnetic part of the condenser’s energy can

depend on the angle between the condenser’s plates and its velocity. The way in which Trouton

actually calculated the electromagnetic energy of the condenser is different though from the way

in which Larmor calculated this quantity. Their results contradict each other and are also at odds

with both Lorentz’s theory and special relativity. From the perspective of Lorentz’s theory and

special relativity, Trouton derives an expression for the electromagnetic energy to order β2 from

expressions for the electromagnetic field that are valid only to order β (see Eqs. 1.69–1.74).

When this is corrected for, the discrepancy between Trouton’s result and Larmor’s result is

seen to have the same origin as the discrepancy between Larmor’s result and the result found

by Lorentz and in special relativity.

                                                
7 Larmor in his commentary on Trouton’s paper implicitly rules out another possible answer, viz. that the
temperature of the condenser drops slightly when it is rotated from the ‘flatwise’ to the ‘edgewise’ position.
Larmor notices that the process is reversible (Larmor 1902, p. 568). Hence, a drop in temperature would lead to
conflicts with the second law of thermodynamics.
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Trouton used the well-known expression for the energy density u of an arbitrary

electromagnetic field, which in modern notation reads

u = 1
2

ε0E2 + 1
2

µ0
–1 B 2, (1.1)

to find an expression for the electromagnetic energy of a moving condenser as a function of the

angle θ. Since the field in the moving condenser is homogeneous, we can just multiply u by the

volume V of the condenser to obtain the electromagnetic energy U stored in it. For the

condenser at rest, the electromagnetic energy U′ is given by:

U′ = 1
2

ε0E′
2V, (1.2)

which is just the first term of Eq. 1.1 multiplied by V. Trouton assumed the electric field E in
the moving condenser to be the same as the electric field E′ in the same condenser at rest

carrying the same charge. Drawing on the analogy between the charged moving condenser and

two currents of opposite sign, Trouton found that the magnitude B of the magnetic field is given

by (Trouton 1902, p. 558; Trouton and Noble 1903, p. 168):8

B = β E′/c cos θ. (1.3)

Inserting Eq. 1.3 into the second term of Eq. 1.1, and using the relation µ0–1/c2 = ε0 and the

expression for U′ in Eq. 1.2, one sees that the magnetic field gives a contribution β2 U′ cos2θ to

the electromagnetic energy of the moving condenser. So, Trouton arrives at (Trouton 1902, p.

564; Trouton and Noble 1903, p. 168):

U(θ) = U′ (1 + β2 cos2θ). (1.4)

Hence, to rotate the condenser clockwise from some angle θ+∆θ to some slightly smaller

angle θ (for which U will be bigger according to Eq. 1.4), we have to do an amount of work ∆W

= U(θ) – U(θ+∆θ).

In Fig. 1.1.4 two forces of equal size F(θ) are drawn that we have to exert to overcome the

turning couple T(θ) resisting the rotation from θ+∆θ to θ. These forces form a turning couple

F(θ)d of the same size as T(θ). The work done by these two forces is given by:

∆W = 2 F(θ) 1
2

d ∆θ  = T(θ) ∆θ . (1.5)

                                                
8 It follows directly from Maxwell’s equations that the expressions Trouton uses for the fields E and B only
hold to first order in β (cf. Eq. 1.65 and Eq. 1.69).
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Using ∆W = U(θ) – U(θ+∆θ), we find for T(θ):

T(θ) = ∆W
∆θ

 = 
U(θ) – U(θ+∆θ )

∆θ
 . (1.6)

In the limit ∆θ  → 0, Eq. 1.6 turns into:

T(θ) = –
dU(θ)

dθ
. (1.7)

Inserting Eq. 1.4 into Eq. 1.7, we find that the turning couple is given by (Trouton 1902, p. 564;

Trouton and Noble 1903, p. 169):

T(θ) = U′ β2 sin 2θ, (1.8)

where I used the relation 2 sin θ cos θ = sin 2θ.

F(θ)

F(θ)θ

1
2

d

1
2

d

Figure 1.4 Work done upon rotating a moving condenser.

Larmor, Lorentz, and Laue all found a turning couple of the same size as Trouton, but working

in the opposite direction. According to Trouton and Noble the turning couple tries to put the

plates perpendicular to their velocity (‘flatwise;’ the position without a magnetic field).

According to Larmor, Lorentz, Laue and every one who has dealt with the experiment since, the

turning couple tries to put the plates parallel to their velocity (‘edgewise;’ the position with a

magnetic field).9 For the experiment Trouton and Noble performed to detect the turning couple

its direction does not matter.

                                                
9 Understandably, Trouton and Noble did not accept Larmor’s conclusion that the turning couple actually tries
to get the condenser to rotate from a position with no magnetic field to a position with a magnetic field. After
all, the whole experiment was based on the idea that the turning couple would work in the opposite direction,
providing the energy for the magnetic field if we were to rotate the condenser from the ‘flatwise’ to the
‘edgewise’ position. Consequently, Trouton and Noble did not accept the expression Larmor gave for the
electromagnetic energy (see section 1.3, Eq. 1.20 and Eq. 1.32). According to Larmor, the state with a magnetic
field (θ=0) is less energetic than the state without a magnetic field (θ=π/2). In the 1903 paper by Trouton and
Noble, Trouton’s own 1902 expression for the condenser’s energy is used (see Eq. 1.4). In a footnote, they



1 2

•

•

x

y

z

torsion    
wire

v

Figure 1.5 Trouton and Noble’s experimental design to detect
a turning couple on a charged moving condenser (seen from above).

Fig. 1.1.5 schematically shows the experimental setup Trouton and Noble used for their

experiment. As in Trouton’s original experiment, Trouton and Noble had a condenser

suspended on a torsion wire. Trouton and Noble had the system oscillating in its proper mode

while the condenser was uncharged. They then charged the condenser—again, the electrical

wiring was such that this could be done without disturbing the system’s motion10—and studied

whether this had any effect on the damping process of the oscillation as one would expect if

there really were a turning couple acting on a charged condenser. “There is no doubt that the

result is a purely negative one,” Trouton and Noble write in the conclusion of their paper

(Trouton and Noble 1903, p. 181).11 They suggest that maybe the energy of the electric field

depends on the orientation of the condenser too, in such a way that the sum of electric and

magnetic energy is independent of the orientation. This explanation is reminiscent of

FitzGerald’s—or Trouton’s—explanation of the original experiment. Again, it is hard to see

how such an explanation could be made to work.

As with the Michelson-Morley experiment, there is the remote possibility that the negative

result of the Trouton-Noble experiment is due to the fact that the net velocity of the condenser

with respect to the ether happened to be zero or very small at the time the experiment was done.

                                                                                                                                                      
inform the reader that Larmor arrived at a different result (Trouton and Noble 1903, p. 165, footnote; cf. Larmor
1902, p. 568, footnote). As we will see in section 1.4, Lorentz's theory vindicates Trouton and Noble in that
the electromagnetic energy of the moving condenser does have its minimum in the ‘flatwise’ position with no
magnetic field. At the same time, however, Lorentz’s theory predicts that the turning couple will be in the
direction Larmor predicted (see the discussion following Eq. 1.42 in section 1.4).
10 See Trouton and Noble’s own drawing of their experimental setup (Trouton and Noble 1903, p. 167;
reproduced in Miller 1981, p. 69).
11 Trouton and Noble claimed that their experiment put an upper limit of about 1.5 km/s on the velocity of the
earth with respect to the ether. Michelson and Morley only claimed an upper limit of 5 km/s on the basis of
their famous 1887 experiment. The velocity of the earth in its orbit around the sun is 30 km/s.
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A large portion of Trouton and Noble’s paper is actually devoted to astronomical

considerations that would make such a conspiracy extremely unlikely (Trouton and Noble

1903, pp. 169–176).
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1.2 Corresponding states and rest frames; application to the Trouton-
Noble experiment

1.2.1 Electrostatics in moving frames of reference, with and without the Lorentz-

FitzGerald contraction. The most intuitive way of calculating the turning couple on a moving

condenser is probably through the forces acting on the condenser. Before I go through

Larmor’s derivation in terms of energy (section 1.3) and Lorentz’s derivation in terms of

momentum (section 1.4), I will therefore present a simplified version of a derivation due to Laue

in terms of forces (Laue 1912b). This simplified derivation will only give a turning couple half

the size found in more rigorous derivations. In section 2.4, I will show how one gets the other

half (see Eqs. 2.116–2.130).

The simplified version of Laue’s argument to be given in this section not only serves to

provide a simple intuitive account of the Trouton-Noble experiment. Its main purpose, in fact, is

to introduce the concept of “corresponding states.” All derivations that we will look at in

sections 1.3 and 1.4 exploit the Lorentz invariance of Maxwell’s equations in one way or

another. The ether theoretic way of looking upon such calculations is rather different from the

relativistic way of looking upon them. Whenever Lorentz is dealing with the state of a system in

motion, he introduces a so-called “corresponding state” of a system at rest in the ether. Other

ether theorists, such as Abraham and Larmor, also used Lorentz’s device. From a modern

relativistic point of view, a corresponding state is just the state of the moving system in its rest

frame. By the end of this section, the reader will hopefully feel comfortable switching back and

forth between thinking in terms of corresponding states and thinking in terms of rest frames (cf.

Laue 1912b, pp. 176–177).

The basic result I will use in this section is what the reader will recognize as Planck’s

relativistic transformation law for forces:

F = diag(1, 1 γ, 1 γ) F ′            γ ≡ 
1

1 – β
2  . (1.9)

In Fig. 1.6 this relation is illustrated. I will go over both the relativistic and Lorentz’s ether

theoretic way of looking upon Eq. 1.9 and Fig. 1.6. All other diagrams in this section can

likewise be understood in these two different ways. From the relativistic point of view, the

rectangle on the left in Fig. 1.6 represents some static charge distribution in its rest frame. A

charge Q at some point P′ experiences a Coulomb force F′; the rectangle on the right represents

the same charge distribution in a frame in which it is moving at a velocity v in the direction of
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the positive x-axis of the chosen reference frame.12 In this frame the charge distribution is

shorter by a factor γ in the direction of motion (l = l′/γ). The relation between the force F on the

charge Q at P and the force F′ on that same charge Q at the corresponding point P′ , is given by

Eq. 1.9.13

F′

l′

P′

F

l

Fy

FxP

x

y

z
F′x

F′y

Figure 1.6 Forces on a moving static charge distribution.

