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SOLAR RADIATION PRESSURE APPLICATIONS ON 
GEOSTATIONARY SATELLITES  

Patrick Kelly,* Richard S. Erwin,† Riccardo Bevilacqua,‡ and Leonel Mazal§ 

Taking advantage of the solar radiation pressure at geostationary orbits can 

provide a viable means of actuation for orbital control and can lead to propellant-

less satellite missions.  Using only solar radiation pressure, it is possible to control 

the semi-major axis, eccentricity, inclination, or even perform satellite servicing 

missions.  Utilizing attainably large solar sails, this paper will demonstrate 

possible methods for executing such maneuvers. 

INTRODUCTION  

With recent advancements in solar sailing technology, potential applications have become more 

plausible and ambitious, as demonstrated by the emergence of such projects such as Lightsail-11 or 

Sunjammer2.  Based on this current state of the art, we present numerous tasks and near-future uses 

for solar radiation pressure (SRP).   

Early studies into SRP have focused on payload delivery to celestial bodies or on the formation 

of exotic non-Keplerian orbits, typically for missions of extended duration3,4,5,6,7.  In more recent 

work, methods for satellite deorbit have been introduced, addressing deorbit from medium Earth 

orbit or geosynchronous transfer orbit using SRP8,9,10.  Furthering these concepts, this paper 

postulates that SRP can be utilized with sophisticated solar sails and clever satellite orientations to 

help execute deorbiting maneuvers to place satellites into desired orbits.  It has been shown that the 

SRP influence on satellite orbits in geostationary orbits (GEO) result in semi-major axis (SMA) 

and eccentricity variations based on the location of the sun with respect to the satellite11.  This 

research takes advantage of these variations to manipulate key orbital elements and drive a satellite 

to a desired orbit.   

At GEO, perturbations from the solar radiation pressure may provide sufficient force to help 

alleviate a satellite’s propellant dependency for some orbital maneuvers, effectively increasing the 

lifespan of the satellite.  Practical applications such as orbital slot maintenance, deorbiting, or 

satellite servicing may be enhanced by utilizing the SRP force.  This work derives control strategies 

based on the current state of the art in solar sailing technology to investigate the plausibility of 

performing such tasks, specifically investigating means to attain desired semi-major axis and 

eccentricity values in orbit using SRP as a control input.  In keeping with the spirit of minimizing 

propellant dependencies, all subsequent findings are performed through the use of SRP only; there 

is no assistance from thrusters or other spacecraft. 
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A topic of main concern is that of deorbiting a satellite from its position in GEO and placing it 

into the graveyard orbit by means of increasing the perigee about 300 km above the GEO belt.    

Though many GEO spacecraft are well equipped to perform such a maneuver, it is a common 

occurrence that these satellites are unable to adequately execute their deorbiting maneuvers due to 

system failures throughout the lifecycle12,13,14.  These malfunctioning satellites contribute to the 

addition of space debris throughout the GEO belt, preventing the possibility of occupying valuable 

slots in the belt.  This is particularly concerning for Air Force spacecraft as many reside in the GEO 

belt.  Using a solar sailing towing satellite, or “tug-sat”, our work investigates a possible method 

to dispose of these inoperable satellites with SRP, by placing them above the graveyard belt.  To 

demonstrate this, we simulate a maneuver for a tug-sat to deorbit an expired GEO asset.  This is 

accomplished by raising the semi-major axis of the “dead” GEO satellite to a value above the 

graveyard belt, then subsequently reducing the eccentricity of the resulting orbit to ensure that the 

space debris does not re-enter the GEO belt.  The space debris will then be released and the tug-sat 

will maneuver to return to the GEO belt to retrieve another expired satellite.  This maneuver can 

be repeated multiple times using the same tug-sat, providing a relatively low-cost means of cleaning 

up slots within the GEO belt.  

 DYNAMICS 

From the gravity equations posed in Lara and Elipe, there exist four equilibrium points located 

on the GEO belt which reside on the Earth’s equatorial principal axes15.  Two unstable equilibrium 

points are located on the x principal axis and the remaining two, stable, equilibrium points are 

located on the y principal axis.  The z axis is the cross product of the x and y axes, with the positive 

z direction pointing along the North Pole.  It is in this Earth-centered, Earth-fixed principal axis 

(PA) coordinate system that the satellite’s position elements are resolved. 

