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Abstract

Hypervisors have been proposed as a security tool

to defend against malware that subverts the OS kernel.

However, hypervisors must deal with the semantic gap

between the low-level information available to them and

the high-level OS abstractions they need for analysis.

To bridge this gap, systems have proposed making as-

sumptions derived from the kernel source code or sym-

bol information. Unfortunately, this information is non-

binding – rootkits are not bound to uphold these assump-

tions and can escape detection by breaking them.

In this paper, we introduce Patagonix, a hypervisor-

based system that detects and identifies covertly execut-

ing binaries without making assumptions about the OS

kernel. Instead, Patagonix depends only on the proces-

sor hardware to detect code execution and on the binary

format specifications of executables to identify code and

verify code modifications. With this, Patagonix can pro-

vide trustworthy information about the binaries running

on a system, as well as detect when a rootkit is hiding or

tampering with executing code.

We have implemented a Patagonix prototype on the

Xen 3.0.3 hypervisor. Because Patagonix makes no as-

sumptions about the OS kernel, it can identify code from

application and kernel binaries on both Linux and Win-

dows XP. Patagonix introduces less than 3% overhead on

most applications.

1 Introduction

Malicious software, otherwise known as malware, con-

tinues to be a serious problem in today’s computing en-

vironment. Malware is becoming increasingly difficult to

detect and remove because it commonly comes bundled

with a rootkit [12], which abuses administrative privi-

leges to hide the execution of malware binaries and their

resource usage from the system administrator. Rootkits

accomplish this by attacking the administrator’s ability to

obtain information about a system. For example, rootkits

will subvert execution-reporting utilities, such as ps and

lsmod on Linux systems and the task manager and

Process Explorer [27] on Windows, which admin-

istrators rely on to query the operating system (OS) about

running binaries and kernel modules. Rootkits may also

subvert the OS kernel itself so that any queries to the ker-

nel will receive a response that has been appropriately

distorted by the rootkit. In this way, rootkits have been

able to elude even the most experienced system admin-

istrators and sophisticated malware detection tools [11].

Even if the rootkit’s presence is discovered, it is difficult

to determine whether an attempted removal is success-

ful or not, as the rootkit’s ability to hide executing code

enables it to trick the administrator into believing that it

has been removed. As a result, best practice states that

when a rootkit is even suspected to be present, the ad-

ministrator must re-install the entire system from scratch

to be sure that the rootkit is removed – a costly and un-

desirable solution. Trustworthy execution-reporting util-

ities, which would enable a system to detect hidden mal-

ware processes and determine if an attempted removal

was successful or not, would save administrators a great

deal of effort and reduce system downtime.

In this paper, we present Patagonix, a system that de-

nies rootkits the ability to hide executing binaries from

the system administrator. Patagonix does this by address-

ing two shortcomings of current execution-reporting util-

ities. First, these utilities all depend on the integrity of

the kernel, both as a source of information and for protec-

tion against tampering. However, since rootkits can sub-

vert the kernel, the trust that these utilities and the admin-

istrator invest in the kernel is misplaced. Second, these

utilities do not verify the integrity of the binaries they re-

port as executing. This shortcoming allows a rootkit to

covertly execute code by injecting malicious code into

a running binary or by tampering with the binary image

on disk. Utilities that monitor binaries on disk, such as

Tripwire [17], may detect tampering of on disk binaries,
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but will miss tampering of binaries once they are loaded

in memory.

Unlike existing execution-reporting utilities, Patago-

nix does not depend on the OS. Instead, Patagonix uses

a hypervisor, allowing it to retain its integrity even if the

rootkit has compromised the OS kernel. The challenge to

implementing an execution-reportingutility in a hypervi-

sor is the semantic gap [6] between the information avail-

able to the hypervisor and the actual state of the system.

Other work has bridged this gap by using and trusting in-

formation about the OS kernel, such as the kernel source

code or kernel symbol information [3, 10, 13, 23, 25].

However, such information cannot be trusted because it

is non-binding – the rootkit is not bound to maintain the

semantics implied by source and symbol information, al-

lowing it to escape detection. For example, if the hyper-

visor uses non-binding information about the format or

location of kernel data structures, the rootkit may evade

detection by adding fields to the data structures or mov-

ing the data structures to a memory location that is not

being monitored. Similarly, assumptions about the code

structure of the kernel can be exploited by a rootkit that

modifies OS kernel execution to avoid code paths moni-

tored by the hypervisor. Patagonix does not rely on any

non-binding information about the OS kernel and relies

only on the behavior of the hardware, which cannot be

altered by malware.

Patagonix also verifies the integrity of all executing

binaries before giving their identity to the administrator.

