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a b s t r a c t

Color texture classification is an important step in image segmentation and recognition. The color

information is especially important in textures of natural scenes, such as leaves surfaces, terrains

models, etc. In this paper, we propose a novel approach based on the fractal dimension for color texture

analysis. The proposed approach investigates the complexity in R, G and B color channels to

characterize a texture sample. We also propose to study all channels in combination, taking into

consideration the correlations between them. Both these approaches use the volumetric version of the

Bouligand–Minkowski Fractal Dimension method. The results show a advantage of the proposed

method over other color texture analysis methods.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The identification of visual patterns has long been an area of
computer vision with active research. Texture analysis can be
very useful for experiments of image classification and identifica-
tion. While the ability of a human to distinguish different textures
is apparent, the automated description and recognition of these
same patterns have proven to be quite complex.

Over the years, researchers have studied different texture
analysis approaches. Many of these approaches represent the
local behavior of the texture via statistical [1], structural [2] or
spectral [3–5] properties of the image. Good surveys can be found
in [5–11]. The conjecture presented in [12], where second-order
probability distributions [6,13] are enough for human discrimina-
tion of two texture patterns, has motivated the use of statistical
approaches. This conjecture showed not to hold strictly particu-
larities when textures present some structure [14]. Structural
approaches, then, attempt to describe a texture by rules, which
govern the position of primitive elements, which make up the
texture [15]. In addition, signal processing methods, such as
Gabor filters [4,16,17], Fourier analysis [18] and Wavelet packets
[19], were motivated by psychophysical researches, which have
given evidences that the human brain does a frequency analysis
of the image [20,21]. These approaches represent the texture
as an image in a space whose coordinate system has an

interpretation that is closely related to the characteristics of a
texture (such as frequency or size).

However, these methods fail to distinguish many natural
textures that show no periodic structure [22]. Natural textures
may not present any detectable quasi-periodic structure. Instead,
they exhibit random, but persistent, patterns that result in a
cloud-like texture appearance. Examples of these cloudy textures
are widely found on nature (pictures of clouds, smoke, leaves
surfaces, terrain models, etc.).

Fractals offer an interesting alternative to these approaches.
Due to its irregularities, most of the natural surfaces have non-
integer dimension. Therefore, it seems plausible that the fractal
model might also be applied successfully to analyze images. This
reduces the classification problem to estimating the fractal
dimension of the texture. Since the fractal feature is an inherent
property of the region/surface/object, it can be considered a more
reliable measure [23]. In fact, according with [24], the fractal
dimension is a very useful metric for the analysis of the images
with self-similar content, such as textures.

The fractal dimension (D) shows a strong correlation with human
perception of surface roughness. Several methods have been devel-
oped to estimate D for image analysis. In [25], the fractal dimension
is estimated using the Fourier power spectrum of the image’s
intensity surface modeled as fractal Brownian motion surface. In
[26], Mandelbrot’s idea of the E-blanket method is adopted and
extended for surface area calculation. The box-counting method,
developed by [27], and its improved version, called differential box-
counting (DBC) and developed by [28–30], have been used for
several tasks of texture comparison and classification, and object
characterization [31,32]. Subsequently, [33,34] have applied the
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multi-fractal theory for texture classification and segmentation,
while [35,36] have adopted the method of Bouligand–Minkowski
fractal dimension to estimate the complexity of images.

However, all these methods present the inconvenient of work-
ing only with gray-scale images. It has been proven that color
information is quite useful in image analysis [37,38], in special on
natural textures (leaves surfaces, terrain models, etc.). Therefore,
a fractal dimension method for multi-spectral images (color
images) is quite interesting. Recently, [24] presented a study
with fractal dimension in color images. It was proposed a new
method for generate color fractal images. Additionally he use the
Voss algorithm to estimate the fractal dimension of these images.
However, the use of the fractal dimension alone, as a unique
feature describing the texture, is not suitable for classification
problems with many classes. The work of [37] has adopted a
fractal-based method for texture segmentation of color images
(multi-spectral). This method is based on local pixel analysis for
only segmentation applications. Thus, we propose an approach
which is based on a global texture analysis for the classification of
color textures, and not only segmentation. Our approach can
perform the analysis of each color channel independently (as in
the work of [37]), as also to study the relationship between color
channels altogether, in a sort of multi-spectral approach, what we
believe to be an interesting approach for image analysis.

