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Chapter Two: Relativistic accounts of the experiments of
Trouton and Noble

2.0 Introduction: the ‘Laue effect’ and how to define it away

2.0.1 The fate of the experiments of Trouton and Noble in the history of the special

theory of relativity. As we saw in chapter one, classical electrodynamics does predict the

effect sought after in vain by Trouton and Noble (1903), i.e., a turning couple of the Coulomb

forces acting on the plates of a moving condenser carrying a fixed charge. However, in

Lorentz’s version of the theory, this effect is exactly compensated by the turning couple coming

from the intermolecular forces in the condenser, which Lorentz (1904b) assumed to transform

in the exact same way as the Coulomb forces. Lorentz’s theory predicts no such compensating

mechanism for the effect Trouton (1902) was looking for in the experiment originally

suggested to him by FitzGerald, i.e., an impulse upon charging or discharging a moving

condenser. Instead, Lorentz attributed the negative result of this experiment to insufficient

sensitivity of the apparatus. As I already pointed out in the introduction to part one, one needs

the equivalence of mass and energy to understand how it can be, as is required by the principle

of relativity, that the experiment will always yield a negative result, no matter how sensitive we

make the apparatus.

To my knowledge, no one has ever pointed this out before, although the explanation seems

quite straightforward. In fact, the Trouton experiment is remarkably similar to a thought

experiment Einstein (1906) used in one of his derivations of E = mc2. Moreover, Einstein’s

thought experiment was inspired by remarks of Poincaré (1900b) on the fate of Newton’s

reaction principle and the center of mass theorem in Lorentz’s theory (Darrigol 1994b), and

Lorentz himself would present Einstein’s thought experiment in his lectures on relativity

(Lorentz 1922, pp. 242–243). Yet, neither Einstein nor Lorentz seem to have thought of a

connection with the Trouton experiment. Decades later, Laue would discuss this thought

experiment in his contribution to the Schilpp volume dedicated to Einstein, in the same section

in which he discusses the Trouton-Noble experiment (Laue 1949, pp. 524–528). Yet, Laue also

failed to mention the Trouton experiment

Instead of living on in modern textbooks as a nice illustration of E = mc2, the Trouton

experiment seems to have been largely forgotten. I can think of several factors that may have

contributed to this unhappy fate. First, recall that Larmor (1902; see section 1.1) essentially

dismissed the basic idea of FitzGerald on which the experiment was based, a verdict Trouton



accepted. And FitzGerald had meanwhile passed away. Both Larmor and Trouton clearly felt

that the Trouton-Noble experiment was far more interesting than Trouton’s original experiment.

This is also the impression one gets from reading Lorentz’s discussion of the two experiments

in his classic paper of 1904 (Lorentz 1904b). Whereas the Trouton-Noble experiment plays an

important role in the exposition of the theory, the discussion of the Trouton experiment is

relegated to the very last section, almost as an appendix to the paper. To make matters worse,

this section was omitted in the reprint of Lorentz’s paper in the popular Teubner anthology on

the principle of relativity (Blumenthal 19131). Jakob Laub, one of Einstein’s early

collaborators, does not refer to Lorentz’s important analysis in his brief discussion of the

Trouton experiment in a review article on the experimental basis of special relativity (Laub 1910,

pp. 428–430).2 Laub lists the experiment as one of four first order electrodynamical (as

opposed to optical) experiments with a negative result. Laub leaves it at that, presumably

because the result is just what you would expect on the basis of the relativity principle. Laub

does not address the problem of how it can be that the theories of Lorentz and Einstein predict

different results for this experiment. I do not know of anyone before or since who has even

raised this question.

The Trouton-Noble experiment, by comparison, has fared much better. On the experimental

side, its null result was confirmed with greater accuracy in the 1920s by Tomashek (1926a,

1926b) and Chase (1926).3  On the theoretical side, Max Laue in the course of developing his

relativistic mechanics offered a general explanation of the experiment’s negative result without

simply appealing to the relativity principle (Laue 1911a, 1911b, 1911c, 1912a). Furthermore, in

a paper devoted exclusively to the Trouton-Noble experiment (Laue 1912b), he supplemented

this general and rather abstract explanation with a more intuitive account directly in terms of the

forces acting on the condenser. The Trouton-Noble experiment, Laue emphasized, provides an

example of an actual physical system exhibiting a peculiar effect Laue had found in developing

his relativistic mechanics, an effect with no counterpart in Newtonian mechanics. As Laue liked

to put it, giving the result a somewhat paradoxical flavor, stressed systems in static equilibrium

which are in uniform motion need a turning couple in order to sustain this motion.4 I will call

this the Laue effect for short. It is most strikingly illustrated by a thought experiment involving a

device known as the Lewis-Tolman bent lever (Lewis and Tolman 1909; Laue 1911c, 1912a).

                                                
1 Cf. Miller 1981, p. 391.
2 I am grateful to John Stachel for bringing this paper to my attention. See Stachel et al. 1989, pp. 503–507,
for discussion of the collaboration of Einstein and Laub.
3 See Whittaker 1953, Vol. II, p. 29; Swenson 1972, pp. 147–148; Joos 1934, p. 448
4 Laue 1911a, p. 149; 1911b, p. 168; 1911c, p. 514; 1912a, p. 163; 1912b, p. 169.



Pauli’s celebrated review article contains a detailed discussion of Laue’s account of the

Trouton-Noble experiment (Pauli 1921, pp. 128–130). Discussions of the Trouton-Noble

experiment, ranging from cursory and superficial to in-depth expositions of Laue’s account, can

be found in numerous textbooks on relativity and electrodynamics written since.5

2.0.2 The kinematical nature of the turning couples in the Trouton-Noble experiment.

The main focus of this chapter will be on the Trouton-Noble experiment rather than on the

Trouton experiment. Most of the chapter will be taken up by a detailed analysis of Laue’s

canonical account of the experiment. Taking my inspiration from Rohrlich (1960, 1965), I will

argue that the Laue effect is an artifact of Laue’s definitions of such quantities as the four-

momentum and angular momentum of spatially extended open systems, definitions involving

integration of the corresponding current densities over spacelike hyperplanes. By ‘open’ I

mean that the system exchanges energy-momentum with its surroundings. This formally

translates into the statement that the four-divergence of the energy-momentum tensor, the

current density corresponding to four-momentum, does not vanish everywhere. One can prove

that the integral of a system’s energy-momentum tensor over a spacelike hyperplane is

independent of which hyperplane we choose if and only if the system is closed (i.e., the

divergence of its energy-momentum tensor vanishes everywhere). So, the definition of four-

momentum for closed systems is unambiguous, but the definition of four-momentum for open

systems necessarily involves a convention about how to choose the hyperplane over which we

integrate the energy-momentum tensor. One has the same problem in defining the angular

momentum for spatially extended systems. With the convention Laue uses, which is the

convention still standard today, the angular momentum of static open systems is not conserved

and as a consequence we find the Laue effect; with an alternative convention proposed by

Rohrlich (1960, 1965), the angular momentum of static open systems is conserved and we do

not find the Laue effect. This means that the Laue effect simply comes from choosing spacelike

hyperplanes in Minkowski space-time in some particular way. The effect therefore tells us

nothing about the detailed dynamics in the system, it is simply a reflection of the space-time

                                                
5 Discussions as thorough as those of Laue and Pauli are given by Becker (1962, I, pp. 394–401) and Tolman
(1987, pp. 79–83). At the other end of the spectrum we find discussions that simply appeal to the relativity
principle to explain the negative result of the Trouton-Noble experiment. Typically, the argument that is offered
is simply that since the Coulomb forces do not make the condenser rotate in its rest frame, they cannot make it
rotate in any other frame either. Examples in this category are: Lorrain and Corson (1970, p. 248), Rosser
(1971, p. 86), Puri (1972, pp. 263–264), and Wangsness (1986, p. 498). In between these two extremes, we
find discussions that mention that the turning couple of the electromagnetic forces is exactly compensated by a
turning couple coming from the non-electromagnetic part of the system without going into great detail.
Examples in this category are: Panofsky and Phillips (1955, p. 294; 1962, pp. 349–350), Kacser (1967, p.
216), Jánossy (1971, p. 66), and Schwartz (1977, pp. 190–191). I am grateful to Gordon Fleming for
contributing several items to this list.



structure. In other words, the effect is purely kinematical, just as the basic relativistic phenomena

of length contraction and time dilation.

What exactly is the Laue effect? Consider a system in static equilibrium. For a system to be

static, its energy-momentum tensor has to satisfy two conditions. First, it has to be time

independent in the system’s rest frame. Second, those of its components that describe energy

flow and (ordinary three-)momentum density have to vanish in the system’s rest frame. For a

system to be in static equilibrium it has to be static and closed. The system studied in the

Trouton-Noble experiment is an example of a system in static equilibrium. The total system,

which is static and closed, can be divided into an electromagnetic and a non-electromagnetic

part, which both will be static open sub-systems. Suppose we have a system in static

equilibrium such that the components of the energy-momentum tensor of one of its constituents

describing the stresses on that constituent do not vanish in the system’s rest frame. In a frame

in which the system is moving, Laue found, these stresses give rise to momentum and this

momentum will generally not be in the same direction as the system’s velocity. As Lorentz

already showed (see section 1.4, Eq. 1.38 and Eq. 1.62), this means that there will be a turning

couple on the system. Obviously, this turning couple should somehow be compensated.

Otherwise, we would have a violation of Einstein’s principle of relativity. A closed static system,

i.e., a system in static equilibrium, cannot be rotating in one frame and not be rotating in

another.6 The Laue effect is what prevents this from happening. A stressed system in static

equilibrium which is in uniform motion will experience a turning couple that cancels the turning

couple coming from the stresses.

Consider the Trouton-Noble condenser in its rest frame. The Coulomb force between the

charged plates stresses the material part of the condenser. Without stresses of this kind the

system could not possibly be in static equilibrium. The plates would simply collapse onto one

another. In a frame in which the condenser is in uniform motion these stresses give rise to a

turning couple. This turning couple is canceled by the turning couple coming from the

Coulomb forces evaluated in this frame.

The Coulomb forces themselves can also be described in terms of stresses, called

electromagnetic stresses or Maxwell stresses. The turning couple coming from the Coulomb

forces is due to these Maxwell stresses in exactly the same way as the turning couple it opposes

is due to the stresses in the material part of the condenser. Moreover, the fact that the two

turning couples cancel one another in the frame in which the condenser is moving is directly

                                                
6 Somewhat surprisingly, perhaps, a closed non-static system can be rotating in one frame but not in another.
In section 2.4, I will show how we can understand this on the basis of the relativity of simultaneity. I am
grateful to John Norton for clarifying this point.



related to the fact that the electromagnetic stresses and the non-electromagnetic stresses cancel

one another in the system’s rest frame (otherwise the system could not be in static equilibrium).

At first sight, Laue’s relativistic account of the Trouton-Noble experiment strongly

resembles Lorentz’s. According to both, there is a turning couple coming from the

electromagnetic part of the system and a turning couple coming from the non-electromagnetic

part of the system and the two of them exactly cancel one another. Moreover, both for Lorentz

and for Laue, this cancellation of turning couples is directly related to the fact that the system is

in static equilibrium.

There is an important difference though, as Laue emphasized. Whereas Lorentz ascribed

this non-Newtonian effect—simply setting a system in motion does not call forth any turning

couples in classical mechanics!—to peculiarities of electromagnetic and molecular forces, Laue

saw it as a manifestation of a general effect of a new relativistic mechanics. That, of course, is

why I named the effect after Laue and not after Lorentz. After giving his interpretation of

Lorentz’s account of the Trouton-Noble experiment in his first published discussion of the

problem (see section 1.4), Laue writes: “Although this answer undoubtedly hits upon the right

solution, it is not quite satisfactory, in that it takes recourse to molecular theory, with which the

problem in and of itself has nothing to do” (Laue 1911a, p. 136). He concludes another

exposition of the Laue effect and the Trouton-Noble experiment by saying: “In this sense, the

Trouton-Noble experiment decides in favor of the dynamics of relativity theory and against

Newtonian mechanics” (Laue 1912a, p. 164).

As I mentioned above, it depends on one’s definitions of four-momentum and angular

momentum whether one has the Laue effect or not. Under Rohrlich’s definition, relativistic

mechanics, like classical mechanics and contrary to what Laue thought, predicts no such thing

as delicately balanced turning couples acting on stressed systems in static equilibrium when

they are in motion. Stresses in one frame do not give momentum in other frames and

momentum is always in the direction of the velocity.

In the end, these observations only reinforce the general point Laue makes in the two

quotations I gave above. What Laue says is basically that the Laue effect is part of what I called,

following Planck, the general dynamics. My analysis shows that we can be more specific. It is

part of what I called, following John Stachel’s suggestion, the general dynamical consequences

of the kinematics (see the introduction to part one). In other words, the Laue effect is purely

kinematical. It is simply a manifestation of the normal spatio-temporal behavior of stressed

systems in static equilibrium in Minkowski space-time.

With the help of Laue’s analysis of the Trouton-Noble experiment, it is easy to produce a

relativistic account of the Trouton experiment. In fact, I already gave the essentials of such an

account in the introduction to part one. As Lorentz pointed out, a moving condenser gains



(loses) momentum when it is (dis-)charged. It does not follow, however, that the condenser will

experience a jolt whenever it is charged or discharged, as Lorentz thought on the basis of

Newtonian conservation of momentum. In relativistic mechanics, a change in momentum can be

accompanied by a change in velocity, but also by a change in mass, a possibility not allowed for

in Newtonian mechanics. Consequently, the relativistic momentum balance for the condenser in

the Trouton experiment, evaluated in a frame in which the condenser is moving, is as follows.

When the condenser is charged, it gains energy, hence mass, hence momentum, while the source

supplying the energy to charge the condenser loses the same amount of energy, mass, and

momentum. When the condenser is discharged, it loses energy, mass, and momentum to

whatever system outside is receiving it. The Trouton experiment thus nicely illustrates the most

famous result of relativistic mechanics, the equivalence of mass and energy.7

Notice that the transfer of four-momentum from the battery to the condenser in the Trouton

experiment, unlike the Laue effect in the Trouton-Noble experiment, can not be defined away.

This immediately tells us that it is not a purely kinematical effect. To be sure, the effect reflects a

very general property of relativistic systems and is independent of the specific nature of the

system. But more is involved than just the system’s spatio-temporal behavior. Its status is thus

the hybrid status accorded to the Laue effect in the remarks by Laue I quoted above.

2.0.3 Outline of chapter two. In sections 2.1 through 2.6, I will provide further details on the

relativistic arguments outlined above. All calculations will be done with the help of the energy-

momentum tensor. Building on work by Einstein, Lorentz, Planck (1906a, 1907, 1908),

Abraham (1910), Sommerfeld (1910a, 1910b), and, especially, Minkowski (1908),8 Laue put

this quantity, originally defined in the context of electrodynamics only, at the center of his

relativistic mechanics.9 In section 2.1, I will introduce the energy-momentum tensor and go over

an illuminating proof of the theorem that forms the core of a modern relativistic account of the

Trouton-Noble experiment. Under its standard definition (i.e., as the space integral of the µ0-

components of the energy-momentum tensor) four-momentum transforms as a four-vector if

and only if the four-divergence of the corresponding energy-momentum tensor vanishes

everywhere. In other words, four-momentum transforms as a four-vector if and only if the

                                                
7 Since energy is a component of four-momentum, the details of this account of the Trouton experiment will
depend on whether we use Laue’s or Rohrlich’s definition of that quantity (see section 2.5).
8 The papers cited here are the relevant papers cited in Laue 1911a. I am grateful to Rita Fountain-Lübke for
providing me with the exact reference to Abraham 1910.
9 Laue 1911a, p. 140. I do not know of any comprehensive study in the history of science literature devoted to
these important developments, a very unfortunate situation that I hope will be remedied in the near future by
John Stachel’s work on the history of relativity theory. There is a brief discussion in Miller 1981, pp. 367–374.
Norton 1992a, pp. 42–53, also contains some useful remarks. By far the best discussion is still Laue’s
contribution to the Schilpp volume on Einstein (Laue 1949).



system is closed. Laue’s account of the Trouton-Noble experiment (Laue 1911a) is based on

his claim that the energy and momentum of what he called a “complete static system”

transform as the components of a four-vector. Substituting ‘four-momentum under the standard

definition’ for ‘energy and momentum’ and ‘closed’ for ‘complete,’ one will recognize Laue’s

claim as a weaker version of the theorem mentioned above. Laue uses the unnecessary extra

condition that the system is static.

As I will show in detail, Laue’s imposing of this overly restrictive condition is related to an

error in his proof of his claim. This error is easily corrected by invoking the assumption that the

system is static at one more juncture in the proof. Since the systems Laue is interested in are all

static, it does not really matter whether we prove the result for complete systems or for complete

static systems. However, it will be through tracing Laue’s error that we naturally end up

identifying the arbitrary element in his definition of four-momentum for spatially extended open

systems, i.e., the particular convention Laue uses for choosing spacelike hyperplanes over which

to integrate the energy-momentum tensor.

In section 2.2, I will give a detailed analysis of this arbitrariness. The exact same problem

lies at the root of the infamous spurious factor 4 3 in the mass-energy relation for Lorentz’s

purely electromagnetic model of the electron. It is not surprising that this problem is related to

the Trouton-Noble experiment. Laue, in fact, applies his claim about complete static systems to

two special cases, the Trouton-Noble experiment and the electron model of Lorentz amended by

Poincaré. I will briefly go over the history of the 4 3-puzzle and show how the issue was

definitively settled by Rohrlich (1960, 1965). Rohrlich’s solution suggests an alternative

account of the Trouton-Noble experiment, based on an alternative convention for choosing the

spacelike hyperplanes in the relevant definitions. Instead of the delicately balanced turning

couples of Laue’s account, this alternative account does not involve any turning couples

whatsoever. The most concise and relativistically kosher way of comparing the two accounts of

the experiments is to give the argument in terms of angular momentum, which is what I will do

at the end of section 2.2. The upshot of this comparison will be that the Laue effect is an artifact

of an arbitrariness in the definition Laue uses for quantities such as four-momentum and

angular momentum for spatially extended open systems.  

In section 2.3, I will work out the details of Laue’s 1911 ‘four-momentum’-account of what

happens in the electromagnetic and the non-electromagnetic parts of the condenser in the

Trouton-Noble experiment and contrast it with the ‘four-momentum’-account suggested by

Rohrlich’s work. Recall that, in the analysis of both Lorentz and Laue, a turning couple is found

whenever the direction of the momentum of some part of the system is different from the

direction of the system’s velocity. Under Rohrlich’s definition, four-momentum always has the

same direction as four-velocity. This gives us another way of understanding the absence of the



Laue effect in the Rohrlich picture, and hence another way of seeing that the effect is an artifact

of arbitrary definitions.

Since the charge distribution on our box-shaped condenser has far less symmetry than the

spherical charge distribution constituting Lorentz’s purely electromagnetic electron, the case of

the Trouton-Noble experiment gives a much richer harvest than the case of the electron in terms

of seemingly dynamical effects that on closer examination turn out to be purely kinematical. In

the Laue picture of what happens in a moving condenser, we not only have delicately balanced

turning couples, but also exchanges of four-momentum and angular momentum between the

electromagnetic and the non-electromagnetic parts of the condenser if the whole system were

slowly being rotated (slowly so as to preserve the static character of the situation). In addition,

even when the system is in uniform motion with no rotation at all, there will be a steady flow of

angular momentum from the electromagnetic to the non-electromagnetic part, or vice versa,

depending on the angle between the plates and their velocity. In the Rohrlich picture, we have

none of these phenomena. The Rohrlich picture fits better with our intuitions about what it

means for a system to be in static equilibrium, I think, than the Laue picture. I want to

emphasize, however, that I do not want to argue that the definitions on which Rohrlich’s picture

is based are superior to the definitions on which Laue’s picture is based. Both types of

definitions have pros and cons. What I do want to argue is the following. If an effect is present

under one definition and absent under another, differing from the first only in its arbitrary

conventions about picking spacelike hyperplanes, then the effect is purely kinematical. At the

end of section 2.3, I will give a more detailed and careful version of the argument establishing

the purely kinematical nature of the Laue effect.

In section 2.4, I will present a slightly idealized version of Laue’s more intuitive ‘forces’-

account (Laue 1912b).10,11 I will also take a closer look at the expressions for the various

contributions to the energy of the system in the Laue picture. Adapting an argument due to

Einstein (1907b), I will show how the different terms can be interpreted directly in terms of the

relativity of simultaneity. This is tantamount to recognizing that these expressions simply reflect

a particular choice of a hyperplane of simultaneity. This means that we can credit Einstein with a

deeper understanding of situations such as the one encountered in the Trouton-Noble

experiment than Laue. A clear understanding of the role of the relativity of simultaneity in the

Trouton-Noble experiment will also enable us to get a more intuitive grasp of how something

which sounds as dynamical as a turning couple can actually be a purely kinematical effect.

                                                
10 In section 1.2, I already gave an overly simplified version of this account.
11 This calculation in the Laue picture does not seem to have a natural analogue in the Rohrlich picture,
although I have to confess that I have not tried very hard to find it. For my purposes, it was sufficient to
develop the analogues in the Rohrlich picture of the calculations in the Laue picture in sections 2.2 and 2.3.



Finally, in section 2.5, I will discuss the relation between the Trouton-Noble experiment and

the Lewis-Tolman bent lever, and the relation between the Trouton experiment and E = mc2.



2.1 The transformation of four-momentum for ‘complete static systems’

2.1.1 The energy-momentum tensor. Historically, the energy-momentum tensor was first

encountered in electrodynamics. Various quantities that were introduced in section 1.4—the

electromagnetic energy density u, the electromagnetic momentum density g, and the Maxwell

stress tensor Tij—can be combined in the electromagnetic energy-momentum tensor Tµν. In an

arbitrary Lorentz frame on Minkowski space-time, the contravariant symmetric electromagnetic

energy-momentum tensor is defined as (summation over repeated indices being understood):12

TEM
µν  = µ0

 –1 Fµ
α Fα ν + 1

4
 ηµν Fαβ Fαβ  , (2.1)

where Fµv ≡ ∂µAν – ∂νAµ is the contravariant electromagnetic field tensor. The Greek indices

run from 0 to 3, corresponding to the space-time coordinates (ct, x, y, z). Derivatives with respect

to these coordinates are written as ∂µ. Indices are raised and lowered with the help of the

Minkowski metric ηµν ≡ diag(1,–1,–1,–1). The four-vector potential is defined as Aµ ≡ (φ/c,A),

where φ is the ordinary scalar potential and A is the three-vector potential. With the help of the

relation E = – grad φ – ∂A/∂t, the relation B = curl A, and the definitions above, it is easily

verified that the field tensor Fµv can be represented by the following matrix:

Fµν = 

0 –Ex c
–Ey

c
–Ez c

Ex c 0 –Bz By

Ey
c Bz 0 –Bx

Ez c –By Bx 0

 . (2.2)

The quantities Fµν = Fµρ ηρν and Fµν = ηµρ Fρσ ησν can be represented by similar matrices.