The dynamics of GEO satellites are primarily influenced by the Earth’s gravity field, luni-solar 

effects, and the solar radiation pressure. Adopting expressions for the Earth’s gravitational field 

from Lara and Elipe and the SRP acceleration expression from Montenbruck and Gill16, these forces 

are modeled in the following equations 
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where r is the satellite position vector [x y z]T, 
k and 

kr are the gravitational coefficient and 

position vector for a third body k (which denotes the sun and/or moon),   is the angular velocity 

magnitude of the Earth (neglecting precession, nutation, and pole wandering), and   is the 

geopotential function in terms of the satellite’s position magnitude from the Earth r, mean 

equatorial radius  , and the C2,0 and C2,2 harmonic coefficients.  The SRP acceleration is expressed 

in terms of the solar radiation pressure magnitude P , satellite distance from the sun r , the 

astronomical unit AU, shadow function  , reflectivity coefficient  , area to mass ratio A/m, and 

the angle   between the sun direction vector ê and sail orientation n̂ .  Assuming perfect 

reflectivity and constant mass, area, and solar radiation pressure, Eq. (3) can be simplified and 

expressed as Eq. (4), with a0 representing the characteristic acceleration as a result of the previous 

assumptions. 

Acceleration magnitudes from the Earth’s gravity are on the order of 10-4 km/sec2 with C2,0 and 

C2,2 oblateness contributions on the order of 10-8 km/sec2 and 10-10 km/sec2 respectively.  Third body 

effects from the sun and moon are on the order of 10-8 km/sec2.  For a surface area to mass ratio of 

0.01 m2/kg, SRP contributions have magnitudes on the order of 10-10 km/sec2.  The next greatest 

perturbation comes from albedo, and is on the order of 10-12 km/sec2, followed by the effects of 

Venus, Jupiter, and Earth’s next two largest geopotential coefficients.  These latter perturbations 

are not considered in the dynamics model as their contributions are orders of magnitude less than 

the SRP contribution.  By increasing the surface area to mass ratio, a satellite can experience SRP 

accelerations which dominate the effects of the remaining perturbations.  Through manipulation of 

the solar sail properties, the available SRP contribution can be regulated to attain orbital elements 

characteristic of a desired orbit. 

CONTROL BASICS 

From Eq. (3), the controllable parameters are the satellite’s area A, mass m, reflectivity ε, and 

sail orientation n̂ .  In this work, the actuation is performed by setting n̂  as the control parameter.  

Assuming a reflectivity value of 1.0, completely specular diffusion, and constant area to mass ratio, 

the magnitude and direction of the SRP acceleration are strictly dependent upon the angle   

between n̂  and ê .  When the two vectors are aligned (  = 0), the maximum SRP acceleration is 

obtained, acting in the opposite direction of the surface normal.  This is only the case when the sail 

is perfectly reflective (ε = 1), otherwise there will be SRP force components acting parallel to the 

incoming photons from the sun.  When   is set to 90 degrees, the SRP acceleration experienced 

by the solar sail is effectively zero, in this way it is possible to “turn off” SRP, assuming negligible 

effects from the satellite bus.  Orientations with   between 0 and 90 degrees will experience lesser 

SRP acceleration magnitudes, decreasing as   moves farther away from zero.  The satellite will 

thrust in the direction opposite the surface normal with accelerations dependent upon the 

experienced SRP magnitude.  It is important to note that values for   are inherently less than or 

equal to 90 degrees as a result of n̂  always being defined normal to the face of the solar sail which 

is facing the sun.  For the purposes of this paper, it is assumed that the solar sail is perfectly 

reflective on both sides.  Figure 1 illustrates these concepts. 

