Study on European Automatic Track Gauge Changeover Systems (ATGCS)

Miroslaw Kanclerz Manager CEE

How to overcome differences in track gauges?

- Change of track gauge
- Transhipment
- Exchange of bogie or wheelset
- Gauge-adjustable wheelset +changeover facility = automatic track gauge changeover system (ATGCS)

Different ATGCS 1

- Currently there are four ATGCS
 - > TALGO
 - > CAF
 - > DB Rafil
 - **PKP SUW2000**
- Main differences
 - Technology
 - > Type of traffic
 - **>** ...

Different ATGCS 2

- Different ATGCS but one unique opportunity
 - > to reduce total transport time
 - to avoid a source of damages
 - to increase transport reliability
 - to make railway transport more friendly to environment
 - to reduce transportation costs

Former UIC activities in this field

- 2002-2003 Study on defining a common infrastructure for ATGCS: TALGO, DB Rafil and PKP SUW 2000
- Conclusions
 - DB Rafil and PKP SUW 2000 are technically compatible and thereby 'interoperable'
 - Three systems are not compatible
 - Development of common infrastructure possible necessary modifications to both gauge-adjustable wheelsets and changeover installation
 - NO simple, cost-effective solution at that time

Current study proposal

- ➤ A new UIC study proposal on comparative assessment of the European track gauge changeover systems was submitted by PKP to the members of CEEA
- CEEA approved and developed proposal
- PTR Steering Body supported the proposal and decided to launch a feasibility study together with CEEA

Why such a study?

- Are ATGCS represent modern technologies or kind of an experiment?
- Is application of these systems economically viable?
- What RUs (including new entrants) and IMs should know about ATGCS to decide whether to apply them or not

Scope of the study

- Comparative assessment of the European ATGCS
 - Technical characteristics
 - Scope of application
 - Experiences in operation
 - Directions of development technical, legal
 - Guidelines
- Commercial aspects
 - Traffic flows
 - Types of traffic
 - ATGCS and alternative solutions

Objective of the study

- ➤ To compare existing ATGCS from the point of view of their optimum business utilization and performance in the specific areas in Europe and worldwide
- ➤ To promote newest technologies in the context of compatibility of different railway systems 1435/1520/1668

The first step – feasibility study

- Two meetings of UIC working group June, September 2007
 - Poland (PKP, SUW 2000)
 - Germany (DB, Rafil)
 - Spain (CAF, Talgo, ADIF, RENFE)
 - Lithuania (LG)
 - Finland (VR)
 - Slovakia (ZSR)
 - Romania (CFR Marfa)
- ➤ The final meeting November 2007

ATGCS in passenger traffic (high speed)

Variable gauge systems	Country	Max. speed (announced by manufacturer s)	Comments
SUW 2000	Poland	160 km/h	No high-speed
DBAG/Rafil Type V	Germany	120 km/h	No high-speed: only for freight
CAF BRAVA	Spain	250 km/h	Started service v _{max} =250km/h in 2005
Talgo RD	Spain	250 km/h	Currently in service up to 220km/h
Japan RTRI	Japan	300 km/h	Top speed reached in tests 246km/h
Korea KRRI	Korea	?	First results to be shown in 2008

Time savings – passenger traffic

Time & cost savings – freight traffic

Conclusions

- Strong involvement of all concerned parties: railways and manufacturers of the systems
- A lot of data and information have been provided by participants so far
- ➤ The results of the feasibility study will be used to support the decision making process concerning launch of the main study in 2008

Thank you for your attention