If we change the signs in columns 1 through 3 in Eq. 2.2, we obtain the matrix representing

Fµν; if we change the signs in column 0 and row 0 in Eq. 2.2, we obtain the matrix representing

Fµν. With the help of these matrices one can read off expressions for the various components

of TEM
µν  in Eq. 2.1. The 00-component turns out to be equal to the energy density u (cf. Eq.

1.68):

                                                
12 See, e.g., Pauli 1921, pp. 85–86; Jackson 1975, pp. 601–606. Unlike Pauli or Jackson, I use SI or MKSA
units. A very thorough discussion of how to define the canonical energy-momentum tensor (or momentum
current) as the Noether current (and four-momentum as the corresponding Noether charge) associated with
translation invariance of the Lagrangian, and of how to get from the canonical energy-momentum tensor to the
symmetric energy-momentum tensor such as the one given in Eq. 2.1 can be found in Soper 1976, pp. 101-123.



TEM
00  = 1

2
 ε0 E2  +  1

2
 µ0

 –1 B 2 ≡ u . (2.3)

The components (10, 20, 30)—and, likewise, the components (01, 02, 03)—turn out to be equal

to c times the momentum density g (cf. Eq. 1.35):

T10,  T20,  T30
EM = c ε0 E × B  ≡ c g . (2.4)

Finally, the ij-components (with i and j running from 1 to 3) turn out to be equal to minus the

Maxwell stress tensor (cf. Eq. 1.53):

TEM
ij  = – ε0 EiEk – 1

2
δ

ik
E2  + µ0

– 1 B iB k – 1
2

δ
ik

B 2  . (2.5)

The interpretation of the various components of the energy-momentum tensor is the same

independently of the nature of the system under consideration. The 00-component always

represents the energy density, the i0-components (divided by c) represent the components of the

momentum density, the 0i-components (times c) represent the components of the energy current

density, and the ij-components represent the stresses, or, equivalently, the components of the

various momentum current densities. Notice that the interpretation of the i0-components and the

0i-components incorporates the result that an energy flow always corresponds to momentum. In

the electromagnetic case, this is expressed in terms of the Poynting vector S ≡ µ0–1 E × B (see,

e.g., Jackson 1975, p. 237), representing the energy current density, and the electromagnetic

momentum density g ≡ ε0 E × B. The relation between these two quantities is: g = ε0 µ0 S =

S/c2.13

Laue (1911a, p. 141) cites Planck 1908 for this result.14 In section 1.4, I already gave an

extensive quotation from this paper of Planck, discussing the complication of the general

concept of momentum—or “quantity of motion” as it is called in Planck 1908—brought about

by Abraham’s introduction of electromagnetic momentum in 1903. Immediately after the

passage I quoted in section 1.4, Planck writes:

Now, is it possible, in the context of general dynamics, to define the quantity of motion in
the same uniform manner as it used to be defined in mechanics, even though it now comprises
both the mechanical and the electromagnetic kind? An affirmative answer to this question
would definitely lead to an advance in our understanding of the real meaning of the reaction

                                                
13 As Laue emphasizes, this result is elegantly encoded in the symmetry of the energy-momentum tensor, a
property which can be motivated by insisting on angular momentum conservation in relativistic mechanics
(Laue 1911a, pp. 140–141, pp. 147–150, and Eqs. 2.44–2.47 below). Laue must have been pleased to find that
the integrals over the energy-momentum tensor representing four-momentum in different Lorentz frames
likewise encoded what I call the Laue effect.
14 It can also be found in the first edition (of 1909) of Lorentz’s 1906 lectures in New York (Lorentz 1916, p.
33).



principle [by which, as is explained at the beginning of the paper, Planck means momentum
conservation].

Such a uniform definition of the quantity of motion indeed appears to be possible and
feasible, at least if, at the same time, the validity of the Einsteinian theory of relativity is
admitted. (Planck 1908, p. 216)

After a brief and obligatory cautionary remark on this last assumption, Planck, in the remainder

of this short paper, elaborates on this uniform definition of momentum, describing, in effect, the

energy-momentum tensor and the physical interpretation of its components. The crucial

sentences read:

In relativity theory, one can quite generally reduce the quantity of motion to the vector
representing the energy flow [...] This vector divided by the square of the velocity of light is
quite generally the quantity of motion per unit volume [...]

From the point of view sketched here, the principle of the equality of action and reaction
[i.e., momentum conservation] can quite generally be called the “theorem of the inertia of
energy.”

We can even go one step further. Just as the constancy [read: conservation] of energy
implies the notion of the energy flow, so does the constancy [read: conservation] of the
quantity of motion necessarily imply the notion of the “flow of the quantity of motion,” or,
put more concisely, the “momentum flow.” [...] However, an essential difference compared to
the energy flow is that energy is a scalar, whereas the quantity of motion is a vector.
Consequently, [...] the momentum flow at a certain position is a tensor triple [...]
characterized by six components. (Ibid., pp. 217–218)

2.1.2 Laue’s notion of a ‘complete static system.’ Laue’s account of the Trouton-Noble

experiment is based upon a general claim about the transformation behavior of the energy and

momentum of what he called a “complete static system” (vollständiges statisches System,15

Laue 1911a, section 5, pp. 150–153). By “complete” Laue roughly means that the system does

not interact with anything but itself. Laue is rather vague in his explanatory prose,16 but from

the discussion earlier on in his paper (especially, ibid., p. 142, Eq. (5)) and from the proof he

offers for his general claim, it is clear that a system being complete means that its total energy-

momentum tensor is divergence free

∂µTtot
µν = 0, [complete/closed] (2.6)

                                                
15 Miller (1981, p. 373) inaccurately translates this as “perfectly static system.” If we read ‘perfectly static’ as
‘in static equilibrium,’ no real harm is done, since the latter is equivalent to ‘static and complete.’ A better term
would be ‘closed static system’ or ‘isolated static system.’ ‘Complete static system,’ however, is closest to the
German original. It is also the translation used by Norton (1992a, p. 51). I will consistently use the term ‘open’
for the opposite of ‘complete.’ The reason I want to avoid the term ‘incomplete’ is that ‘open’ has nothing to do
with ‘incomplete’ in the sense in which that term is now routinely used in the philosophy of quantum
mechanics. Tolman (1987, pp. 81–83) uses the expression ‘complete static system’ in the same way as Laue. I
suspect he took the phrase from Laue, although he does not cite Laue (or anyone else) for it.
16 Cf. Norton 1992a, p. 51.



where Ttot
µν is the sum of the energy-momentum tensors for all constituents of the system. We

will be interested only in the special case where the system consists of two parts, a purely

electromagnetic part and a part involving at least some non-electromagnetic stuff. For

convenience, I will call these two parts the electromagnetic and the non-electromagnetic part,

respectively. So, I will assume that Ttot
µν is of the form:

Ttot
µν = TEM

µν  + Tnon-EM
µν . (2.7)

The conditions expressing that a system is static are

∂′0T ′
µν

 = 0,            T ′
i0

 = T ′
0i

 = 0, [static] (2.8)

where the primes refer to the system’s rest frame, and where T ′
µν

 can refer to any of the three

energy-momentum tensors in Eq. 2.7.

Laue makes the following claim. If a system is a complete static system, then the total

energy U and (c times) the total momentum P of the system, defined as

U ≡ Ttot
00d3x ,      cPi ≡ Ttot

i0 d3x , (2.9)

transform as a four-vector under Lorentz transformation.

A modern reader will recognize this claim as a weaker version of the following well-known

result. If some energy-momentum tensor Tµν is divergence free (and falls off fast enough as

we go to spatial infinity, a fairly weak condition satisfied by all systems we will consider), then

the four-momentum Pµ, defined as

Pµ(t) ≡ (U(t), cP(t)) ≡ Ttot
µ0(t, x)d3x , (2.10)

is conserved and transforms as a four-vector under Lorentz transformation. Notice that the

system does not have to be static. I will go over an illuminating proof of this stronger result

(and its converse), a proof due to Rohrlich (1965). The purpose of this exercise is twofold.

 First, it will enable us to bring out an error in Laue’s proof of the weaker result, and to

understand why, given this error, he introduced the unnecessary extra assumption that the

system be static. Basically, Laue’s error is that he sets space integrals in one inertial frame equal

to space integrals in others (Laue 1911a, p. 144). As we will see below, this move is allowed if

the system is static, but in general it is not. This should not be surprising. As Rohrlich

emphasizes, a space integral in one frame, i.e., an integral over a hyperplane of simultaneity in

that frame, will remain an integral over that same hyperplane under any Lorentz transformation.



If we transform to a frame that is moving with respect to the original one, this hyperplane will

no longer be a hyperplane of simultaneity in the new frame. Hence, the integral will not be a

space integral in the new frame.

Since Laue is interested only in static systems, it would be a little pedantic to rehearse

Rohrlich’s modern proof for the sole purpose of bringing out this seemingly inconsequential

error of Laue in 1911. Obviously, I have another reason for presenting Rohrlich’s proof. It

naturally brings out an arbitrariness in the standard definition of four-momentum that Laue uses

in which four-momentum is an integral over hyperplanes of simultaneity in whatever Lorentz

frame we happen to be using. Rohrlich proposed an alternative definition in which four-

momentum is an integral over a fixed hyperplane, viz. the hyperplane of simultaneity in the

system’s rest frame. This in turn will show, as I mentioned in the introduction to this chapter,

that the turning couples in the Laue picture of what happens in the Trouton-Noble experiment

are artifacts of the definition of four-momentum Laue uses.

Having spelled out these objectives, let me now give the theorem and its proof.17

2.1.3 A general theorem: the four-momentum of a system transforms as a four-vector if

and only if the system is closed. I need to make one more preliminary remark. Throughout

the rest of the chapter, I assume the energy-momentum tensor falls off faster than 1/r3 as we go

to spatial infinity

Tµν → 0  faster than  1
r3

 for r ≡ x 2 + y 2 + z2  → ∞. (2.11)

This condition is satisfied by all systems we will consider. At great distances from the

condenser in the Trouton-Noble experiment, its electromagnetic field will be the field of a

dipole. The energy-momentum tensor of the field of the condenser will therefore drop off as

1/r6 (see, e.g., Jackson 1975, p. 138).

With the condition in Eq. 2.11 in place, I will prove that four-momentum, in its standard

definition (see Eq. 2.10), is conserved and transforms as a four-vector under Lorentz

transformation if and only if the corresponding energy-momentum tensor is divergence free.

Schematically, this theorem can be stated as:18

                                                
17 I want to emphasize that I do not intend to give a mathematically rigorous proof of this theorem. Readers
with low tolerance for mathematical sloppiness are advised to skip the next subsection altogether and work out
the proof for themselves with the help, for instance, of Hawking and Ellis 1973, p. 62. My proof caters to those
readers who are more interested in acquiring a good intuitive understanding of the theorem than in mathematical
niceties.
18 The expression “Pµ is a conserved four-vector” is sloppy. It suggests that Pµ is a local vector field assigning

to each point P of the space-time manifold an element of the tangent space at P. In fact, Pµ is a highly non-

local object involving integration over a spacelike hyperplane in space-time. Pµ is not a vector, it only



Pµ is a conserved four-vector   ⇔   ∂νTµν = 0 everywhere. (2.12)

Following Rohrlich (1965, pp. 89–90, and appendix A1-5, pp. 279–281), I will prove this

theorem by proving a far more general theorem of which it essentially is a special case.

Consider an arbitrary well-behaved19 spacelike hypersurface Σ in Minkowski space-time,

stretching out to spatial infinity, and some arbitrary tensor field Aµν…κλ that vanishes at spatial

infinity. Define the object AΣ
µν κ, which transforms as a tensor:20

AΣ
µν κ ≡ A µν κλ 

Σ

dΣλ, (2.13)

with dΣλ = nλ dΣ, where nλ is a timelike vector field giving the normal on the hypersurface Σ in

the future time direction and dΣ is an invariant hypersurface element. I will prove that AΣ
µν κ is

independent of our choice of Σ if and only if ∂λAµν…κλ = 0 everywhere. Schematically, this

theorem can be stated as:

AΣ
µν κ is independent of Σ    ⇔   ∂λA µν κλ = 0 everywhere. (2.14)

The proof of the theorem is based on an application of the obvious generalization of Gauss’s

well-known theorem from three to four dimensions.21

Consider two arbitrary well-behaved spacelike hypersurfaces,22 Σ1 and Σ2, stretching out to

infinity, as illustrated for a 2-dimensional Minkowski space-time in Fig. 2.1. Let Σ top
1

 be the

union of those segments Σ i
1
 ⊂ Σ

1
 where Σ1 lies to the future of Σ2, and let Σbottom

1
 be the union

of those segments Σ i
1
 ⊂ Σ

1
 where Σ2 lies to the future of Σ1; Σ2 can likewise be divided into

Σ top
2

 and Σbottom
2

. Let Σ∞ be a timelike hyperplane connecting Σ1 and Σ2 in the limit of r → ∞.

Let V1 be the total space-time volume enclosed by Σ top
1

, Σbottom
2

, and Σ∞; and let V2 be the total

space-time volume enclosed between Σ top
2

, Σbottom
1

, and Σ∞.

                                                                                                                                                      
transforms as one. And even that statement needs to be qualified. Pµ transforms as a four-vector only under

global Lorentz transformations. Given the non-local character of Pµ, it makes no sense to consider its

transformation under local coordinate transformations. In summary, the phrase “Pµ is a conserved four-vector”

should be read as shorthand for “Pµ is conserved and transforms as a four-vector under global Lorentz
transformations.”
19 I will not bother to spell out what I mean by well-behaved.

20 Because of its non-local character, AΣ
µν κ

 is not what we usually call a tensor, it only transforms as one.
21 I will not bother to prove either the original theorem or its generalization.
22 Rohrlich restricts himself to arbitrary hyperplanes, the only hypersurfaces we will actually use in our
applications of Eq. 2.14, but nothing in his proof hinges on the hypersurfaces being of this special kind.
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Figure 2.1 The hypersurfaces Σ1 and Σ2.

Consider the integral of Aµν…κλ over the collection of closed hypersurfaces made up by the

union Σ1∪Σ2∪Σ∞. According to the generalization of Gauss’s theorem to four dimensions,

this integral is equal to the integral of ∂λAµν…κλ over the space-time volume V1∪V2. Because

dΣλ in Eq. 2.13 always points in the positive time direction, whereas in the integral over

Σ1∪Σ2∪Σ∞ we need the normal in the negative time direction on Σbottom
1

 and Σbottom
2

, it is

convenient to break up the integral over Σ1∪Σ2∪Σ∞ into an integral over ∪Σ top
1

Σbottom
2

 and an

integral over ∪Σ top
2

Σbottom
1

 . Since we are assuming that Aµν…κλ → 0 faster than 1/r3 as

r → ∞, i.e., faster than the hypersurface area of Σ∞ goes to infinity in this limit, the integral over

Σ∞ vanishes. So, we can write:

A µν κλ 
Σtop

1
dΣλ

1
 – A µν κλ 

Σbottom
2

dΣλ
2
 = ∂λA µν κλ 

V1

dV ,

(2.15)

A µν κλ 
Σtop

2
dΣλ

2
 – A µν κλ 

Σbottom
1

dΣλ
1
 = ∂λA µν κλ 

V2

dV .

Subtracting the second equation from the first, we find that

A µν κλ 
Σ1 = Σtop

1 ∪Σbottom
1

dΣλ
1
 – A µν κλ 

Σ2 = Σbottom
2 ∪Σtop

2
dΣλ

2
 =

∂λA µν κλ 
V1

dV – ∂λA µν κλ 
V2

dV . (2.16)

With the help of this relation we can prove the ‘⇐’-implication in Eq. 2.14. On the assumption

that ∂λAµν…κλ = 0 everywhere, the right hand side of Eq. 2.16 vanishes. Therefore,



A
Σ1
µν κ

 = A
Σ2
µν κ

. (2.17)

Since Σ1 and Σ2 were chosen arbitrarily, this proves the ‘if’-part of the theorem in Eq. 2.14.

Adding the two equations in Eq. 2.15, we find that

A µν κλ 
Σ′ ≡ Σtop

1 ∪Σtop
2

dΣλ
1
 – A µν κλ 

Σ″ ≡ Σbottom
1 ∪Σbottom

2
dΣλ

2
(2.18)

= ∂λA µν κλ 
V1∪V2

dV .  

With the help of this relation we can prove the ‘⇒’-implication in Eq. 2.14. On the assumption

that AΣ
µν κ is independent of Σ, AΣ′

µν κ = AΣ″
µν κ and the left hand side of Eq. 2.18 vanishes.

By choosing suitable hypersurfaces Σ′  and Σ″ , V1∪V2 on the right hand side can be made to

coincide with any arbitrary space-time volume. For the integral to vanish for arbitrary volumes,

it has to be the case that the integrand vanishes everywhere. This proves the ‘only if’-part of the

theorem in Eq. 2.14.

Consider the special case where for Aµν…κλ we take the energy-momentum tensor Tµν, and for

the hypersurface Σ we take a hyperplane Σ(nµ, τ), defined by the equation (cf. Rohrlich 1965, p.

279, Eq. (A1-55))

nµx µ = –cτ. (2.19)

Suppose in a Lorentz frame with coordinates x′µ, the normal takes the simple form n′µ = (1, 0,

0, 0). This means that, in the x′µ-frame, Σ(nµ, τ) is a hyperplane of simultaneity at time t′ = τ.

All this is illustrated in Fig. 2.2.

Σ(nµ,τ)

nµ

x  

ct

x′

ct′

cτ

Figure 2.2 The hyperplane Σ(nµ,τ).

Define (cf. the definition of AΣ
µν κ in Eq. 2.13):



TΣ(n µ,τ)
µ  ≡ TµνnνdΣ

Σ(nµ,τ)

. (2.20)

In the x′µ-frame, TΣ(n µ,τ)
µ  becomes an ordinary space integral which is equal to P′µ under its

standard definition (see Eq. 2.10):

T ′Σ(nµ,τ)
µ

 = T ′
µν

n′νdΣ
Σ(nµ,τ)

 = T ′
µ0

(t′, x ′) d3x′ = P ′
µ
(t′). (2.21)

We now finally have all the ingredients we need to prove the theorem in Eq. 2.12.

Consider the ‘⇐’-implication first. From ∂νTµν = 0 everywhere, it follows, with the help of

the theorem in Eq. 2.14, that TΣ
µ is independent of Σ. In combination with Eq. 2.21, this implies

that Pµ is conserved and transforms as a four-vector under Lorentz transformation. The

argument goes as follows.

‘Pµ is conserved’ means that, in an arbitrary Lorentz frame with coordinates xµ and for

arbitrary times t1 and t2, Pµ(t1) = Pµ(t2). Consider two hyperplanes Σ(eµ, t1) and Σ(eµ, t2)

which are the hyperplanes of simultaneity in the xµ-frame at t1 and t2, respectively. Using the

definition of Pµ in Eq. 2.21, we can write

Pµ(t1) = TΣ(eµ,t1)
µ  = TΣ(eµ,t2)

µ  = Pµ(t2) (2.22)

where I used that TΣ
µ is independent of Σ. So, Pµ is indeed conserved.

‘Pµ transforms as a four-vector under Lorentz transformation’ means that for two arbitrary

Lorentz frames, say, an xµ-frame and an x′µ-frame, whose coordinates are related via

x′
µ
 = Λ

µ
ν x ν, P′

µ
 = Λ

µ
ν Pν. Consider two hyperplanes Σ1 and Σ2, the former being a

hyperplane of simultaneity in the xµ-frame, the latter being a hyperplane of simultaneity in the

x′µ-frame. We can then write:

P′
µ
 = T ′Σ2

µ
 = Λ

µ
ν TΣ2

ν  = Λ
µ

ν TΣ1
ν  = Λ

µ
ν Pν, (2.23)

where I used Eq. 2.21 plus the fact that Pµ is time independent in the first and the last step and

the fact that TΣ
µ transforms as a four-vector and is independent of our choice of Σ in the steps in

between. So, Pµ indeed transforms as a four-vector under Lorentz transformation.

This proves the ‘if’-part of the theorem. The proof of the ‘only if’-part, the ‘⇒’-

implication in Eq. 2.12, is similar. Suppose Pµ is conserved and transforms as a four-vector
under Lorentz transformation. It then follows (see above) that TΣ1

µ  = TΣ2
µ  for arbitrary

hyperplanes Σ1 and Σ2. From Eq. 2.18, it then follows that the integral of ∂νTµν over the space-



time volume enclosed between Σ1 and Σ2 vanishes. Since this is true for arbitrary Σ1 and Σ2, it

has to be the case that the integrand vanishes everywhere, i.e., that ∂νTµν = 0 everywhere.

This concludes the proof of the theorem in Eq. 2.12. In Laue’s terminology, the energy and

momentum of a system are conserved and transform as a four-vector under Lorentz

transformation if and only if the system is complete.

2.1.4 Laue’s proof of the claim that the energy and momentum of a complete static

system transform as a four-vector. I want to take a closer look at how Laue tried to prove the

weaker result that the energy and momentum of a complete static system transform as a four-

vector (the converse, as we have just seen, does not hold, and Laue does not claim it does).

Consider (cf. Fig. 2.2) a system, not necessarily static, which is at rest23 in a frame with

coordinates x′µ and moving at a velocity v in the x-direction with respect to a frame with

coordinates xµ, related to x′µ via xµ = Λµν x′ν, with

Λ
µ

ν = 

γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1

 . (2.24)

Combine the energy and momentum of the system in the two frames in the quantities

Pµ ≡ (U, cP) ≡ Tµ0d3x ,       P ′
µ
 ≡ (U ′, cP′) ≡ T ′

µ0
d3x′ , (2.25)

where Tµν is the sum of the energy-momentum tensors for the various constituents of the

system under consideration. Laue now wants to show that for a complete static system

Pµ = Λ
µ

ν P ′
ν
. (2.26)

He starts by writing the unprimed quantities in the expression for Pµ in terms of primed

quantities. For the energy-momentum tensor he uses Tµν = Λ
µ

ρΛ
ν

σT ′
ρσ

. For the volume

element, he substitutes d3x = (1/γ) d3x′ (Laue 1911a, p. 144, the three equations above Eq. (8a)).

This gives

Pµ = Λ
µ

ρ Λ
0
σ 1

γ
 T ′

ρσ
d3x′. (2.27)

                                                
23 Strictly speaking, we would have to say something like ‘the system’s center of mass is at rest in the x′µ-
frame’ if we are talking about a non-static system.