As far as I know, Eq. 1.9 was first derived by Lorentz in 1895 in the context of his treatment

of electrostatics in (Galilean) reference frames in uniform motion with respect to the ether

(Lorentz 1895, sections 19–23, pp. 31–37).14 Suppose we have a static charge distribution

moving through the ether, such as the charge distribution on the right of Fig. 1.6. Lorentz

wanted to calculate the forces experienced by charges in such charge distributions. For static

charge distributions at rest in the ether this problem is easily solved with the help of Maxwell’s

equations. The problem of a moving charge distribution, even a static one in uniform motion, is

harder to handle. In a frame at rest in the ether, in which Maxwell’s equations hold, the case of a

moving distribution is considerably more complicated than the case of a distribution at rest. And

in a Galilean frame moving along with the moving charge distribution, Maxwell’s equations no

longer hold and get replaced by equations of a more complicated form.15 Lorentz’s strategy

was to introduce a set of auxiliary quantities such that the equations for electrostatics in the

Galilean co-moving frame would be the same as the equations for electrostatics in a frame at

rest in the ether. For instance, instead of the x-coordinate of the Galilean co-moving frame

Lorentz introduced the auxiliary quantity x′ = γx. The idea was to solve the problem in terms of

these auxiliary quantities and then to rewrite the solution in terms of the real quantities of the

                                                
12 In order to bring out the effects more clearly, I picked β = .75, which gives γ  ≈ 1.5. In the actual etherdrift
experiments, such as the Michelson-Morley experiment and the Trouton-Noble experiment, β was assumed to be
of the order of 10–4.
13 For those readers who like to think in terms of active rather than passive transformations: the system on the
right is obtained by Lorentz boosting the system on the left to a velocity v = .75c in the positive x-direction.
14 Later on his book (Lorentz 1895, sections 91–92, pp. 123–125; see Lorentz et al. 1952, pp. 5–7), Lorentz
used the result in a well-known plausibility argument for the Lorentz-FitzGerald contraction hypothesis. See,
e.g., Miller 1981, pp. 32-34. I will discuss this argument and the derivation of Eq. 1.9 in section 3.2.
15 The partial derivative ∂/∂t gets replaced by ∂/∂t – v ∂/∂x, and the current density ρu gets replaced by ρ(u+v).
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co-moving Galilean frame. Since the auxiliary quantities obey the equations of electrostatics in a

system at rest in the ether, solving the problem in terms of the auxiliary quantities boils down to

solving a problem in electrostatics in a frame at rest in the ether. Not surprisingly, this problem

in a frame at rest in the ether is just to find the forces in the charge distribution on the left of

Fig. 1.6. So, the upshot is the following strategy for calculating forces in static charge

distributions moving through the ether. Suppose we want to find the force F on some charge Q

at point P in the static charge distribution on the right of Fig. 1.6 in a Galilean frame moving

through the ether at a velocity v in the positive x-direction. Here is how we proceed. (i) We

stretch out the charge distribution by a factor γ in the x-direction. (ii) We treat this stretched out

charge distribution as being at rest in the ether. (iii) We calculate the force F′ on the same

charge Q at the corresponding point P′ in this stretched out charge distribution at rest. (iv) We

use Eq. 1.9 to get from F′ to F.

I want to make three comments on this 1895 derivation of Lorentz’s. First of all, it should

be mentioned that, in Lorentz’s 1895 book, the treatment of electrostatics in moving frames is

completely separate from the very similar treatment of optics in moving frames involving the

auxiliary quantity ‘local time’ (Lorentz 1895, sections 56–83, pp. 82–114). In 1899 Lorentz set

out to give a unified treatment of all electromagnetic phenomena in moving frames of reference,

a project he finished in 1904 (Lorentz 1899, 1904b). It is only after this synthesis that Lorentz

starts referring to situations such as the ones shown in Fig. 1.6 as ‘corresponding states’ and to

the strategy for dealing with electrostatics in moving frames as an application of ‘the theorem of

corresponding states.’ In 1895 these locutions are reserved for optics.16

Secondly, I want to stress that Lorentz’s 1895 derivation of Eq. 1.9 is completely

independent of the Lorentz-FitzGerald contraction hypothesis. Eq. 1.9 holds irrespectively of

any assumptions about what happens to the system on the left of Fig. 1.6 when it is given the

same velocity as the system on the right. According to the contraction hypothesis the system on

the left, when set in motion, will actually turn into the system on the right, but Eq. 1.9 also holds

under the assumption that it will simply retain its shape. Lorentz’s more general ‘theorem of

corresponding states’ of 1904 also applies whether or not one assumes a physical contraction

of the system under consideration. In 1904 the Lorentz-FitzGerald contraction is an integral

part of Lorentz’s own theory, but we can still use the theorem of corresponding states without

it.17

                                                
16 See chapter three for a more detailed discussion of this development and for references to the extensive
secondary literature on this topic.
17 Abraham (1903), for instance, used it to find the electromagnetic mass of his rigid spherical electrons. See,
e.g., Miller 1981, pp. 55–61.
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Finally, I want to draw attention to the fact that Lorentz is tacitly assuming that an observer

at rest in the ether and an observer in the Galilean co-moving frame will agree upon the

dimensions of the moving charge distribution. It was only after 1905, that Lorentz fully realized

that to a co-moving observer a situation in a moving frame would always appear to be the

corresponding state in a frame at rest (Lorentz 1916, pp. 223–230). In the example of Fig. 1.6,

for instance, the moving charge distribution on the right would appear to a co-moving observer

as the charge distribution on the left. Still, Lorentz maintained that this was only so because of

the way all measuring instruments are affected by their motion through the ether. For a co-

moving observer equipped with measuring devices that would not be disturbed by motion

through the ether the dimensions of the moving charge distribution would be the same as for an

observer at rest in the ether. In the example of Fig. 1.6, for instance, such an observer would be

dealing with the charge distribution on the right rather than with the one on the left. It will be

helpful to call this latter observer a “Galilean co-moving observer,” and the co-moving observer

whose measuring instruments always show him the corresponding state a “Lorentzian co-

moving observer.”

In summary, Fig. 1.6 and all other figures in this section are to be looked upon as follows.

On the right, we have a moving system as observed by both an observer at rest (at rest with

respect to the ether in the ether theory, at rest with respect to some inertial frame in relativity),

and a Galilean co-moving observer. On the left, we have (in ether theoretic terms) the

corresponding state of that system at rest in the ether, or (in relativistic terms) the moving

system in its rest frame. To put it differently: on the left we have (in relativistic and post 1905

ether theoretic terms) the moving system as observed by a Lorentzian co-moving observer.

1.2.2 Application: the turning couple of the Coulomb forces on a moving charged

condenser. We will be concerned with two different systems of the type shown in Fig. 1.6: a

moving condenser undergoing the Lorentz-FitzGerald contraction and a moving condenser not

undergoing the Lorentz-FitzGerald contraction. These two systems are shown in Fig. 1.7 and

Fig. 1.8, respectively.

On the right, the systems are drawn as observed by either an observer at rest or a Galilean

co-moving observer; on the left, they are shown as they appear in their rest frame, i.e., to a

Lorentzian co-moving observer. Notice the shaded lines on the left that indicate how the

systems on the left are obtained through stretching the systems on the right by a factor γ in the

x-direction. In this way, the parallelogram representing the contracted moving condenser on the

right in Fig. 1.7 turns into the rectangle representing the uncontracted condenser at rest on the

left. Likewise, the rectangle representing the uncontracted moving condenser on the right in Fig.

1.8 turns into the parallelogram representing the stretched out condenser at rest on the left.
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θ

aa′ d′ d
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y

x′

y′

θ′
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Figure 1.7 Moving condenser (with the Lorentz-FitzGerald contraction).

Fig. 1.7 represents the case of an ordinary moving plate condenser both in the ether theories

of Lorentz and Larmor featuring the Lorentz-FitzGerald contraction, and in the special theory of

relativity. The only difference is that in the ether theory the contraction is thought of as a

dynamical effect, whereas in special relativity it is purely kinematical (see chapter two for

discussion of this distinction).

θ′

θ′

a′ d′

x′

y′

θ

θ

a d

x

y

Figure 1.8 Moving condenser (without the Lorentz-FitzGerald contraction).

The system shown in Fig. 1.8, on the other hand, is rather odd from a relativistic point of

view. It represents a squashed condenser that happens to be a regular rectangular shaped one in

a reference frame in which it is moving in the x-direction and tilted at an angle θ with respect to

the velocity v. Moreover, the (no Lorentz-FitzGerald contraction) ether theoretic and the

relativistic accounts of what happens when we change the orientation of the moving system with

respect to its velocity are very different. According to the ether theory the moving condenser will

still be represented by the rectangle shown on the right of Fig. 1.8: that rectangle will just be
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tilted at a different angle θ. Consequently, the parallelogram on the left representing the

corresponding state at rest in the ether will not only be tilted at a different angle θ′, but will have

a different shape as well. According to relativity theory, on the other hand, the rectangle on the

right of Fig. 1.8 representing the squashed condenser in motion will turn into parallelogram the

moment we change the orientation of the condenser with respect to its velocity. However, on the

left of Fig. 1.8, in the squashed condenser’s rest frame, it will always be represented by the

same parallelogram, only tilted at different angles θ′.

Despite these differences of interpretation between relativity theory and ether theory with or

without the Lorentz-FitzGerald contraction, quantities belonging to the systems in motion on the

right of Fig. 1.7 and Fig. 1.8 can always be obtained from the corresponding quantities

belonging to the systems at rest on the left through a Lorentz transformation, both in relativity

theory and in ether theory.

Before I compute the forces acting on the plates of the condenser with the help of Eq. 1.9, I

want to write down some relations that we will need later on. First, compare the lengths a and a′

of the plates and the distances d and d′ between them for the condensers shown in Fig. 1.7 and

Fig. 1.8. For both figures, we have:

a′ cosθ′  = γ a cosθ d′ sinθ′ = γ d sinθ

a′ sinθ′  =  a sinθ d′ cosθ′ = d cosθ

(1.10)

In Fig. 1.7 (with the Lorentz-FitzGerald contraction) we have (θ′  = θ′ , θ ≠ θ), whereas in Fig.

1.8 (without the Lorentz-FitzGerald contraction) we have (θ′  ≠ θ′, θ = θ ).

From Eq. 1.10, we can easily derive expressions for the ratios a/a′ and d/d′. In terms of the

unprimed angles, these ratios are given by:

a
a′

 = 
1 – β

2

1 – β
2

sinθ
;     d

d′
 = 

1 – β
2

1 – β
2

cosθ
. (1.11)

In terms of the primed angles, these same ratios are given by:

a
a′

 = 1 – β
2

cosθ′ ;     d
d′

 = 1 – β
2

sinθ′ . (1.12)

With the help of Fig. 1.9 and Fig. 1.10, I will calculate the moments of the Coulomb forces

on the plates of a moving condenser, both when it does and when it does not undergo the
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Lorentz-FitzGerald contraction.18 We need the moments of these forces with respect to the

torsion wire, the only axis of rotation for the moving condenser in the Trouton-Noble

experiment. I have chosen a Galilean co-moving frame in which the z-axis coincides with the

torsion wire (cf. Fig. 1.5). I will assume that the Coulomb forces on a plate of the condenser

can all be represented by one Coulomb force on the center of mass of the plate.19

x

y

z

x′

y′

z′

θ
xt

xb

Ft

Fb

F′t F′b

x ′b

x ′t
θ′

Figure 1.9 Forces on a charged moving condenser (with the Lorentz-FitzGerald contraction).