This paper starts by presenting an overview of the fractal
dimension and the details of our approach, the volumetric fractal
dimension (Section 2). Section 3 presents the proposed signature
that we use to characterize a texture pattern. The benefits of this
approach are set out and its use in color texture is described in
Section 4. An experiment is set to evaluate the performance of the
proposed texture signature in the classification of different color
texture sets (Section 5). Section 6 shows the results yielded by the
proposed method, while in Section 8, the conclusions about the
method are discussed.

2. Fractal dimension

In 1970s, Benoit Mandelbrot introduced the world to a new field
of mathematics. Mandelbrot named this field of Fractal Geometry.
He introduced a new class of sets called fractals: objects of great
complexity which are generated from iteration of simple rules.
These Fractals also presented a non-integer dimension, which is
related to their complexity and space occupation [39,40].

The fractal dimension, D, is based on the concept of self-
similarity, and it should be independent of the method chosen to
its estimation. Unfortunately, different methods estimate differ-
ent values for D, especially to characterize objects with limited
self-similarity, such as texture images. One of the most accurate
methods to estimate the fractal dimension of a shape image is the
Bouligand–Minkowski method [41]. This method is based on the
study of the influence area of the object contained in the image,
and it is very sensitive to structural changes of the object.

Although its common use in shape analysis, the complexity of
a texture image can be easily estimated by using the Bouligand–
Minkowski method [36]. This is possible by mapping the entire
texture image surface onto a 3D volume SAR3. Fig. 1 shows an
example of this texture image surface. By dilating the surface
mapped in S by a radius r, it is possible to estimate the Bouligand–
Minkowski fractal dimension D as the (continuous) plot of
logðVðrÞÞ versus log(r), where V(r) is the influence volume com-
puted through dilation of each point of the surface in S using a
sphere of radius r

D¼ 3�lim
r-0

log VðrÞ

log ðrÞ
ð1Þ

with

VðrÞ ¼ fpAR39(p0AS : 9p�p09rrg: ð2Þ

As the influence area computed for shape analysis, the influ-
ence volume of a texture is also very sensitive to structural
changes (spacial distribution), so even small changes in the
texture behavior can be detected.

2.1. Surface mapping and dilation process

To compute the dilation of a surface is a time consuming task.
One approach to optimize this task is to use the Euclidean
Distance Transform (EDT). This transform computes a distance
map for the 3D volume, where each voxel value represents the
minimum distance from that voxel to the surface [42,43]. Let
I(x,y), x¼1yN and y¼1yM, a pixel in an image I, where x and y

are the Cartesian coordinates of the pixel I(x,y), and Iðx,yÞ ¼ g,
g¼0,y,L is an integer value, which represents the intensity of
light in that pixel.

From this image I and using a dilation radius r, we build a 3D
volume Sðu,v,wÞAR3, with u¼ 1, . . . ,Nþ2r, v¼ 1, . . . ,Mþ2r,
w¼ 1, . . . ,Lþ2r

8Iðx,yÞ,Sðu,v,wÞ ¼
0 if ðu,v,wÞ ¼ ðxþr,yþr,Iðx,yÞþ1þrÞ,

C otherwise:

(
ð3Þ

where C is the maximum value allowed for the dilation radius r in
the volume S. This value is defined as

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

2
þr

� �2

þ
M

2
þr

� �2

þ
L

2
þr

� �2
s

: ð4Þ

Fig. 2 shows an example of the image to 3D volume mapping
process. Basically, for a N�M pixels image with L gray levels, it is
necessary to build a 3D volume of size (Nþ2r)� (Mþ2r)�
(Lþ2rþ1). In this example, we have a 4�4 pixels image with 3 gray
levels (Fig. 2a). By considering a dilation radius r¼1, we build a 3D
volume of size 6�6�5 (Fig. 2b). By applying Eq. (3), we associate to
each voxel a value 0 or C, where 0 represents where the voxel
coincides with the texture image surface I, and C represents a point in
the volume space whose distance to the texture image surface is still
unknown (C is just a numeric representation to an infinite distance).