 Cleverly orienting the solar sail during strategic points in the orbit can help to manipulate the 

instantaneous orbital velocity, resulting in changes to the semi-major axis, eccentricity, and 

inclination.  In general, pushing the satellite along the velocity vector will instantaneously increase 

the orbital velocity and raise the semi-major axis.  Pushing against the satellite velocity vector will 

instantaneously decrease the orbital velocity and lower the semi-major axis.  Accelerations acting 
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out of the orbital plane will result in changes to the satellite’s inclination.  Changes to the 

eccentricity occur for any force exerted in-plane.   

ECCENTRICITY 

This research makes use of two schemes to help minimize the eccentricity while maintaining a 

desired semi-major axis value.  The first involves promoting a desired orbital velocity magnitude, 

characteristic of a circular orbit, and the second utilizes the Gaussian variation of parameters 

equation for the time rate of change in eccentricity. 

Velocity Monitoring   

To attain the characteristic velocity of a circular orbit at a desired SMA, the velocity is polled 

to compare whether the satellite needs to accelerate or decelerate to match the desired velocity.  To 

decelerate, the orbital velocity vector must be in negative alignment with both the SRP acceleration 

vector and the acceleration vector from the remaining perturbations of the Earth, sun, and moon.  

This latter acceleration vector will be labeled perta  and is defined as the sum of the moon’s 

gravitational acceleration, the sun’s gravitational acceleration, and the acceleration due to the earth.   

 
pert earth moon sun SRPa r r r r r       (5) 

To accelerate, the orbital velocity vector must be in positive alignment with the SRP acceleration 

vector, as well as the perta vector.  
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Eq. (6) provides an expression for the time rate of change of eccentricity due to SRP resolved in 

the NTW satellite coordinate system where de/dt is the change in eccentricity, inv  is the inertial 

velocity magnitude, e is the eccentricity, f is the true anomaly, r is the position vector magnitude 

as measured from the earth’s center, a is the semi-major axis value, and FT and FN are the force 

components in the tangential and normal directions respectively17.  By orienting the satellite surface 

normal in line with the velocity vector, the tangential SRP force component will be negative.  

Alternatively, if the satellite surface normal is oriented opposite the velocity vector, the tangential 

SRP force component will be positive. The proposed control law results in the following, 
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where înv  is the direction of the inertial velocity vector, vs is the angle between the sail surface 

normal and the projection of the sun-position unit-vector onto the tangential axis, and circularv is the 

magnitude of the characteristic circular velocity at a given semi-major axis.   From these results, 
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de

dt
 is negative when  cos( ) 0e f   in Eq. (7) and when  cos( ) 0e f   in Eq. (8).  

Regulating the orbital velocity in this manner will promote a circular orbit about the desired semi-

major axis.  For improved simulation results, this control method is applied within a semi-major 

axis window of 10 km of the desired semi-major axis value.  This window allows for better 

flexibility when reducing the eccentricity; recall, the changes in eccentricity will induce changes in 

the semi-major axis.  In reference to the perta  vector alignment for circularizing behaviors, this 

requirement is still under investigation.  It is observable however, that attempting to circularize the 

orbit when perta does not assist SRP proves less effective.  Due to the magnitude comparison of the 

SRP acceleration and the remaining perturbations, it is best to use SRP as a means to enhance the 

effects of the other perturbations when their effects are beneficial to accelerate or decelerate the 

satellite as desired.  Figure 2 shows the time evolution of the satellite position, semi-major axis, 

eccentricity, and oscillations in the z direction during an orbit raising maneuver to the graveyard 

belt. 

Gaussian Variation of Parameters 

The second method minimizes de/dt using Eq. (9), attempting to continuously orient the satellite 

in a manner which best reduces the eccentricity18. 
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Here, de/dt is the change in eccentricity, p is the semi-latus rectum, r is the position magnitude of 

the satellite with respect to the Earth, f is the true anomaly, e is the eccentricity, and FR and FS are 

the acceleration components acting in the radial and tangential directions of an RSW coordinate 

system respectively.  This method analytically determines the optimal orientation corresponding to 

the instantaneous minimum value of de/dt.  Formulating Eq. (9) as a dot product of two vectors, it 

is possible to determine the instantaneous orientation which obtains the minimum de/dt value. 
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The variables   and   represent the coefficient vector and SRP force vector respectively, with 

radial direction R̂  and transverse direction Ŝ  of the RSW coordinate system.  Plugging Eq. (12) 

into Eq. (10) results in 
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In order to minimize de/dt it is necessary to maximize  2ˆ ˆ ˆ( )e n n  .  With this in mind the 

following basis is formed, containing the plane generated by vectors ê  and  .  
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The sail orientation, n̂ , will form an angle   with its projection in the x̂ - ŷ  plane.  The angle 

between this n̂  projection and the x̂ -axis will be denoted  .  These angles help characterize the 