Rather than verifying the contents of binaries on disk, Pa-

tagonix inspects the code as it executes in memory. As a

result, Patagonix cannot be fooled by rootkits that avoid

tampering with files on disk by injecting malicious code

into binaries as they run. On the other hand, systems

make modifications to code at run-time, causing it to dif-

fer from its image on disk when it is executed. Patagonix

can differentiate legitimate modifications from malicious

ones. The executing code is identified using a trusted ex-

ternal database that contains cryptographic hashes of bi-

naries, such as the National Software Reference Library

(NSRL) [20].

In this paper we make three main contributions:

• Patagonix Prototype. We have implemented a Pa-

tagonix prototype that leverages the capabilities of

a hypervisor and the non-executable (NX) bit of the

Memory Management Unit (MMU) to detect and

identify all executing binaries regardless of the state

of the OS kernel. Our prototype, built on the Xen

3.0.3 hypervisor [4], makes no assumptions about

the OS kernel. As a result, with the exception of

the binary format information, which differs from

OS to OS, it can be used to neutralize rootkits on

Windows XP, Linux 2.4 and Linux 2.6 OSs without

modification.

• Identity Oracles. The semantic gap between the

hypervisor and the OS requires special support to

differentiate legitimate modifications made to run-

ning code by the OS from malicious ones made

by a rootkit. To differentiate legitimate modifica-

tions from malicious tampering, we introduce the

concept of an identity oracle, which when given a

page of code in memory and a database of binaries,

will either identify the binary from which the code

page originated, or indicate that the code page is not

from any of the binaries in the database. We have

designed an oracle construction framework and im-

plemented identity oracles for ELF binaries, PE bi-

naries, the Linux kernel, the Windows XP kernel,

and Windows driver interrupt handlers.

• System Usage and Evaluation. We present two

complementary usage modes for Patagonix. In re-

porting mode, Patagonix serves as a trusted replace-

ment for the standard execution-reporting utilities

of an OS, allowing the administrator to see all exe-

cuting processes even if hidden by a rootkit. This

augments the administrator’s ability to audit the

state of the system during regular inspections and

after an attempted rootkit removal. In lie detection

mode, Patagonix compares the executing binaries

reported by the OS with the executing binaries it

identifies and reports any discrepancies to the ad-

ministrator [10]. We tested Patagonix on 9 rootkits

and found that it was able to identify code hidden by

every one of them. In addition, our Patagonix proto-

type introduces less than 3% performance overhead

on most applications.

We do not claim that Patagonix can detect all rootkits

since Patagonix focuses on detecting covertly executing

binaries – a rootkit that does not hide executing binaries,

but only hides files and network connections, would not

be detected. Fortunately, techniques to detect such rootk-

its, which do not depend on non-binding information, al-

ready exist. For example, using direct access to a raw

disk image can detect hidden files [13] and a network-

based intrusion detection system can detect hidden net-

work connections. However, to the best of our knowl-

edge, all techniques to detect hidden processes depend

on non-binding information, making Patagonix useful in

those circumstances.

In Section 2, we describe the problem with trusting

non-binding information, the assumptions that Patago-

nix relies on, and the guarantees and limitations it has.

Section 3 gives an overview of the Patagonix architec-

ture, while Sections 4 and 5 detail our identity oracles

and our prototype implementation. In Section 6 we de-

scribe the two usage modes of Patagonix: reporting and

lie detection. Section 7 evaluates Patagonix’s effective-
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ness at detecting covert processes and performance over-

head. Section 8 discusses related work and we conclude

in Section 9.

2 Security Model

2.1 Problem Description

Systems that monitor OS-level events from a hypervi-

sor must wrestle with the semantic gap between the state

of the OS and the information available to the hypervi-

sor. Previous systems have bridged this gap using non-

binding information derived from source code and sym-

bol information, but acknowledge that in doing so they

make themselves vulnerable to a rootkit that is aware

of their monitoring technique [3, 10, 13, 23, 25]. For in-

stance, if the hypervisor monitors the system call table

by using location information derived from non-binding

sources, the rootkit can evade detection by altering the

kernel’s system call dispatch handler to use a table placed

at a different location, and filled with pointers to mali-

cious system call handlers. The hypervisor-based mon-

itor would continue to monitor the original, unchanged

system call table, which is no longer being used by the

kernel. Unfortunately, preventing this attack by sim-

ply disallowing modification of kernel code will cause

false positives because kernels employ self-modifying

code. Manipulating the dispatch handler is only one

example; similar assumptions based on non-binding in-

formation about data types or function entry-points are

equally prone to subversion. More sophisticated tech-

niques take a systematic approach to analyzing the Linux

kernel memory state for tampering by malware, but they

require ad hoc rules written with expert knowledge [24]

or source code annotations that provide only partial pro-

tection [25]. Further, all the aforementioned approaches

use a sampling approach, creating a window of vulnera-

bility that may be exploited by malware to remain unde-

tected.

Patagonix securely addresses the semantic gap prob-

lem by avoiding reliance on non-binding information.