We perform the dilation process by computing the minimum
distance between each two voxels of the volume S, where one of
these voxels is marked as background (i.e., Sðu,v,wÞ ¼ C) and
the other represents the surface of the original texture image

Fig. 1. Texture image surface before applying the Volumetric Bouligand–Min-

kowski fractal dimension [36].
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(i.e., Sðu,v,wÞ ¼ 0)

8Sðu,v,wÞ ¼ C,Sðu,v,wÞ ¼min dðu,v,w,u0,v0,w0Þ, ð5Þ

where

dðu,v,w,u0,v0,w0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu�u0Þ2þðv�v0Þ2þðw�w0Þ2

q
ð6Þ

and

Sðu0,v0,w0Þ ¼ 0: ð7Þ

After the dilation process is completed, it is necessary to
compute the influence volume VðriÞ for each radius value rirr,
where r is the maximum radius value. Be ri a list of sorted radius

values ranging from 0 to r, ri ¼ f0;1,
ffiffiffi
2
p

, . . . rg, where

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
, 0rx,y,zrr. We compute the volume VðriÞ of

the surface as the number of coordinates S(u,v,w) whose distance
from the surface is equal to ri

VðriÞ ¼
XNþ2r

u ¼ 1

XMþ2r

v ¼ 1

XLþ2r

w ¼ 1

dðSðu,v,wÞ,riÞ, ð8Þ

where dða,bÞ is

dða,bÞ ¼
1, arb,

0, a4b:

(
ð9Þ

From this point, the fractal dimension is estimated as the slope
a of the (continuous) plot of logðVðrÞÞ versus log(r). This task is
easily performed using a linear interpolation method, such as the
linear least squares [44].

3. Fractal signature

The fractal dimension is a property of fractal objects related
with the concept of self-similarity at infinite scales. However,
images, as other real objects, have limited resolution and finite
size. This makes their self-similarity to be limited to some scales.
As a consequence, the complexity of the image changes according
to the scale used in the visualization. This is noticed by studying

the behavior of the log–log curve computed by the Bouligand–
Minkowski method. This curve presents a richness of details that
cannot be described by using a simple line regression as used in
the classical fractal dimension estimation process.

Thus, we propose a feature vector which explores these curve
details to perform a more accurate texture characterization. Initially,
we compute the log–log curve using the Bouligand–Minkowski
method for a dilation radius r. Then, we estimate a line which
approximates this curve as y¼ anxþb, where x and y are, respec-
tively, the log of the radius r and the influence volume V(r), a is the
slope and b gives the y-intercept of the line. Note that, as defined in
Section 2, D¼3�a is the estimated fractal dimension of the image.

This computed line is just an approximation of the real
behavior of the log–log curve. There is an error between this line
and the computed log–log curve. This occurs because each value
of the log–log curve changes according to pixel position and color,
both characteristics related to the image context and which
cannot be described by a simple object as a line. Thus, the
difference between line regression and the log–log curve at a
given point is defined as the simple difference ei

ei ¼ a� log riþb�log VðriÞ, ð10Þ

where riA ½1,r� is a radius value which exists in the log–log curve
and r is the dilation radius used to compute this curve. Texture
characterization is performed by selecting a total of n equidistant
radius values from the log–log curve to compose a feature vector
cðnÞ

cðnÞ ¼ ½e1,e2, . . . ,en�: ð11Þ

4. Image color information—a multi-spectral approach

Color information has proven to be quite useful for image
analysis [37,38], especially when dealing with natural textures
(leaves surfaces, terrains models, etc.).

According with [45] the color texture analysis can be roughly
divided into two categories: methods that process color and texture
information separately, and those that consider color and texture a
joint phenomenon. For the second category we have the vectorial
and marginal methods. The vectorial approach analyse the color
channels presented in a texture altogether. It is a more recent
approach and have many good papers (e.g. [46–48]). On the other
hand, we have the older, but not less suitable, marginal approaches.
This class of methods deals with color by analyzing each color
channel independent of each other (e.g. [45]).

Our method can be adopted to belong to these two main
approaches. For the marginal approach, we compute the descrip-
tors for each color channel and combine them to compose a
feature vector for that color texture. Thus, we achieve a jðnÞ
feature vector, which consists of the fractal signatures cK ðnÞ

computed for each color channel K. For a RGB color texture, the
following feature vector is obtained:

jðnÞ ¼ ½cRðnÞcGðnÞcBðnÞ�: ð12Þ

It is also possible to map each color channel present in the
texture as a different surfaces in the R3, thus building a vectorial
method, that analyses the three channels in a single step (i.e., in a
single 3D volume). Let R(x,y), G(x,y) and B(x,y) be each color
channel in a RGB color texture I(x,y) and SRðu,v,wÞ, SGðu,v,wÞ,
SBðu,v,wÞ their respective 3D volumes obtained using Eq. (3).
These three volumes can easily be combined onto a single volume
SRGBðu,v,wÞ

SRGBðu,v,wÞ ¼
0 if SRðu,v,wÞ ¼ SGðu,v,wÞ ¼ SBðu,v,wÞ ¼ 0,

C otherwise:

(
ð13Þ

Fig. 2. Example of image to 3D volume mapping: (A) 4�4 pixels image with

3 gray levels; (B) 3D volume built using r¼1; (C) voxel values of the 3D volume

after applying Eq. (3).
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By considering the dilation process (described in Eq. (5)) over
this new volume, it is possible to explore the relationship
between the color channels of the texture pattern, instead of
the characteristics of a single color channel. Thus, we yield a new
signature cRGBðnÞ, where RGB indicates that all color channels
were dilated during the fractal dimension estimation process.
This signature enables us to study all channels in combination,
taking into consideration the correlations between them. Fig. 3
shows an example of all channel from a RGB color texture mapped
as surfaces.

This approach considers that similar or equal intensities in
different color channels represent a strong correlations between
the surfaces, while different color intensities represent a weak
correlation. The relationship between these surfaces changes
when the dilation process occurs, and it modifies the resulting
influence volume V(r) by adding information about the distance
between the surfaces. Surfaces which present a weak correlation
can dilate their spheres freely for longer distances, and it
produces a higher influence volume. Otherwise, a strong correla-
tions between the channels causes one surface to obstruct the
dilation process of another, thus resulting in a lower influence
volume. Fig. 4 shows this process by dilating two surfaces over
different r values. Therefore, this approach considers the concept
of self-similarity and self-affinity between color channels.

It is important to remember that the dilatation process is
affected by color and spacial distributions of pixels together. The

color interaction is only part of the volume composition. Thus, the
color information contributes with the method, but has no
role alone.

5. Experiment

To evaluate the quality of our approach, we proposed an
experiment using two color image databases. First database
consists of texture images selected from VisTex [49]. A total of
640 samples grouped into 40 texture classes was considered. Each
database entry class is a set of 16 texture samples of 128�128
pixels size, each one extracted from a particular texture pattern
without overlapping. Fig. 5 shows examples of textures in the
VisTex database.

Second database, called as USPTex, consists of a set of natural
texture images acquired using a digital camera with 512�384
pixels resolution. Texture classes considered are typically found
daily, such as beans, rice, tissues, road scenes, various types of
vegetation, walls, clouds, soils, blacktop, and gravel. Each data-
base entry class is a set of 12 texture samples of 128�128 pixels
size, each one extracted from a particular material without over-
lapping. A total of 2160 samples grouped into 180 classes were
considered. Fig. 6 shows examples of these natural textures.

Next, we aimed to use our proposed signatures to classify both
image databases. To achieve this purpose we used linear discriminant

Fig. 3. Difference of surfaces generated by a gray-scale image and a color image (R, G and B components). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Fig. 4. Examples of color channel relationship during the dilation process for two color textures (first row, weak correlation; second row, strong correlation): (a) original

texture; (b) r¼1; (c) r¼2; (d) r¼3; (e) r¼4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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analysis (LDA), a classification method based on supervised learning
[50,51]. Be f iðxÞ the density function of the population i, i¼1,2,y,g,
the probability of misclassification is minimized according to the
following discrimination rule: for a fixed observation x, compute the
density value f iðxÞ for each population i, i¼1,2,y,g, and classify the
observation in the population k which presents the highest f iðxÞ
value, i.e.

f kðxÞ ¼ arg maxff iðxÞ,i¼ 1;2, . . . ,gg,

with

f iðxÞ ¼ �
1
2 lnð9Si9Þ�1

2ðx�miÞ
0S�1

i ðx�miÞÞ,

where m and Si are, respectively, the average vector and covariance
matrix of the population i. More details about mathematical formula-
tion of the discriminant function are presented in [52]. Moreover,
leave-one-out cross-validation strategy was also performed over the
LDA, whereby only one sample is used for validation while the others
are used as a training set. The process of training/validation is repeated
until all the samples were used for validation.

6. Evaluation

To evaluate the performance of the proposed fractal signa-
tures, we designed a two-step evaluation. First, we evaluated each
signature in order to determine the number of descriptors n that
best characterizes the texture and its influence on the results of
both databases. In the sequence, to provide a better evaluation of
the proposed signatures, we performed a comparison with other
color texture methods found in the literature. For this compar-
ison, we considered the following methods: Gabor EEE [53,54],
Histogram ratio features (HRF) [55], MultiLayer CCR [56], Linear
prediction model [57,46] and an LBPþHaralick method [48].
A brief description of each method is presented as follows.