I will look at the case with the Lorentz-FitzGerald contraction first. In this case the

condenser at rest (on the left of Fig. 1.9) has the familiar rectangular shape. Elementary

electrostatics tells us what the net forces F′t and F′b on top and bottom plate of the condenser at

rest will be. They are equal and opposite, and perpendicular to the plates. With the help of Eq.

1.9, we can then find the forces Ft and Fb on top and bottom plate of the moving condenser (on

the right of Fig. 1.9). The turning couple on the moving condenser is just the sum of the

moments of these forces with respect to the z-axis:

T = x t × F t + xb × Fb = 2 x t × F t, (1.13)

where xt and xb are the position vectors of the centers of mass of the top and the bottom plate in

the co-moving Galilean frame.20 Applying Eq. 1.9, we find that:

Ft = diag 1, 1 γ, 1 γ  F′t

= F′ sinθ′, – 1
γ

cosθ′,0  ,
(1.14)

                                                
18 I am grateful to Hans Montanus for catching an error in an earlier version of this calculation.
19 It turns out that the forces at the edges of the condenser give a turning couple of the same size as the turning
couple we are about to compute here (see section 2.4, Figs. 2.9–2.10).
20 From a relativistic point of view, we should use the position vectors in the Lorentz frame in which the
condenser is moving, i.e., instead of x , we should use x  + v t. Since F t = – Fb, this does not make any
difference.
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where F′ is the size of the forces Ft′ and Fb′. For xt we can write:

x t = d
2
 (–sinθ , cos θ , 0 )

=
d′
2

 (–1
γ

sinθ′, cos θ′, 0 ),

(1.15)

where in the second line Eq. 1.10 was used. Inserting Eq. 1.14 and Eq. 1.15 into Eq. 1.13, and

using that γ–2 = 1 – β2, we find for the turning couple:

T = ( 0, 0, 2 (xtFyt – y tFxt))

= ( 0, 0, – d′F′β
2
 sinθ′cosθ′ ).

(1.16)

So, the turning couple T points in the direction of the negative z-axis, which means that it will

try to align the plates with the direction of motion. So, the direction of the turning couple is the

opposite of the one calculated by Trouton. The size of the turning couple is half the size found

by Trouton. To see this, notice that, with the help of some well-known relations from elementary

electrostatics, F′d′ can be rewritten as:

F′ d′ = 
1
2Q E′ d′ = 

1
2Q (V′/d′) d′ = 

1
2Q V′ = U′, (1.17)

where E′ is the electric field in the condenser at rest, and V′ is the potential difference between

the plates in the condenser at rest. In the last step, the well-known expression for the energy

content of a charged condenser in its rest frame was used: U′ = 1/2 Q V′. When Eq. 1.17 is

inserted into Eq. 1.16, the z-component of Eq. 1.16 starts to look very similar to Eq. 1.8. In fact,

the only difference, apart from the factor 1/2 I already mentioned, is the angle. This difference

can be neglected. The difference between the various angles I distinguished in Fig. 1.7 and Fig.

1.8 is of order β2. Since the turning couple itself is of order β2, picking one angle rather than

another only makes a difference of order β4, which is completely negligible. Therefore, I will

simply write θ in Eq. 1.16. For θ, one can pick any of the angles labeled in Fig. 1.7 and Fig.

1.8. So, we get a turning couple

T = ( 0, 0, – 
1
2U′ β2 sin 2θ ), (1.18)

which is a turning couple half the size of the one found by Trouton and working in the opposite

direction (cf. Eq. 1.8).



2 2

I now turn to the case without the Lorentz-FitzGerald contraction. This case is slightly more

complicated than the case with the Lorentz-FitzGerald contraction, because the condenser at rest

corresponding to the uncontracted moving condenser does not have the usual rectangular shape.

Its plates are not exactly opposite to one another but slightly dislocated (see Fig. 1.10).

Elementary electrostatics does not provide us with ready-made equations for this case.

Fortunately, all we need is that the forces on top and bottom plate point in the direction indicated

on the left of Fig. 1.10. Whatever the size of those forces, one easily convinces oneself that their

line of work goes through the origin of the chosen reference frame.

θ′
F′t

F′b

x ′b

x′

y′

z′

x

y

z

xt

xb

Ft
Fb

x ′t
θ

Figure 1.10: Forces on charged moving condenser (without the Lorentz-FitzGerald contraction).

From this point onwards, we can just copy line by line the derivation for the case with the

Lorentz-FitzGerald contraction. The turning couple T on the condenser on the right of Fig. 1.10

will be equal to 2 xt × Ft (cf. Eq. 1.13). Eq. 1.14 for Ft and Eq. 1.15 for xt hold no matter

whether xt and Ft refer to Fig. 1.9 or to Fig. 1.10. Hence, we can just copy Eq. 1.16 for the

turning couple. Now, at this point we are dealing with a quantity of order β2. So, for F′ and d′

for the case without contraction we may just as well take F′ and d′ for the case with contraction.

This means that we can again replace F′d′ by U′ (see Eq. 1.17). For the angle, we can take any

of the angles labeled in Fig. 1.7 or Fig. 1.8. The upshot of all of this is that to order β2 we get

the same turning couple T of Eq. 1.18 with and without the Lorentz-FitzGerald contraction.

This result is in accordance with Lorentz’s account of the Trouton-Noble experiment, but

contradicts Larmor’s account.
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1.3 Larmor’s 1902 ‘Energy’-account of the Trouton-Noble experiment

1.3.1 Extracting energy from the earth’s motion through the ether, “unless the

FitzGerald-Lorentz contraction is a fact.” In section 1.1, I looked at Larmor’s cryptic

comments on Trouton’s original experiment in the note he added to the reprint of Trouton’s

1902 article in FitzGerald’s scientific papers. I now turn to Larmor’s discussion, in that same

note, of the new proposal Trouton made, the proposal that would lead to the Trouton-Noble

experiment. Unfortunately, Larmor’s discussion of this proposal is as cryptic as his discussion

of the Trouton experiment.21 Nonetheless, I think it is possible to give a very plausible

reconstruction of Larmor’s argument. The conclusion of the argument is clear enough: without

the Lorentz-FitzGerald contraction the electromagnetic forces exert a turning couple on a

moving condenser, with the Lorentz-FitzGerald contraction they do not. My reconstruction of

the argument with which Larmor tried to establish this conclusion looks rather convincing.

However, as with the Trouton experiment, matters turned out to be more complicated than

Larmor realized (see sections 1.4 and 2.4)22

                                                
21 Larmor has a reputation for being an opaque writer. Both Buchwald and Darrigol preface discussions of
Larmor’s work with comments to this effect. Buchwald writes: “Larmor was not gifted, to say the least, with
stylistic clarity. Indeed, his is probably the most difficult of contemporary scientific locutions to decipher”
(Buchwald 1985, pp. 141–142). Darrigol approvingly cites these remarks by Buchwald and writes: “Whereas
Lorentz was known for his clarity and directness, Larmor’s writings were notoriously difficult to read” (Darrigol
1994a, p. 299).
22 Before I give my reconstruction of Larmor’s argument, I need to address a more general historiographical
issue. Andrew Warwick (private communication) has essentially dismissed my analysis of Larmor’s argument
because I do not take into account the tradition in which Larmor worked, which is the Maxwellian tradition in
electromagnetic theory in late 19th century Britain and Ireland (see, e.g., Warwick 1991, 1992; Buchwald 1985;
Hunt 1991). I am aware of the fact that I look at Larmor’s analysis of the experiments of Trouton and Noble
through Lorentzian spectacles. However, contrary to Warwick, I claim that, in the case at hand, this is a
perfectly respectable approach. There can be no question that Lorentz heavily influenced Larmor. Larmor had read
Lorentz 1895 as early as April 1895 (Warwick 1991, p. 54). In his relentless but convincing analysis of the
development of Larmor’s theory, Darrigol writes: “Larmor’s claim that his work remained largely independent
[after he had read Lorentz 1895] should not be accepted. As we will see, the dramatic improvement of his theory,
from a rough and partially misconceived scheme to a precise deductive theory, owed much to Lorentz’s insights”
(Darrigol 1994a, p. 316). Most importantly for my purposes, Darrigol writes: “I believe that Larmor’s and
Lorentz’ interpretations of the “corresponding states” were identical. For a different view, cf. Warwick [1991], p.
63” (Darrigol 1994a, p. 320, footnote 130). Since there is a lot of confusion in the secondary literature about
Lorentz’s own interpretation of the theorem of corresponding states, it is important to point out that I fully
agree with Darrigol’s understanding of Lorentz. It is not clear to me exactly what Warwick’s reading of Lorentz
is, but in the passage Darrigol is referring to, Warwick attributes the following interpretation of corresponding
states to Larmor: “An observer moving through the ether with the earth did not measure the real ether fields (E,
B)—the fields that would be measured by an observer stationary in the ether—but rather [the Lorentz
transformed fields]” (Warwick 1991, p. 63). Warwick cites Larmor 1904 in this context. I have been unable to
find anything in this paper that would support Warwick’s claim. As we will see in chapter three, the
interpretation Warwick attributes to Larmor is a depressingly common mis-interpretation of Lorentz’s own pre-
1905 usage of corresponding states. This circumstance and the fact that Warwick has so far failed to produce any
textual evidence for his claim about Larmor lead me to believe that Darrigol is probably right and that Lorentz
and Larmor had the same interpretation of corresponding states. This means that, at least for the time being, I
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The basic relation Larmor uses in his account of the Trouton-Noble experiment is the

relation between the potential difference V between the plates in a moving condenser (contracted

or uncontracted) and the potential difference V′ between the plates of a corresponding

condenser at rest in the ether, stretched out by a factor γ in the direction of motion (see Figs.

1.7–1.8):

V = γ V′. (1.19)

This relation also holds relativistically. From Eq. 1.19 Larmor infers that the energy U a

Galilean co-moving observer would need to charge the condenser is related to the energy U′ an

observer at rest in the ether would need to charge the corresponding stretched out condenser at

rest through:

U = U′/γ. (1.20)

This relation is not vindicated by special relativity (see Eqs. 1.40–1.42, Eqs. 1.68–1.77, and Eq.

2.132).

Eq. 1.20 is all that is needed for a qualitative understanding of Larmor’s reasoning. Without

the Lorentz-FitzGerald contraction U, it turns out, depends on θ, the angle between the plates of

the moving condenser and its velocity, whereas with the Lorentz-FitzGerald contraction it does

not. Larmor tacitly assumed that only the electromagnetic energy stored in the condenser can

depend on θ. This is a very natural assumption given that Larmor and other ether theorists

expected that, as a rule, a Galilean principle of relativity would obtain, electrodynamics being the

exception to that rule. From this assumption it follows that the turning couple is the derivative of

the energy U with respect to θ (cf. Eq. 1.7 and Eq. 1.33 below). Hence, without the Lorentz-

FitzGerald contraction we expect a turning couple, with the Lorentz-FitzGerald contraction we

do not.

Comparing Figs. 1.7 and 1.9 (for the case with the Lorentz-FitzGerald contraction) to Figs.