SRP force in the following ways   
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To maximize  2ˆ ˆ ˆ( )e n n  , it is required that cos 1 0    ; therefore n̂  must lie on the 

x̂ - ŷ  plane.  Since ˆ ˆ 0e n  , it follows that  90 ,90     .  Defining   as the angle between 

ê  and  , the cost function, J, becomes 

  2cos ( ) cosJ       (21) 

In order to maximize the cost function, cos( )   must be positive, so it follows that 

 90 ,90      .  Values for  can be determined from the cost function and inputted into 

Eq. (17) to obtain the instantaneous minimum de/dt value.  This analytical proof reduces the 

eccentricity continuously throughout the orbit and guarantees de/dt   0 from SRP contributions.  

In simulation however, it is apparent that minimizing de/dt throughout the orbit does not lead to 

orbits with the smallest eccentricities.  Seeking instantaneous minimum de/dt values from the SRP 

acceleration minimizes the eccentricity exponentially but does not drive the eccentricity all the way 

to zero.  Since this method only minimizes de/dt from SRP, the third body effects from the sun and 

moon, as well as the earth’s gravitational harmonic effects, are left unaddressed which result in 

minimum eccentricity limits where the eccentricity remains on the order of 1e-3.  These results are 

demonstrated in Figure 3. 

Selective Minimization 

A combination of these two methods results in an efficient reduction of eccentricity.  This 

involves implementing the optimized minimum de/dt orientation from the Gaussian variation of 

parameters formula based on the key vector geometries from the velocity monitoring technique. 

When the perta and SRP vectors are mutually in positive or negative alignment with the velocity 

vector, the satellite is optimally oriented to either accelerate or decelerate the satellite to better 

match the characteristic velocity of the desired circular orbit.  This strategy is expressed as 
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If either of the conditions of Eq. (22) are met, the satellite is oriented identically as described in Eq. 

(17).  This orientation will either accelerate or decelerate the satellite in a similar fashion as 

described for Equations 7 and 8 though optimized based on the minimum de/dt orientation from 

Eq. (17).   Consideration of v  and the perta  vector in this manner allows for efficient minimization 

of eccentricity.  The result is an even greater reduction of the eccentricity in a shorter amount of 

time as doing any of the prior two methods alone.  Figure 4 illustrates these results. 

To confirm the utility of this method, simulations were run at the beginning of each season with 

the satellite’s initial position on the GEO belt varying from 0 to 360 degrees in one degree 

increments as measured from the x axis of the PA coordinate system.  It can be demonstrated with 

Figures 5 and 6 that the long term effects of this control method are effective regardless of the 

launch date or the satellite’s initial position on the GEO belt. 

RAISE AND LOWER 

Placing a satellite in the graveyard belt requires raising the orbit about 300 km from GEO while 

minimizing the eccentricity so that perigee never dips below the graveyard belt.  To achieve this, 

the sail is oriented facing the sun to assist the orbital velocity.  Consequently, the semi-major axis 

increases and the orbit becomes more eccentric11.  To return the satellite to GEO, the sail is oriented 

facing the sun whenever the resulting SRP will oppose the orbital velocity.  The semi-major axis 

will then decrease, resulting in similar changes to the eccentricity as that of raising the orbit.   

To demonstrate the tug-sat mission, a solar-sailing tug-sat with similar characteristics as 

Sunjammer will be used to deorbit a 1000 kg piece of space-debris from GEO.  The tug-sat/space-

debris combination is characterized by a surface area to mass ratio of 0.8 m2/kg.  After releasing its 

payload, the resulting tug-satellite will have a mass of approximately 30 kg.  The area to mass ratio 

increases to around 25 m2/kg as a result, allowing for increased SRP acceleration magnitudes to 

return the satellite to a completely equatorial planar orbit.  Figure 7 displays the simulation results 

of a tug-sat removing a dead satellite from GEO and subsequently returning to orbit. 