Laue now investigates under what conditions Eq. 2.27 reduces to

Pµ = Λ
µ

ν T ′
ν0

d3x′ = Λ
µ

ν P ′
ν
. (2.28)

In substituting (1/γ) d3x′ for d3x, Laue tacitly assumes that for arbitrary Tµν one can replace

the space integral in the xµ-frame by a space integral in the x′µ-frame. The space integral giving

Pµ in the xµ-frame, an integral over a hyperplane of simultaneity in the xµ-frame, can, of course,

be evaluated in the x′µ-frame. However, one has to keep in mind that the hyperplane one is

integrating over will not be a hyperplane of simultaneity in the x′µ-frame, and hence not an

ordinary space integral. If the system is static, one can prove, as I will do shortly, that the

integral over the hyperplane of simultaneity in the xµ-frame is equal to 1/γ times the integral

over the hyperplane of simultaneity in the x′µ-frame, justifying Laue’s substitution of (1/γ)

d3x′ for d3x, but in general this is certainly not the case.24 The conclusion then is twofold. First,

Laue’s proof, as it stands, is in error (i.e., Eq. 2.27 does not follow from Eq. 2.25 for arbitrary

Tµν, contrary to Laue’s supposition). Second, it can easily be fixed. Laue invokes the

assumption that the system be static in the next step of his proof (from Eq. 2.27 to Eq. 2.28).

This retroactively justifies the move from Eq. 2.25 to Eq. 2.27.

x    

ct

x′

ct′

∆Ai
1

∆Ai
2

Pi
2

Pi
1

Σ
2

Σ
1

Figure 2.3  Relation between integrals over Σ1 and Σ2 for static systems.

The result needed to fill the gap in Laue’s argument is not hard to prove. Consider Fig. 2.3. Let

Σ
1
 and Σ

2
 be hyperplanes of simultaneity in the xµ-frame and the x′µ-frame, respectively.

Divide Σ
1
 and Σ

2
 into corresponding segments (such as the shaded segments in the figure)

connected by curves x′ = constant, and with hypersurface areas ∆Ai
1
 and ∆Ai

2
. A simple

                                                
24 Pauli (1921, pp. 126–127) compares Laue’s derivation of the transformation of the four-momentum of static
systems with an alternative derivation by Einstein (1907b). He does not comment on Laue’s substitution of
(1/γ) d3x′ for d3x, even though he emphasizes that Einstein in his derivation had to be careful keeping track of
which hyperplane he was integrating over. It is clear that Einstein in 1907 had a much better understanding of
these matters than Laue in 1911. In section 2.4, I will get back to this paper by Einstein.



argument25 shows that ∆Ai
1
 = ∆Ai

2
/γ. Let Pi

1 and Pi
2 be corresponding space-time points in the

ith segments of Σ
1
 and Σ

2
, respectively.

Consider a tensor field Tµν κλ which is time independent in its rest frame:

∂′0T ′
µν κλ

 = 0. (2.29)

It follows that for arbitrary pairs (Pi
1, Pi

2) and in arbitrary xµ-frames:

Tµν κλ(Pi
1) = Tµν κλ(Pi

2). (2.30)

This, in turn, implies that

Tµν κλ 
Σ1

dΣ = 1
γ
 Tµν κλ 

Σ2
dΣ, (2.31)

as can be seen as follows. Write the integral on the left hand side as

Tµν κλ 
Σ1

dΣ =  Tµν κλ(Pi
1) ∆Ai

1
.∑

i = 1

∞

lim
∆Ai

1
→0

(2.32)

Inserting ∆Ai
1
 = ∆Ai

2
/γ and Eq. 2.30, we can rewrite the right hand side as

 1
γ
  Tµν κλ(Pi

2) ∆Ai
2∑

i = 1

∞

lim
∆Ai

2
→0

 = 1
γ

 Tµν κλ 
Σ2

dΣ, (2.33)

which is just the right hand side of Eq. 2.31.

As a special case, consider the energy-momentum tensor Tµν for a static system, i.e.,

∂′0T ′
µν

 = 0. From the general result in Eq. 2.31, it then follows that:

Pµ ≡ Tµ0d3x 

= Tµ0

Σ1
dΣ (2.34)

= 1
γ

 Tµ0

Σ2
dΣ

                                                
25 See the discussion following Eq. 2.78 below.



= 1
γ
 Λ

µ
ρ Λ

0
σ T ′

ρσ
d3x′,

which is just Eq. 2.27, the problematic step in Laue’s proof of his claim that the energy and

momentum of a complete static system transform as a four-vector.

It is instructive to consider Laue’s argument a little more closely. Not only will this show us

why Laue himself felt he needed the condition that the system be static as well as complete, we

will also see that Laue derived a very interesting result for complete static systems in the course

of his argument, a result known as “Laue’s theorem.”26 Consider the 0-component of Eq.

2.27 (= Eq. 2.34). Inserting Eq. 2.24 for Λ
µ

ν, we find

P0= 1
γ
 Λ

0
ρΛ

0
σ T ′

ρσ
 d3x′ 

 

=  Λ
0
ρ T ′

ρ0
d3x′  +  γβ T ′

01
d3x′  +  γβ

2
 T ′

11
d3x′.

(2.35)

The first term in the expression on the second line is equal to Λ
0

νP′
ν
, the 0-component of the

right hand side of Eq. 2.26, so Laue needs to introduce some extra conditions to make sure the

remaining terms vanish. For static systems, the 0i-components of Tµν vanish in the system’s

rest frame. That takes care of the second term. For a complete static system, one has

∂′iT ′
ij
 = – ∂′0T ′

0j
 = 0. (2.36)

From Gauss’s theorem, it then follows that the surface integral

T ′
ij
 n′i dS

S
 ,   (2.37)

where the n′i-s are the components of the outward pointing normal vector on the surface S in the

x′µ-frame, vanishes for arbitrary closed surfaces. By cleverly choosing particular closed

surfaces, Laue shows that the volume integrals

T ′
ij
 d3x ′ (2.38)

                                                
26 See Norton 1992a, p. 52; 1993a, pp. 16–17. Miller (1981, p. 373) writes that it was Mie who christened the
result “Laue’s theorem” in 1913.



all vanish (Laue 1911a, p. 152). So, for complete static systems, the last term in Eq. 2.35 also

vanishes. This result is interesting in its own right: for a complete static system in its rest frame,

the space integral over the stresses always vanishes. This is called “Laue’s theorem.”



2.2 The ‘4/3-puzzle’ of the Lorentz-Poincaré electron and the Laue effect:
the Laue definition of four-momentum versus the Rohrlich definition

2.2.1 The relation between the Trouton-Noble experiment and the Lorentz-Poincaré

electron. Laue applied his claim that the energy and momentum of a complete static system

transform as a four-vector to two special cases, the Trouton-Noble experiment and the electron

model of Lorentz and Poincaré. The latter case has attracted far more attention than the former,

both from physicists and historians, especially because of a notorious puzzle associated with it.

The electron’s electromagnetic rest mass times c2 is not equal to its electromagnetic energy, but

to 4 3 times that energy. Laue’s discussion of the Lorentz-Poincaré electron as a complete static

system strongly contributed to what would remain the standard solution of this ‘4 3-puzzle’

until the work of Rohrlich (1960, 1965).

The analysis of the transformation of integrals over spacelike hyperplanes given above

provides us with all the tools we need to develop the Rohrlich solution of the puzzle. I will then

apply the same ideas in the context of the Trouton-Noble experiment. Somewhat surprisingly

perhaps, given the close connection between the two problems and the widespread acceptance of

the Rohrlich solution of the 4 3-puzzle, this has never been done before, at least not to my

knowledge.27  

2.2.2 A brief history of ‘4/3-puzzle’ of the Lorentz-Poincaré electron.28 We need to take

a brief look at the tangled history of the 4 3-puzzle. In Lorentz’s original model (Lorentz

1904b29), the electron is conceived of as a purely electromagnetic entity. It consists of nothing

but a static spherical charge distribution which is subject to the Lorentz-FitzGerald contraction

and whose mass is due solely to the interaction with its self-field. Suppose the xµ-frame is at

rest in the ether and the electron is at rest with respect to the x′µ-frame, which is itself moving

with respect to the xµ-frame at some constant velocity v in the positive x-direction (so, we have

xµ = Λµν x′ν, where Λµν is given by Eq. 2.24). Using Eq. 2.27 (which is justified in this case

because the system is static) to compute (c times) the x-component of the electron’s momentum

in the xµ-frame, we find30

                                                
27 A recent monograph (Yaghjian 1992) on what the author refers to as the “Lorentz-Abraham” model of the
electron, with an approving preface by Rohrlich, does not even mention the Trouton-Noble experiment.
28 See Miller 1981, pp. 73–86, for a more extensive discussion of the roles of Lorentz, Abraham, and Poincaré
in the history of this issue.
29 Yaghjian (1992, p. 1) is wrong when he dates the model back to 1892.
30 In section 3.4, we will have occasion to go through this calculation, using Lorentz’s theorem of
corresponding states. See Eqs. 3.112–3.113 for l = 1.



P1 ≡ T10 d3x = 1
γ
 Λ

1
ρ Λ

0
σ T ′

ρσ
 d3x′ = 4

3
 γ 

U ′

c2
 β, (2.39)

where U ′ is the electron’s electromagnetic energy in the x′µ-frame. This means that the four-

momentum of Lorentz’s electron does not transform as a four-vector, as the four-momentum of

a relativistic particle should. If it did, we would have P1 = Λ
1
µP′

µ
. With P′

µ
 = (U ′, 0, 0, 0)

and Λ
1
0 = γβ, this would give

P1 = γ 
U ′

c2
 β (2.40)

which differs by a factor 4 3 from Eq. 2.39. The problem is more vividly stated in terms of the

electron’s mass-energy relation. In the non-relativistic limit, cP1, the x-component of

momentum,  should reduce to its Newtonian form cP1 = m′v, where m′ is the electron’s rest

mass.  However, the non-relativistic limit of Eq. 2.39 gives cP1 = 4 3(U ′/c2)v. This gives 4 3U ′ =

m′c2 instead of U ′ = m′c2!

This puzzling factor 4 3 was first discovered, albeit in a somewhat different guise, by

Abraham (1904, 1905),31 who used it to argue that the mass of Lorentz’s electron cannot be of

purely electromagnetic origin. For a staunch supporter of the electromagnetic view of nature,

such as Abraham, this was a damning objection.

Lorentz and Poincaré accepted Abraham’s diagnosis of the problem, but, unlike Abraham,

were willing to give up the notion that the electron is a purely electromagnetic structure.

Poincaré (1906) explicitly added a non-electromagnetic ether pressure term to the energy-

momentum tensor for the system, the so-called Poincaré stresses. He plausibly argued that such

a term was needed to counterbalance the Coulomb repulsion in the electron. Poincaré showed

that this extra term gives a contribution of –1 3 γ(U ′/c2)β to P1 in Eq. 2.39, thus reducing the

puzzling factor 4 3 to unity.

When the Poincaré stresses are included, Lorentz’s electron behaves as a point mass in

relativistic mechanics. On the basis of his claim that the energy and momentum of a complete

static system transform as a four-vector, Laue (1911a, pp. 152–15332) argued that Lorentz’s

spherical charge distribution rendered stable by Poincaré’s ether pressure is just one among

infinitely many conceivable models with this property. Given that Laue’s claim about complete

                                                
31 What Abraham discovered was that Lorentz’s model of a purely electromagnetic electron leads to a
contradiction. He showed that the electron’s so-called longitudinal mass derived from its electromagnetic
momentum differs by a factor 4 3 from the longitudinal mass derived from its electromagnetic energy (see Miller
1981, pp. 75–79, and section 3.4).
32 This passage is discussed in Norton 1992a, pp. 52–53.



static systems is indeed true, this vindicates the response of Einstein (1907a) to a query by

Ehrenfest (1907) whether the energy and momentum of an electron would still transform as the

energy and momentum of a relativistic point mass if it were non-spherical.33 Laue wrote that as

long as the electron is a complete static system it would. We have seen that the electron does not

even have to be in static equilibrium. It only needs to be a complete or closed system. What I

want to emphasize at this point is that Laue’s discussion reinforced the impression, given by

Poincaré, that the problem concerning the transformation properties of the electron’s four-

momentum is inseparably connected to the problem of its stability.

This view of the 4 3-puzzle made its way into Pauli’s influential review article (Pauli 1921,

pp. 185–18734), and remained standard until the work of Rohrlich (1960, 1965). Rohrlich

traced the factor 4 3 to the standard definition of four-momentum that Laue and Pauli—and, in

effect, ether theorists such as Abraham, Lorentz, and Poincaré—used. Rohrlich showed how the

problem concerning the transformation of the electron’s four-momentum could be solved

independently of the stability problem by introducing an alternative definition of four-

momentum. Rohrlich found that these results had already been discovered, forgotten, and

rediscovered. He credits Fermi with the original discovery in 1922. Fermi’s work went

unnoticed as did that of two rediscoverers, Wilson in 1936, and Kwal in 1949 (Rohrlich 1965,

p. 17). Rohrlich made sure the results would not be forgotten again.35

2.2.3 The Rohrlich and Laue definitions of the four-momentum of spatially extended

systems. Rohrlich’s solution of the 4 3-puzzle rests on a careful analysis of the definition of the

electron’s four-momentum. There is a certain arbitrariness in the way we give a relativistic

definition of such quantities as the four-momentum and angular momentum of spatially

extended open systems, such as a static charge distribution and its field. To be sure, part of the

definition is unproblematic. We define such quantities as integrals of corresponding densities

(the energy-momentum tensor in the case of four-momentum) over spacelike hyperplanes. So,

                                                
33 For discussions of this exchange between Einstein and Ehrenfest, see Klein 1967, pp. 515–516,
McCormmach 1970b, pp. 488–489, Miller 1981, pp. 235–236, and Norton 1992a, p. 45.
34 Parenthetically, I may add that Pauli did mention the Trouton-Noble experiment in this context. After
explaining Ehrenfest’s query about non-spherically shaped electrons, he writes: “It was stressed by Laue that the
situation is quite analogous to that in Trouton and Noble’s experiment” (Pauli 1921, p. 186). In a footnote
appended to this comment, he refers to Laue 1911a.
35 In the preface to the second edition of his textbook on special relativity, for instance, Aharoni (1965) cites
Rohrlich (1960) as having motivated some major revisions in the first edition of his book, published in 1959.
In this preface, Aharoni also adds another name to Rohrlich’s list of rediscoverers: Dirac. This makes it the
second most famous discovery, I guess, with which both Fermi and Dirac can be credited. For a very clear and
concise exposition of Rohrlich’s results, see Aharoni 1965, section 5.5, pp. 160–165.



in some arbitrary xµ-frame, the four-momentum of a spatially extended system will be a

quantity of the form (cf. Eq. 2.13)36

TΣ(nµ, τ)
µ

 ≡ TµνnνdΣ
Σ(nµ, τ)

, (2.41)

where Σ(nµ,  τ) is some spacelike hyperplane. If Tµν is the energy-momentum tensor of a

closed system (i.e., ∂νTµν = 0), TΣ
µ is independent of Σ (see the theorem in Eq. 2.14). This

means that we can simply identify Pµ(t) with TΣ
µ for any Σ we want. However, if Tµν is the

energy-momentum tensor of an open system (i.e., ∂νTµν ≠ 0)—such as, say, the ether pressure

part of the Lorentz-Poincaré electron or the electromagnetic part of the condenser system in the

Trouton-Noble experiment—then the theorem in Eq. 2.14 tells us that TΣ
µ will depend on our

choice of Σ. Unless we are happy with a definition that makes the four-momentum of spatially

extended open systems a hyperplane dependent quantity,37 we need a convention that tells us

for which hyperplane Σ the quantity TΣ
µ in Eq. 2.41 is to be identified with the four-momentum

Pµ(t) in the xµ-frame. I will consider two such conventions (cf. Fig. 2.4).

We already encountered the standard convention. In the standard definition of Pµ(t) (see

Eq. 2.10), Σ(nµ,  τ) is chosen to be the hyperplane of simultaneity at time t in the xµ-frame we

happen to be using. For the normal nµ one picks the vector with components (1, 0, 0, 0) in the

xµ-frame, for τ one simply picks t. Introducing the notation Σ
sim

(x µ) for such hyperplanes, we

can write the standard definition as38

PL
µ(t) ≡ T

Σ(n µ, τ) = Σsim(x µ)

µ

, (2.42)

where the subscript ‘L’ refers to Laue. By this I do not mean to imply that Laue was the first

(nor the last, obviously) to use this definition. It can be traced back to the work of such ether

                                                
36 Cf. Rohrlich 1960, p. 641, Eq. (11); 1965, p. 89, Eq. (4-123)
37 Gordon Fleming has shown that embracing such hyperplane dependence solves a number of notorious
puzzles in relativistic quantum theory. It explains, for instance, the curious transformation properties of the so-
called Newton-Wigner position operator in its standard non-hyperplane-dependent definition. Fleming has argued
that a Lorentz invariant theory of state vector reduction calls for a definition of state vectors that would make
state vectors hyperplane dependent quantities (see, e.g., Fleming 1989, 1994). For a critical response, see
Maudlin 1994. I will not pursue the approach suggested by Fleming’s work here. For my main purpose in this
context (which is to establish the kinematical nature of the Laue effect in special relativity), working with
Rohrlich’s convention for picking hyperplanes, which I will introduce shortly, is as good as working with
general hyperplane dependence. If, however, one’s goal is to eradicate the arbitrariness from the definition of all
quantities involving integration over hyperplanes, Fleming’s approach, it seems to me, is a very natural and
elegant way to proceed.  
38 Cf. Rohrlich 1960, p. 640, Eq. (5); 1965, p. 132, Eqs. (6-33)–(6-34); Aharoni 1965, p. 163, Eq. (5.19).



theorists as Lorentz and Abraham.39 What speaks for this particular definition is that it does

seem to capture what we mean by ‘the four-momentum of the system in the xµ-frame.’ What

speaks against it is that it is not Lorentz invariant. Compare PL
µ in the xµ-frame and P′L

µ
 in the

x′µ-frame. The notation suggests that PL
µ and P′L

µ
 represent the same quantity in different

coordinates. This is not the case. PL
µ and P′L

µ
 are integrals over different hyperplanes. They

represent different quantities in different coordinates. It should not be surprising, therefore, that

PL
µ ≠ Λ

µ
νP′L

ν
 for the electromagnetic part of the four-momentum of the Lorentz-Poincaré

electron (see Eqs. 2.39–2.40). What is more surprising, in fact, is that PL
µ only differs from

Λ
µ

νP′L
ν

 by a factor of 4 3, at least as far as the spatial components are concerned.40 This is

because of the spherical symmetry of the situation. In the case of the condenser in the Trouton-

Noble experiment, as we will see in section 2.3, the four-momentum PL
µ of, say, the

electromagnetic part of the system will not even have the same direction as Λ
µ

νP′L
ν

.

ct′ct

x

x′

worldline of system's
center of mass

τ = 0

Σ
sim

(x µ)

Σ(uµ(τ)/c, τ)

uµ(τ)/c  

Figure  2.4  Two different conventions for choosing spacelike hyperplanes in the

definition of four-momentum Pµ(t) for spatially extended systems in an arbitrary xµ-frame.

Rohrlich proposes a different convention for picking the relevant hyperplanes. The resulting

definition of Pµ(t) turns out to be particularly convenient for static systems, such as those in the

cases we are interested in (the Lorentz-Poincaré electron and the Trouton-Noble experiment).

                                                
39 In fact, Rohrlich (1960, p. 640) and Aharoni (1965, p. 163) refer to the definition in Eq. 2.42 (written in a
form that is much closer to how it would have been written at the time) as the ‘Abraham-Lorentz’-definition.
40 The relation between the 0-components of PL

µ
 and Λµ

νP ′L
ν is a little more complicated: PL

0 = γ U ′ (1 + β2/3)

whereas Λ0
ν P ′L

ν = γ U ′ (see section 3.4).  



Rohrlich only formulated his convention for such systems. I will formulate it for arbitrary

systems, mainly to show that it is a genuine alternative to the standard convention in all cases.

The basic idea of Rohrlich’s proposal is to choose a hyperplane of simultaneity in the system’s

rest frame no matter in which xµ-frame we want to define the four-momentum Pµ(t). For static

systems this means that we pick hyperplanes Σ(nµ,  τ), where for nµ we pick the system’s

(constant) four-velocity uµ divided by c, and for τ we pick some arbitrary value.41 This

definition can easily be generalized to non-static situations (cf. Fig. 2.4). Consider the worldline

of the center of mass of some arbitrary system.42 Pick some arbitrary zero point for the proper

time measured along that worldline. That is all we need to specify our alternative convention

about picking the hyperplane Σ(nµ,  τ) in the definition of Pµ at some arbitrary time t in some

arbitrary xµ-frame. For τ we pick the proper time associated with the point on this worldline that

has x0-coordinate ct. For nµ we pick uµ(τ), the instantaneous four-velocity at that point divided

by c. With these stipulations, our alternative definition of four-momentum can be written as

PR
µ(t) ≡ TΣ(n µ, τ) = Σ(uµ(τ)/c, τ)

µ
, (2.43)

where the subscript ‘R’ refers to Rohrlich. The virtues and shortcomings of this definition are

just the reverse of those of the definition in Eq. 2.42. On the positive side, under Rohrlich’s

definition Pµ transforms as a four-vector no matter whether we are dealing with a closed or an

open system. PR
µ(t) in the xµ-frame and P′R

µ
(t′) in the x′µ-frame represent the same quantity in

different coordinates. In other words, the Rohrlich definition, unlike the definition used by Laue,

is Lorentz invariant. Even for open systems, such as the electromagnetic part of the Lorentz-

Poincaré electron, it gives PR
µ = Λ

µ
νP′R

ν
. There is no mysterious factor 4 3. On the negative side,

the physical interpretation of PR
µ(t) is problematic. Unless the xµ-frame happens to be the

system’s rest frame, PR
µ(t) will not be an integral over a hyperplane of simultaneity in that

frame. Hence, it will not be an ordinary space integral. Yet, this seems to be what we mean by

‘the four-momentum of the system in the xµ-frame.’

Fortunately, Rohrlich’s solution of the 4 3-puzzle does not depend on the alternative

definition of four-momentum in Eq. 2.43 being superior to the standard definition in Eq. 2.42.

If it did, we would have a problem, for, as we have seen, both definitions have pros and cons. All

that is needed for the solution of the puzzle is the recognition that in the final analysis it is a

matter of convention whether we use one definition or the other. Under the standard definition,

                                                
41 Cf. Rohrlich 1960, p. 641, Eqs. (13) and (16); 1965, p. 130, Eqs. (6-18) and (6-19); Aharoni 1965, p. 161,
Eq. (5.6).
42 As Gordon Fleming pointed out to me, we need to be careful about how we evaluate the center of mass. All
that matters for my purposes is that we do so in a way that the center of mass can be said to be at rest in the
system’s instantaneous rest frame.



we find the 4 3-problem. Under the alternative definition, we do not. The problem of the

electron’s stability is present under both definitions. These two problems thus have a very

different status. The latter is a genuine problem (we do need some non-electromagnetic

structure to prevent the electron’s charge distribution from flying apart), the former is nothing

but an artifact of a particular way of defining four-momentum. As Rohrlich sums up the case:

“There is no relation between the need for cohesive forces and the factor 4 3. We seem to have a

relativistic but unstable electron” (Rohrlich 1965, p. 17).43

2.2.4 Applying Rohrlich’s insights to the Trouton-Noble experiment. The argument I

just spelled out for the case of the Lorentz-Poincaré electron can easily be adapted to the case of

the Trouton-Noble experiment. The condenser in the Trouton-Noble experiment, like the

Lorentz-Poincaré electron, consists of a static charge distribution, the electromagnetic field

generated by that charge distribution, and some non-electromagnetic structure preventing the

charges from moving. The difference is that in the case of the Trouton-Noble experiment we do

not have the simple spherical symmetry we have in the case of the electron. As a consequence,

there will be more striking differences between the picture of what happens in the Trouton-

Noble condenser based on the standard definition of four-momentum in Eq. 2.42 that Laue

used and the picture based on Rohrlich’s alternative definition in Eq. 2.43. In particular, we will

find that the Laue effect—the delicately balanced turning couples coming from the various

constituents of a complete static system—is found only in the Laue picture. In the Rohrlich

picture, we find no such thing. So, the Laue effect has the same status as the factor 4 3 in the

case of the electron. It is an artifact of a particular way of defining four-momentum.

