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Abstract
Existing enterprise information technology (IT) sys-

tems often inhibit business flexibility, sometimes with
dire consequences. In this position paper, I argue that
operating system research should be measured, among
other things, against our ability to improve the speed at
which businesses can change. I describe some of the
ways in which businesses need to change rapidly, spec-
ulate about why existing IT infrastructures inhibit use-
ful change, and suggest some relevant OS research prob-
lems.

1 Introduction
Businesses change. They merge; they split apart; they

reorganize. They launch new products and services, re-
tire old ones, and modify existing ones to meet changes
in demand or competition or regulations. Agile busi-
nesses are more likely to thrive than businesses that can-
not change quickly.

A business can lack agility for many reasons, but one
common problem (and one that concerns us as computer
scientists) is the inflexibility of its IT systems. “Ev-
ery business decision generates an IT event” [1]; For
example, a decision to restrict a Web site with prod-
uct documentation to customers with paid-up warranties
requires a linkage between that Web site and the war-
ranty database. If the IT infrastructure deals with such
“events” slowly, the business as a whole will respond
slowly; worse, business-level decisions will stall due to
uncertainty about IT consequences.

What does this have to do with operating systems?
Surely the bulk of business-change problems must be re-
solved at or above the application level, but many as-
pects of operating system research are directly relevant
to the significant problems of business change. (I as-
sume a broad definition of “operating system” research
that encompasses the entire, distributed operating envi-
ronment.)

Of course, support for change is just one of many
problems faced by IT organizations (ITOs), but this pa-
per focusses on business change because it seems under-
appreciated by the systems software research commu-
nity. We are much better at problems of performance,
scale, reliability, availability, and (perhaps) security.

2 IT vs. business flexibility
Inflexible IT systems inhibit necessary business

changes. The failure to rapidly complete an IT upgrade
can effectively destroy the value of a major corporation
(e.g., [12]). There is speculation that the Sept. 11, 2001
attacks might have been prevented if the FBI had had
more flexible IT systems [17, page 77]. Even when IT
inflexibility does not contribute to major disasters, it fre-
quently imposes costs of hundreds of millions of dollars
(e.g., [13, 14]).

The problem is not limited to for-profit businesses;
other large organizations have similar linkages between
IT and their needs for change. For example, the mili-
tary is a major IT consumer with rapidly evolving roles;
hospitals are subject to new requirements (e.g., HIPAA;
infection tracking); universities innovate with IT (e.g.,
MIT’s OpenCourseWare); even charities must evolve
their IT (e.g., for tracking requirements imposed by the
USA PATRIOT Act). The common factor is a large or-
ganization that thinks in terms of buying “enterprise IT”
systems and services, not just desktops and servers.

3 Why is application deployment so slow?
IT organizations often spend considerably more

money on “software lifecycle” costs than on hardware
purchases. These costs include software development,
testing, deployment, and maintenance. In 2004, 8.1% of
worldwide IT spending went to server and storage hard-
ware combined, 20.7% went to packaged software, but
41.6% went to “services,” including 15.4% for “imple-
mentation” [15]. Even after purchasing packaged soft-
ware, IT departments spend tons of money actually mak-
ing it work [12].

Testing and deployment also impose direct hardware
costs; for example, roughly a third of HP’s internal
servers are dedicated to these functions, and the fraction
is larger at some other companies [21]. These costs are
high because these functions take far too long. For exam-
ple, it can take anywhere from about a month to almost
half a year for an ITO to certify that a new server model is
acceptable for use across a large corporation’s data cen-
ters. (This happens before significant application-level
testing!)

It would be useful to know why the process takes so
long, but I have been unable to discover any careful cate-
gorization of the time spent. (This itself would be a good



research project.) In informal conversations, I learned
that a major cause of the problem is the huge range of op-
erating system versions that must be supported; although
ITOs try to discourage the use of obsolete or modified
operating systems, they must often support applications
not yet certified to use the most up-to-date, vanilla re-
lease. The large number of operating system versions
multiplies the amount of testing required.

Virtual machine technology can reduce the multiplica-
tion effect, since VMs impose regularity above the vari-
ability of hardware platforms. Once a set of operating
systems has been tested on top of a given VM release,
and that release has been tested on the desired hardware,
the ITO can have some faith that any of these operating
systems will probably work on that hardware with that
VM layered in between. However, this still leaves open
the problem of multiple versions of the VM software,
and VMs are not always desirable (e.g., for performance
reasons).