1.8 and 1.10 (for the case without the Lorentz-FitzGerald contraction), we can easily see why

the θ-dependence of V and U is so different in these two cases. Suppose we rotate the moving

condensers in Figs. 1.9 and 1.10 around the z-axes of the chosen reference frames from θ = θ1

to θ = θ2.

First, look at the drawings for the case without the Lorentz-FitzGerald contraction (Figs. 1.8

and 1.10). The rectangle on the right, representing the moving condenser, retains its shape as θ

                                                                                                                                                      
can proceed with my admittedly Lorentzian analysis of Larmor’s argument without having to immerse myself in
the Maxwellian milieu first.   
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goes from θ1 to θ2. The parallelogram on the left, however, representing the corresponding

condenser at rest, changes its shape as θ′ accordingly goes from θ1′ to θ2′.

In the case with the Lorentz-FitzGerald contraction (Figs. 1.7 and 1.9), the situation is just

the reverse. The parallelogram on the right, representing the moving condenser, changes its

shape as θ goes from θ1 to θ2, whereas the rectangle on the left, representing the corresponding

condenser at rest, retains its shape as θ′ accordingly goes from θ1′ to θ2′.

The potential difference V′ and the energy U′ of a condenser at rest depend on its shape (on

the area of its plates and the distance between them, for instance). Hence, in the case without the

Lorentz-FitzGerald contraction, V′ and U′, and thereby, according to Eq. 1.19 and Eq. 1.20, V

and U depend on θ, whereas in the case with the Lorentz-FitzGerald, V′ and U′, and,

consequently, V and U are independent of θ.23

I want to take a closer look at Eq. 1.19 and Eq. 1.20. For Eq. 1.19 it will be helpful to adopt

the relativistic perspective on the situation for a moment. For a Galilean co-moving observer the

potential difference V between the plates of the moving condenser is the same as for an observer

at rest in the frame in which the ether is at rest and in which the condenser is moving at a

velocity v in the x-direction. The potential difference V′ between the plates of the corresponding

condenser at rest in the ether is the same as the potential difference between the plates of the

moving condenser in its rest frame, i.e., the potential difference for a Lorentzian co-moving

observer (cf. section 1.2). So, V and V′ are related through a Lorentz transformation. The

potential difference between the plates of a condenser is more explicitly written as φt – φb, where

φt is the potential of the top plate and φb is the potential of the bottom plate. In special relativity,

the potential φ, divided by c, becomes the first component of the four-vector potential Aµ ≡ (φ/c,

A), where A is the ordinary (three-) vector potential. In the condenser’s rest frame, the (three-)

vector potential can be taken to vanish (A′ = 0). So, A′µ = (φ′/c, 0, 0, 0). In a frame in which the

ether is at rest and in which the condenser is moving at a velocity v in the direction of the

positive x-axis, the four-vector potential will consequently be Aµ = (γφ′/c, γβφ′/c, 0, 0). Hence,

φ = γφ′ and V = γV′, which is just Eq. 1.19.

Larmor does not derive Eq. 1.19 in the note in FitzGerald’s scientific papers. He calls it a

“known electrodynamic result,” and refers to his 1900 book Æther and matter for a derivation

                                                
23 Langevin gave a similar argument on the basis of the relation L = L′/γ between the Lagrangians for the
electromagnetic fields in the corresponding systems in rest and in motion (Langevin 1905b). To infer the
absence of a turning couple from this orientation independence of the Lagrangian for the field, one needs to
assume that the orientation of the condenser can only make a difference for the electromagnetic part of the
system. Langevin, like Trouton and Larmor before him, tacitly made this assumption.

An argument along the lines of these arguments for the Trouton-Noble experiment can be worked out for the
Michelson-Morley experiment (see chapter three).
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(Larmor 1902, p. 567).24 As far as I know, the relation was first derived by Lorentz in 1895 in

the course of his calculations on electrostatics in moving reference frames that I discussed in

section 1.2 (Lorentz 1895, p. 37). Larmor does not refer to Lorentz when he derives the relation,

even though he quotes extensively from Lorentz’s 1895 book elsewhere in Æther and

matter.25 For our purposes it is not necessary to look at either Larmor’s or Lorentz’s

derivation of Eq. 1.19.

What is important for our purposes, though, is to see how Larmor got from Eq. 1.19 to Eq.

1.20. Larmor writes:

Now the condenser is charged by transferring the charges into the plates against the electric
force; the energy required for this operation is half the charge Q multiplied by the potential
difference between the plates. (Larmor 1902, p. 568)

On the basis of this statement, one would expect Larmor to use the relation U = γU′ rather than

U = U′/γ (see Eq. 1.19 and Eq. 1.20). In the actual calculations, however, Larmor seems to use

the latter rather than the former relation. So, he does not simply assume that the relation U′ = 1/2

Q V′, which holds for an ordinary plate condenser at rest, also holds for a moving condenser.

Rather, he assumes that for a moving condenser the relation is

U = 1
2
 (1 –β

2
) Q V. (1.21)

This is the result we find when we actually do the calculation suggested by Larmor in the

sentence quoted above. The energy U needed to charge a moving condenser (+Q on the top

plate and –Q on the bottom plate) can be written as:

U = dW(q)
0

Q

, (1.22)

                                                
24 The reference is to Larmor 1900, section 96, p. 153. There is a typo in Æther and matter at this point that
gets copied in Larmor’s 1902 paper. Larmor writes that we should multiply the potential difference in the
system at rest by some quantity ε to obtain the potential difference in the corresponding system in motion, i.e.,
that V = εV′. The quantity ε is defined as (1 – v2/C2)–1, where C is Larmor’s notation for the velocity of light
in vacuo. Hence, V = εV′ would be V  = γ2V ′. In the list of corrigenda at the beginning of Æther and matter,
this mistake was already corrected: “for ε read ε1/2" (Larmor 1900, p. xxvii). Larmor would eventually correct
the typo in his 1902 paper as well (Larmor 1929, p. 226). When Larmor actually derived the expression for the
turning couple he gives in his paper, he either used the correct relation or made another error canceling this one,
for there is no trace of the spurious factor ε1/2 in the end result.
25 Larmor, in fact, included (with some minor omissions) a translation (Larmor 1900, pp. 185–186) of the
plausibility argument that Lorentz gave for the Lorentz–FitzGerald contraction (Lorentz 1895, pp. 123–125), an
argument that was based on Lorentz’s calculations for electrostatics in moving frames earlier in his book
(Lorentz 1895, pp. 19–23). See sections 1.2 and 3.2.
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where dW(q) is the amount of work needed to transfer an infinitesimal positive charge dq from

the bottom plate to the top plate when there already is a charge +q on the top plate and a charge

–q on the bottom plate. For dW(q) we can write:

dW(q) = Fon dq
bottom

top

 ⋅ ds . (1.23)

To charge the moving condenser a battery moving along with the condenser is used. It therefore

seems reasonable to assume that we can use a co-moving Galilean frame to evaluate the integral

in Eq. 1.23.26

Another worry at this point is whether the integral in Eq. 1.23 is independent of the path

along which we choose to transport the charge dq from the bottom to the top plate. This worry

will be dispelled in the course of evaluating the integral.

Once again, compare the situation in the moving frame to its corresponding state at rest in

the ether (see Figs. 1.7 and 1.10). To the process of charging the plates of the condenser

moving through the ether, there corresponds the process of charging a stretched out condenser

at rest in the ether; and to every path between the plates of the moving condenser in a co-moving

Galilean frame, there corresponds a path between the plates of the stretched out condenser at

rest in the ether. At any point in the two corresponding processes of charging the condenser in

motion and the one at rest, the relation between the forces experienced by a charge dq at

corresponding points of a pair of such paths is given by Eq. 1.9. Furthermore the relation

between the infinitesimal segments ds and ds′ of the two paths is given by:

ds  = diag(1 γ, 1, 1) ds ′. (1.24)

With the help of Eq. 1.9 and Eq. 1.24, Eq. 1.23 can be rewritten as:

dW(q) = diag(1, 1 γ,1 γ) F ′on dq
bottom

top

 ⋅  diag(1 γ, 1, 1) ds ′  , (1.25)

where ‘top’ and ‘bottom’ now refer to the plates of the stretched out condenser at rest. From

Eq. 1.25, it follows that there is a simple relation between the quantity dW(q) for the moving

condenser and the corresponding quantity dW′(q) for the stretched out condenser at rest:

                                                
26 Perhaps the easiest way to see that we actually have to be a little more careful (see sections 1.4 and 2.4) is
through invoking the equivalence of mass and energy. When we charge a moving condenser, we increase both its
rest mass and its kinetic energy. Larmor, in effect, fails to take into account the increase in kinetic energy.
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dW(q) = 1
γ

 F′on dq
bottom

top

 ⋅ ds ′ = dW′(q) γ. (1.26)

Since the work done when we transport a charge dq from the bottom to the top plate of a

condenser at rest—or between any two points in an arbitrary static charge distribution at rest,

for that matter—is independent of the path we choose, it follows from Eq. 1.26 that this will

also be the case for a condenser—or some arbitrary static charge distribution—in motion.

When Eq. 1.26 is inserted into Eq. 1.22, we arrive at Eq. 1.20:

U = 1
γ

dW′(q)
0

Q

 = U′ γ. (1.27)

Using U′ = 1/2QV′ and V = γV′ (Eq. 1.19), one easily verifies that Eq. 1.27 implies Eq. 1.21.

Eq. 1.27 holds no matter whether we assume that a moving condenser undergoes the

Lorentz-FitzGerald contraction or not. Consider the case without the Lorentz-FitzGerald

contraction. In that case the energy U′ and the potential difference V′ will depend on θ, since the

shape of the condenser at rest corresponding to the one in motion will depend on θ. Larmor

looks at the special cases θ = 0 and θ = π/2. For θ = 0, the condenser at rest will have plates of

area A′ = γΑ at a distance d′ = d apart; for θ = π/2, it will have plates of area A′ = A at a distance

d′ = γd apart (see Eq. 1.10). The energy U′ and the potential difference V′ of a condenser at rest

are proportional to d′/A′. From these proportionalities, the relation V = γV′ (Eq. 1.19) and

Larmor’s relation U = U′/γ (Eq. 1.20), it follows that:

Uθ=0
Uθ=π/2

 = Vθ=0
Vθ=π/2

 = 
d′

A′ θ=0

A′

d′ θ=π/2

 = d
γA

 A
γd

 = 1 – β
2
. (1.28)

So, according to Larmor, the potential difference and the electromagnetic energy of a moving

condenser that does not undergo the Lorentz-FitzGerald contraction are smaller for θ = 0 than

for θ = π/2.27 Immediately after the sentence quoted above Larmor writes:

As it is charged at one potential difference [i.e., Vθ=π/2] and discharged at another [i.e.,

Vθ=0], there is energy remaining over of the amount estimated above [i.e., β2Uθ=π/2]; and as

the process is reversible, this energy must be mechanically available. Thus the energy of
motion of the Earth through the æther is available for mechanical work to an unlimited
extent, unless the potential difference in the condenser is independent of its orientation; that is,
by accepted electrodynamics, unless the FitzGerald-Lorentz contraction is a fact (Larmor 1902,
p. 568).