Since the Laue effect involves angular momentum rather than four-momentum, the argument

that the effect is an artifact of a convention about how to choose spacelike hyperplanes is best

made in terms of angular momentum. The relativistic definition of the angular momentum of

spatially extended open systems involves the same conventional element we encountered in the

relativistic definition of the four-momentum of such systems.

2.2.5 The Rohrlich and Laue definitions of the angular momentum of spatially

extended systems. Relativistically, the angular momentum of some spatially extended system

                                                
43 Let me give a concise summary of the situation. The electromagnetic part of the Lorentz-Poincaré electron is

an open system, i.e., ∂νTEM
µν

 ≠ 0. It follows that (a) a purely electromagnetic electron would be unstable, and

(b) the electromagnetic four-momentum, defined as an ordinary space integral over TEM
µ0

, does not transform as a
four-vector. Solving problem (a) by adding a non-electromagnetic part to close the system, i.e., adding a term

Tnon-EM
µν

 such that ∂ν(TEM
µν

 + Tnon-EM
µν

) = 0, automatically takes care of problem (b). Therefore, it is easy to
lose sight of the fact that (a) and (b) are separate problems, and that problem (b) can actually be defined away,
showing that, unlike problem (a), it was not much of a problem to begin with.



in some arbitrary xµ-frame will be represented by a quantity of the form (cf. Eq. 2.13 and Eq.

2.41)44

JΣ
µν ≡ Jµνλ nλ dΣ

Σ

, (2.44)

where Σ is an yet unspecified spacelike hyperplane and where Jµνλ is the so-called angular

momentum current defined as45

Jµνλ ≡ x µTνλ – x νT µλ (2.45)

Under very general conditions, the canonical and the symmetric energy-momentum tensors will

differ only by a term that is conserved separately. In that case, we are free to use the symmetric

energy-momentum tensor.46 With such a symmetric energy-momentum tensor (Tµν = Tνµ) for

a complete system (∂νTµν = 0), the angular momentum current is divergence free:

∂λJµνλ = x µ∂λTνλ + Tνµ – x ν∂λT µλ – Tµν = 0 (2.46)

According to the general theorem in Eq. 2.14, ∂λJµνλ = 0 if and only if JΣ
µν is independent of

Σ. So, for a closed system with a symmetric energy-momentum tensor, we can define angular

momentum simply as

Jµν(t) ≡ JΣ
µν, (2.47)

for arbitrary Σ. It immediately follows from this Σ-independence that the total angular

momentum of a closed system with a symmetric total energy-momentum tensor is conserved

(cf. Eq. 2.22). Hence, there will be no net turning couple on such systems. A fortiori, there will

be no net turning couple on complete static systems with a symmetric total energy-momentum

tensor, such as the system in the Trouton-Noble experiment.

Whether or not the constituents of a complete static system give rise to (delicately balanced)

turning couples depends on our definition of the angular momentum for open systems. For

open systems, the theorem in Eq. 2.14 tells us, JΣ
µν depends on Σ. So, we need a convention

                                                
44 Cf. Rohrlich 1965, p. 95, Eq. (4-155)–(4-156).
45 A very thorough discussion of how to define the angular momentum current as the Noether current (and the
angular momentum tensor as the corresponding Noether charge) associated with Lorentz invariance of the
Lagrangian can be found in Soper 1976, pp. 101-123. The canonical angular momentum current constructed out
of the canonical energy-momentum tensor typically has a “spin” part in addition to an “orbital angular
momentum” part of the form given in Eq. 2.25. However, there is no “spin” part when we use the symmetric
energy-momentum tensor to construct the angular momentum current as we did in Eq. 2.25 (ibid., pp. 118-120).
46 I am grateful to Tony Duncan for clarifying this point.



about picking a hyperplane Σ if we want to give a definition of angular momentum that applies

both to open and to closed systems. As with four-momentum, I will consider two such

conventions (cf. Fig. 2.4),47  leading to two different definitions of angular momentum. In what

I will call the ‘Laue definition,’ one picks hyperplanes with different orientations nµ in different

xµ-frames (viz., hyperplanes of simultaneity in the xµ-frame under consideration; cf. the

definition of four-momentum in Eq. 2.42):

JL
µν(t) ≡ J

Σ(n µ, τ) = Σsim(x µ)

µν
. (2.48)

In what I will call the ‘Rohrlich definition’ one picks hyperplanes with the same orientation

nµ in different xµ-frames (viz., hyperplanes of simultaneity in the system’s rest frame; cf. the

definition of four-momentum in Eq. 2.43):

JR
µν(t) ≡ JΣ(n µ, τ) = Σ(uµ(τ)/c, τ)

µν
. (2.49)

The turning couple τµν a system exerts on itself is minus the turning couple we would have to

exert to change the system’s angular momentum (cf. section 1.4, Eq. 1.37). Hence,

τµν ≡ – dJµν

dt
(2.50)

The definition of the turning couple τµν obviously inherits the convention about choosing

spacelike hyperplanes from the definition of angular momentum Jµν, so we need to distinguish

between τL
µν and τR

µν. Under both definitions of Jµν in Eqs. 2.48–2.49, the total angular

momentum of a complete system is conserved and the net turning couple vanishes:

τtotL
µν  = τtotR

µν  = 0 (2.51)

Consider a complete static system consisting of an electromagnetic and a non-electromagnetic

part, both of which are open sub-systems. In the Trouton-Noble experiment we have an

example of this situation. What can we say about the turning couples τEM
µν  and τnon-EM

µν  coming

from the two parts of the system, considered separately? I will show that under the Laue

definition we find what I called the Laue effect, i.e.,

τEML
µν  = – τnon-EML

µν  ≠ 0, (2.52)

whereas under the Rohrlich definition we do not, i.e.,

                                                
47 As with four-momentum, I will not pursue the option of representing angular momentum by a hyperplane
dependent quantity.



τEMR
µν  = τnon-EMR

µν  = 0. (2.53)

To prove the claim in Eq. 2.53, I will show that, under the Rohrlich definition, the angular

momentum of a static system, open or closed, is always conserved. But first, I will prove the
claim in Eq. 2.52 by showing that JEML

µν  and τEML
µν  (or rather their ij-components) are just

alternative ways of writing the electromagnetic angular momentum L and the turning couple T

we encountered in the discussion of Lorentz’s account of the Trouton-Noble experiment in

section 1.4.

Notice that JL
µν can be written as an ordinary space integral in every xµ-frame:

JL
µν(t) = Jµνλ(x α) nλ dΣ

Σsim(x µ)

 = Jµν0(t, x) d3x (2.54)

Inserting Eq. 2.45 for the angular momentum current Jµνλ into (1/c times) the ij-components of

JL
µν, we find:

1
c
 JL

ij(t) = 1
c

x i Tj0(t, x) – x j Ti0(t, x) d3x . (2.55)

It is easily verified that this expression is just an alternative way of writing the classical angular

momentum associated with the momentum density pi ≡ T i0/c . The integrand in Eq. 2.55 can be

rewritten as

x ipj – x jp i = δilδjm – δimδjl  x lpm = εkij εklmx lpm . (2.56)

The factor in parentheses in the last term in Eq. 2.56 is the k-component of the classical angular

momentum density l = x  × p. So, we can rewrite Eq. 2.55 as

1
c
 JL

ij(t) = εijk x  × p(t, x) k d3x  = εijkLk(t), (2.57)

where the angular momentum L is defined simply as the space integral over the corresponding

density l. The ij-components of the turning couple τL
µν can likewise be rewritten in terms of the

turning couple T we considered in chapter one:

1
c
 τL

ij = – 1
c
 
dJL

ij

dt
 = – εijk dLk

dt
 = εijk Tk. (2.58)



With the help of Eqs. 2.57–2.58, the ij-components of the equation for the turning couple τL
µν

can be rewritten as Eq. 1.37 which we used in section 1.4 as a short-cut for Lorentz’s derivation

of the turning couple coming from the electromagnetic forces:

1
c τL

ij = – 1c 
dJL

ij

dt
  ⇔  εijk Tk = – εijk dLk

dt
  ⇔  T = –  dL

dt
(2.59)

For the electromagnetic turning couple, we thus recover the result found by Lorentz (cf. Eqs.

1.58–Eq. 1.62)

 TEM = –  dLEM
dt

 = – d
dt

 x  × g(t,  x ) d3x = – v × G , (2.60)

where g is the electromagnetic momentum density and G is the electromagnetic momentum, the

spatial components of the electromagnetic four-momentum of the system under the Laue

definition in Eq. 2.42. As we saw in section 1.4, TEM ≠ 0 (see Eq. 1.39). This proves the claim

in Eq. 2.52 that τEML
µν  ≠ 0. Using Eq. 2.58, we can write

τEML
ij  = c εijk Tk

EM ≠ 0 (2.61)

Since τtotL
ij  = 0 (see Eq. 2.51), it follows that τnon-EML

µν  = – τEML
µν  ≠ 0.

Under the Rohrlich definition, there will be no such turning couples. The time derivative of

JR
µν(t) giving the turning couple τR

µν will be zero for static systems, open as well as closed. The

crucial input for proving this result is that JR
µν(t) always transforms as a tensor, no matter

whether a system is open or closed, static or non-static. Let the x′µ-frame be the rest frame of

some static system, related to some arbitrary xµ-frame in which we happen to evaluate JR
µν(t)

through xµ = Λµν x′ν. Since JR
µν(t) transforms as a tensor, we have

JR
µν(t) = Λ

µ
ρ Λ

ν
σ J ′R

ρσ
(t′) (2.62)

So, JR
µν(t) is independent of t if and only if J′R

µν
(t′) is independent of t′. One easily verifies that

J′R
µν

(t′) is indeed independent of t′ for a static system. In the system’s rest frame, the definition

of angular momentum in Eq. 2.49 takes on a particularly simple form because

u′
µ
/c = (1,  0,  0,  0) and τ can be set equal to t′ (cf. Fig. 2.4). This gives



J′R
µν

(t ′) ≡ J′Σ n′µ, τ  = Σ u′µ(τ)/c = (1, 0, 0, 0) , τ = t′
µν

= J′
µνλ

(x ′
α

) n′λ dΣ
Σ

= J′
µν0

(t′, x ′) d3x′ .

(2.63)

Inserting Eq. 2.45 for the angular momentum current Jµνλ, we arrive at:

J′R
µν

(t ′) = x′
µ

T ′
ν0

(t′, x ′) – x ′
ν

T ′
µ0

(t′, x ′)  d3x′ . (2.64)

Since we are assuming that the system is static, we have ∂′0T ′
µν

 = 0 and T ′
i0

 = 0 (see Eq. 2.8).

Eq. 2.64 then reduces to

J′R
µν

(t ′) = x′
µ

δ0
ν
 – x ′

ν
δ0

µ
 T ′

00
(x ′)d3x′. (2.65)

The only possible time dependence of this expression can come from the factor in parentheses

for the index combinations (µ = 0, ν = i) and (µ = i, ν = 0). One readily convinces oneself that

even for these index combinations, the factor in parentheses does not depend on t′. So, for static

systems J′R
µν

(t ′) does not depend on t′, which means that JR
µν(t) does not depend on t. This, in

turn, means that the electromagnetic and non-electromagnetic static open sub-systems of the

complete static system in the Trouton-Noble experiment do not give any turning couples. The

delicately balanced turning couples we found on the basis of the Laue definition for the angular

momentum of spatially extended systems are artifacts of the convention for choosing spacelike

hyperplanes in that definition.

To conclude this section, I will prove one more result that we will need in section 2.3. I will

show that in the Rohrlich picture, as in the Laue picture, the turning couple on static systems can

be written as minus the cross product of the system’s velocity and its momentum (cf. Eq. 2.60).

To this end, I will prove that

τR
ij  = – εijk v  × cPR k, (2.66)

where cPR is the spatial part of the four-momentum under the Rohrlich definition. Inserting Eq.

2.64 into Eq. 2.62, we find



JR
µν(t) = Λ

µ
ρ Λ

ν
σ  x′

ρ
T ′

σ0
 – x ′

σ
T ′

ρ0
 d3x′ . (2.67)

Since, as we have just seen (in Eq. 2.65), the integrand in this expression is independent of t′ for

static systems, we can invoke the result in Eq. 2.31 (cf. Fig. 2.3) and substitute γd3x for d3x′. If

we further substitute x µ = Λ
µ

ρx′
µ
 and x ν = Λ

ν
σx′

σ
, Eq. 2.67 turns into

JR
µν(t) = γ x µ Λ

ν
σT ′

σ0
 – x ν Λ

µ
ρT′

ρ0
 d3x . (2.68)

Consider the ij-components of this equation and introduce the vector cp with components

cpi ≡ γΛ
i
ρT ′

ρ0
. (2.69)

Inserting Eq. 2.69 into Eq. 2.68, we find

JR
ij(t) = c x ip j  – x jpi  d3x . (2.70)

In analogy with Eqs. 2.55–2.57, this can be rewritten as

JR
ij(t) = εijk x  × cp k d3x . (2.71)

The ij-components of the turning couple τR
µν (cf. Eq. 2.50) can be written as

τR
ij  = – 

dJR
ij

dt
 = – d

dt
εijk x  × cp k d3x . (2.72)

In analogy with Eq. 2.60 and Eqs. 1.58–Eq. 1.62 in section 1.4, Eq. 2.72 can be rewritten as

τR
ij  = – εijk v  × cP k , (2.73)

where P is defined as the space integral over p. As the notation I chose suggests, cP is equal to

cPR, the spatial part of the four-momentum of the system under the Rohrlich definition. The

proof of this identity involves yet another application of the result stated in Eq. 2.31 and

illustrated in Fig. 2.3:

cPi = γΛ
i
ρT ′

ρ0
 d3x = γ Λ

i
ρ 1

γ
 T ′

ρ0
 d3x′ = Λ

i
ρP′R

ρ
 = PR

i (2.74)



This concludes the proof of the claim in Eq. 2.66. In analogy with Eq. 2.58, we can introduce a

turning couple TR via the relation

τR
ij  ≡ c εijk Tk

R. (2.75)

Combining Eqs. 2.73–2.75, we can write

TR = – v  × PR. (2.76)

So, both in the Laue picture (cf. Eq. 2.60) and in the Rohrlich picture, we can compute the

turning couple on a static system simply by taking minus the cross product of its velocity and

its momentum. We saw earlier that, in the Rohrlich picture, angular momentum is conserved for

static systems, so that one never gets a turning couple on static systems. One can also infer this

directly from Eq. 2.76. The velocity v and (c times) the momentum PR are the spatial parts of

the system’s four-velocity uµ and its four-momentum PR
µ, respectively. Under the Rohrlich

definition, four-momentum transforms as a four-vector. For a static system in its rest frame,

only the 0-component of the four-momentum is non-zero. So, in the system’s rest frame, and

therefore in any other frame, the four-momentum has the same direction as the four-velocity.

Hence, the cross product of v and PR automatically vanishes for static systems.



2.3 Two ‘four-momentum’-accounts of the Trouton-Noble experiment
based on the Laue and Rohrlich definitions of four-momentum

2.3.1 Laue on the Trouton-Noble experiment as an example of a complete static system

(1911). The discussion in sections 2.1 and 2.2 provides all the background necessary to read

the dense final paragraph of Laue’s 1911 paper “On the dynamics of relativity theory,” in

which he presented his account of the Trouton-Noble experiment for the first time.

Another example of a complete static system [the first and only other example Laue gives is
that of the Lorentz-Poincaré electron] is the condenser of the Trouton-Noble experiment with
its field. The system as a whole does not need a turning couple when it has a uniform
velocity, just as a mass point does not need one. The turning couple which the
electromagnetic forces exert on the condenser is precisely the turning couple that the
condenser, being an elastically stressed body, needs according to section 4 [i.e., the section
where Laue introduces this peculiar effect in relativistic mechanics]. Neither the
electromagnetic momentum, nor the mechanical momentum of the body have the direction of
the velocity in this case, but the total momentum, the sum of the two of them, does, as
follows from Eq. (22) [i.e., the equation expressing that the energy and momentum of a
complete static system transform as a four-vector]. (Laue 1911a, p. 153)

So, the Laue picture of what happens in the moving condenser in the Trouton-Noble experiment

is as follows. Neither the momentum PEM
L  of the electromagnetic part of the system, nor the

momentum Pnon-EM
L  of the remainder of the system48 have the direction of the system’s

velocity v. From the equation T = – v × P , it thus follows that there will be turning couples

TEM
L  and Tnon-EM

L . These turning couples will have to cancel one another, since the total

momentum Ptot
L  = PEM

L  + Pnon-EM
L  of the complete static system is in the direction of v, which

means that Ttot
L  = – v × P tot

L  vanishes.

The Rohrlich picture of what happens in the moving condenser is not nearly as eventful. All

momentum—PEM
R , Pnon-EM

R , and Ptot
R —is in the direction of the condenser’s velocity v, and

there are no turning couples whatsoever.

2.3.2 Comparing the Laue picture of what happens in a moving condenser to the

Rohrlich picture. Laue did not bother, neither in this paper nor in any of his later discussions

of the Trouton-Noble experiment, to explicitly calculate the two separate contributions to the

total momentum of the system that he distinguishes in the passage I quoted above. In order to

bring out the strong contrast between the Laue picture and the Rohrlich picture of what happens

                                                
48 It is only as a matter of convenience that I refer to the remainder of the system as the ‘non-electromagnetic
part’ of the system. What I call the ‘electromagnetic part’ of the system is actually just the purely
electromagnetic part that depends only on the electromagnetic field; the ‘non-electromagnetic part’ includes the
electric charge and current density, which (from a modern perspective) will be coupled to the electromagnetic
field and to other matter fields. I am grateful to Tony Duncan for clarifying this point.   



in the moving condenser in the Trouton-Noble experiment, I will derive expressions for PEM

and Pnon-EM for this special case, both under the Laue and under the Rohrlich definition.

ΣL

ΣR

nR
µ

nL
µ

x

x′

ct′ct

WC

Figure 2.5 The hyperplanes ΣL (Laue) and ΣR (Rohrlich).

Fig. 2.5 shows a Minkowski diagram for the system I will consider. The shaded region WC

represents the bundle of worldlines (hence ‘W’) of all points inside a charged condenser

(hence the subscript ‘C’) moving at a constant velocity v in the x-direction of a Lorentz frame

with coordinates xµ. The figure also shows a rest frame of the condenser with coordinates x′µ.

For the time being, we need not concern ourselves with the spatial geometry of the situation.

Suffice it to say that I will consider the exact same situation I used for the calculations in

chapter one (see, e.g., Fig. 1.5, Fig. 1.7, Fig. 1.9, and Fig 2.6 below). The task before us is to

evaluate the various contributions to the four-momentum of this system according to both the

Laue and the Rohrlich definition.

In this particular case, the Laue definition of the four-momentum PL
µ in the xµ-frame gives

(cf. Eq. 2.42):

PL
µ = Tµ0 d3x  = Tµν

ΣL

nν
L dΣ , [Laue] (2.77)

with nL
µ ≡ (1,  0,  0,  0), so that ΣL is a hyperplane of simultaneity in the xµ-frame (cf. Fig. 2.5).

For this same situation, the Rohrlich definition of the four-momentum PR
µ  in the xµ-frame

gives (cf. Eq. 2.43):



PR
µ = Tµν

ΣR

nν
R dΣ [Rohrlich] (2.78)

with nR
µ ≡ uµ/c,   where uµ is the condenser’s four-velocity, i.e., uµ = γ (c, v, 0, 0) . So, ΣR is a

hyperplane of simultaneity in the x′µ-frame (cf. Fig. 2.5).

As will become clear below, the total energy-momentum tensor of the system as well as the

two terms comprising this tensor have a very simple form. The components that are not zero

everywhere, will at least always be constant inside the condenser, and zero outside. In other

words, the integrands in Eq. 2.77 and Eq. 2.78 will be constant on the shaded region WC in Fig.

2.5, and zero everywhere else. This means that the integrals can simply be replaced by the

product of the integrands and the areas of the intersections of the respective hyperplanes ΣL and

ΣR with the bundle of worldlines WC. The area of a spacelike hyperplane can be interpreted as

a spatial volume in one frame or another. Looking at Fig. 2.5 and recalling some basic facts

about Lorentz transformations and Minkowski diagrams, one sees that the area of the

intersection ΣR∩WC is just the volume V ′ of the condenser in the x′µ-frame in which it is at

rest; and that the area of the intersection ΣL∩WC is just the Lorentz contracted volume V ′/γ of

the condenser in the xµ-frame in which it is moving. So, using the information that will be

derived below about the form of the various terms in the system’s energy-momentum tensor, we

can replace the integral in Eq. 2.77, giving the four-momentum according to the Laue definition,

by

PL
µ = Tinside

µν nν
L  V ′/γ , [Laue] (2.79)

and the integral in Eq. 2.78, giving the four-momentum according to the Rohrlich  definition, by

PR
µ = Tinside

µν nν
R  V ′ . [Rohrlich] (2.80)

For the factor in parentheses in Eq. 2.79 we can simply write

Tinside
µν nν

L = Tinside
µ0  = Λ

µ
ρ Λ

0
σ T′inside

ρσ
. [Laue] (2.81)

The factor in parentheses in Eq. 2.80 is slightly more complicated.49 Using that
nµ

R = γ(1, – β, 0, 0) , we arrive at

                                                
49 It is only this particular way of calculating PR

µ
 that appears to be more complicated than the corresponding

calculation of PL
µ
. There obviously is a much simpler strategy for calculating the four-momentum in the xµ-

frame in the Rohrlich picture, a strategy that is not available in the Laue picture. Unlike PL
µ
, PR

µ
 transforms as a

four-vector, so we can simply compute P ′µ in the x′µ-frame via P ′R
µ

 = Tinside
µ0 V ′ and transform to the xµ-



Tinside
µν nν

R = γ Tinside
µ0  – γβ Tinside

µ1

 

= γΛ
µ

ρ Λ
0
σ – βΛ

1
σ  T ′inside

ρσ
.