Gabor EEE measures a color texture by integrating over both
the spatial dimension and the wavelength dimension. This
method uses a linear transform from RGB to the Gaussian color
model ( ~E, ~El and ~Ell). The measurements are obtained by

applying a set of Gabor filters on each channel ( ~E, ~El and ~Ell).
In our experiment, we used eight rotations and eight scales, with
a lower frequency of 0.01 and an upper frequency of 0.4 (upper
and lower frequencies are defined empirically). The setup of the
individual parameters of each filter follows the mathematical
model presented in [17]. The resulting feature vector presents the
energy of 64 Gabor filters per color channel, what gives a total of
192 features.

Histogram ratio features (HRF) use the concept of co-occur-
rence in color histograms to extract meaningful information of a
color texture. Basically, it computes the three-dimensional (3-D)
color histogram of a given image. Then, it converts this histogram
to a 1-D histogram and extracts ratio features as pairs of
histogram bins combined with the corresponding count ratios.
This method uses its own classification method, thus LDA method
was not used to classify the samples due the number of descrip-
tors is different for each texture.

MultiLayer CCR uses an approach similar to the one proposed
for the LBP3�3 operator [58]. At first, the method splits the
original color image into a stack of binary images, each one
representing a color of a predefined palette. This makes it possible
to apply the CCR operator to each layer. Thus, each binary image
is characterized by the probability of occurrence of rotation-
invariant binary patterns, and the overall feature vector is
obtained by concatenating the histograms computed for each
layer. For this comparison, each image is represented by a total of
640 features. These features are obtained by using a palette of 64
colors and a 10 bins histograms for each palette entry.

The Linear prediction model (LPM) of [57] makes a quantita-
tive comparison of auto spectra of luminance and combined
chrominance channels of IHLS color space. The auto espectra is
obtained using power spectrum estimator by the 2D multichannel
non-symmetric half plane autoregressive (2D NSHP AR) model. To
measure the similarity of two spectra the symmetric version of
Kullback–Leibler divergence is used. A Knn classifier is con-
structed with this distance.

LBP þ Haralick method [48] computes the vectorial LBP from
color texture images which are coded in 28 different color spaces.

Fig. 5. Examples of each texture class considered in the VisTex database.
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Then, the method computes Haralick features from the co-occurrence
matrices computed from the resulting LBP images. The 10 most
discriminate Haralick features are selected for texture classification.

Additionally, to evaluate the importance of color information
in the results of our method, we computed the c signature from
the gray scale version of both databases. Each RGB sample in the

Fig. 6. Examples of each texture class considered in the Natural Textures database.
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databases was converted to gray scale by eliminating the hue and
saturation information while retaining the luminance.

7. Results

We start by evaluating the proposed signatures according to
the number of descriptors n used. Regarding the maximum
dilation radius r, it is easy to see that too large values of r will
increase the computational cost of the method: for a N�M pixels
image with L gray levels, it is necessary to build a 3D volume of
size (Nþ2r)� (Mþ2r)� (Lþ2rþ1); and too small values of r will
significantly decrease the discrimination power of the resulting
texture descriptor since a small value of r results in a log–log
curve with few ri points. In our experiments, we use r¼10 as it
achieves a good balance between computational cost and dis-
crimination power of the resulting descriptor.

Figs. 7 and 8 present the results achieved in the VisTex and the
USPTex texture databases, respectively. In general, the success
rate yielded by each signature tends to increase as the number of
descriptors n increases. We also note some oscillations during this
process. These oscillations are a result of the proposed scheme to
compute the signatures cðnÞ and cRGBðnÞ, where we select a total
of n equidistant radius values from the log–log curve. A new
signature cðnþ1Þ is different from its previous version cðnÞ and it
may not present the same discriminative properties present in the
latter. In fact, this new signature could select radius values that
present similar characteristics for different texture patterns, thus
producing a small decrease in the success rate.

The best results are achieved when n¼33 is considered. It is
important to note that the results achieved by jðnÞ signature
overcomes the ones from cRGBðnÞ. An explanation for this beha-
vior lies in the fact that the jðnÞ signature evaluates each color
channel in an independent way. Thus, it provides more informa-
tion about each color channel and as a consequence, about the
whole image. As a result, we achieve a better texture discrimina-
tion. Otherwise, the cRGBðnÞ signature computes the color infor-
mation of the three channels (R, G and B) in a single step, a sort of
multi-spectral approach. Therefore, it uses only 33 descriptors to
describe a color texture sample, while the jðnÞ signature uses 99
descriptors (33 descriptors per channel). This is the great advan-
tage of this approach, but it is also its deficiency. Pixels at
different color channels, but with the same intensity, are not as

well represented in this approach as in the case where each color
channel is independently analyzed. Thus, the description of a
texture pattern with a strong correlation between its color
channels may be unsuitable using the cRGBðnÞ signature.