                                                
27 As I pointed out in section 1.1, this is rather counter-intuitive: the position without a magnetic field
(θ = π/2) turns out to have lower electromagnetic energy than the position with a magnetic field (θ = 0).
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This is Larmor’s rather cryptic statement of the argument I spelled out in great detail above. If

“the FitzGerald-Lorentz contraction is a fact,” the ratio d′/A′ will be independent of θ, the right

hand side of Eq. 1.28 will be 1, and the argument given above no longer goes through. In other

words, if “the FitzGerald-Lorentz contraction is a fact,” it will not be possible to extract energy

from the earth’s motion through the ether via turning couples on charged condensers.

2.3.2 The turning couple without the contraction hypothesis. Assuming that only the

electromagnetic energy of a moving condenser depends on θ, we can infer from Eq. 1.28 that, if

the Lorentz-FitzGerald contraction were not “a fact,” there would be a turning couple acting on

a moving condenser trying to align its plates with the direction of motion. In this respect

Larmor’s result disagrees with the result found by Trouton and agrees with the result found by

Lorentz. To conclude this section, I will show that the derivation suggested by Larmor gives a

turning couple of the same size as the one found by Trouton and Lorentz. The reader who is

prepared to take this on faith can move on to the discussion of Lorentz’s account in section 1.4

without loss of continuity.

To find the turning couple on a moving condenser that does not undergo the Lorentz-

FitzGerald contraction, Larmor needs an expression for U explicitly showing its θ-dependence.

As I mentioned above, U, which, according to Larmor, is equal to U′/γ, depends on θ via the

shape of the corresponding stretched out condenser at rest in the ether for which we have to

evaluate U′. To make this θ-dependence explicit, I will derive a relation between U′ and U0, the

energy stored in a condenser of the same rectangular shape as the one in motion, and carrying

the same charge, but being at rest in the ether. Hence, U0 will not depend on θ. The θ-dependent

shape of the stretched out condenser at rest will in general differ from the θ-independent shape

of the moving condenser in three ways. The distance between the plates will be different, the

area of the plates will be different, and the plates of the stretched out condenser will not be

exactly opposite to one another. This last difference does not play a role when θ = 0 and θ =

π/2, the special cases Larmor looked at. If we assume that the area of the plates is very large

compared to the distance between the plates, this complication can be neglected for arbitrary θ.

The parallelogram-shaped condenser can then be replaced by an ordinary rectangular-shaped

one with plates of area A′, a distance d′ apart. Since the energy stored in an ordinary plate

condenser for some fixed charge is proportional to the distance of the plates and inversely

proportional to the area of the plates, the relation between U′ and U0 is given by:

U′ = 
d′A

dA′
 U0 . (1.29)
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Combining Eq. 1.20 and Eq. 1.29, we arrive at:

U = 1
γ

 
d′A

dA′
 U0 . (1.30)

Now use Eq. 1.11 for the ratios d′/d and a/a′ = A/A′. Since we are dealing with the case without

the Lorentz-FitzGerald contraction, we have θ=θ . So, the θ-dependence of U is given by:

U(θ) = 1 – β
2

 
1 – β

2
cos2θ

1 – β
2
sin2θ

 U0. (1.31)

When all terms smaller than of order β2 are neglected, Eq. 1.31 becomes:

U(θ) = U0 (1 – β2 cos2θ) (1.32)

The expression for U(θ) derived by Trouton had a plus rather than a minus sign in the factor

between parentheses (see Eq. 1.428). Hence, Trouton and Larmor disagree over which angle

minimizes the energy (i.e., θ = π/2 or θ = 0), and, consequently, over the direction of the turning

couple on the moving condenser (i.e., counterclockwise or clockwise).

According to Larmor we have to do an amount of work ∆W to rotate the condenser

counterclockwise from some angle θ to some slightly bigger angle θ+∆θ. Τhis amount of work

∆W will be equal to T(θ)∆θ (cf. Fig. 1.4), where T(θ) is the size of the turning couple acting on

the condenser. On the other hand, ∆W = U(θ+∆θ) – U(θ). In the limit  ∆θ  → 0, we obtain (cf.

Eq. 1.7):

T(θ) = 
dU(θ)

dθ
 . (1.33)

Inserting Eq. 1.32 into Eq. 1.33, we find that the size of the turning couple is given by:29

T(θ) = U0 β
2
 sin 2θ  , (1.34)

in agreement with the results found by Trouton (see Eq. 1.8) and Lorentz (see Eq. 1.3930).

                                                
28 U′ in Eq. 1.4 is actually what I called U0 here.
29 Cf. Larmor 1902, p. 568. Notice that Larmor’s θ is the complement of the angle I call θ. Since
sin2(π/2–θ) = sin2θ, this makes no difference.
30 U0 in Eq. 1.34 and U′ in Eq. 1.39 only differ by something in the order of β2.
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1.4 Lorentz’s 1904 ‘Momentum’-account of the experiments of Trouton
and Noble

1.4.1 Lorentz on the experiments of Trouton and Noble. Both the Trouton and the

Trouton-Noble experiments are discussed in Lorentz’s famous 1904 paper.31 Trouton’s

original experiment is dealt with in the last section and does not play any role in the body of the

paper.32 The Trouton-Noble experiment, on the other hand, is discussed in some detail in the

introduction and is presented as one of two new second order etherdrift experiments that partly

motivated the paper.33 Lorentz’s approach to the problem of a condenser moving through the

ether is very different from the approach taken by Larmor.34 It is cast in terms of a quantity for

which Abraham (1903) had introduced the term “electromagnetic momentum.” In modern

notation, the electromagnetic momentum G of some arbitrary charge distribution is defined as:

G = d3x  ε0 E × B  , (1.35)

where E and B are the fields generated by the charge distribution. The integration stretches out

over all space.

Fig. 1.11 shows the electromagnetic momentum G of a charged moving condenser. It turns

out that we only need the electromagnetic momentum up to first order in β to account for the

Trouton and Trouton-Noble experiments, so we do not have to distinguish between the case

with and the case without the Lorentz-FitzGerald contraction. To first order in β, the moving

                                                
31 Lorentz 1904b, pp. 172–173, p. 190 (Trouton-Noble), pp. 194–197 (Trouton).
32 This section was omitted when Lorentz’s paper was reprinted in Blumenthal 1913, a well-known collection
of papers on relativity (Miller 1981, p. 391). Presumably, this was not just to save space. Lorentz thought that,
in principle, Trouton should have found a positive effect, and that the reason he had not was that his apparatus
had not been sensitive enough. Clearly, it would be awkward for an anthology of papers on the principle of
relativity to include a passage implying that more accurate measurements might actually produce a violation of
the principle.
33 The other one was an experiment first performed by Rayleigh (1902) and repeated by Brace (1904) to see
whether the Lorentz-FitzGerald contraction would cause a body to become doubly refracting. The new theory
Lorentz put forward in his paper was further motivated by the criticism of Poincaré (1900a) of the 1895 version
of the theory (Lorentz 1904b, pp. 173–174).
34 As far as I know, Lorentz never explicitly mentioned that his explanation of the Trouton-Noble experiment
is incompatible with Larmor’s. He certainly knew about Larmor’s explanation though. Both in Lorentz 1904a,
p. 259, and in Lorentz 1904b, p. 194, he mentions the reprint of Trouton’s 1902 paper in FitzGerald’s collected
papers which has Larmor’s note attached to it. Moreover, the Lorentz Archives contain a document dated October
1902 in which Lorentz checks some calculations in both Trouton’s and Larmor’s papers (Archief H.A. Lorentz,
Rijksarchief Noord-Holland, Haarlem, The Netherlands, No. 266). The document is entitled: “Aantekeningen en
berekeningen betreffende de electromagnetische lichttheorie, het experiment van Trouton en de krachten op een
bolvormig electron” (“Notes and calculations concerning the electromagnetic theory of light, Trouton’s
experiment and the forces acting on a spherical electron”). Unfortunately, this document offers no clue as to how
Lorentz saw the relation between Larmor's explanation of the Trouton-Noble experiment and his own.
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condenser can be represented by a rectangle in both cases, and the electromagnetic momentum

G is parallel to the plates.

θ

x

y

z

G

v

Figure 1.11 Electromagnetic momentum G of the field of a moving condenser.

In the coordinate system shown in Fig. 1.11, the same as the one I used in sections 1.2 and

1.3, the electromagnetic momentum is given by (cf. Lorentz 1904b, p. 173):35

G = 2 (U′/c) β cos θ (cos θ, sin θ, 0), (1.36)

where U′ is the electromagnetic energy the condenser would have if it carried the same charge

while being at rest in the ether. This expression plays a central role in Lorentz’s account of both

the Trouton and the Trouton-Noble experiments.

In the case of the Trouton experiment, Lorentz simply used Eq. 1.36 in conjunction with the

Newtonian law of conservation of momentum. When the condenser is charged, he argued, it

gains electromagnetic momentum G, hence it should experience a change in ordinary

momentum of –G. When it is discharged, it loses electromagnetic momentum G, and should

therefore experience a change in ordinary momentum of +G. Lorentz goes on to show that

Trouton’s apparatus was not sensitive enough to detect this effect. In the section of his paper

devoted to the Trouton experiment, Lorentz writes:

I take this opportunity for mentioning an experiment that has been made by Trouton at the
suggestion of FitzGerald, and in which it was tried to observe the existence of a sudden
impulse acting on a condenser at the moment of charging or discharging; for this purpose the
condenser was suspended by a torsion balance, with its plates parallel to the earth’s motion.
For forming an estimate of the effect that may be expected, it will suffice to consider a
condenser with aether as dielectricum. Now if the apparatus is charged there will be (§ 1) an
electromagnetic momentum

G = 2U

c2
 w .[36]

                                                
35 The expression given by Lorentz is somewhat different because he used a slightly different coordinate
system. Eq. 1.36 will be derived below (see Eqs. 1.63–1.67).
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(Terms of the third and higher orders are here neglected). This momentum being produced at
the moment of charging, and disappearing at that of discharging, the condenser must
experience in the first case an impulse –G and in the second an impulse +G.

However Trouton has not been able to observe these jerks [sic].
I believe it may be shown (though his calculations have led him to a different conclusion)

that the sensibility of the apparatus was far from sufficient for the object Trouton had in view.
(Lorentz 1904b, pp. 194–196)

As we will see below, Lorentz’s argument for the Trouton experiment is a-typical of his general

approach. Usually, Lorentz is far more cautious about the interpretation of the quantity G as a

form of momentum.