[Rohrlich] (2.82)

So, in order to evaluate the various contributions to PL
µ or PR

µ, we need expressions for the

Lorentz transformation matrix Λ
µ

ν and for the components T ′
µν

 of the various contributions to

the system’s energy-momentum in its rest frame.50

2.3.3 Derivation of expressions for the matrix of the Lorentz transformation to a

conveniently chosen rest frame and for the electromagnetic and non-electromagnetic

energy-momentum tensors in that frame.

x

y

θ
θ′

x′

y′

Figure 2.6 Condenser in the xµ-frame in which it is moving

(solid lines) and in the x′µ-frame in which it is at rest (shaded lines).

The various terms in T ′
µν

 are most conveniently evaluated in an x′µ-frame in which the plates of

the condenser are perpendicular to one of the coordinate axes. In the situation I am interested in,

however, the plates move at an arbitrary angle with respect to their velocity. Of course, we can

                                                                                                                                                      
frame using PR

µ
 = Λ

µ
νP ′R

ν . Rather than availing myself of this shortcut, I will go through the counterpart in
the Rohrlich picture of the simplest derivation in the Laue picture. This will bring out the difference between
the two accounts of the Trouton-Noble experiment in a more striking manner.   
50 Without loss of continuity, the reader can skip the next subsection in which these expressions are derived.

The results can be found in Eq. 2.84 (Λµν), Eqs. 2.88–2.89 (T ′EM
µν

), and Eq. 2.96 (T ′non-EM
µν

).



still evaluate T ′
µν

 in a convenient x′µ-frame, as long as we take into account that, if we do so, the

matrix Λ
µ

ν in Eqs. 2.81–2.82 will represent a Lorentz transformation which is a combination of

a spatial rotation and a boost. I will proceed in just this manner. The situation is illustrated in

Fig. 2.6.

In the x′µ-frame, the condenser has the familiar rectangular shape with plates of area A = ab,

a distance d apart, and perpendicular to the y′-axis. In the xµ-frame it has undergone a

contraction by a factor of γ in the x-direction, the direction of motion. As in chapter one, I will

have the top plate carry a positive charge Q and the bottom plate an equal but opposite charge

–Q.

To get from the primed to the unprimed frame, we have to rotate the primed frame clockwise

around the z′-axis over an angle θ′, and then set it in motion in the (new) direction of the

negative x′-axis at a velocity v. This passive transformation is equivalent to the following active

transformation. Instead of looking upon the primed and unprimed quantities as describing the

same situation in terms of different coordinates, look upon them as describing different

situations in terms of the same coordinates. In particular, look upon the primed quantities as

describing a new situation in terms of the unprimed coordinates This new situation is one in

which the condenser is at rest with respect to the unprimed frame, its plates perpendicular to the

y-axis. To get from this situation to the situation we have been looking at so far (with the

condenser moving with respect to the unprimed frame) we have to rotate the condenser (rather

than the frame) counterclockwise around the z-axis over an angle θ′ and then set it in motion in

the positive x-direction at a velocity v. The matrix Λµν for this transformation, interpreted

actively or passively, is given by the matrix product

 

γ γ β 0 0

γ β γ 0 0

0 0 1 0

0 0 0 1

  

1 0 0 0

0 cos θ′ – sin θ′ 0

0 sin θ′ cos θ′ 0

0 0 0 1

 , (2.83)

which gives

Λ
µ

ν= 

γ γ β cos θ′ – γ β sin θ′ 0

γ β γ cos θ′ – γ sin θ′ 0

0 sin θ′ cos θ′ 0

0 0 0 1

. (2.84)



All that is left to do, now that we know what to insert for Λ
µ

ν in Eqs. 2.81 and 2.82, is to

compute the components of the various terms in the energy-momentum tensor for the system in

the x′µ-frame.51 To begin with, I will divide the total energy-momentum tensor into two parts, a

purely electromagnetic part and the rest. For convenience, I will refer to these parts as the

electromagnetic and the non-electromagnetic part of the system, respectively:52

T ′total
µν

 = T ′EM
µν

 + T ′non-EM
µν

(2.85)

Since the system is complete and static, we have (cf. Eq. 2.6 and Eq. 2.8):

∂′µT ′tot
µν

 = 0, [complete]

(2.86)

∂′0T ′
µν

 = 0,            T ′
i0

 = T ′
0i

 = 0, [static]

where T ′
µν

 on the last line can be any of the three energy-momentum tensors in Eq. 2.85.

These conditions allow us to determine T ′non-EM
µν

 (with the exception of its 00-component) once

we know T ′EM
µν

, without having to know anything about the details of the system for which

T ′non-EM
µν

 is the energy-momentum tensor. This system can be any physical structure that

prevents the charges and the plates carrying these charges from moving under the influence of

the Coulomb interaction.

In order for the integrals in Eqs. 2.77–2.78 to reduce to the simple multiplication in Eqs.

2.79–2.80, I need two extra assumptions. First, I will assume that edge effects can be ignored,

both for the electromagnetic and for the non-electromagnetic part of the system. Secondly, I will

assume a simple form for T ′non-EM
00

. Both assumptions, I claim, are totally innocuous.

To ensure that electromagnetic edge effects can safely be ignored, I assume that both a and

b, determining the area A = ab of the plates, are much larger than the distance d between the

plates. This guarantees that I do not have to worry about inhomogeneities of the electromagnetic

field at the edges of the plates. With this proviso, the electromagnetic field can simply be taken

to vanish outside the condenser and to be homogeneous inside. In the x′µ-frame, it is given by

E′ = (0, – E′, 0),       B ′ = 0. (2.87)

                                                
51 I am grateful to Tony Duncan for suggesting a particularly simple way of doing these calculations.
52 This terminology is less arbitrary than it may seem. We will see in section 2.4 that the energy-momentum
tensor for the electromagnetic part of the system gives the Coulomb forces on the condenser, whereas the
energy-momentum tensor of the non-electromagnetic part gives the forces balancing these Coulomb forces.



Inserting Eq. 2.87 into Eqs. 2.3–2.5 for the components of the electromagnetic energy-

momentum tensor T ′EM
µν

, and setting the combination of constants 1
2

ε0E′
2 equal to u′, we find:

T ′EM
µν

 = f(x′, y′, z′) diag(u′, u′, – u′, u′), (2.88)

where the function f(x′,y′,z′) is equal to 1 inside the condenser and 0 outside. Using the step

function θ(x),53 we can write f(x′,y′,z′) as:

f(x′, y′, z′) = θ a
2

 –  x′  θ d
2

 –  y′  θ b
2

 –  z′ . (2.89)

One readily verifies that the electromagnetic part of the system, taken by itself, is not a complete

system:

∂′µT ′EM
µν

 = δ
1ν 

∂T ′EM
11

∂x′
 + δ

2ν 
∂T ′EM

22

∂y′
 + δ

3ν 
∂T ′EM

33

∂z′
 ≠ 0. (2.90)

To be sure, ∂′µT ′EM
µν

 vanishes almost everywhere, but not on the surface forming the boundary

between the inside and the outside of the condenser.

I will now determine the energy-momentum tensor T ′non-EM
µν

 for the remainder of the

system, i.e., the part that ensures that ∂′µT ′tot
µν

  = ∂′µ(T ′EM
µν

 + T ′non-EM
µν

) = 0. Since the system is

static, T ′non-EM
µν

 will have the form:

T ′non-EM
µν

 = 

p 0 0   0
0 q a b
0 c r d
0 e f s

   , (2.91)

where all components can be functions of (x′, y′, z′). Since both T ′tot
µν

 → 0 and T ′EM
µν

 → 0 faster

than 1/r′3 as r′ → ∞, it follows that these functions will have to go to zero faster than 1/r′3 as

r′ → ∞ , as well. From the symmetry of the situation, it follows that all off-diagonal components

will be zero.54 So, Eq. 2.91 reduces to:

                                                
53 The step function θ(x) is defined as follows: for x<0, θ(x)=0; for x=0, θ(x)=1/2; for x>0, θ(x)=1.
54 Looking back at Fig. 2.6, one sees that the experimental setup is symmetric under reflection in the y′z′-
plane (i.e., changing x′ to –x′) and under reflection in the x′y′-plane (i.e., changing z′ to –z′). The matrices for
the corresponding improper Lorentz transformations are:

Λ
µ

ν = diag(1, –1, 1, 1),         Λ
µ

ν = diag(1, 1, 1, –1).

Under these reflections, T ′non-EM
µν

 transforms as follows:



T ′non-EM
µν

 = diag(p,  q,  r,  s). (2.92)

The functions q, r, and s can be determined from the conditions in Eq. 2.86. Consider the ν = 1

component of ∂′µT ′tot
µν

 = 0 (cf. Eq. 2.90):

∂′1 T ′EM
11

 + T ′non-EM
11

 = 0. (2.93)

It follows that

q = T ′non-EM
11

 = –T ′EM
11

 + C(y ′, z′) = –u′ f(x′, y′, z′) + C(y ′, z′). (2.94)

A simple argument shows that C(y ′, z′) has to be zero.55  The 22- and 33-components of

T ′non-EM
µν

 can be found in exactly the same way. The 00-component can be any function of

(x′, y′, z′) that drops off faster than 1/r′3 as r′ → ∞. I will assume, for purposes of convenience,

that

T ′non-EM
00

 = f(x′, y′, z′) w ′, (2.95)

where w′ is an arbitrary constant. So, the final result is:56

                                                                                                                                                      

T non-EM
µν

 = Λ
µ

ρ Λ
ν

σ T ′non-EM
ρσ

 =  

p 0 0   0

0 q –a –b

0 –c r d

0 –e f s

,  Tnon-EM
µν

 = Λ
µ

ρ Λ
ν

σ T ′non-EM
ρσ

 =  

p 0 0   0

0 q a –b

0 c r –d

0 –e –f s

Since the symmetry of the experimental setup requires that

T non-EM
µν

 =  T non-EM
µν

 = T ′non-EM
µν

,

it follows that the off-diagonal ij-components of T ′non-EM
µν

 are all zero: a = b = c = d = e = f = 0.
55 Suppose C(y′,z′) ≠ 0 for some values for y ′ and z′. Keep y ′ and z′ fixed at those values and let x ′ go to
infinity. Since C(y′,z′) does not depend on x′, it will remain non-zero. But this contradicts the assumption that

T ′non-EM
µν

 → 0 for r′ → ∞. Hence, C(y′,z′) = 0.

56 Adding Eq. 2.96 for T ′non-EM
µν

 to Eq. 2.88 for T ′EM
µν

, we find that the total energy-momentum tensor in the
system’s rest frame is given by:

T ′tot
µν

 = T ′EM
µν

 + T ′non-EM
µν

 =  f(x′,y′,z′) diag(u′+ w′, 0, 0, 0).

Notice that the ij-components of T ′tot
µν

, representing the stresses in the rest frame, all vanish. This is in
accordance with “Laue’s theorem” (see Eqs. 2.35–2.38), which says that the integrals over the stresses in the rest
frame all ought to vanish for a complete static system.  



 T ′non-EM
µν

 = f(x′, y′, z′) diag(w ′, – u′, u′, – u′). (2.96)

2.3.4 The division of the total momentum into electromagnetic and non-

electromagnetic momentum in the Laue and in the Rohrlich picture. We now have all

ingredients to compute the various contributions to the four-momentum of the condenser plus

its field in the Trouton-Noble experiment, according to the definitions of Laue and Rohrlich,

respectively.

Like the total energy-momentum tensor, I divide the total four-momentum in the system into

an electromagnetic and a non-electromagnetic part

Ptot
µ  = PEM

µ  + Pnon-EM
µ . (2.97)

The total four-momentum is the same no matter whether we use Laue’s or Rohrlich’s

definition. In the x′µ-frame, it is given by (cf. Eq. 2.88 and Eq. 2.96)

P′tot
µ

 = T ′totinside

µ0
 V ′ = (U ′tot,  0,  0,  0), (2.98)

where U ′tot ≡ U ′EM + U ′non-EM, with U ′EM = u′V ′ and U ′non-EM = w ′V ′.57 This is a four-

vector, so in the xµ-frame, it is given by

Ptot
µ  = Λ

µ
ν P ′tot

ν
 = (γU ′tot, γβU ′tot, 0, 0) . (2.99)

How the total four-momentum breaks up into an electromagnetic and a non-electromagnetic part

depends on whether we use the Laue or the Rohrlich definition of four-momentum, unless we

are in the system’s rest frame, where the hyperplanes ΣL and ΣR that distinguish these two

definitions coincide (cf. Fig. 2.5).  Hence, in the x′µ-frame, we have (see Eqs. 2.79–2.80 for PL
µ

and PR
µ):

PL′EM
µ

 = PR′EM
µ

 = T ′EM
µ0

 V ′ = (U ′EM,  0,  0,  0),
 

PL′non-EM
µ

 = PR′non-EM
µ

 = T ′non-EM
µ0

 V ′ = (U ′non-EM,  0,  0,  0).

(2.100)

I will evaluate the electromagnetic and the non-electromagnetic four-momentum in the xµ-frame,

first using the Laue then the Rohrlich definition.

                                                
57 In the remainder of this section, I will suppress the subscript ‘inside.’ Whenever an energy-momentum
tensor occurs in the equations below (Eqs. 2.99–2.115), I actually mean the constant values of that tensor in the
shaded region WC in Fig. 2.5.



Under the Laue definition, we can write the total four-momentum in the xµ-frame as (see Eq.

2.79 and Eq. 2.81)

Ptot
µ = PLEM

µ  + PLnon-EM
µ

 

= Λ
µ

ρ Λ
0
σ T ′EM

ρσ
 + T ′non-EM

ρσ
 V ′/γ.

(2.101)

The fact that both T ′EM
µν

 and T ′non-EM
µν

  are diagonal considerably simplifies Eq. 2.101. Inserting

Eq. 2.88 for T ′EM
µν

 and Eq. 2.96 for T ′non-EM
µν

, we find the following expressions for PLEM
µ  and

PLnon-EM
µ :

PLEM
µ  = 1

γ
 Λ

µ
0 Λ

0
0 + Λ

µ
1 Λ

0
1 – Λ

µ
2 Λ

0
2  U ′EM , (2.102)

PLnon-EM
µ  = 1

γ
 Λ

µ
0 Λ

0
0 U ′non-EM + 1

γ
 – Λ

µ
1 Λ

0
1 – Λ

µ
2 Λ

0
2  U ′EM , (2.103)

where I used that U ′EM = u′V ′ and U ′non-EM = w ′V ′,  plus the fact that Λ
0
3 = 0 (see Eq.

2.84).  Using Eq. 2.84 for the remaining components of Λ
µ

ν, we find

PLEM
µ  = U ′EM 

γ (1 + β
2
cos2 θ′  – β

2
sin2 θ′)

2γβ cos2 θ′

2β sin θ′  cos θ′

0

 , (2.104)

and

PLnon-EM
µ  = U ′non-EM 

γ

γβ

0

0

 + U ′EM 

γ (β
2
sin2 θ′  – β

2
cos2 θ′)

– γβ cos2 θ′  + γβ sin2 θ′

– 2β sin θ′  cos θ′

0

 . (2.105)

Using that U ′EM + U ′EM = U ′tot , one easily verifies that adding Eq. 2.104 and Eq. 2.105 gives

Eq. 2.99 above for Ptot
µ  .

Consider the spatial parts of Eqs. 2.104–2.105. Recall that these components are equal to c

times the ordinary momentum P. The total (ordinary) momentum, both under the Laue and

under the Rohrlich definition, is given by (see Eq. 2.99):

Ptot = γ U ′tot/c2  v , (2.106)



where I wrote v/c for β and v for (v, 0, 0). The quantity in parentheses can be identified with the

total rest mass of the system.

From Eqs. 2.104–2.105, we can read off the electromagnetic and non-electromagnetic

contributions to the total momentum, under the Laue definition:

PEM
L  = 2 U ′EM/c2  v cos θ′  

γ  cos θ′

sin θ′

0

 , (2.107)

and

Pnon-EM
L = γ U ′non-EM/c2  v 

1
0
0

  +  U ′EM/c2  v – cos θ′  

γ  cos θ′

sin θ′

0

 + sin θ′  

γ  sin θ′

– cos θ′

0

 .

(2.108)

One easily verifies that adding Eq. 2.107 and Eq. 2.108 gives Ptot in Eq. 2.106. Notice that Eq.

2.107 agrees with the result found by Lorentz (see section 1.4, Eq. 1.75) as was to be

expected.58

To first order in β (which means γ = 1 and θ′ = θ), the interpretation of the four terms in

Eqs. 2.107–2.108 is very simple. As was already noticed by Lorentz (see section 1.4, Fig. 1.11,

Eq. 1.36 and Eq. 1.67), PEM
L , proportional to cos θ, is parallel to the plates in this

approximation. What about the three terms in Pnon-EM
L ? The first θ-independent term has the

direction of the velocity v; the second, proportional to cos θ and parallel to the plates, cancels

half of PEM
L ; and the third, proportional to sin θ, is perpendicular to the plates.  Fig. 2.7 shows

the various terms in Eqs. 2.107–2.108 for the situation with β ≈ .75 used in all figures for the

moving condenser.

                                                
58 In relativistic terms, the derivation of Eq. 1.75 runs as follows: (a) transform the electromagnetic field from

the x′µ-frame to the xµ-frame; (b) compute the energy-momentum tensor for this electromagnetic field in the xµ-
frame; (c) integrate the µ0-components of this energy-momentum tensor over a hyperplane of simultaneity in

the xµ-frame. The derivation of Eq. 2.107 runs as follows: (a′) compute the energy-momentum tensor for the

electromagnetic field in the x′µ-frame; (b′) transform this energy-momentum tensor from the x′µ-frame to the

xµ-frame; (c′) integrate the µ0-components of this energy-momentum tensor over a hyperplane of simultaneity

in the in the xµ-frame. Obviously, (a)-(c) and (a′)-(c′) should give the same result. The 0-component of Eq.
2.104 for the electromagnetic four-momentum is likewise equal to Eq. 1.73 for the electromagnetic energy that
we derived in the context of Lorentz’s theory.
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Figure 2.7 Electromagnetic and non-electromagnetic contributions
to the total momentum in a charged moving condenser according to Laue.

Eqs. 2.107–2.108 for PEM
L  and Pnon-EM

L  and Fig. 2.7 fill in the details of the picture Laue

sketches in the passage I quoted at the beginning of this section: “Neither the electromagnetic

momentum, nor the mechanical momentum of the body have the direction of the velocity in this

case, but the total momentum, the sum of the two of them, does” (Laue 1911a, p. 153).  Using

the equation T = –v  × P  (see section 1.4, Eq. 1.38 and Eq. 1.62), one easily calculates the

turning couples coming from the various contributions to the momentum.  Suffice it to say that

the result for the electromagnetic turning couple coincides with the result found by Lorentz (see

section 1.4, Eq. 1.39).

I want to draw attention to the fact that, under the Laue definition of four-momentum, the

electromagnetic and non-electromagnetic parts of the condenser’s momentum, like the

electromagnetic part of the momentum of Lorentz-Poincaré electron, do not separately

transform as the momentum of a relativistic point particle. In the case of the Trouton-Noble

experiment, the deviations of PEM
L  and Pnon-EM

L  in Eqs. 2.107–2.108 from the equations

PEM = γ U ′EM c2  v ,
 

P non-EM = γ U ′non-EM c2  v .

(2.109)

that one would have if the electromagnetic part of the condenser’s momentum were to transform

as the momentum of a relativistic point particle are far more severe than the puzzling factor 4 3 in



the case of the Lorentz-Poincaré electron (cf. Eqs. 2.39–2.40). Thanks to the spherical

symmetry of the Lorentz-Poincaré electron in its rest frame, its electromagnetic momentum at

least always has the direction of the electron’s velocity. For the condenser in the Trouton-Noble

experiment, as we have just seen, this is not the case.59

I will now go through the analogue in the Rohrlich picture of the derivation in Eqs. 2.101–2.108

in the Laue picture. Under the Rohrlich definition of four-momentum, we can write the total

four-momentum in the xµ-frame as (see Eq. 2.80 and Eq. 2.82)

Ptot
µ = PREM

µ  + PRnon-EM
µ

 

= γ Λ
µ

ρ Λ
0

σ – βΛ
1
σ  T ′EM

ρσ
 + T ′non-EM

ρσ
 V ′.

(2.110)

Consider the factor Λ
0
σ – βΛ

1
σ in this equation. Inserting Eq. 2.84 for Λ

µ
ν, we find that

Λ
0
0 – βΛ

1
0 = γ – β(γβ) = 1

γ
,

Λ
0
1 – βΛ

1
1 = γβcos θ′  – β(γcos θ′) = 0,

Λ
0
2 – βΛ

1
2 = –γβ sin θ′  – β(–γsin θ′) = 0,

Λ
0
3 – βΛ

1
3 = 0.

(2.111)

As a consequence, the θ′-dependence responsible for the strange transformation behavior of the

four-momentum of the condenser under the Laue definition completely disappears under the

Rohrlich definition. Moreover, Eqs. 2.110–2.111 show that, under the Rohrlich definition of

four-momentum, stresses in the x′µ-frame do not contribute to the four-momentum in the xµ-

frame. Eq. 2.111 can be summarized as

Λ
0
σ – βΛ

1
σ = 1

γ
 δσ

0
. (2.112)

                                                
59 I would like to suggest that this may have contributed to the fact that the strange transformation behavior of
the electromagnetic part of the four-momentum of the condenser in the Trouton-Noble experiment never gained
the notoriety of the ‘4 3-puzzle’ in the transformation behavior of the electromagnetic part of the four-
momentum of the Lorentz-Poincaré electron. In the case of the electromagnetic part of the condenser in the
Trouton-Noble experiment, the deviation from the behavior of a relativistic point mass is so strong that it never
even becomes a puzzle!



Substituting this expression into Eq. 2.110, we find the following expressions for PLEM
µ  and

PLnon-EM
µ :

PREM
µ  = Λ

µ
ρ T ′EM

ρ0
 V ′,

 

PRnon-EM
µ  = Λ

µ
ρ T ′non-EM

ρ0
 V ′.

(2.113)

The quantities T ′EM
ρ0

 V ′ and T ′non-EM
ρ0

 V ′ in Eq. 2.113 are just  P′REM
ρ

 and P′Rnon-EM
ρ

, the

electromagnetic and non-electromagnetic parts of the system’s four-momentum in the x′µ-

frame, respectively. Inserting Eq. 2.84 for Λ
µ

ν and Eq. 2.100 for P′REM
ρ

 and P′Rnon-EM
ρ

 into

Eq. 2.113, we arrive at:

PREM
µ  = Λ

µ
ρP′REM

µ
 = γU ′EM, γβU ′EM, 0, 0 ,

 

PRnonEM
µ  = Λ

µ
ρP′RnonEM

µ
 = γU ′non-EM, γβU ′non-EM, 0, 0 .

(2.114)

From Eq. 2.114 one can read off expressions for PEM
R  and Pnon-EM

R , the electromagnetic and

non-electromagnetic parts of the ordinary momentum of the system under the Rohrlich

definition:

PEM
R  = γ U ′EM c2  v ,

 

P non-EM
R  = γ U ′non-EM c2  v .

(2.115)

Notice that PEM
R  and Pnon-EM

R  are indeed equal to the expression for PEM and Pnon-EM in Eq.