A graveyard belt altitude can be achieved in about 90 days, resulting in eccentricities of around 

0.0001.  Using the methods presented in this work, the graveyard orbit can be near circularized in 

about 220 days, with acceptable graveyard perigees achieved in about 180 days.  The process of 

returning to GEO after successfully raising and circularizing at the graveyard belt will take about 

450 days.  Based on simulations, these results are consistent regardless of launch date. 

Z CONTROL 

Due to the obliquity of the Earth’s orbit, as well as the relative positions of the sun and moon to 

the orbital plane, the satellite will experience accelerations acting out of plane.  Consequently, 

changes in inclination occur, resulting in drifts above the equatorial plane on the order of thousands 

of kilometers over the course of an extended mission.  To dampen this motion, the sail can be 
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oriented so that the SRP force will have a component opposite the direction of the z motion.  This 

control strategy is expressed as 

 
 

ˆif  (3) 0  and  (3) 0

ˆ 0 0 ( )

in

T

z e z v

n sign z
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where ˆ (3)e  and (3)inv  are the PA ẑ components of the sun direction and inertial velocity vectors 

respectively.  The difficulties of this strategy arise when the area to mass ratio of the satellite is too 

miniscule to produce z acceleration magnitudes that overcome the z accelerations from the Earth, 

sun, and moon.  For instance, an area to mass ratio of about 20 m2/kg is required for a GEO satellite 

to combat z accelerations on the order of 10-7 km/sec2.  For most solar sailing satellites however, 

orbits occurring near the spring and fall equinoxes exhibit oscillations in the z direction due to the 

geometry of the orbit inclination and sun direction vector.  Favorable geometries do not exist for 

long enough durations in the fall and spring to dampen z motion without the use of unrealistic, 

exaggerated area to mass ratios.  Figure 7 demonstrates the z dampening potential of the SRP force. 

CONCLUSION 

At altitudes as high as the GEO belt, it is evident that SRP can act as a plausible means for 

satellite orbital manipulation.  Even with current sail technology, sails can be constructed to tow 

1000 kg satellites up to retirement altitudes with enough SRP force to circularize the parking orbit.  

Solar radiation pressure also provides a possible means to assist with slot positioning and orbit 

control, correcting semi-major axes, eccentricities, and inclinations.  Future work will investigate 

further the applicability of SRP for formation control, in hopes of creating a solar sailing 

constellation of satellites around Mars for global positioning and communications for Martian 

surface assets.  For now, with tactical use of the SRP force can reduce mission costs, allowing for 

the allocation of resources elsewhere in space missions or the elongation of a satellite’s lifespan. 

APPENDIX: FIGURES 

 

Figure 1. 2-D polar representation of the SRP force vector (Blue) as a function of sail orientation. 

Magnitudes are resulting accelerations on the scale of mm/s2 for an area to mass ratio of 1 m2/kg. 
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Figure 2. Changes in position, semi-major axis, eccentricity, and out of plane motion using the 

method of velocity regulation. 

 

Figure 3. Changes in position, semi-major axis, eccentricity, and out of plane motion using the 

method of de/dt reduction.  Position and SMA plots are zeroed at GEO. 



 10 

 

Figure 4. Changes in position, semi-major axis, eccentricity, and out of plane motion using the 

method of de/dt reduction.  Position and SMA plots are zeroed at GEO. 

 

Figure 5. Semi-Major Axis evolution based on initial position of 0-360 degrees on GEO belt.          

(360 simulation results overlapped) 



 11 

 

Figure 6. Eccentricity evolution based on initial position of 0-360 degrees on GEO belt.                   

(360 simulation results overlapped) 

 

Figure 7. Changes in position, semi-major axis, eccentricity, and out of plane motion throughout a 

tow mission.  Position and SMA plots are zeroed at GEO. 
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