The long lead time for application deployment and up-
grades contributes directly to business rigidity. A few
companies (e.g., Amazon, Yahoo, Google) are consid-
ered “agile” because their IT systems are unusually flex-
ible, but most large organizations cannot seem to solve
this problem.

4 Where has OS research gone wrong?
At this point, the reader mutters “But, but, but ... we

operating system researchers are all about ‘flexibility!’.”
Unfortunately, it has often been the wrong kind of flexi-
bility.

To oversimplify a bit, the two major research initia-
tives to provide operating system flexibility have been
microkernels (mix & match services outside the kernel)
and extensible operating systems (mix & match services
inside the kernel). These initiatives focussed on increas-
ing the flexibility of system-level services available to
applications, and on flexibility of operating system im-
plementation. They did not really focus on increasing
application-level flexibility (perhaps because we have no
good way to measure that; see Section 6).

Outside of a few niche markets, neither microkernels
nor extensible operating systems have been successful in
the enterprise IT market. The kinds of flexibility offered
by either technology seems to create more problems than
they solve:� The ITO (or system vendor) ends up with no idea

what daemons or extensions the user systems are ac-
tually running, which makes support much harder.
It is hard to point the finger when something goes
wrong.� The ITO has no clear definition of what configura-
tions have been tested, and ends up with a combina-
torial explosion of testing problems. (“Safe” exten-
sions are not really safe at the level of the whole IT

system; they just avoid the obvious interface viola-
tions. Bad interactions through good interfaces are
not checked.)� The ITO has more difficulty maintaining a consis-
tent execution environment for applications, which
means that application deployment is even more dif-
ficult.

One might argue that increased flexibility for the operat-
ing system designer can too easily lead to decreased flex-
ibility for the operating system user; it’s easier to build
novel applications on bedrock than on quicksand.

In contrast, VM research has led to market success.
The term “virtual machine” is applied both to systems
that create novel abstract execution environments (e.g.,
Java bytecodes) and those that expose a slightly abstract
view of a real hardware environment (e.g., VMware or
Xen [4]). The former model is widely seen as encour-
aging application portability through the provision of a
standardized foundation; the latter model has primar-
ily been viewed by researchers as supporting better re-
source allocation, availability, and manageability. But
the latter model can also be used to standardize execu-
tion environments (as exemplified by PlanetLab [5] or
Xenoservers [7]); VMs do aid overall IT flexibility.

5 How could OS research help?
In this section I suggest a few of the many operat-

ing system research problems that might directly or in-
directly improve support for business change.

5.1 OS support for guaranteed sameness
If uncontrolled or unexpected variation in the operat-

ing environment is the problem, can we stamp it out?
That is, without abolishing all future changes and config-
uration options, can we prevent OS-level flexibility from
inhibiting business-level flexibility?

One way to phrase this problem is: can we prove that
two operating environments are, in their aspects that af-
fect application correctness, 100.00000000% identical?
That is, in situations where we do not want change, can
we formally prove that we have “sameness”?

Of course, I do not mean that operating systems or
middleware should never be changed at all. Clearly,
we want to allow changes that fix security holes or
other bugs, improvements to performance scalability,
and other useful changes that are irrelevant to the stabil-
ity of the application. I will use the term “operationally
identical” to imply a notion of useful sameness that is not
too rigid.

If we could prove that host
�

is operationally identi-
cal to host � , then we could have more confidence that
an application, once tested on host

�
, would run cor-

rectly on host � . More generally,
�

and � could each
be clusters rather than individual hosts.

Similarly, if we could prove that
���

is operationally



identical to ���	��
�
�

����� , an application tested only on ���
might be safe to deploy on � � ��


�
���� � .

It seems likely that this would have to be a formal
proof, or else an ITO probably would not trust it (and
would have to fall back on time-consuming traditional
testing methods). However, formal proof technology
typically has not been accessible to non-experts. Perhaps
by restricting an automated proof system to a sufficiently
narrow domain, it could be made accessible to typical IT
staff.

On the other hand, if an automated proof system fails
to prove that � and � are identical, that should reveal
a specific aspect (albeit perhaps one of many) in which
they differ. That could allow an ITO either to resolve this
difference (e.g., by adding another configuration item to
an installation checklist) or to declare it irrelevant for a
specific set of applications. The proof could then be reat-
tempted with an updated “stop list” of irrelevant features.