2.109, as was to be expected since under the Rohrlich definition, the four-momentum of any

system is a four-vector. Since PEM
R  and Pnon-EM

R  are in the direction of the velocity v, the

turning couples TEM
R  = – v  × PEM

R  and Tnon-EM
R  = – v  × Pnon-EM

R  will both be zero. In the

Rohrlich picture, there are no turning couples in the Trouton-Noble experiment whatsoever.

2.3.5 A closer look at the difference between the Laue and Rohrlich picture of what

happens in moving condensers: the argument for the kinematical nature of the Laue

effect. Perhaps the best way to bring out the difference between the Laue picture and the

Rohrlich picture of what happens in a charged moving condenser is to consider the following

variation on the Trouton-Noble experiment.60 Suppose we slowly change the angle θ′, slowly

so as to preserve the static character of the situation. Since the total energy is independent of

                                                
60 I will return to this variation on the Trouton-Noble experiment in section 4.2 (see Figs. 4.1–4.2).



θ′ (see Eq. 2.99), this can be done with arbitrarily small expenditure of work on our part. In

other words, we can slowly and adiabatically rotate the moving condenser around an axis

perpendicular to its velocity and parallel to its plates. I want to compare the Laue picture of what

happens in this experiment with the Rohrlich picture.

First of all, the shape of the condenser changes (cf. the discussion of Larmor’s account of

the Trouton-Noble experiment in section 1.3). This is understood to be a purely kinematical

effect. In the Rohrlich picture, this is all that happens.61 Not only will the total four-momentum

and the total angular momentum be conserved, the electromagnetic and non-electromagnetic

contributions to these quantities will be conserved separately as well. In the Laue picture, this is

not the case. The total four-momentum and the total angular momentum are, of course,

conserved, but the electromagnetic and non-electromagnetic contributions to these quantities

considered separately are not. From Eqs. 2.104–2.105, one can read off that, as θ′ goes from,

say, 0 to π/2, energy and momentum flow from the electromagnetic to the non-electromagnetic

part of the system. In terms of angular momentum, the situation is similar. Recall that the

turning couple is equal to minus the rate of change of angular momentum (cf. Eq. 2.50). With

TEMz
L  = – Tnon-EMz

L  ≈ – U ′EMβ
2

sin 2θ (cf. section 1.4, Eq. 1.39), this means that, as θ′ goes

from, say, 0 to π/4, angular momentum flows from the non-electromagnetic to the

electromagnetic part of the system.

Since we only find these manifestations of the Laue effect in the Laue picture and not in the

Rohrlich picture,62 it is clear that they are artifacts of the standard convention that Laue uses for

choosing spacelike hyperplanes in the definition of the four-momentum and the angular

momentum of spatially extended systems. This observation should not be construed as denying

the reality of these manifestations of the Laue effect. I do not mean to imply that at all. The

point is that the Laue effect is a kinematical rather than a dynamical effect. Its status is exactly

the same as the status of the more familiar kinematical effects in special relativity, viz. length

contraction and time dilation. Once we agree on the standard definition of ‘the length of a

moving rod’ or ‘the rate of a moving clock,’ moving rods are shorter than rods at rest and

clocks in motion do tick at a slower rate than clocks at rest. Still, we recognize that length

contraction and time dilation do not tell us anything about the dynamics of the systems we use

                                                
61 As we will see shortly, even the length contraction effect can be defined away in the Rohrlich picture.
62 The exchange of four-momentum and angular momentum in the xµ-frame that we found under the Laue
definition is directly related to the exchange of energy-momentum between the two constituents of the system in

the x′µ-frame, in which the system is at rest. This exchange of energy-momentum only involves the stress
components of the energy-momentum tensors. Under the Rohrlich definition, these stress components do not

give rise to momentum or angular momentum in the xµ-frame. Hence, there will be no exchange of four-

momentum and angular momentum in the xµ-frame under the Rohrlich definition.



as clocks or rods, but only about their spatio-temporal behavior and about our conventions in

calling one rather than another spacelike slice of the rod’s bundle of worldlines ‘the length of

the moving rod,’ and in calling one rather than another timelike slice of the clock’s bundle of

worldlines ‘the rate of the moving clock.’

The situation with the Laue effect is fully analogous. Once we agree on the Laue definitions

of four-momentum and angular momentum of spatially extended systems, the Laue effect and

its manifestations in the experiment I just described are as tangible as any other effect. Still, we

have to recognize that the effects only reflect the spatio-temporal behavior of the system under

consideration and our convention of picking one rather than another spacelike slice of its bundle

of worldlines in defining its four-momentum and angular momentum in a frame in which it is

moving.

It can hardly be denied, I think, that both in the case of the actual Trouton-Noble experiment

and in the case of the variation on it considered above, the Rohrlich picture of what happens fits

much better with our physical intuitions than the Laue picture. After all, in a system that is

moving uniformly, retaining static equilibrium while being slowly and adiabatically rotated in its

rest frame, we would not expect its constituents to exchange momentum and angular

momentum. The Rohrlich picture with no such exchanges is clearly more satisfactory. There is

a price for this though. Recall that the physical interpretation of Rohrlich’s definition of four-

momentum is problematic (see the discussion following Eq. 2.43). What we mean by ‘the four-

momentum of a spatially extended system in some arbitrary xµ-frame’ would seem to be an

ordinary space integral in the xµ-frame over the system’s four-momentum density and not, as

Rohrlich wants to have it, some integral over a tilted hyperplane in the xµ-frame.

It will be helpful to explore the analogy with length contraction in somewhat greater detail.

Look back at Fig. 2.5 showing the bundle of worldlines WC of a condenser at rest with respect

to the x′µ-frame and in uniform motion with respect to the xµ-frame. How do we define ‘the

length of the condenser in the xµ-frame?’ Under the standard definition, ‘the length of the

condenser in the xµ-frame’ is the length of the intersection ΣL∩WC, where ΣL is a hyperplane

of simultaneity in the xµ-frame. Another option would be to define ‘the length of the condenser

in the xµ-frame’ as the length of the intersection ΣR∩WC, where ΣR is a hyperplane of

simultaneity in the condenser’s rest frame. One will recognize that the former definition is

analogous to the Laue definitions of four-momentum and angular momentum in Eq. 2.42 and

Eq. 2.48, while the latter definition is analogous to the Rohrlich definitions of those same

quantities in Eq. 2.43 and Eq. 2.49. Under the Laue definition of ‘the length of the condenser in

the xµ-frame,’ the moving condenser will exhibit the length contraction effect; under the

Rohrlich definition, it will not. Length contraction thus is an artifact of our convention of

picking a spacelike hyperplane in defining the length of an object in some arbitrary xµ-frame.



From this observation, I may add, we could infer, if we did not already realize this, that length

contraction is a kinematical effect. The point I want to make here is that the standard frame-

dependent Laue definition of length in some arbitrary xµ-frame is perfectly reasonable. So, we

have no trouble accepting the length contraction effect it entails, even though the effect is highly

counter-intuitive. Likewise, it is perfectly reasonable to retain the standard frame-dependent

Laue definitions of the four-momentum and angular momentum of spatially extended systems,

and to accept the Laue effect these definitions entail, along with the counter-intuitive exchanges

of four-momentum and angular momentum in the variant on the Trouton-Noble experiment I

described.

Whether one adopts Laue definitions or Rohrlich definitions is, in the final analysis, a

matter of convention. However, if we adopt the standard Laue definitions, we have to remember

that effects such as length contraction, time dilation, and the Laue effect are all purely

kinematical effects—they reflect the standard spatio-temporal behavior of systems in

Minkowski space-time, our conventions about slicing space-time one way or another, and

nothing else.

To conclude this section, I want to anticipate a possible objection to my analysis and respond to

it. The most convincing way to argue for my claim that the Laue effect is purely kinematical is

through the following modus ponens argument. If length contraction is purely kinematical, then

the Laue effect is purely kinematical as well. Length contraction clearly is purely kinematical.

Therefore, the Laue effect is also purely kinematical. 

According to a well-known philosophical proverb, one man’s modus ponens is another

man’s modus tollens. All the hard work that went into establishing the conditional premise of

my argument would thus come to naught if this premise were to end up in the hands of those

dissidents from relativistic orthodoxy who want to deny that length contraction is purely

kinematical (see, e.g., Bell 1987,63 Dieks 1984, Prokhovnik 1963). Since the Laue effect

                                                
63 In an interview published in 1986 (Davies and Brown 1986), Bell argues that the “cheapest solution” to the
problems raised by the Einstein-Podolsky-Rosen argument, the Bell inequalities, and the Aspect experiments
would be to go back to pre-relativistic ether theory (my favorite simple derivation of the quantum mechanical
predictions for EPR-type experiments can be found in Albert 1992, Ch. 3, pp. 61–72; my favorite simple
derivation of the Bell inequalities can be found in Penrose 1989, pp. 279–285). Bell went on record saying
among other things: “I would say  that the cheapest resolution is something like going back to relativity as it
was before Einstein, when people like Lorentz and Poincaré thought that there was an aether—a preferred frame
of reference—but that our instruments were distorted by motion in such a way that we could not detect motion
through the aether [let me emphasize that Lorentz only started thinking along those lines, under Einstein’s
influence, after 1905]. Now, in that way you can imagine that there is a preferred frame of reference, and in this
preferred frame of reference things do go faster than light. But then in other frames of reference when they seem
to go not only faster than light but backwards in time, that is an optical illusion” (Davies and Brown 1986, p.
49). Bell adds: “what is not sufficiently emphasized in the textbooks, in my opinion, is that the pre-Einsteinian
position of Lorentz and Poincaré, Larmor and FitzGerald was perfectly coherent, and is not inconsistent with
relativity theory. The idea that there is an aether, and these FitzGerald contractions and Larmor dilations occur,



undoubtedly looks a lot less like a kinematical effect than length contraction, they might want to

bolster their case with the following modus tollens argument. If length contraction is purely

kinematical, then the Laue effect is purely kinematical as well. Clearly, the Laue effect is not

purely kinematical. Therefore, as the dissident has been saying all along, length contraction is

not purely kinematical either.

Why would anybody want to deny that length contraction is purely kinematical? I can think

of several reasons, good and bad.64 First, there is a sound pedagogical reason. By calling length

contraction purely kinematical one runs the risk of perpetuating the persistent misconception,

particularly prevalent among philosophically naive physics undergraduates, that length

contraction is not a real effect. As I emphasized, kinematical effects are very real. A good way to

drive home that point is to stress that it is a highly non-trivial empirical fact about our actual

world that physical systems to a very good approximation exhibit the spatio-temporal behavior

that results in us detecting the phenomenon of length contraction once we agree to use certain

spacelike slices of the system to define its length in various Lorentz frames.

Does this last observation imply that length contraction is at least to some extent dynamical?

That depends on one’s definition of what counts as a purely kinematical effect. At first sight, it

looks as if under the definition licensed by the dominant tradition in modern philosophy of

space and time,65 length contraction is at least partly dynamical. This first impression is

misleading. In this modern tradition, all space-time theories are formulated as sets of models of

the form <M, Oi>, where M is a differentiable manifold and where the Oi’s are geometric object

fields. Some of the Oi’s encode the space-time structure, others describe the contents of space-

time. The natural distinction between kinematics and dynamics in this approach seems to be the

following. As long as we are talking only about those geometric object fields encoding the

space-time structure, we are talking kinematics, the moment we start talking about geometric

object fields describing the contents of space-time, we are talking dynamics. If we understand

length contraction to be part of the spatio-temporal behavior of systems in a Minkowski space-

time, as I want to do, we are definitely talking about more than just the geometric object fields

encoding the space-time structure and we would therefore seem to be forced to accept that

length contraction is at least partly dynamical. This argument is flawed. It conflates ontology

with epistemology.66 It is true that we need physical systems—systems to be used as rods and

                                                                                                                                                      
and that as a result the instruments do not detect motion through the aether—that is a perfectly coherent point of
view” (ibid.). I agree with Bell that the theory he outlines is perfectly coherent and feasible. Yet, as I will show
in chapter four, there are very strong arguments (of the potent ‘common cause’-variety) for making this Dublin
FitzGerald-Larmor-Bell interpretation of special relativity an extremely unattractive basis for an alternative to the
standard Copenhagen interpretation of quantum mechanics.
64 My views on this issue were shaped in discussions with Jon Dorling and Dennis Dieks.
65 See, e.g., Sklar 1974, Friedman 1983, Earman 1989, and Norton 1992b.
66 I am grateful to John Norton for pointing this out to me.



clocks, say—to probe the space-time structure. But we can still identify the properties we

discover with these clocks and rods as properties of the space-time structure. By analogy, the

position of a star is a purely astronomical fact that does not become at least in part optical

because we happen to ascertain this fact with a telescope. So, on closer examination, the

definition of kinematical licensed by modern philosophers of space and time is such that length

contraction is purely kinematical.

I can understand why people with otherwise very different views, such as Dennis Dieks and

John Stachel, are not fully satisfied with this analysis. It seems to reify the space-time structure

more than necessary.67 Length contraction, on the modern view, is a geometrical property of the

space-time arena and our epistemic access to such properties is through the spatio-temporal

behavior of systems in this arena. Why not simply identify length contraction with the spatio-

temporal behavior of physical systems and avoid this distinction between a space-time arena and

its contents? I sympathize with this position, and I will continue to cast my arguments in terms

of the spatio-temporal behavior of physical systems. I will use the terms kinematics and

dynamics to distinguish between the spatio-temporal behavior and other behavior of physical

systems. However, I do want to emphasize that this way of distinguishing between kinematics

and dynamics is perfectly in line with the distinction between kinematics and dynamics in the

dominant tradition in modern philosophy of space and time.

Given this clarification of the notions kinematical and dynamical, is there still room for

maintaining that length contraction is at least partially a dynamical effect? I think not. But I do

want to address a very seductive neo-Lorentzian prejudice that might lead people to think

otherwise. The problem is that the spatio-temporal behavior predicted by the special theory of

relativity is highly counter-intuitive. It therefore seems to cry out for further explanation. This

demand for further explanation, however, has no other basis than the completely unwarranted

assumption that somehow the natural spatio-temporal behavior of systems is behavior in

accordance with our every day Newtonian intuitions about space and time and that explanations

are therefore required whenever we have deviations from that Newtonian norm.68 The spatio-

temporal behavior of systems in some possible world obviously depends on the space-time

structure in that world. In the absence of gravitational fields, the spatio-temporal behavior of

systems in our actual world is that of systems in a Minkowski space-time. I want to emphasize

that in explaining this behavior nothing needs to be said over and above the simple assertion that

                                                
67 Or, as John Stachel has put it, in Marxist fashion, it reeks of “fetishism of mathematics” (Stachel 1994, pp.
148–151).
68 Cf. the analysis of explanation in van Fraassen 1980, pp. 134–153.



the structure of space-time in our actual world is that of a Minkowski space-time.69 It simply

makes no sense to demand an explanation for why the spatio-temporal behavior is not the

spatio-temporal behavior one would have in some other space-time structure we can conjure up,

unless, for some reason, one believes that, despite appearances to the contrary, the real structure

of our actual space-time is not (not even to a good approximation) that of a Minkowski space-

time, but, say, that of a Newtonian space-time, i.e., unless one has been unable to fully free

oneself from neo-Lorentzian prejudices.

The upshot then is that, given my definition of the term ‘kinematical,’ one can only deny the

second premise of my modus ponens argument if one assumes that, even in the absence of

gravitational fields, the space-time structure of our actual world is not really Minkowskian. That,

of course, provides very strong justification for that premise. So, what can be inferred from the

insight that the Laue effect has the same status as length contraction, is that the Laue effect is

purely kinematical, in the sense in which I use this term, not that length contraction is at least

partially dynamical after all.

                                                
69 Notice that this claim does not hinge on the ontological status—substantivalist or relationalist—one wants
to ascribe to the space-time structure.



2.4 A ‘forces’-account of the Trouton-Noble experiment; the role of the
relativity of simultaneity

2.4.1 Laue’s attempt to give a more intuitive account of the Trouton-Noble experiment.

In his work on relativity theory in 1911–1912, Laue would emphasize again and again that the

Laue effect exhibited in the Trouton-Noble experiment and in the Lewis-Tolman bent lever

thought experiment (see section 2.5) strongly supports relativistic mechanics over classical

Newtonian mechanics. In a short paper entitled “Remarks on the law for levers (Hebelgesetz)

in the theory of relativity,” for instance, he writes:

To sustain straightline uniform motion [in Newtonian mechanics] no turning couple is
needed. This is different in relativity theory: for a body with elastic stresses [to sustain
straightline uniform motion] a turning couple is generally required. (Laue 1912a, p. 163)

After going over the example of the Lewis-Tolman bent lever, Laue returns to the Trouton-

Noble experiment in the last paragraph of the paper:

The point of this experiment, as is well-known, is to detect the turning couple that a
condenser in uniform and straightline motion experiences from its electromagnetic field
according to the unanimous prediction of all electromagnetic theories. The experimental result
is that a rotation does not occur. One cannot conclude from this that the aforementioned
turning couple does not exist. The material parts of the condenser contain elastic stresses and
are therefore in need of a turning couple to move in a straight line without rotation. The
turning couple exerted by the field is just the turning couple needed for this purpose—in this
sense, the Trouton-Noble experiment decides in favor of the dynamics of relativity[70] theory
and against Newtonian mechanics. (Ibid., p. 164)71

As Laue points out in the introduction of the paper “On the theory of the experiment of

Trouton and Noble” published later that year, the support relativity theory receives from the

Trouton-Noble experiment in this manner is much harder to appreciate than the support it

receives from the Michelson-Morley experiment (Laue 1912b, p. 168). Part of the problem is

that both his and Lorentz’s treatment of the Trouton-Noble experiment is based on the new and

unfamiliar concept of electromagnetic momentum (ibid., p. 169). As we saw in sections 1.4 and

2.3, both Lorentz (1904b) and Laue (1911a) use the equation T = – v  × P  to compute the

turning couple on the condenser (see Eq. 1.38 and Eqs. 2.59–2.60). A more intuitive account of

the experiment would be obtained if the turning couple were to be evaluated through an equation

                                                
70 Laue calls ‘the dynamics of relativity’ what I (following the usage in Planck 1908) called the ‘general
dynamics’ of the special theory of relativity.
71 With the advantage of over eight decades of hindsight, one will recognize two inaccuracies in this passage.
First, electrodynamics does not necessarily predict a turning couple on a moving condenser. Under the Rohrlich
definition of four-momentum and angular momentum, it does not. Second, as I showed in section 2.3, the
experiment illustrates a purely kinematical effect in relativity theory. I want to emphasize that the correction of
these inaccuracies actually strengthens rather than weakens Laue’s argument in this passage.



of the familiar form T = x  × F , directly giving the moments of the various forces. This is what

Laue set out to do in this new paper devoted exclusively to the Trouton-Noble experiment. The

question he wants to answer is:

What are the pairs of forces producing the turning couple and where on the condenser do they
act? (Laue 1912b, p. 169)

In section 1.2, I gave a simplified version of the ‘forces’-account of the Trouton-Noble

experiment that Laue offers to answer this question. Even that simplified version, I am afraid,

does not quite succeed in lending the Trouton-Noble experiment the sort of intuitiveness

(Anschaulichkeit, ibid., p. 168) that is so characteristic of the Michelson-Morley experiment.

Laue’s own rigorous version does far worse on this score. Laue’s analysis is based on an exact

solution for the field of the condenser, a solution taken from Helmholtz (Laue 1912b, p. 171).

Since what happens at the edges of the plates of the condenser turns out to be responsible for

half the turning couple (Laue 1912b,  p. 176; Pauli 1921, pp. 129–130), it looks as if there is no

way around dealing with the edge effects in this manner. Fortunately, this is not the case.

Exactly how the field drops off at the edges does not affect the turning couple at all. The simple

behavior at the edges that I assumed in section 2.3, where the field abruptly drops from its

constant value inside the condenser to its zero value outside, gives the exact same turning couple

as the far more complicated actual behavior at the edges. Rather than going over Laue’s

unnecessarily complicated derivation based on the solution taken from Helmholtz, I will

therefore present a much simpler but essentially equivalent ‘forces’-account of the Trouton-

Noble experiment on the basis of the idealized solution for the field of the condenser in Eq.

2.87. My ‘forces’-account will still not put the Trouton-Noble experiment on a par with the

Michelson-Morley experiment in terms of intuitiveness, but it will give us a more intuitive grasp

of some of the conclusions we reached in section 2.3

2.4.2 A stream-lined version of Laue’s ‘forces’-account of the Trouton-Noble

experiment. As we saw in section 1.4, the starting point in Lorentz’s derivation of the equation

T = – v  × P  both he and Laue used to compute the turning couple in the Trouton-Noble

experiment was (see Eq. 1.43)

T = x  × f d3x, (2.116)

where for f Lorentz substituted the Lorentz force density f = ρ (E + v × B) (see Eq. 1.44). As I

already pointed out in section 1.4 (see Eq. 1.54), this force density forms the spatial part of the

relativistic four-force density fµ, defined as (see, e.g., Laue 1911a, p. 139, Eq. (1)):



f µ ≡ –∂νT µν. (2.117)

From the expressions in Eq. 2.88 and Eq. 2.96 for T ′EM
µν

 and T ′non-EM
µν

 in the condenser of the

Trouton-Noble experiment, it is clear that the four-force density vanishes everywhere except on

the six sides of the condenser (cf. Eq. 2.90). The contributions to the turning couple will come

from the force density on four of these six sides: the top and bottom plates and the front and

rear ends of the condenser.

The forces on these four sides can all be represented by forces acting at their center without

changing the value of the resulting turning couple. Consider, e.g., the force on the top plate. The

uniform force density on this plate can be represented by a sharply peaked force density which

is just the uniform density multiplied by (a) the area A = ab of the top plate and (b) a delta

function which is zero everywhere except on the worldline WT of the center of the top plate. The

force densities on the bottom plate and on the front and rear ends of the condenser can likewise

be represented by force densities that are sharply peaked on the worldlines WB, WF, and WR of

the centers of these three sides. Fig. 2.8 shows the projection of these worldlines on the xt-plane

of the xµ-frame in which the condenser is moving with its plates tilted at angle θ with respect its

velocity (cf. Fig. 2.5 and Fig. 2.6). The shaded area represents the bundle of worldlines WC of

the condenser as a whole.

x

x′

ct′ct

WT WB WFWR

WC

Figure 2.8 The worldlines of selected points of the condenser

For these sharply peaked force densities, Eq. 2.116 reduces to:

T = xR × FR + xT × FT + xB × FB + xF × FF (2.118)

where FR and FF are equal to db times the constant force density f on the rear and front ends of

the condenser, respectively (db is the area of these sides); and where FT and FB are equal to ab



times the constant force density f on the top and bottom plates, respectively (ab is the area of the

plates). Eq. 2.118 has just the form Laue was after in his ‘forces’-account of the Trouton-

Noble experiment. It shows the forces responsible for the turning couple and where they act.

We can write down Eq. 2.118 both for the electromagnetic and for the non-electromagnetic

forces. The non-electromagnetic forces will, of course, just be the opposite of the

electromagnetic forces, so that there is no net turning couple on the condenser.

