Transfer of electrons between pyridine nucleotides (obligatory two-electron carriers) and hemes or [2Fe-2S] centers (obligatory one-electron carriers) is an essential step mediated by flavins in respiration, photosynthesis, and many oxygenase systems. Phthalate dioxygenase reductase (PDR), a soluble iron-sulfur flavoprotein from Pseudomonas cepacia, is a convenient model for the study of this type of electron transfer. PDR is folded into three domains; the NH2-terminal FMN binding and central NAD(H) binding domains are closely related to ferredoxin-NADP+ reductase (FNR). The COOH-terminal [2Fe-2S] domain is similar to plant ferredoxins, and can be removed by proteolysis without significantly altering the reactivity of the FNR-like domains. Kinetic studies have identified sequential steps in the reaction of PDR with NADH that involve pyridine nucleotide binding, hydride transfer to FMN, and intramolecular electron transfer from the reduced flavin to the [2Fe-2S] cluster. Crystal structures of reduced and liganded PDR correspond to some of the intermediates formed during reduction by NADH. Small structural changes that are observed in the vicinity of the cofactors upon reduction or NAD(H) binding may provide part of the reorganization energy or contribute to the gating mechanism that controls intramolecular electron transfer.