In the case of the Trouton-Noble experiment, one arrives at the expression Lorentz gives for

the turning couple through the following simple argument. As we will see below, Lorentz’s own

reasoning was more complicated. For the moment, however, consider the electromagnetic

angular momentum L = x × G,37 associated with the electromagnetic momentum G, where x is

the position vector of the geometrical center of the condenser with respect to a reference frame

at rest in the ether. When we want to change the angular momentum, we need to apply an

external turning couple Text = dL/dt. This turning couple is just the opposite of the turning

couple T the condenser experiences from the field between its plates. Hence,

T = – dL
dt

 = – d
dt

x  × G . (1.37)

Since dG/dt = 0 (see Eq. 1.36) and dx/dt = v, Eq. 1.37 reduces to:

T = – v × G (1.38)

From Eq. 1.38 and Eq. 1.36, it is immediately clear that we only need G up to first order in β to

find the turning couple: β3-terms in G (there are no β2-terms) would only make a difference of

order β4 in T. The Lorentz-FitzGerald contraction is an effect of order β2. It follows that,

according to Lorentz and contrary to what Larmor thought (see section 1.3), the same turning

couple will be present no matter whether the condenser undergoes the Lorentz-FitzGerald

contraction or not.

                                                                                                                                                      
36 Lorentz actually uses Gothic letters to represent the momentum vector G and the velocity vector w . To first
order in β, the electromagnetic energy U in the moving condenser is equal to the electromagnetic energy U¢ of
the condenser at rest (see, e.g., Eq. 1.42 and Eq.  Eq. 1.73 below).
37 The electromagnetic momentum G is a space integral over the electromagnetic momentum density g .
Likewise, the electromagnetic angular momentum L is a space integral over the electromagnetic angular
momentum density l = x  ×  g . I want to emphasize that at this point I only want to show that on the basis of
Abraham’s interpretation of the vector g  as electromagnetic momentum density, one arrives at the correct
expression for the turning couple through a very simple intuitive argument. Let me reassure the reader that I am
aware of the fact that this argument does not constitute a derivation of the result. Derivations will be given later,
in Eqs. 1.43–1.62 below and in Eqs. 2.44–2.76 in section 2.2.
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Inserting Eq. 1.36 into Eq. 1.38, we recover the by now familiar expression for the turning

couple (cf. Eq. 1.8 (Trouton) and Eq. 1.34 (Larmor)):

T = (0, 0, – v Gy) = (0, 0, – U′ β2 sin 2θ). (1.39)

Compare the argument given above with what Lorentz himself has to say about the Trouton-

Noble experiment in the introduction of his 1904 paper:

In the second place [Lorentz has just mentioned the experiments of Rayleigh and Brace]
Trouton and Noble4) [the corresponding footnote gives the reference to Trouton and Noble
1903] have endeavoured to detect a turning couple acting on a charged condenser, whose plates
make a certain angle with the direction of translation. The theory of electrons, unless it be
modified by some new hypothesis [my italics], would undoubtedly require the existence of
such a couple. In order to see this, it will suffice to consider a condenser with aether as
dielectricum. It may be shown that in every electrostatic system, moving with a velocity
w1),[38] there is a certain amount of “electromagnetic momentum”. If we represent this, in
direction and magnitude, by a vector G, the couple in question will be determined by the
vector product2) [a reference to Lorentz 1904a, section 21a]

[G . w] (1)

Now, if the axis of z is chosen perpendicular to the condenser plates, the velocity w
having any direction we like, and if U is the energy of the condenser, calculated in the ordinary
way, the components of G are given3) [a reference to Lorentz 1904a, section 56c] by the
following formulae, which are exact up to the first order:

Gx = 2U

c2
 wx,     Gy = 2U

c2
 wy,     Gz = 0.

Substituting these values in (1), we get for the components of the couple, up to terms of
the second order,

2U

c2
 wy wz,     – 2U

c2
 wx wz,     0.

These expressions show that the axis of the couple lies in the plane of the plates,
perpendicular to the translation. If α  is the angle between the velocity and the normal to the
plates, the moment of the couple will be Uw 2 sin2α/c2; it tends to turn the condenser into
such a position that the plates are parallel to the Earth’s motion.

In the apparatus of Trouton and Noble the condenser was fixed to the beam of a torsion
balance, sufficiently delicate to be deflected by a couple of the above order of magnitude. No
effect could however be observed. (Lorentz 1904b, pp. 172–173))

The equations given in this passage are easily seen to be equivalent with to Eq. 1.36 and Eqs.

1.38–1.39. It may seem, therefore, at first sight, that Lorentz’s argument is not all that different

from the argument I gave above. This impression is misleading. As can be gathered from the

two references to his article for the Encyklopädie der Mathematischen Wissenschaften (Lorentz

                                                
38 In the corresponding footnote, Lorentz informs his readers that he will use Gothic letters to represent vectors.
I will continue to use bold type face instead.
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1904a), the argument offered in the passage quoted above is intended only as a convenient

short-cut for a rigorous derivation to be found in that earlier article. Before I elaborate on this, I

want to make two other comments on the passage quoted above.

First, notice the clause I italicized: “unless it be modified by some new hypothesis.” As

one would expect , Lorentz, in the course of his paper, introduces some new hypotheses that

allow him to explain the negative results of various ether drift experiments. He never explicitly

says exactly which hypotheses are needed in the case of the Trouton-Noble experiment, but on

the basis of what he does say, it is possible, I think, to give a unique reconstruction of the

explanation he had in mind.39 Lorentz briefly returns to the Trouton-Noble experiment in

section 11 of his paper, after he has finished his exposition of his new theory for the

electrodynamics in moving frames of reference:40

It is easily seen that the proposed theory can account for a large number of facts. [...]
As to the experiments of Trouton and Noble, their negative result becomes at once clear,

if we admit the hypotheses of § 8. It may be inferred from these and from our last assumption
(§ 10) that the only effect of the translation must have been a contraction of the whole system
of electrons and other particles constituting the charged condenser and the beam and thread of
the torsion balance. Such a contraction does not give rise to a sensible change of direction.
(Lorentz 1904b, pp. 189–190)

One of the assumptions Lorentz makes in section 8 of his paper (ibid., p. 183) is that the

relation F = diag(1, 1/γ, 1/γ) F′ (Eq. 1.9) for Coulomb forces also holds for molecular forces.

This is all that is needed to understand the negative result of the Trouton-Noble experiment in

Lorentz’s theory. Consider the Coulomb forces on the plates of a condenser at rest in the ether.

Those forces try to pull the plates of the condenser together. Molecular forces exactly opposite

to these Coulomb forces prevent this from happening. When the condenser is set in motion, the

Coulomb forces and molecular forces are assumed to change in exactly the same way. If the

Coulomb forces on the moving condenser give rise to a turning couple, the molecular forces on

the moving condenser give rise to a turning couple of equal size working in the opposite

direction. There will be no net turning couple.41

Notice that the picture painted by Lorentz is very different from the picture painted by

Larmor. According to Larmor there is no turning couple on a moving condenser having

                                                
39 Laue would be the first to clearly state this reconstruction (Laue 1911a, p. 136). I am grateful to A. J. Kox
for pointing out to me that what has come to be known as Lorentz’s explanation of the null result of the
Trouton-Noble experiment, is, strictly speaking, Laue’s interpretation of Lorentz’s explanation.
40 See chapter three for a discussion of this theory. Once we have a clear grasp of this theory, it will also
become clear why Lorentz phrased his account of the Trouton-Noble experiment the way he did (see section 4.1).
41 As I mentioned above, this interpretation of Lorentz’s reasoning is due to Laue: “In the co-moving system,
the electrostatic forces are canceled by the molecular cohesion, otherwise the condenser would not be in
equilibrium. At every point, therefore, the sum of the electric and the molecular forces is zero. If the two types
of forces transform in the same way to other frames of reference, their sum will remain zero in all frames and
there will be no cause for rotation” (Laue 1911a, p. 136).
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undergone the Lorentz-FitzGerald contraction, whereas according to Lorentz there are two

turning couples that cancel one another.

That leads me to my second comment. From what has been said so far about Lorentz’s

account, it is already clear that from a Lorentzian point of view, we cannot accept the simple

relation U = U′/γ between the energy U of the moving condenser and the energy U′ of the

corresponding condenser at rest that formed the basis of Larmor’s account of the Trouton-

Noble experiment. As we saw in section 1.3, the derivation of this relation involves the

assumption that in charging a moving condenser by transferring charges from the bottom to the

top plate no work is needed to build up momentum. According to Lorentz, however,

electromagnetic momentum is created when charging a moving condenser. This will cost some

energy UG. This energy can be written as:

UG = dG
dt

0

Q

 ⋅  ds = dGx
0

Q

 v = v  dGx
dq

 dq
0

Q

  = v  Gx 
0
Q . (1.40)

Inserting Eq. 1.36 into Eq. 1.40, we find that, to order β2, UG is given by:

UG = 2 U′ β2 cos2 θ. (1.41)

This energy should be added to the energy U = U′/γ ≈ U′ (1 – 1/2β2) which, according to

Larmor, is needed to charge the moving condenser. Hence, in Lorentz’s theory, the energy

needed to charge the moving condenser is given (to order β2) by:

U = U′ (1 – 1
2

 β
2
 + 2 β

2
cos2θ) . (1.42)

This relation is vindicated by special relativity (see Eqs. 1.74–1.77 and Eq. 2.132).

Notice that it follows from Eq. 1.42 that the electromagnetic energy of a moving condenser

has a maximum for θ = 0. So, on the basis of Trouton and Larmor’s energy arguments we

would expect that the turning couple tries to put the plates of the condenser at right angles to the

direction of motion (the position in which there is no magnetic field). However, the conclusion

of Lorentz’s argument in terms of electromagnetic momentum is that the turning couple tries to

align the plates with the direction of motion (see Eq. 1.39). From these observations it is

immediately clear that the tacit assumption in Trouton and Larmor’s energy arguments has to

be false in Lorentz’s theory: the electromagnetic energy cannot be the only part of the

condenser’s energy that depends on θ. I will return to this in chapter two (see section 2.4, Eq.

2.132).
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I now return to the relation between the argument in the passage I quoted from the

introduction of Lorentz 1904b and the argument I gave in Eqs. 1.37–1.39. These equations and

Eqs. 1.40–1.42 are misleading in that I treated the vector G as one would treat any sort of

momentum: a change of G gives rise to an impulse, there is angular momentum L = x × G 

associated with G, changes in L are accompanied by a turning couple, work is done when G is

changed, etc.

Lorentz is more careful about the interpretation of this vector G. When Lorentz calculates

forces or moments of forces—be it on a moving condenser or on a moving charged ellipsoid

representing a moving electron in his theory—he proceeds as follows. The input essentially

consists of three ingredients: Maxwell’s equations, the equation for the Lorentz force, and some

rudimentary Newtonian mechanics.42 With the help of these ingredients Lorentz then derives

an expression for the force or the moment of the force at hand. This expression will involve the

vector G. At that point Lorentz will inform his readers that this quantity behaves like momentum

in certain respects, and that Abraham therefore introduced the name electromagnetic momentum

for it (see, e.g., Lorentz 1904a, pp. 162–163; 1916, pp. 30–33). However, with the exception of

his discussion of the Trouton experiment and his electron model in this 1904 paper,43 Lorentz

is careful not to commit himself to such an interpretation. Consequently, the above derivation of

Eq. 1.39 for the turning couple, and the derivation of Eq. 1.42 for the condenser’s

electromagnetic energy, which are based on the interpretation of G as a form of momentum, are

not to be found in Lorentz’s own work. For Lorentz, these expressions can only be justified by

a derivation from the three ingredients I mentioned (Lorentz force, Maxwell’s equations, a little

Newtonian mechanics).