The easiest way to calculate the various forces in Eq. 2.118 is as follows. First, I calculate

the forces in the x′µ-frame I used in section 2.3 in which the plates are perpendicular to the y-

axis and in which both the electromagnetic and the non-electromagnetic energy-momentum

tensors are diagonal. Then, I calculate the forces in a new rest frame, that I will continue to call

the x′µ-frame, in which the plates are tilted at an angle θ′ with respect to the xz-plane. Finally, I

use Planck’s transformation law for forces (see Eq. 1.9) to find the forces in the xµ-frame in

which the condenser is moving in the x-direction with its plates tilted at an angle θ with respect

to its velocity v. This final step is completely analogous to the calculation I went through in the

simplified ‘forces’-account in section 1.2 (Eqs. 2.5–2.15). I will do the calculations for the

electromagnetic forces. The non-electromagnetic forces only differ from these by a minus sign.

To compute the electromagnetic force density on the various sides of the condenser in the

conveniently chosen rest frame of section 2.3, I evaluate the spatial components of Eq. 2.117 for

the condenser’s electromagnetic energy-momentum tensor T ′EM
µν

 (see Eq. 2.88):

 f ′EM
i

 = –∂′νT ′EM
iν

. (2.119)

Consider the x-component of this equation:

 f ′x
EM

 = – ∂′1T ′EM
11

 = – u′ 
∂f(x′, y′, z′)

∂x′
. (2.120)

Inserting Eq. 2.89 for f(x′, y′, z′), we find

 f ′x
EM

 = – u′ δ a
2

 + x′  – δ a
2

 – x ′  θ d
2

 –  y′  θ b
2

 –  z′ , (2.121)

where I used that θ a
2

 –  x′  can be written as

θ a
2

 –  x′  = θ a
2

 + x′  θ a
2

 – x ′ , (2.122)

and that the derivative of the step-function θ(x) is the Dirac delta function δ(x). So, we have a

uniform force density f ′x
EM

 = –u′ on the y′z′-side of the condenser at x′ = –a/2 (the rear end); a



uniform force density f ′x
EM

 = u′ on the y′z′-side of the condenser at x′ = a/2 (the front end);

and  f ′x
EM

 = 0 everywhere else. So, in the x′µ-frame, we have forces ±F′EM
//

 at the center of the

front and rear ends of the condenser, which are parallel to the plates (hence the superscript ‘//’)

and which are of magnitude

 F ′EM
//

 = u′ ⋅ db = 
U ′EM

a , (2.123)

where I used that u′ = U ′EM/ V ′ (see Eq. 2.98) and that V ′ = abd.

A completely analogous argument can be given for the y- and z-components of f ′EM. Since

the forces in the z-direction do not contribute to the turning couple, I will not bother to write

down the result for f ′z
EM

. The result for f ′y
EM

 is as follows. There is a uniform force

density f ′y
EM

 = u′ on the x′z′-side of the condenser at y′ = –d/2 (the bottom plate); a uniform

force density f ′y
EM

 = –u′ on the x′z′-side of the condenser at y′ = d/2 (the top plate);

and f ′y
EM

 = 0 everywhere else. So, in the x′µ-frame, we have forces ±F′EM
⊥

 at the center of the

top and bottom plates of the condenser, which are perpendicular to the plates (hence the

superscript ‘⊥’) and which are of magnitude

 F ′EM
⊥

 = u′ ⋅ ab = 
U ′EM

d
. (2.124)

In Fig. 2.9, these forces, along with the forces F′non-EM
//

 and F′non-EM
⊥

 exactly opposite to them,

are drawn in a rest frame in which the plates of the condenser are tilted with respect to the xz-

plane at an angle θ′. In the remainder of the section, I will call this rest frame the x′µ-frame.

Fig. 2.9 is misleading in that the F′
⊥

 forces are actually much bigger than the F′
//
 forces.

From Eqs. 2.123–2.124, it follows that

F′
⊥

F′
//

 = a
d . (2.125)

Since, in order to be able to ignore edge effects, we had to assume that the length a of the plates

is much larger than the distance d between them, it will be the case that a/d >>  1. At first glance,

this suggests that we were fully justified in section 1.2 to focus on the F′
⊥

 forces at the center

of the plates and to ignore the F′
//
 forces at the edges. However, the turning couples coming

from the small F′
//
 forces (in a frame in which the condenser is moving) will be of the same

order of magnitude as the turning couples coming from the F′
⊥

 forces, because the small forces

at the edges have a big arm of the order of a, whereas the big forces at the center have a small



arm of the order of d. Actually, as we will see shortly, the two turning couples are exactly equal

(cf. Laue 1912b, p. 176; Pauli 1921, pp. 129–130).

d a
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Rear

Front

x′

y′

F′non-EM
⊥

F′EM
⊥

F′EM
//

F′non-EM
//

Figure 2.9 Forces in a charged condenser at rest.

Now that we know the forces on the condenser at rest, we can apply the same argument we

applied in section 1.2 to find the turning couples produced by the various forces on the

condenser in motion. I will go through the calculation for the total turning couple produced by

the electromagnetic forces. The total turning couple produced by the non-electromagnetic forces

will be equal and opposite to that of the electromagnetic turning couple.

For a condenser at rest, the electromagnetic forces, of course, do not give a turning couple at

all:

T′EM = d ′ × F′EM
⊥

 + a ′ × F′EM
//

 = 0, (2.126)

where d′ is the vector from the point labeled ‘bottom’ to the point labeled ‘top’ in Fig. 2.9 and

a′ is the vector from ‘rear’ to ‘front’. F′EM
⊥

 and F′EM
//

 are the electromagnetic forces at ‘top’

and ‘front’, respectively.
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Figure 2.10 Forces in a charged moving condenser.

Fig. 2.10 shows the corresponding forces on the condenser in motion. As will be shown below,

F⊥⊥ a  and F/ /⊥ d .72 These forces do give a non-vanishing turning couple

TEM = d  × FEM
⊥  + a  × FEM

// . (2.127)

From the geometry of Figs. 2.9 and 2.10, one finds for d and a:

d = diag(1/γ, 1, 1) d′ = d – 
sin θ′

γ
, cos θ′ , 0

a = diag(1/γ, 1, 1) a′ = a 
cos θ′

γ
, sin θ′ , 0 .

(2.128)

Using Planck’s transformation law for forces (Eq. 1.9), one finds for FEM
⊥  and FEM

// :

FEM
⊥  = diag(1, 1/ γ, 1/ γ) F ′EM

⊥
 = 

U′EM

d
 sin θ′ , –

cos θ′
γ

, 0

FEM
//  = diag(1, 1/ γ, 1/ γ) F ′EM

//
 = 

U′EM
a  cos θ′ , 

sin θ′
γ

, 0 .

(2.129)

                                                
72 As Lorentz already noticed in his treatment of electrostatics in frames of reference moving uniformly with
respect to the ether, a Coulomb force in a system at rest in the ether which is perpendicular to a certain surface
becomes a Coulomb force perpendicular to the corresponding surface in the corresponding state moving with
respect to the ether (see, e.g., Lorentz 1899b, p. 261).



Inserting Eqs. 2.128–2.129 into Eq. 2.127, we arrive at:73

TEM = 0, 0, dxFEMy
⊥  – dyFEMx

⊥  + axFEMy
/ /  – ayFEMx

/ /

= 0, 0, 2 U′EM
sin θ′  cos θ′

γ2
 – cos θ′  sin θ′

= 0, 0, – U′EM β
2
 sin 2θ′ .

(2.130)

which agrees with the results found in chapter one (see, e.g., Eq. 1.3974 ).

2.4.3 Forces, energy, and the relativity of simultaneity: Einstein on situations similar

to those in the Trouton-Noble experiment. The expressions for the forces on the condenser

in Eq. 2.129 can be used to gain some insight into the odd transformation behavior of the

condenser’s electromagnetic and non-electromagnetic energy in the Laue picture. In the

Rohrlich picture, the total energy in the xµ-frame, Utot = γU ′tot (see Eq. 2.99), is divided into

(see Eq. 2.114)

UEM
R  = γU ′EM,        Unon-EM

R  = γU ′non-EM. (2.131)

In the Laue picture, the total energy in the xµ-frame is divided into (see Eqs. 2.104–2.105):75

                                                
73 From Eqs. 2.128–2.129, it also follows that F⊥ ⋅ a = 0 and F / / ⋅ d = 0. Hence, Fig. 2.10 accurately reflects

that F⊥ is perpendicular to a, and that F / / is perpendicular to d.
74 Notice that to order β2 we can set θ′ = θ.
75 With the help of Eqs. 2.131 and 2.132, we can assess Larmor’s ‘energy’-account of the Trouton-Noble
experiment (see section 1.3) from the point of view of both the Laue and the Rohrlich account of the experiment
in special relativity.

From the Laue point of view, the assessment of Larmor’s analysis is the same as from the point of view of
Lorentz’s theory (see section 1.4, Eqs. 1.40–1.42). Contrary to what Larmor claimed, the electromagnetic
energy in a moving condenser does depend on θ, the condenser’s orientation with respect to its velocity even if
we assume the Lorentz-FitzGerald contraction. It does not follow, however, that there is a net turning couple.
The non-electromagnetic energy—and this would probably have come as somewhat of a surprise to Larmor who
tacitly and quite reasonably assumed that the non-electromagnetic part of the condenser would satisfy the
Galilean relativity principle—also depends on θ, in such a way that the total energy does not.

The Rohrlich picture of the Trouton-Noble experiment is considerably closer to Larmor’s account of the
experiment. In the Rohrlich picture, as in the Larmor picture, there is no electromagnetic turning couple on a
moving condenser. In both cases, this can be understood on the basis of the θ-independence of the
electromagnetic energy of the condenser. However, even from the Rohrlich point of view, Larmor’s analysis can
not be accepted. No matter whether we consider Larmor’s derivation of the electromagnetic energy in a moving
condenser from the Laue point of view or from the Rohrlich point of view, Larmor fails to take into account the
energy necessary to build up the momentum that is generated upon charging the moving condenser. This energy

is equal to v Px (see Eq. 1.40). Using Eq. 2.115 for Px, we find that this energy is equal to γ β2U ′EM in the
Rohrlich picture. Adding this to the energy U ′EM/γ found by Larmor (see Eq. 1.20), we recover Eq. 2.131 in
the Rohrlich picture:



UEM
L  = γU ′EM + γU ′EMβ

2
cos2θ′  – γU ′EMβ

2
sin2θ′ ,

 

Unon-EM
L  = γU ′non-EM – γU ′EMβ

2
cos2θ′  + γU ′EMβ

2
sin2θ′ .

(2.132)

With the help of Eq. 2.129, we can interpret the puzzling θ′-dependent terms in Eq. 2.132

directly in terms of the relativity of simultaneity. This very elegant way of looking upon energy

transformation equations such as Eq. 2.132 is due to Einstein (1907b, pp. 373–377).76

Look back at the Minkowski diagram in Fig. 2.8 showing the worldlines of the points of the

condenser at which the forces act, along with two frames of reference, the x′µ-frame in which the

condenser is at rest, and the xµ-frame in which it is moving. At some point, viz. when the

condenser was charged, the forces on the condenser were “switched on.” From the way we

proceeded—calculating the field in the x′µ-frame and then transforming to the xµ-frame—it is

clear that we have been considering a situation in which the condenser was charged in its rest

frame. This means that the forces were switched on simultaneously in the x′µ-frame. Hence,

they were not switched on simultaneously in the xµ-frame. In the xµ-frame, as can be read off

directly from the Minkowski diagram in Fig. 2.8, the forces at the rear end of the condenser

were switched on first, followed by the ones at the top, the ones at the bottom, and finally the

ones at the front end of the condenser. This insight is the key to understanding the θ′-dependent

terms in Eq. 2.132.

Suppose the forces were switched on in the x′µ-frame at t′=0. Let ‘R0,’ ‘T0,’ ‘B0,’ and ‘F0’

be the points in space-time at which the forces FR, FT, FB, and FF, respectively, were switched

on. As one can see directly in Fig. 2.8, this means that R0, T0, B0, and F0 are the intersections of

the x′-axis with the worldlines WR, WT, WB, and WF, respectively. The xµ-coordinates of these

events are related to their x′µ-coordinates through xµ = Λµν x′ν, where Λµν is the matrix for a

                                                                                                                                                      

U ′EM/γ + γ β2U ′EM = γ U ′EM 1

γ2
 + β2  =  γ U ′EM.

The discrepancy between the Larmor and the Rohrlich accounts of the Trouton-Noble experiment can also, and
perhaps more intuitively, be expressed as follows. Larmor, in effect, calculated the energy of the condenser in a
co-moving Galilean frame (see sections 1.2 and 1.3). An energy U ′EM/γ for a Galilean co-moving observer is
an energy U ′EM for a Lorentzian co-moving observer (cf. Fig. 2.5: the Galilean co-moving observer multiplies
the energy density in the condenser’s rest frame by the length of the intersection ΣL∩ WC; the Lorentzian co-
moving observer multiplies that same energy density by the length of the intersection ΣR∩ WC). For an
observer at rest in the ether this will be an energy γU ′EM, the sum of the rest energy U ′EM and the kinetic
energy U ′EM(1 – γ). This is just the energy in Eq. 2.131. Lacking the notion of the inertia of energy, Larmor
did not take into account the kinetic energy term.   

I also want to emphasize that it does not make much sense to credit Larmor in 1902 with the Rohrlich idea
of integrating electromagnetic energy density over a hyperplane of simultaneity in the condenser’s rest frame.  
76 Cf. Pauli 1921, pp. 126–127. See also Becker 1962, I, pp. 400–401 and Norton 1992a, pp. 48–49. I am
grateful to Michael Pointer for drawing my attention to this argument of Einstein.



boost in the negative x-direction. Consider the force FEM
⊥  on the top plate and the force –FEM

⊥

on the bottom plate. The former is switched on a time interval tB0 – tT0 before the latter. Using

xµ = Λµν x′ν, we can calculate the length of this time interval:

c tB0 – tT0  = γ ct′B0 + βx′B0  – γ ct′T0 + βx′T0 . (2.133)

Inserting t′B0 = t′T0 and x′B0 – x ′T0 = d sin θ′ , we obtain:

tB0 – tT0 = 1c γβd sin θ′ (2.134)

During this time interval, the condenser moves a distance v tB0 – tT0  and the force FEM
⊥  on the

top plate does a positive amount of work ∆W1 that is not compensated by a negative amount of

work done by the force –FEM
⊥  on the bottom plate, which has not been switched on yet. Using

Eq. 2.129 for FEM
⊥ , we find that:

∆W1 = FEMx
⊥  v tB0 – tT0

=
U′EM

d
sin θ′  vc γ βd sin θ′

= U′EM γβ
2

sin2θ′ .

(2.135)

The change ∆U1 in energy of the system is minus the work ∆W1 done by the system. Hence,

the fact that FEM
⊥  on the top plate is switched on before –FEM

⊥  on the bottom plate is

responsible for a contribution

∆U1 = –∆W1 = –U′EM γβ
2

sin2θ′ . (2.136)

to the total energy of the system. This is precisely the last term in the expression for UEM
L  in

Eq. 2.132. The other three θ′-dependent terms in Eq. 2.132 can be interpreted in exactly the

same way.

Consider the force –FEM
//  at the rear end of the condenser and the force FEM

//  at the front

end. The former is switched on a time interval tF0 – tR0 before the latter. The length of this time

interval is given by (cf. Eqs. 2.133–2.134):

tF0 – tR0 = 1c γβa cos θ′ . (2.137)

During this time interval, the condenser moves a distance v tF0 – tR0  and the force –FEM
//  at the

rear end does a negative amount of work ∆W2 that is not compensated by a positive amount of



work done by the force FEM
//  at the front end, which has not been switched on yet. Using Eq.

2.129 for FEM
// , we find that:

∆W2 = – FEMx
/ /  v tF0 – tR0

= –
U′EM

a cos θ′  vc γ βa cos θ′

= –U′EM γβ
2

cos2θ′ .

(2.138)

This gives a contribution ∆U2=–∆W2 to the total energy of the system. This is just the second

term in the expression for UEM
L  in Eq. 2.132. The non-electromagnetic forces Fnon-EM

⊥  and

Fnon-EM
//  will likewise give contributions –∆U1 and –∆U2, which account for the θ′−dependent

terms in the expression for Unon-EM
L  in Eq. 2.132.

This is a remarkable insight on Einstein’s part. It amounts to realizing that the θ′−dependent

terms in the expressions for the electromagnetic and non-electromagnetic energy in the xµ-

frame stem from the fact that we evaluate the system’s energy over a hyperplane of simultaneity

in the xµ-frame rather than over a hyperplane of simultaneity in the x′µ-frame, the system’s rest

frame. This, of course, is just the difference between the Laue and the Rohrlich picture that we

analyzed in great detail in section 2.3. Recall that the hyperplane ΣL used to define the system’s

energy in the Laue picture is a hyperplane of simultaneity in the xµ-frame, whereas the

hyperplane ΣR used to define the system’s energy in the Rohrlich picture is a hyperplane of

simultaneity in the x′µ-frame. We can thus credit Einstein in 1907 with a deeper understanding

of this aspect of the Trouton-Noble experiment than Laue in 1911–1912.

2.4.4 Toward a more intuitive understanding of the kinematical nature of the Laue

effect. As I mentioned in the introduction to chapter two, the relativity of simultaneity is also

what makes it possible for a closed non-static system—as opposed to a closed static

system—to rotate in one frame but not in another. Consider the situation in Fig. 2.11, which

shows the plates of a charged condenser at rest in the x′µ-frame suspended on wires that prevent

the plates from collapsing onto one another under the influence of their mutual Coulomb

attraction. The plates, the charges they carry, the field these charges generate, and the supporting

wires form a closed static system. At the points marked ‘×’ in Fig. 2.11, we have devices that

can cut the wires at those points. These devices are activated by built-in timers.77 Suppose that

the timers are all synchronized in the x′µ-frame and that they activate the cutting devices at t′ =

0. At that point, the plates will start accelerating toward one another. Before t′ = 0, the plates, the

                                                
77 I am grateful to John Norton for suggesting this model to me.



charges they carry, and the electromagnetic field form an open static system: the system

exchanges energy-momentum with the wires. After t′ = 0, the plates, the charges they carry, and

the electromagnetic field form an closed non-static system. No energy-momentum is entering or

leaving the system. After a short time, the plates will collide, neutralize each other’s charge, and

annihilate the electromagnetic field. Fig. 2.11 shows the plates at three consecutive moments

labeled t′ = 0, 1, 2 (needless to say, these numbers were chosen quite arbitrarily). The values for

t′ are written next to the positions of the rear and front ends of both the top and the bottom plate

(indicated by ‘TR,’ ‘TF,’ ‘BR,’ and ‘BF’) at those instants.

TF

BFBR

TR

0

1

2

0

1
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Figure 2.11 Condenser plates suspended on wires
that are cut simultaneously in the condenser’s rest frame.

In Fig 2.12, this same situation is shown in the xµ-frame in which the condenser is moving at a

velocity v in the x-direction. If the wires are cut simultaneously in the x′µ-frame, they are not cut

simultaneously in the xµ-frame. The wires at the rear end will be cut before the wires at the front

end (cf. Fig. 2.8). Suppose the wires at the rear are cut at t = 0 and the wires at the front are cut

at t = 1. Further suppose that the clocks in the moving frame run slow by a factor .75 (which

means that the condenser also will be contracted by a factor .75). In combination with Fig. 2.11,

this information allows us to reconstruct what happens in the xµ-frame. Fig. 2.12 shows the

positions of the two plates at t = 0, .75, 1.5, 2.25.

Comparing Fig. 2.12 to Fig. 2.11, one sees that the plates rotate in the xµ-frame (in the way

indicated by the arrows in Fig. 2.12), whereas they do not rotate in the x′µ-frame. This is just

what one would expect on the basis of the Laue picture of what happens in the Trouton-Noble

experiment. If one of the delicately balanced turning couples in the xµ-frame were suddenly

switched off, the remaining turning couple would cause the plates to start rotating. In the x′µ-

frame, however, there are no turning couples, so there will be no rotation.
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Figure 2.12 Condenser plates suspended on wires that are cut
at different times in a frame in which the condenser is moving.

I want to emphasize that cutting the wires in the setup we considered in Figs. 2.11–2.12 is not

equivalent to switching off the turning couple coming from the non-electromagnetic part of the

system. In terms of the forces shown in Fig. 2.10, cutting the wires means switching off the

forces ±Fnon-EM
⊥   that keeps the plates apart. We still have the forces ±Fnon-EM

// , however, that

keep the charges at the edges of the plates in place. Figs. 2.11–2.12 are meant to illustrate that

there is no contradiction in the plates starting to rotate in the xµ-frame but not in the x′µ-frame;

they are not meant to give an accurate picture of what would happen to the system if we were to

annihilate the entire non-electromagnetic part of the system in one instant in the x′µ-frame.

It will nonetheless be instructive to reflect some more upon the situation in Figs. 2.11–2.12,

for it may help us understand how something sounding as dynamical as a turning couple can

actually be a purely kinematical effect. As is clear from the construction of Fig. 2.12 out of Fig.

2.11, the rotation in the xµ-frame is a purely kinematical effect. It is a direct manifestation of the

relativity of simultaneity. That does not mean, however, that one cannot point to forces in the xµ-

frame that would seem to cause that rotation. Does this not mean that we are dealing with a

dynamical effect after all?

At this point, it will be helpful to invoke an analogy due to Jon Dorling.78  Consider a piece

of chalk in ordinary three-dimensional Euclidean space. Hold the piece of chalk in front of you,

in such a way that it lies in the plane perpendicular to your line of vision. Now rotate the piece

of chalk out of this plane. Clearly, as you rotate the piece of chalk, the length of its projection

onto the plane will decrease. This is part of the ordinary spatial behavior of objects in Euclidean

space. Hence, it is a kinematical effect. However, if one considers the components of the forces

                                                
78 Private communication. It is fair to say, I think, that the analogy by itself mainly preaches to the converted.
In combination with the arguments I offered in section 2.3, however, it will serve the purpose, I hope, of
getting a more intuitive grasp of how it can be that such things as turning couples can be kinematical effects.



holding the piece of chalk together, one notices that they also change as the piece of chalk is

rotated. It is, in fact, a highly non-trivial fact about our actual world that the forces holding the

piece of chalk together are such that the spatial behavior of the piece of chalk is the Euclidean

spatial behavior we observe. Still, as I argued at the end of section 2.3, this does not mean that

the phenomenon we observe in rotating the piece of chalk is dynamical. No explanation of this

phenomenon is required over and above the assertion that the structure of space in our actual

world is (to a very good approximation) Euclidean.