It is vital that a sameness-proof mechanism cover the
entire operating environment, not just the kernel’s API.
(Techniques for sameness-by-construction might be an
alternative to formal proof of sameness, but it is hard
to see how this could be applied to entire environments
rather than individual operating systems.) Environmen-
tal features can often affect application behavior (e.g.,
the presence and configuration of LDAP services, au-
thentication services, firewalls, etc. [24]). However, this
raises the question of how to define “the entire environ-
ment” without including irrelevant details, such as spe-
cific host IP addresses, and yet without excluding the rel-
evant ones, such as the correct CIDR configuration.

The traditional IT practice of insisting that only a few
configuration variants are allowed can ameliorate the
sameness problem at time of initial application deploy-
ment. However, environments cannot remain static; fre-
quent mandatory patches are the norm. But it is hard
to ensure that every host has been properly patched, es-
pecially since patching often affects availability and so
must often be done in phases. For this and similar rea-
sons, sameness can deteriorate over time, which suggests
that a sameness-proof mechanism would have to be rein-
voked at certain points.

Business customers are increasingly demanding that
system vendors pre-configure complex systems, includ-
ing software installation, before shipping them. This
can help establish a baseline for sameness, but vendor
processes sometimes change during a product lifetime.
A sameness-proof mechanism could ensure that vendor
process changes do not lead to environmental differences
that would affect application correctness.

5.2 Quantifying the value of IT
A business cannot effectively manage an IT system

when it does not know how much business value that sys-
tem generates. Most businesses can only estimate this

value, for lack of any formal way to measure it. Simi-
larly, a business that cannot quantify the value of its IT
systems might not know when it is in need of IT-level
change.

ITOs typically have budgets separate from the profit-
and-loss accountability of customer-facing divisions, and
thus have much clearer measures of their costs than of
their benefits to the entire business. An ITO is usually
driven by its local metrics (cost, availability, number of
help-desk calls handled per hour). ITOs have a much
harder time measuring what value its users gain from
specific practices and investments, and what costs are ab-
sorbed by its users. As a result, large organizations tend
to lack global rationality with respect to their IT invest-
ments. This can lead to either excessive or inadequate
caution in initiating business changes. (It is also a seri-
ous problem for accountants and investors, because “the
inability to account for IT value means [that it is] not re-
flected on the firm’s [financial reports]”, often creating
significant distortions in these reports [23].)

Clearly, most business value is created by applications,
rather than by infrastructure and utilities such as backup
services [23]. This suggests that most work on value-
quantification must be application-specific; why should
we think operating system research has anything to of-
fer?

One key issue is that accounting for value, and espe-
cially in ascribing that value to specific IT investments,
can be quite difficult in the kinds of heavily shared and
multiplexed infrastructures that we have been so success-
ful at creating. Technologies such as timesharing, repli-
cation, DHTs, packet-switched networks and virtualized
CPUs, memory, and storage make value-ascription hard.

This suggests that the operating environment could
track application-level “service units” (e.g., requests for
entire Web pages) along with statistics for response time
and resource usage. Measurements for each category
of service unit (e.g., “catalog search” or “shopping cart
update”) could then be reported, along with direct mea-
surements of QoS-related statistics and of what IT assets
were employed. The Resource Containers abstract [2]
provides a similar feature, but would have to be aug-
mented to include tracking information and to span dis-
tributed environments. Magpie [3] also takes some steps
in this direction.

Accounting for value in multiplexed environments is
not an easy problem, and it might be impossible to get ac-
curate answers. We might be limited to quantifying only
certain aspects of IT value, or we might have to settle for
measuring “negative value,” such as the opportunity cost
of unavailability or delay. (An IT change that reduces a
delay that imposes a clear opportunity cost has a fairly
obvious value.)



5.3 Pricing for software licenses
Another value-related problem facing ITOs is the cost

of software licenses. License fees for many major soft-
ware products are based on the number of CPUs used,
or on total CPU capacity. It is now widely understood
that this simple model can discourage the use of tech-
nologies that researchers consider “obviously” good, in-
cluding multi-core and multi-threaded CPUs, virtualized
hardware, grid computing [22], and capacity-on-demand
infrastructure. Until software vendors have a satisfactory
alternative, this “tax on technology innovation with lit-
tle return” [8] could distort ITO behavior, and inhibit a
“business change” directly relevant to our field (albeit a
one-time change).