Table 1 presents the results provided by the proposed signa-
tures in comparison to other color-texture methods considered.
Results clearly show that jðnÞ signature is more accurate in the
classification of both image data sets as it presents the higher
success rate. For success rate, we consider the percentage of
images correctly classified in their respective classes. Its results
are also impressive in terms of discrimination capability. The
signature uses a reduced number of descriptors, i.e., half the
number of descriptors of the Gabor EEE method, which was
classified as the second best method in the experiment.

As expected, cRGBðnÞ signature presents an inferior perfor-
mance in comparison to jðnÞ signature and Gabor EEE. As
previously stated, this result is due to the reduced number of
descriptors in this signature (in comparison to the jðnÞ signature)
and its inability to deal with texture patterns presenting a strong
correlation between its color channels. Still, the cRGBðnÞ signature
is the one which presents the smallest number of descriptors at
all. We must emphasize that the largest difference in the results
achieved by the cRGBðnÞ and the Gabor EEE method is of 5.56%.
However, our approach uses a sixth of the number of descriptors
of the Gabor EEE method. Besides, our approach has the advan-
tage of processing all color information in different color channels
in a single step.

Fig. 7. Classification accuracy observed for different values of n in the VisTex

database.

Fig. 8. Classification accuracy observed for different values of n in the USPText

database.

Table 1
Results yielded by the proposed signatures and traditional texture analysis

techniques.

Methods No of descriptors Success rate (%)

VisTex Natural textures

j signature 99 99.06 96.57

cRGB signature 33 96.72 91.16

cGray signature [36] 33 93.28 81.11

Gabor EEE [53,54] 192 98.12 96.34

HRF [55] – 66.56 48.61

MultiLayer CCR [56] 640 95.94 66.11

LPM [57] – 95.48 85.92

LBPþHaralick [48] 10 93.12 81.53
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Another important characteristic of the proposed signatures is
its robustness to the increase of the number of classes and
samples in the database. From Vistex (40 classes) to the Natural
Textures (180 classes) database, we note a drop of 2.49% and
5.63% in the jðnÞ and cRGBðnÞ signatures, respectively. The
robustness of the method is comparable to the Gabor EEE method
(drop of 1.78%). This characteristic is not present in other
methods compared, such as the MultiLayer CCR, which presented
a drop of almost 30% in its success rate as we change the
database. Besides, MultiLayer CCR uses 640 descriptors to achieve
a performance inferior than the one achieved by cRGBðnÞ.

Between all methods, histogram ratio features (HRF) presented
the lowest success rate in both databases. Its number of descrip-
tors was not given as it depends on the color histogram of the
image. Basically, the method considers only histogram bins with
counts of more than 0.1% of the number of pixels in the
given image.

As an additional experiment, we compared our color texture
approaches with the cGrayðnÞ signature computed from the gray
scale version [36] of both databases. This was performed to
evaluate the importance of color information in our signature.
Basically, we noticed a slight drop in the success rate at the time
the color information is discarded in the Vistex database. How-
ever, the lack of color information contributes to decrease the
robustness of the signature. cGrayðnÞ presents a more pronounced
decrease in its success rate in comparison to cRGBðnÞ when it is
used to classify the USPTex database. Since both signatures use
the same number of descriptors, this is an indicative of the
importance of color to discriminate the texture patterns. Still,
the gray scale version of the proposed signature is more robust
than Histogram ratio features (HRF) and MultiLayer CCR methods.

8. Conclusion

In this paper, we proposed a novel pattern recognition method
based on complexity analysis. It was investigated how the color
texture can be characterized and analyzed in terms of the fractal
dimension. A signature which explores the details in the influence
volume curve to perform a more precise texture characterization
was defined. The potential of this signature was illustrated taking
into account the independent dilation of R, G and B surfaces, and
the dilation of the three channel in a single step, thus incorporat-
ing to the signature the information about the relationship
between channels. The proposed signatures are capable of dis-
criminating different classes with considerable quality, thus over-
coming a traditional color texture analysis method, the Gabor
EEE, in accuracy (jðnÞ signature) or number of descriptors (both
signatures).
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