In the encyclopedia article referred to in the introduction of Lorentz 1904b, Lorentz, in fact,

offered such a derivation of the equation T = – v × G (Eq. 1.38) that he used to evaluate the

turning couple of the Coulomb forces on the condenser in the Trouton-Noble experiment

(Lorentz 194a, p. 191, p. 259). One might be inclined to take the position that such derivations

can be discarded as scaffolding we no longer need once we recognize that the expression was to

be expected on the basis of the new interpretation of its terms. I want to emphasize that this is

not the position that Lorentz took.

                                                
42 Lorentz is very cautious about using Newtonian mechanics in calculations in electrodynamics. It is largely
because of this caution, that Lorentz’s account of the Trouton-Noble experiment carries over unproblematically
to special relativity, whereas Larmor’s account does not.
43 After deriving an expression for the electromagnetic momentum of the electron (see section 3.4), Lorentz
writes: “every change in the motion of a system will entail a corresponding change in the electromagnetic
momentum and will therefore require a certain force, which is given in direction and magnitude by [F = –
dG/dt]” (Lorentz 1904b, p. 184). In his lectures at Columbia University in New York in 1906, however,
Lorentz gave a derivation of this relation of the kind outlined here (Lorentz 1916, pp. 26–33).
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Lorentz’s reservations with respect to the notion of electromagnetic momentum should be

viewed against the background of his discussions with Poincaré over the fate of Newton’s third

law in his theory. We need to look at this issue a little more closely (I already touched upon it

briefly in section 1.1). It is clear that Newton’s principle of the equality of action and reaction is

hard to reconcile with the notion of a stationary ether which acts on matter (via the Lorentz force

electromagnetic fields exert on charged particles), yet is never acted upon. Lorentz clearly stated

this obvious difficulty in his widely read monograph of 1895. After discussing the problem of

how to make sense of forces acting on a stationary ether and concluding that the easiest way to

solve the problem would simply be never to apply the notion of force to the ether at all, Lorentz

wrote, in an often quoted passage:

It is true that this conception violates the principle of the equality of action and
reaction—because we do have grounds for saying that the ether exerts forces on ponderable
matter—but nothing, as far as I can see, forces us to elevate that principle to the rank of a
fundamental law of unlimited validity. (Lorentz 1895, p. 28; italics in the original)44

Poincaré strongly objected to this aspect of Lorentz’s theory, especially to the violations of the

center of mass theorem it entails. He even made it the topic of his contribution to a Festschrift

for Lorentz on the occasion of the 25th anniversary of his doctorate (Poincaré 1900b). Lorentz

remained unconvinced. In a letter to Poincaré in response to the latter’s paper, he reiterated his

point that “any theory which can explain the Fizeau experiment” (by which, I take it, Lorentz

meant any theory positing a stationary ether) will violate the reaction principle, but added:

“Must we, in truth, worry ourselves about it?”45 The introduction by Abraham (1903) of

electromagnetic momentum was an important step in resolving the issue, but it did not settle the

dispute between Lorentz and Poincaré. A full resolution of the problem had to wait upon the

advent of relativity theory. As Darrigol recently pointed out: “in 1906, Einstein showed that

Poincaré’s paradoxes [having to do with violations of the center of mass theorem in Lorentz’s

theory] could be solved only if a revolutionary assumption was made: the mass of a

macroscopic body had to depend on its energy content” (Darrigol 1994b, p. 3).46 In chapter

                                                
44 The translation of the last part of this quotation is from Darrigol 1994b, p. 32; see also Miller 1981, p. 43.
45 Lorentz to Poincaré, January 20, 1901. Translation from Darrigol 1994b, p. 54. Lorentz’s letter is quoted in
full in Miller 1986, pp. 70–71. Lorentz also discussed these issues in his lectures at Columbia University in
1906 (Lorentz 1916, pp. 30–33).
46 I am indebted to John Stachel for providing me with a preprint of this paper and for stressing its importance
for a proper analysis of the Trouton experiment. To my knowledge, Darrigol has been the first to look into the
connection between a paper by Einstein (1906) on the inertia of energy and Poincaré’s contribution to the
Lorentz Festschrift (Poincaré 1900b). There is no doubt in my mind that his insightful account of the debate
over the fate of Newton’s third law in Lorentz’s theory (including his discussion of its importance for relativity
theory) will soon supersede older accounts of this episode such as Miller 1981, pp. 41–45; 1986, pp. 68–72.

Darrigol gives another important reference in this context (ibid., pp. 39–41): Wien 1898, pp. xii–xiii.
Wien’s position appears to be somewhere in between the position of Lorentz and Poincaré. He agrees with
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two I will return to this issue, in the context of a relativistic analysis of the Trouton

experiment.47

A particularly vivid description of the difficulties concerning the reaction principle that

physicists were facing around the turn of the century was given a few years later by Planck

(1908) in a lecture entitled “Comments on the principle of action and reaction in general

dynamics” that he delivered at the Versammlung Deutscher Naturforscher und Ärzte in

Cologne on September 23, 1908. The short non-technical paper Planck published based on this

talk turns out to be one of the most important references in a seminal paper by Laue on

relativistic mechanics, a paper in which the Trouton-Noble experiment plays a very prominent

role (Laue 1911a). That makes it all the more appropriate to include an extensive quotation from

Planck’s paper at this point, a passage in which the author reminisces about the state of mind of

the physics community in the early years of the century with regard to the reaction principle. At

the appropriate juncture in chapter two, I will quote from Planck’s assessment, in that same

lecture, of how relativity theory helped clarify the situation. This is what Planck has to say about

the attitude of the physics community toward the reaction principle before 1905:

As is well-known, the real content of the Newtonian principle of the equality of action and
reaction is the theorem of the constancy [read: conservation] of the quantity of motion or of
the momentum of motion; I therefore want to talk about this principle only in the sense of
that theorem, and, more specifically, about its relevance for general dynamics, which not only
includes mechanics in a more restricted sense, but also electrodynamics and thermodynamics.

Many of us will still have memories of the stir it caused, when Lorentz, in laying the
foundations of an atomistic electrodynamics on the basis of a stationary ether, denied
Newton’s third axiom absolute validity, and it could not have failed to happen that this
circumstance was turned into a serious objection against Lorentz’s theory, as was done, for
instance, by Poincaré. A calmness of sorts only returned when it became clear, especially
through the investigations of Abraham, that the reaction principle could be saved after all, in
its full generality at that, if only one introduces, besides the mechanical quantity of motion,
the only kind known at that point, a new quantity of motion, the electromagnetic kind.
Abraham made this notion even more plausible by a comparison between the conservation of
the quantity of motion and the conservation of energy. Just as the energy principle is violated
if one does not take electromagnetic energy into account and satisfied if one does introduce this
form of energy, so is the reaction principle violated if one only considers the mechanical
quantity of motion but satisfied as soon as one also takes into account the electromagnetic
quantity of motion.

However, this comparison, incontestable in and of itself, leaves one essential difference
untouched. In the case of energy, we already knew a whole series of different kinds—kinetic
energy, gravitation [sic], elastic energy of deformation, heat, chemical energy—so it does not

                                                                                                                                                      
Poincaré that the violation of the center of mass theorem is a serious problem for Lorentz’s theory, but he
agrees with Lorentz that ultimately the reaction principle may nonetheless have to be given up.

The connection between Einstein 1906 and Poincaré 1900b suggests another possible connection. One
wonders whether the passage from Lorentz 1895 that I quoted above was somehow in the back of Einstein’s
mind when, years later, he wrote the following often quoted sentence in The meaning of relativity: “It is
contrary to the mode of thinking in science to conceive of a thing (the space-time continuum), which acts itself,
but which cannot be acted upon” (Einstein 1922, pp. 55–56). This is not the place to pursue this possible
connection any further.
47 We will see that in order for the Trouton experiment to satisfy both the relativity principle and momentum
conservation, the energy the condenser gains (loses) when it is (dis-)charged must have mass (see section 2.5).
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constitute a fundamental innovation if one adds electromagnetic energy to these different forms
of energy as yet another form. In the case of the quantity of motion, by contrast, we only
knew one kind so far: the mechanical kind. Whereas energy had constituted a universal
physical concept all along, the quantity of motion had so far been a typically mechanical
concept and the reaction principle had been a typically mechanical theorem. Consequently, its
generalization, while recognized to be necessary, was bound to be experienced as a revolution
of a fundamental nature, through which the up to that point relatively simple and uniform
concept of the quantity of motion acquired a considerably more complicated character. (Planck
1908, pp. 215–216)

Planck may have exaggerated the difficulties physicists were experiencing with the notion of

electromagnetic momentum somewhat for rhetorical purposes (he goes on to show that the idea

of putting energy and momentum on equal footing is a very natural one in relativity theory), but

his reminiscing in this passage may help to understand Lorentz’s attitude toward

electromagnetic momentum, an attitude that otherwise might seem overly cautious.

1.4.2 Lorentz’s derivation of the expression for the turning couple of the Coulomb
forces in the Trouton-Noble experiment. I will give derivations of the relation T = – v × G 

(Eq. 1.38) and of Eq. 1.36 for G, which—except for the use of modern notation—are faithful to

Lorentz’s own derivations. Nowhere in this calculation will we need the interpretation of G as a

form of momentum.

To calculate the turning couple T on a static charge distribution moving through the ether at

a constant velocity v, Lorentz starts from an equation which in modern notation reads (cf.

Lorentz 1904a, p. 164):

T = x  × f d3x,
(1.43)

where f is the Lorentz force density associated with the charge distribution’s self-field. The

integration ranges over all space and is to be carried out in a frame of reference at rest in the

ether. For f, we have:

f = ρ (E + v × B), (1.44)

where ρ is the charge density and E and B are the self-fields of the charge distribution. With

the help of two of Maxwell’s equations,

div E = ρ/ε0 ,        curl B  = µ0ρv  + 1

c2
 
∂E

∂t
 , (1.45)

the charge density ρ can be eliminated from Eq. 1.44:
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f  = ε0E div E + µ0
–1curl B × B  – ε0 

∂E

∂t
 × B  . (1.46)

With the help of another one of Maxwell’s equations, viz. curl E = – ∂B/∂t, the last term on the

right hand side of Eq. 1.46 can be written as:

 – ε0 
∂E

∂t
 × B  =  – 

∂

∂t
 ε0 E × B   –  ε0 E × curl E. (1.47)

Now divide f into two parts, a part f1 involving spatial derivatives and a part f2 involving a time

derivative. The first part can be written as:

f1 = ε0 E div E + curl E × E  + µ0
–1 B  div B  + curl B  × B  , (1.48)

where I used another one of Maxwell’s equations, viz. div B = 0, to make the structure of the

expression for f1 symmetric in E and B. The second part can be written as:

f2 = – 
∂

∂t
 ε0 E × B = – 

∂g

∂t
 , (1.49)

where I introduced the electromagnetic momentum density g ≡ ε0 E × Β. The right hand side of

Eq. 1.48 is just the divergence of the so-called Maxwell stress tensor.48 This is most easily

shown in terms of the components of the equation. I will only go through the algebra for f1(E),

the part of f1 depending on E. Because of the symmetry of Eq. 1.48 the expression for f1(B)

will have exactly the same structure. The i-th component of f1(E) can be written as (summation

over repeated indices being understood):

  f i
1(E) = ε0(Ei ∂kEk + εijk(εjlm∂lEm )Ek ) , (1.50)

where εijk equals plus one when ijk is an even permutation of (1,2,3), minus one for any odd

permutation, and zero otherwise. Using

– εjik εjlm = – δil δkm + δim δkl , (1.51)

where δij is the Kronecker delta, we can rewrite Eq. 1.50 as:

                                                
48 See, e.g., Pauli 1921, p. 85.
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  f i
1(E) = ε0 Ei ∂kEk – ∂iEk Ek + ∂kEi Ek

   

= ε0 ∂k EiEk – 1
2

δikE2  .