The solution to the software pricing crisis (assuming
that Open Source software cannot immediately fill all
the gaps) is to price based on value to the business that
buys the software; this provides the right incentives for
both buyer and seller. (Software vendors might impose
a minimum price to protect themselves against incompe-
tent customers.)

Lots of software is already priced per-seat (e.g., Mi-
crosoft Office and many CAD tools) or per-employee
(e.g., Sun’s Java Enterprise System [18]), but these mod-
els do not directly relate business value to software costs,
and might not extend to software for service-oriented
computing.

Suppose one could instead track the number of
application-level service units successfully delivered to
users within proscribed delay limits; then application
fees could be charged based on these service units rather
than on crude proxies such as CPU capacity. Also, soft-
ware vendors would have a direct incentive to improve
the efficiency of their software, since that could increase
the number of billable service units. Such a model would
require negotiation over the price per billable service
unit, but by negotiating at this level, the software buyer
would have a much clearer basis for negotiation.

Presumably, basing software fees on service units
would require a secure and/or auditable mechanism for
reporting service units back to the software vendor. This
seems likely to require infrastructural support (or else
buyers might be able to conceal service units from soft-
ware vendors). See Section 5.5 for more discussion of
auditability.

One might also want a system of trusted third-party
brokers to handle the accounting, to prevent software
vendors from learning too much, too soon, about the
business statistics of specific customers. A broker could
anonymize the per-customer accounting, and perhaps
randomly time-shift it, to provide privacy about business-
level details while maintaining honest charging.

5.4 Name spaces that don’t hinder organiza-
tional change

Operating systems and operating environments in-
clude lots of name spaces; naming is key to much of
computer systems design and innovation.1 We name sys-
tem objects (files, directories, volumes, storage servers,
storage services), network entities (links, switches, inter-
faces, hosts, autonomous systems), and abstract princi-
pals (users, groups, mailboxes, messaging servers).

What happens to these name spaces when an organi-
zations combine or establish a new peering relationship?
Often these business events lead to name space problems,
either outright conflicts (e.g., two servers with the same
hostname) or more abstract conflicts (e.g., different de-
signs for name space hierarchies). Fixing these conflicts
is painful, slow, error-prone, and expensive. Alan Karp
has articulated the need to “design for consistency under
merge” to avoid these conflicts [10].

And what happens to name spaces when an organi-
zation is split (e.g., as in a divestiture)? Some names
might have to be localized to one partition or another,
while other names might have to continue to resolve in
all partitions. One might imagine designing a naming
system that supports “completeness after division,” per-
haps through a means to tag certain names and subspaces
as “clonable.”

When systems researchers design new name spaces,
we cannot focus only on traditional metrics (speed, scale,
resiliency, security, etc.); we must also consider how the
design supports changes in name-space scope.

5.5 Auditability for outsourcing
IT practice increasingly tends towards outsourcing

(distinct from “offshoring”) of critical business func-
tions. Outsourcing can increase business flexibility, by
giving a business immediate access to expertise and
sometimes by better multiplexing of resources, but it
requires the business to trust the outsourcing provider.
Outsourcing exposes the distinction between security
and trust. Security is a technical problem with well-
defined specifications, on which one can, in theory, do
mathematical proofs. Trust is a social problem with
shifting, vaque requirements; it depends significantly on
memory of past experiences. Just because you can prove
to yourself that your systems are secure and reliable does
not mean that you can get your customers to entrust their
data and critical operations to you.

This is a variant of what economists call the
“principal-agent problem.” In other settings, a principal
could establish its trust in an agent using a third-party
auditor, who has sufficient access to the agent’s envi-
ronment to check for evidence of incorrect or improper
practices. The auditor has expertise in this checking pro-
cess that the principal does not, and also can investigate
agents who serve multiple principals without fear of in-



formation leakage.
Pervasive outsourcing might therefore benefit from in-

frastructural support for auditing; i.e., the operating en-
vironment would support monitoring points to provide
“sufficient access” to third-party auditors. Given that
much outsourcing will be done at the level of operat-
ing system interfaces, some of the auditing support will
come from the operating system. For example, the sys-
tem might need to provide evidence to prove that prin-
cipal A cannot possibly see the files of principal B, and
also that this has never happened in the past.