The same type of argument applies to the spatio-temporal behavior of systems in

Minkowski space-time. Dorling likes to compare the spatial behavior of a piece of chalk that is

rotated in Euclidean space to the spatio-temporal behavior of a rod that is set in motion in

Minkowski space-time. The length of the projection onto the plane perpendicular to the

observer’s line of vision in the case of the piece of chalk then gets replaced by the standard

definition of the length of a moving rod, i.e., the length of the intersection of the rod’s bundle of

worldlines with a spacelike hyperplane perpendicular to the observer’s worldline. Just as the

projection of the piece of chalk contracts as the piece of chalk is rotated, the length of the rod

under this standard definition contracts. With both contractions there are corresponding

changes in the components of the forces holding the rod or the piece of chalk together. And it is

a highly non-trivial fact about our actual world that the forces holding the rod together are such

that the spatio-temporal behavior of the rod is the Minkowskian spatio-temporal behavior we

observe. Still, this does not make length contraction a dynamical effect. No explanation of this

phenomenon is required over and above the assertion that the structure of space-time in our

actual world is (to a very good approximation) Minkowskian.79

The Laue effect provides a striking illustration of Dorling’s point. It is a highly non-trivial

fact about our actual world that the forces on a charged condenser are such that, in the

(standard) Laue picture of what happens in the experiment shown in Figs. 2.11–2.12, one gets a

rotation in one frame but not in another. Still, this highly counter-intuitive behavior is just part

of the normal Minkowskian spatio-temporal behavior and requires no explanation over and

above the assertion that the structure of space-time is Minkowskian. The Laue effect, in other

words, is purely kinematical.

                                                
79 For a full and elegant treatment of the geometry of Minkowski space-time as a natural extension of
Euclidean geometry from ordinary 3-dimensional space to 3+1-dimensional space-time, see Dorling 1982.



2.5 The experiments of Trouton and Noble and two well-known thought
experiments in special relativity

2.5.1 The Lewis-Tolman bent lever and the Trouton-Noble experiment. Shortly after

Laue published his first expositions of the Laue effect (Laue 1911a, 1911b), Sommerfeld drew

his attention to a puzzling thought experiment in a paper by Lewis and Tolman (1909), in which

the authors tried to develop relativistic mechanics independently of electrodynamics.80 Laue

must have been overjoyed to discover that this thought experiment ceases to be puzzling the

moment one recognizes the role of the Laue effect in it. Laue wasted no time and published a

short paper on this new manifestation of the Laue effect, emphasizing the close analogy between

Lewis and Tolman’s thought experiment and the Trouton-Noble experiment (Laue 1911c).81

Early in 1912, he published another short paper on these findings (Laue 1912a). Laue would

also include the thought experiment of Lewis and Tolman in later editions of his 1911 textbook

on relativity (see, e.g., Laue 1952, pp. 164–165).
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Figure 2.13 The Lewis-Tolman bent lever.

                                                
80 My source of information for Sommerfeld’s role is a footnote in Laue 1911c, p. 514. Laue and Sommerfeld
were colleagues in Munich at the time.
81 The submission date for Laue 1911a is April 30, 1911; the submission date for Laue 1911c is July 5, 1911.



The analysis of the Trouton-Noble experiment in sections 2.3 and 2.4, especially the ‘forces’-

account of the experiment given in section 2.4, provides us with all the tools necessary to give

Laue’s analysis of the thought experiment of Lewis and Tolman.82

Fig. 2.13 shows the system considered by Lewis and Tolman, a system that has come to be

known as ‘the right-angled lever’83 or as ‘Lewis and Tolman’s bent lever.’84 On the left, it is

shown in the x′µ-frame, in which it is at rest; on the right, it is shown in the xµ-frame, in which it

is moving at a velocity v in the direction of the positive x-axis (cf. Figs. 2.9 and 2.10 for the

analogous case of the Trouton-Noble condenser). Consider the system in its rest frame. It

consist of two arms of equal length l′, one (a′b′) along the y′-axis and one (b′c′) along the x′-

axis. There is a pivot at b′, restricting the system’s freedom to move to rotations around the z′-

axis. Two forces of equal magnitude F ′ are applied to the system, one at c′ in the direction of

the negative y′-axis and one at a′ in the direction of the positive x′-axis. There will be reaction

forces of the same size but in the opposite direction at b′. The system is in equilibrium. The net

turning couple T′ of the forces with respect to the z′-axis—the only axis around which the

system can rotate—vanishes:

T′ = x ′a′ × F ′a′ + x ′c′ × F ′c′
  

= (0, 0, F′ l′) + (0, 0, – F′ l′) = (0, 0, 0) .

(2.139)

Now look at the drawing on the right of Fig. 2.13, showing the bent lever in the xµ-frame. The

arm ab still has the same length l′, but the arm bc is contracted to l′/γ. Similarly, the forces in the

x-direction are still of size F ′, but the forces in the y-direction are only of size F ′/γ (see Eq. 1.9).

As a consequence, there will be a net turning couple in the xµ-frame:

T = xa × F a + x c × F c
   

 = (0, 0, F′ l′) + (0, 0, – F′ l′(1 – β
2
)) = (0, 0, F′ l′β

2
) .

(2.140)

In fact, Lewis and Tolman argued on the basis of the bent lever that the relativistic

transformation law for forces should be such that it satisfies

                                                
82 One surmises that Laue’s ‘forces’-account of the Trouton-Noble experiment in Laue 1912b was at least
partly inspired by his analysis of the thought experiment of Lewis and Tolman, even though the thought
experiment is not mentioned in that paper.
83 Tolman 1987, p. 79. Not surprisingly, given the important role his 1909 paper with Lewis played in Laue’s
work in 1911-1912, Tolman’s textbook contains one of the best and most complete discussions of Laue’s
results available in the literature.
84 See, e.g., Norton 1992a, p. 44.



Fx
Fy

 = 1
γ

 
F′x

F′y
. (2.141)

Only in that case would there be no net turning couple on the moving bent lever, something that

seemed to be required by the relativity principle. However, as Sommerfeld pointed out to Laue,

Eq. 2.141 is at odds with the relation

Fx
Fy

 = γ 
F′x

F′y
, (2.142)

that follows from the standard transformation law for forces, which is due to Planck (see Eq.

1.9) and of which Lewis and Tolman had apparently been unaware.

After our lengthy discussion of the Trouton-Noble experiment, one will immediately see

how Laue could solve the apparent contradiction between the standard transformation law for

forces and the turning couple it produces on the moving bent lever. The bent lever is stressed by

the forces acting on it and therefore needs a turning couple to sustain uniform motion. This is

just an instance of the Laue effect! In the less paradoxical terms that we have been using: the

turning couple in Eq. 2.140 will be exactly compensated by another turning couple coming

from the stresses in the bent lever.

Perhaps the easiest way to see where this compensating turning couple comes from is to

invoke Planck’s result that there is momentum associated to every energy flow (Laue 1911c, pp.

514–515). The force applied to the system at a and the reaction force to that force at b do work

as the system is moving. As a consequence, the system steadily gains energy at a and steadily

loses the same amount of energy at b. Hence, the argument continues, there is a constant energy

flow from a to b. The momentum corresponding to this energy flow gives rise to a turning

couple that is exactly opposite to the turning couple in Eq. 2.140.85

Both the energy flow and the momentum associated with it correspond to shear stresses in

the arm ab in the bent lever’s rest frame. To bring out the parallel with the Trouton-Noble

condenser, I will derive the expression for the momentum density in the arm ab by transforming

the energy-momentum tensor for the bent lever (not including the external forces) from the x′µ-

frame to the xµ-frame.

The only non-vanishing components of the energy-momentum tensor in the x′µ-frame are

the shear stresses T′12 and T′21:

T ′
12

 = T ′
21

 = F ′/A′, (2.143)

                                                
85 See Norton 1992a, p. 47, for a detailed version of this argument in modern notation.



where A′ is the area of a cross section of the arm a′b′ (as indicated in Fig. 2.13). The energy-

momentum tensor Tµν in the frame in which the system is moving can be found through the

Lorentz transformation

 Tµν = Λ
µ

ρ Λ
ν

σ T ′
ρσ

 = Λ
µ

1 Λ
ν

2 T ′
12

 + Λ
µ

2 Λ
ν

1 T ′
21

, (2.144)

where Λµν is the matrix for a boost in the negative x-direction. For the (10, 20, 30)-components

of Tµν we find:

 T10 = T30 = 0,       T20 = Λ
2
2 Λ

0
1 T ′

21
 = γ β (F ′/A′). (2.145)

Now use that these components divided by c and multiplied by the volume V of the arm ab of

the bent lever are the components of the momentum in the arm ab. Call this momentum P:

P = 1c
 T10, T20, T30  V = 0, 

β γ F ′ V

c A ′
, 0  = 0, 1

c β F′ l′, 0  , (2.146)

where in the last step I used that γ V/A′ = V ′/A′ = l′. The momentum P will give rise to a

turning couple – v × P (cf. Eq. 1.38). When this turning couple is added to the turning couple

in Eq. 2.140, we see that the net turning couple on the moving system vanishes just as the

turning couple in the system’s rest frame vanishes (see Eq. 2.139):

T = xa × F a + x c × F c – v  × P
   

 = (0, 0, F′ l′β
2
) – (0, 0, F′ l′β

2
) = (0, 0, 0) .

(2.147)

The analogy between the Lewis-Tolman bent lever and the Trouton-Noble condenser will be

obvious at this point. The external forces on the bent lever correspond to the Coulomb forces on

the plates of the condenser and the shear stresses in the bent lever correspond to the non-

electromagnetic stresses in the condenser. The Trouton-Noble experiment can be seen as a

physical instantiation of the bent lever. Whittaker, for instance, writes immediately after his

discussion of the bent lever: “This may be regarded as a model of the Trouton-Noble

experiment” (Whittaker 1953, II, p. 56).

I want to make one final remark. The above analysis is in terms of the Laue picture. In the

Rohrlich picture there will be no turning couples acting on the bent lever at all. I do not have the

tools at this point to give a detailed analysis of the bent lever in the Rohrlich picture. I only

developed the Rohrlich analysis of the Trouton-Noble experiment in terms of momentum and

angular momentum, not in terms of forces. The easiest way to analyze the Lewis-Tolman bent



lever in the Rohrlich picture, it seems to me, is to find the expression for the energy-momentum

tensor T ′
µν

 giving the components F′
i
 of the external forces on the bent lever in its rest frame

via the equation (cf. Eq. 2.117):

F′
i
 = – ∂′jT ′

ij
 d3x′. (2.148)

Using this energy-momentum tensor and the energy-momentum tensor describing the shear

stresses in the bent lever (see Eqs. 2.143–2.145), one can then calculate the various

contributions to the momentum and angular momentum of the system in the xµ-frame under the

Rohrlich definition and explicitly verify that there are no turning couples on the system. For my

purposes, this calculation is not important and I will not go through it.

2.5.2 The mass-energy equivalence and the Trouton experiment. To conclude this chapter,

I return to the original Trouton experiment, aimed at detecting an impulse upon charging or

discharging a condenser. I will show that the Trouton experiment can be seen as a physical

realization of a well-known thought experiment by Einstein, in the same way that the Trouton-

Noble experiment can be seen as a physical realization of the thought experiment of Lewis and

Tolman. However, whereas the relation between the Trouton-Noble experiment and the Lewis-

Tolman bent lever was recognized early on by Laue, no one seems to have made the connection

between the Trouton experiment and Einstein’s thought experiment.86 Drawing on the

distinction between the Laue and the Rohrlich picture of what happens in a moving condenser, I

will show what obscured this connection for the person most likely to see it, Lorentz.

About a year after he first introduced the inertia of energy (Einstein 1905b), Einstein

showed that this relation between energy and mass is necessary and sufficient to ensure

conservation of the motion of the center of mass for systems, in which, as Einstein put it, “not

only mechanical, but also electromagnetic processes take place” (Einstein 1906, p. 627).87 As

Einstein acknowledges, his paper is similar to Poincaré 1900b, the latter’s contribution to the

Lorentz Festschrift of 1900 (see section 1.4). In his 1906 paper, Einstein argued that in order to

avoid violations of the center of mass theorem of the kind Poincaré discussed in 1900, one has

to assume that energy has inertia (Miller 1981, pp. 353–354; Darrigol 1994b, p. 3, pp.

                                                
86 I am indebted to John Stachel for drawing my attention to this connection.
87 By ‘mechanical processes’ Einstein means non-electromagnetic processes that in the limit of low velocities
can be described by ordinary Newtonian mechanics. Einstein’s use of the term ‘mechanics’ is in accordance with
the common usage of this term at the time (cf. Planck 1908, where ‘mechanics’ in this narrow sense is
contrasted with ‘general mechanics’).



75–8288). Like Poincaré before him, he offered a vivid thought experiment in support of his

claim.

In his lectures on relativity at the university of Leiden in 1910–1912, Lorentz used

Einstein’s thought experiment in his exposition of the inertia of energy (Lorentz 1922, pp.

242–243). Lorentz did not refer to Poincaré’s earlier paper, nor to his discussions with

Poincaré over Newton’s third law in the context of which that paper was written. He did not

mention the Trouton experiment either. The importance of these observations will become clear

below.
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Figure 2.14 A thought experiment by Einstein to establish the equivalence of mass and energy.

Fig. 2.14 illustrates Einstein’s thought experiment. Consider a box of mass M and length L

in which the following process takes place. A small amount of energy E, stuck against the inside

wall of the box at point A, is emitted in the form of electromagnetic radiation traveling to point B

at the other end of the box. The radiation is absorbed, the energy is converted back to its

original form, and ends up stuck against the inside wall of the box at B. On the assumption that

E is massless, this experiment violates the center of mass theorem. The argument runs as

follows. According to standard electrodynamics, the radiation has momentum E/c. Invoking

                                                
88 Among other things, Darrigol reports that Langevin (1913, p. 414) claimed that he had independently found
the derivation of E = mc2 in Einstein 1906, and that he had lectured on this result in 1906 in Paris.



momentum conservation, the box will therefore recoil to the left with momentum E/c upon the

emission of the radiation. When the radiation is re-absorbed, the box will recoil again, bringing

it back to rest. While the radiation is in flight, for a period of approximately L/c, the box moves

to the left with velocity E/cM. So, the box will move a distance

δ ≈ E
c2M

 L (2.149)

during the course of the experiment, in violation of the center of mass theorem.

Einstein showed that this violation disappears if we assume that the energy E has mass m =

E/c2. In that case, the displacement to the left of the mass M of the box over the small distance

δ ≈ (m/M)L (m <<  M) is compensated by the displacement of the mass m of the energy E from

the left to the right side of the box, and there is no net displacement of the center of mass of the

system. Let δ′ be the displacement of the center of mass due to the displacement of the mass m.

With the help of Fig. 2.15, it is easy to compute δ′ to the same approximation as Eq. 2.149 for

δ.

m M

δ′

mM

L

Figure 2.15 Balancing the box in Einstein’s thought experiment on a wedge.

Imagine we carefully balance the system on a wedge supporting the box right under the

center of mass of the system. We calculate the distance δ′ that we have to move the wedge if the

mass m moves from A to B. The condition δ′ has to satisfy is:

M 
δ′
2

 = m 
L–δ′

2
 ≈ m L

2
. (2.150)



It follows that δ′ ≈ (m/M)L which is indeed equal to δ in the same approximation. So, there is

no net displacement of the center of mass. The equivalence of mass and energy prevents the

center of mass theorem from being violated.89

Now consider the Trouton experiment again (cf. section 1.1, Figs. 1.1 and 1.2). Fig. 2.16

schematically shows the experimental setup, this time including the battery used for charging

the condenser.

Re-chargable
battery

C

C

D

D

switch

switch

condenser

v

θ

Figure 2.16 The Trouton experiment revisited.

The Trouton experiment is essentially equivalent to Einstein’s thought experiment. Instead of

having energy emitted as electromagnetic radiation which is then re-absorbed, we convert

chemical energy of the battery to electromagnetic energy when we charge the condenser (i.e.,

when the switches in Fig. 2.16 are set to ‘C’), which is then re-converted to chemical energy

when we discharge the condenser and re-charge the battery (i.e., when the switches in Fig. 2.16

are set to ‘D’).90 There are two complications.

First, since the electromagnetic field of a condenser will only carry momentum when the

condenser is in motion, we need to consider the whole system in Fig. 2.16, condenser plus

battery, in a frame in which it is moving. The importance of considering the case in which the

                                                
89 In his famous 1904 lecture in St. Louis, Poincaré came tantalizingly close to proclaiming the inertia of
energy. Discussing a thought experiment essentially equivalent to the one discussed by Einstein in 1906, he
writes: “Imagine, for example, a Hertzian oscillator, like those used in wireless telegraphy; it sends out energy
in every direction; but we can provide it with a parabolic mirror, as Hertz did with his smallest oscillators, so as
to send all the energy produced in a single direction. What happens then according to the theory? The apparatus
recoils, as if it were a cannon and the projected energy a ball; and that is contrary to the [reaction] principle of
Newton, since our projectile here has no mass, it is not matter, it is energy” (Poincaré 1904, p. 101; my
italics). Poincaré discussed this same example at greater length, but without the tantalizing final remark, in his
contribution to the Lorentz Festschrift (Poincaré 1900b, pp. 484–488).
90 This last step obviously is not very realistic and is intended only to bring out the parallel with Einstein’s
thought experiment, in which we do not have to worry about the precise nature of the energy conversions at all.



condenser moves with its plates tilted at an angle θ with respect to its velocity will become clear

below.

Second, in the Laue picture of the experiment in a frame in which the system is moving, the

conversion of the battery’s chemical energy to the energy of the condenser’s electromagnetic

field is not the only energy conversion we need to take into account. In the Laue picture, there is

also energy associated with the electromagnetic and non-electromagnetic stresses in the

condenser. Since the Laue picture and the Rohrlich picture are just alternative descriptions of

the same process, this energy will have to come from the battery. In the Rohrlich picture, there is

no energy associated with the stresses. Using the idealization of a perfectly rigid condenser, the

conversion of the battery’s chemical energy to the condenser’s electromagnetic energy is the

only conversion taking place in the Rohrlich picture.

Before I develop a detailed account of the experiment in both the Laue and the Rohrlich

picture, I want to informally go through the analogue of Einstein’s 1906 argument for the case

of the Trouton experiment.

As in Einstein’s thought experiment, the center of mass theorem will be violated in the

Trouton experiment if the energy of the battery that is converted to energy of the condenser

does not have mass. The argument runs as follows. When the condenser is charged, it gains

momentum. Invoking momentum conservation, the system will recoil. When the condenser is

discharged, it loses momentum. The system will recoil again, bringing it back to rest. In a frame

in which the condenser is at rest before and after this experiment, the system will have moved to

the left in the process, even though it is fully isolated. This is a violation of the center of mass

theorem.

Of course, it suffices to look at the first stage of the experiment to see that we have a

violation of the center of mass theorem. The violation occurs when the completely isolated

system recoils upon having the battery charge the condenser. The equivalence of mass and

energy prevents this violation of the theorem. To see how this comes about, we need to address

the complication mentioned above that we have two different pictures of what happens in the

experiment. To give a treatment that is valid in both we need to consider the condenser’s total

energy and its total momentum. These quantities are the same in the Laue and the Rohrlich

picture. From Eq. 2.99 we read off that the total energy and total momentum of the condenser in

the frame in which it is moving with velocity v is given by

Utot = γ U ′tot,        P tot = γ U ′tot/c2  v , (2.151)

where U ′tot = U ′EM + U ′non-EM. The non-electromagnetic energy U ′non-EM in the

condenser’s rest frame will be the same whether the condenser is charged or not. It will be



convenient to set it to zero. In that case, Eq. 2.151 directly gives the change in the energy and

momentum of the condenser upon charging or discharging it.

This gives us all we need to show that the equivalence of mass and energy prevents the

violation of the center of mass theorem in the Trouton experiment. As in Einstein’s thought

experiment, I will neglect terms of order β2, although I want to emphasize that it is much more

straightforward to make the argument exact in the case of the Trouton experiment than it is in

the case of Einstein’s thought experiment.

As the condenser is charged, an amount of energy E = Utot ≈ U ′tot is transferred from the

battery to the condenser. The condenser gains momentum (E/c2)v. If the energy E has mass m

= E/c2, the battery loses momentum mv = (E/c2)v. So, the momentum of the system as a whole,

condenser plus battery, is conserved. There will be no recoil. This is all that is needed in special

relativity to give a detailed explanation of the negative result of the Trouton experiment. The

experiment thus directly illustrates the theory’s most famous equation, E = mc2.

Why did Lorentz not see the connection between the Trouton experiment and Einstein’s

thought experiment of 1906? Given his own analysis of the Trouton experiment (Lorentz

1904b, pp. 194–196; see section 1.4) and given his discussions with Poincaré about Newton’s

third law, one would expect him to have seen this connection the moment he read Einstein’s

paper, which explicitly refers to Poincaré 1900b. Questions like this are notoriously hard to

answer. It is often best to simply not ask them at all. It is always easy to see some connection

with decades of hindsight. Still, this particular connection is so simple and Lorentz seemed so

well primed to make it that the question why he missed it becomes legitimate. I think I have a

plausible answer.

Recall that Lorentz only considered the electromagnetic momentum of the condenser, not its

total momentum as we did above. In the Rohrlich picture, this does not make any difference, but

in the Laue picture, which Lorentz, in effect, used, it does. In the Rohrlich picture, Utot and Ptot

in Eq. 2.151 are just UEM
R  and PEM

R ; Unon-EM
R  and Pnon-EM

R  are zero once we set U ′non-EM to

zero (cf. Eqs. 2.114–2.115). In the Laue picture, on the other hand, Utot and Ptot consist of an

electromagnetic and a non-electromagnetic part, even when U ′non-EM = 0 (see Eqs.

2.104–2.105). To first order in β (i.e., γ = 1 and θ′ = θ), these equations give (cf. Eq. 2.132 for

the energy, and Eqs. 2.107–2.108  for the momentum):

UEM
L  = U ′EM,        Unon-EM

L  = 0,

PEM
L  = 2 U ′EM/c2  v cos θ  

cos θ

sin θ

0

 , (2.152)



Pnon-EM
L  = U ′EM/c2  v – cos θ  

cos θ

sin θ

0

 + sin θ 

sin θ

– cos θ

0

 .

Lorentz (1904b, pp. 829–831) only considered the condenser’s electromagnetic momentum.

The argument I gave above in terms of the condenser’s total energy and momentum does not

work in terms of the condenser’s electromagnetic energy and momentum alone. It does in the

Rohrlich picture, but not in the Laue picture. If the energy U ′EM needed to charge the

condenser (see Eq. 2.152) has mass U ′EM/c2, the battery will lose momentum (U ′EM/c2)v.

However, this does not compensate the condenser’s gain in momentum which (see Eq. 2.152)

is 2cosθ times that amount and is in the direction of the plates rather than in the direction of the

velocity. So, it looks as if momentum conservation still requires the system to recoil, despite the

assumption of the inertia of energy.

So, even Lorentz, the one person in our story with a keen understanding of both the Trouton

experiment and Einstein’s 1906 thought experiment, was in no position to make the connection

between the two. Had Lorentz or someone else—say, Planck in 1908, or Laue in 1911—seen

the connection, I think we can say, without much exaggeration, that the Trouton experiment

would have become as famous as the Michelson-Morley experiment. Instead it has been all but

forgotten.