(1.52)

A similar expression obtains for f1(B). Hence, the components of f1 can be written as:

  f i
1 = ∂k ε0 EiEk – 1

2
δikE2  + µ0

– 1 BiBk – 1
2

δikB 2  . (1.53)

The quantity between curly brackets is just the Maxwell stress tensor Tik. Adding Eq. 1.53 for

the components of f1 to the components of f2 in Eq. 1.49, we finally obtain:

  f i = f i
1 + f i

2 = ∂kTik – gi . (1.54)

This relation is an instance of a much more general relation from relativistic mechanics that

we will have occasion to use in section 2.4 (see Eq. 2.117).

For now, I return to the turning couple T exerted on the static moving charging distribution

by the force f. This turning couple can be divided into a contribution from f1 and a contribution

from f2:

T = T1 + T2 = d3x x  × f1 + d3x x  × f2 . (1.55)

The contribution from f1 vanishes. Consider the i-th component of T1:

Ti
1 = d3x εijk xj fk

1 = d3x εijk xj ∂lTkl . (1.56)

Integration by parts gives:

Ti
1 = d3x εijk ∂l xj Tkl  – d3x εijk ∂l xj Tkl . (1.57)

The first term vanishes on account of Gauss’s theorem. In the second term, substitute ∂lxj = δlj

and carry out the summation over l. This leaves us with εijkTkj which vanishes since it is a

contraction of a quantity anti-symmetric in j and k and a quantity symmetric in j and k. This

concludes the proof that T1 = 0.

Now substitute Eq. 1.49 for f2 into the T2-part of Eq. 1.55. Replacing the differential

quotient by the corresponding difference quotient in the limit where ∆t goes to zero, we obtain

(cf. Lorentz 1904a, p. 191):
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 T =  –  d3x x  × 
∂g(t, x)

∂t
 = – 1

∆t
 d3x  x  × g(t+∆t,x) – g(t, x) .lim

∆t →  0
(1.58)

Since we are dealing with a moving static charge distribution, the only time dependence of g is

through the change of position:

g(t+∆t,x) = g(t,x–v∆t). (1.59)

Now rewrite the integrand in Eq. 1.58 as follows:

x–v∆t  × g(t, x–v∆t)  +  v∆t × g(t, x–v∆t)  –  x  × g(t, x) . (1.60)

The integral over the first term of Eq. 1.60 cancels the integral over the third. So, letting ∆t go to

zero, we are left with:

T = – d3x  v  × g  . (1.61)

When finally the electromagnetic momentum G is introduced as the integral over the

electromagnetic momentum density g, Eq. 1.38 is recovered which we wrote down earlier

simply on the basis of the interpretation of the quantity G as momentum:

T = – v × G. (1.62)

I will now derive Eq. 1.36 for the electromagnetic momentum G of a condenser moving

through the ether. Since the fields in the moving condenser can be treated as homogeneous we

can simply multiply the electromagnetic momentum density g with the volume V of the moving

condenser to obtain the electromagnetic momentum G. To find an expression for g = ε0(E × B),

we use Lorentz’s theorem of corresponding states. Look back at Fig. 1.9. The fields E and B in

the moving condenser represented by the parallelogram on the right are related to the field E′ in

the corresponding condenser at rest represented by the rectangle on the left through a Lorentz

transformation. Remember that, relativistically, the system on the left is just the moving system

on the right in its rest frame. Since B′ = 0 in this case, the Lorentz transformation for the

electromagnetic field reduces to:

E = diag(1, γ, γ) E′,       B  = 1
c2

 diag(1, γ, γ) v  × E′ . (1.63)

The electric field in the condenser at rest is given by:
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E′ = E′ (sin θ′, – cos θ′, 0). (1.64)

Since we only need G to first order in β, we can set γ = 1 in Eq. 1.63 and θ′ = θ in Eq. 1.64. So,

to first order in β, E and B are given by:49

E = E′ (sin θ, – cos θ, 0),   B = E′ (0, 0, – (v/c2) cos θ). (1.65)

Inserting Eq. 1.65 into the expression for the electromagnetic momentum density g, we find:

g = ε0 E × B = ε0 (EyBz, –ExBz, 0) = ε0 v/c2 E′2 (cos2θ, sinθ cosθ, 0). (1.66)

Now use that ε0 E′2 = 2u′, where u′ the energy density of the field in the condenser at rest, that

G = g V , and that, to first order in β, V = V ′. In this way we recover Eq. 1.36:

G = 2 (U′/c) β cos θ (cos θ, sin θ, 0), (1.67)

where U′ = u′ V ′ is the energy of the field in the condenser at rest. Inserting Eq. 1.67 into Eq.

1.62, we recover Eq.  1.39 for the turning couple of the Coulomb forces in the Trouton-Noble

experiment. I want to emphasize once again that in the derivation spanning Eqs. 1.43–1.67, we

did not have to invoke the interpretation of G as electromagnetic momentum at any point, as I

had to do in the derivation I gave in Eqs. 1.37–1.39.    

1.4.3 The electromagnetic energy in a moving condenser according to Lorentz’s theory.

Eq. 1.42 for the electromagnetic energy U of the moving condenser can be derived in the same

way as Eq. 1.67 for the electromagnetic momentum. We do not have to invoke the interpretation

of G as electromagnetic momentum, as I had to do in the derivation I gave in Eqs. 1.40–1.42.

The energy density for any electromagnetic field is given by

u = 1
2

 ε0 E2 + 1
2

 µ0
– 1 B 2.

(1.68)

For the fields E and B of the condenser we can use Eq. 1.63 and Eq. 1.64. We cannot use Eq.

1.65, however, since we now need E and B to order β2. For the same reason we cannot assume

that Eq. 1.64 for E′ will be valid in the case where we do not assume the Lorentz-FitzGerald

contraction. The following derivation is valid only in the context of a theory incorporating the

Lorentz-FitzGerald contraction.50 From Eq. 1.63 and Eq. 1.64 it follows that:

                                                
49 Trouton used these values for the E and B fields to compute the electromagnetic energy of the condenser (see
Eq. 1.3 and Eq. 1.4; cf. Eq. 1.69 below).
50 On the basis of the interpretation that I gave earlier of the various terms in Eq. 1.42, it is, in fact, clear that
the result, if not the derivation, holds for the case without the Lorentz-FitzGerald contraction as well. Notice,
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E = E′ (sin θ′, – γ cos θ′, 0),   B = E′ (0, 0, – γ (v/c2) cos θ′). (1.69)

Inserting Eq. 1.69 into Eq. 1.68, we obtain:

u = 1
2

 ε0 E ′
2
 (sin2θ′  + γ2cos2θ′) + 1

2
 µ0

– 1/c2 β
2
 γ2 E ′

2
 cos2θ′ . (1.70)

Now use that µ0–1/c2 = ε0, and that 1/2 ε0E′2 = u′, the electromagnetic energy density of the

corresponding condenser at rest. Eq. 1.70 then turns into:

u = u′ (sin2θ′  + γ2cos2θ′  +  β
2
 γ2 cos2θ′). (1.71)

Inserting 1 = γ2(1 – β2) in the first term on the right hand side, we can rewrite Eq. 1.71 as:

u = γ2u′ (1 – β
2
sin2θ′  +  β

2
cos2θ′). (1.72)

To get from the energy density u to the energy U itself, we can just multiply Eq. 1.72 by the

volume V of the moving condenser. This volume will be a factor γ smaller than the volume V ′

of the corresponding condenser at rest. Hence,

U = γU′ (1 – β
2
sin2θ′  +  β

2
cos2θ′), (1.73)

where U′ = u′V ′.  To order β2, γ = 1 + 
1
2 β2 and θ′ = θ, so that Eq. 1.73 reduces to Eq. 1.42:

U = U′ (1 – 1
2

 β
2
 + 2 β

2
cos2θ) . (1.74)

The interpretation of the energy U as the sum of the energy U′/γ found by Larmor (see Eqs.

1.19–1.27) and the energy UG needed to build up the electromagnetic momentum G of the

moving condenser (see Eqs. 1.40–1.42) not only holds to order β2, but exactly. Inserting the

exact expressions for E and B in Eq. 1.69 into g  = ε0E × B  (see Eq. 1.66) and multiplying by

the volume V ′/γ of the contracted condenser, we find that

G = 2 (U′/c) β cos θ′  (γ cos θ′ , sin θ′ , 0). (1.75)

To order β2, γ = 1 and θ′ = θ, so that Eq. 1.75 reduces to Eq. 1.67 and Eq. 1.36. Inserting the x-

component of Eq. 1.75 into Eq. 1.40 for UG, we find that:

UG = 2U′γβ
2

cos2θ′ . (1.76)

                                                                                                                                                      
however, that in that case Eq. 1.42 does not give the full θ-dependence of U explicitly, since U′ will still depend
on θ (see Eq. 1.29 and Eq. 1.32).
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Adding Larmor’s U′/γ to UG, we arrive at

U =
U′
γ

 + 2U′γβ
2

cos2θ′

= γU′ 1 – β
2
 + 2β

2
cos2θ′

= γU′ 1 – β
2

sin2θ′  + β
2

cos2θ′ ,

(1.77)

which is exactly the total electromagnetic energy of the condenser given in Eq. 1.73.

So, we have two derivations for the expression for the electromagnetic energy of a moving

charged condenser in Lorentz’s theory, one (Eqs. 1.75–1.77, the exact version of the derivation

in Eqs. 1.40–1.42) in which the physical interpretation of G as momentum plays a crucial role,

and one (Eqs. 1.68–1.74) in which this interpretation does not play any role. Lorentz, as far as I

know, never did either of these calculations, although the latter derivation is perfectly in line with

his general approach. As a consequence, it is idle speculation how he would have responded to

the contradiction between this expression for the electromagnetic energy in a moving charged

condenser and the expression U = U′/γ, which formed the basis for Larmor’s account of the

Trouton-Noble experiment. I will not get into such speculation.