6 Operating outside our comfort zone
The problems of enterprise computing, and especially

of improving business-level (rather than IT) metrics, is
far outside the comfort zone of most operating system
researchers. Problems include� The applications are not the ones we use or write

ourselves; it is hard to do operating system research
using applications one does not understand.� Most of these applications are not Open Source; re-
searchers cannot afford them, and some vendors ban
unauthorized benchmarking.� The applications can be hard to install. A typical
SAP installation might involve millions of dollars
of consultant fees over months or even years to cus-
tomize it [11].� We do not have a good description of “real work-
loads” for these applications.

In addition, many of the problems inhibiting business
change are cultural, not technical. That does not mean
that we are excused from addressing the technical chal-
lenges, but this is an engineering science, so our results
need to respect the culture in which they would be used.
That means that computer science researchers need to
learn about that culture, not just complain about it.

6.1 What about metrics?
Perhaps the biggest problem is that we lack quantified

metrics for things like “business flexibility.” (Low-level
flexibility metrics, such as “time to add a new device
driver to the kernel,” are not the right concept.) Lacking
the metrics, we cannot create benchmarks or evaluate our
ideas.

Rob Pike has argued that “In a misguided attempt to
seem scientific, there’s too much measurement: perfor-
mance minutiae and bad charts. ... Systems research
cannot be just science; there must be engineering, de-
sign, and art.” [20]. But we must measure, because oth-
erwise we cannot establish the value of IT systems and
processes; however, we should not measure the wrong
things (“performance minutiae”) simply because those
are the easiest for us to measure.

Metrics for evaluating how well IT systems support
business change will not be as simple as, for example,

measuring Web server transaction rates, for at least two
reasons. First, because such evaluations cannot be sepa-
rated from context; successful change inevitably depends
on people and their culture, as well as on IT. Second, be-
cause business change events, while frequent enough to
be problematic, are much rarer and less repeatable than
almost anything else computer scientists measure. We
will have to learn from other fields, such as human fac-
tors research and economics, ways to evaluate how IT
systems interact with large organizations.

I will speculate on a few possible metrics:� For software deployment: It might be tempting to
simply measure the time it takes to deploy an appli-
cation once it has been tested. However, such timing
often depends too much on uncontrollable variables,
such as competing demands on staff time. A more
repeatable metric would be the number of new prob-
lems found in the process of moving a “working” ap-
plication from a test environment to a production en-
vironment. The use of bug rates as a metric was pro-
posed in a similar context by Doug Clark [6], who
pointed out that what matters is not reducing the to-
tal number of bug reports, but finding them as soon
as possible, and before a product ships to customers.

Nagaraja et al. reported on small-scale measure-
ments of how frequently operators made mistakes in
reconfiguring Internet applications [16]. They de-
scribed a technique to detect many such errors auto-
matically, using parallel execution of the old system
and the new system, comparing the results, with the
new system isolated to prevent any errors from be-
coming visible. Their approach might be generaliz-
able to testing for environmental sameness.

One might also crudely measure a system’s sup-
port for deployment of updated applications by sub-
jecting an application to increasingly drastic changes
until something breaks. For example, perhaps
the operating environment can support arbitrary in-
creases in the number of server instances for an ap-
plication, but not in the number of geographically
separated sites.� For quantifying IT value: Suppose that an enter-
prise’s IT systems generated estimates of their value.
One way to test these estimates would be to compare
their sum to the enterprise’s reported revenue, but
this probably would not work: revenue reports are
too infrequent and too arbitrary, and it would require
nearly complete value-estimation coverage over all
IT systems. Instead, one might be able to find corre-
lations between the IT-value estimates from distinct
systems and the short-term per-product revenue met-
rics maintained by many businesses. If the correla-
tions can be used for prediction (e.g., they persist af-
ter a system improvement) then they would validate



the IT-value estimates.
In the end, many important aspects of IT flexibility will
never be reduced to simple, repeatable metrics. We
should not let this become an excuse to give up entirely
on the problem of honest measurement.

7 Grand Challenge ... or hopeless cause?
Section 6 describes some daunting problems. How

can we possibly do research in this space? I think the
answer is “because we must.” Support for CS research,
both from government and industry, is declining [9, 19].
If operating system research cannot help solve critical
business problems, our field will shrink.

The situation is not dire. Many researchers are indeed
addressing business-level problems. (Space prohibits a
lengthy description of such work, and it would be unfair
to pick out just a few.) But I think we must do better
at defining the problems to solve, and at recognizing the
value of their solution.
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Notes
1I think Roger Needham said that (more eloquently),

but I haven’t been able to track down a quote.