Rather it relies only on information from the proces-

sor hardware about pages containing executing code. In

addition, Patagonix detects and validates run-time code

modification and ensures that they conform to the modi-

fications permitted in the binary format specification. Fi-

nally, by utilizing the processor MMU hardware, Patago-

nix provides continuous monitoring and detection with

very little overhead.

2.2 Assumptions and Guarantees

To provide security guarantees, Patagonix relies on two

properties of the hypervisor. First, Patagonix assumes

that the hypervisor will protect both itself and Patagonix

from tampering by a rootkit that has subverted the OS

kernel. This assumption is consistent with the guaran-

tees that hypervisors aim to provide. Second, Patagonix

relies on the hypervisor to provide a secure communi-

cation channel between it and the user. Patagonix uses

this channel to inform the user of what binaries it detects

are running. Because the hypervisor is the only principal

with direct access to the hardware, this channel can be

provided in a straightforward way by providing separate

consoles for the OS and Patagonix.

Patagonix identifies executing binaries by the crypto-

graphic hash of the executing code. To convey this infor-

mation to the administrator in a useful way, these hashes

must be mapped to the name of a file or application. Ex-

tracting this mapping from the disk image is not trust-

worthy since a rootkit can tamper with the disk. Instead,

Patagonix relies on a trusted database to provide such a

mapping. This database is assumed to contain the names

of all legitimate software binaries that the administrator

has installed on the machine and can also optionally con-

tain mappings of known malicious binaries. Any exe-

cuting binary that does not match one in the database is

identified as “not present” and should be scrutinized by

the administrator. Publicly available databases currently

exist – for example, our prototype uses the NSRL [20].

We note that the labeling of binaries as legitimate or ma-

licious is made available purely for the convenience of

the administrator and is not used by Patagonix. His-

tory has shown that such labeling may be flawed – there

have been many documented cases of trojaned, vulner-

able, or patently malicious binaries being distributed by

reputable entities [11]. Patagonix correctly handles situ-

ations where malware is executing on the OS because it

was incorrectly labeled as legitimate in the database. For

example, Patagonix can be used to confirm that the in-

correctly labeled application is no longer executing after

an attempted removal.

Even with malware in control of the OS, Patagonix

guarantees that it is able to identify and report all execut-

ing binaries. Rootkits may try to hide malware binaries

from the administrator by either appropriating the name

of a legitimate application, or by trying to make it invis-

ible. Patagonix prevents the former by using mappings

from the trusted database. This also defeats any attempts

to inject malicious code into legitimate binaries on disk

or in memory since this will alter the contents of the code

when it executes. If the rootkit tries to hide the execution

of a binary by subverting the OS kernel or execution-

reporting utilities, Patagonix will still identify and report

the executing binary to the administrator since Patagonix

monitors the processor hardware for executing code, not

the OS kernel. With these guarantees, Patagonix can re-

port the identities of all executing binaries to the user in
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reporting mode. Correspondingly, in lie detection mode,

it can notify the administrator of any discrepancies be-

tween the code it detects and that reported by the OS.

2.3 Limitations

The goal of Patagonix is to provide a trustworthy alter-

native to traditional OS execution-reportingutilities, thus

denying rootkits the ability to hide executing binaries

from the administrator. However, detecting and prevent-

ing the exploitation of vulnerabilities is outside the scope

of Patagonix. For example, Patagonix does not detect at-

tacks that do not inject new code, but instead alter the

control flow of an application, such as in a return-to-libc

attack [32]. More generally, neither Patagonix nor tradi-

tional execution-reporting utilities prevent legitimate ap-

plications from taking malicious actions as a result of

malicious inputs. For example, the attacker can cause a

legitimate interpreter or a just-in-time (JIT) compiler to

perform malicious actions by using it to run a malicious

script. Despite this, Patagonix provides strong and use-

ful guarantees. While Patagonix cannot tell if a script is

malicious or not, it guarantees that the administrator will

be aware of all executing interpreters and JITs.

Identifying and verifying the integrity of interpreters is

the same as other binaries because all the machine level

instructions that can be executed by the interpreter are

known a priori. However, this is not the case for JITs be-

cause they dynamically generate and execute code whose

content can be heavily dependent on the workload and

run-time state. Thus, once Patagonix identifies a pro-

gram as a JIT, it will ignore pages it observes executing

in the JIT address space that are not present in the trusted

database (JITs must always execute code from their bi-

nary before any dynamically generated code, so Patago-

nix is always able to identify the process first). While a

rootkit may exploit this to inject arbitrary code into the

JIT and escape any sandboxing enforced by the JIT, Pa-

tagonix’s guarantees still hold because the rootkit will

not be able to hide the execution of the JIT, nor can the

rootkit cause Patagonix to misidentify the JIT as another

application.

Finally, as mentioned earlier, Patagonix used in lie de-

tection mode is not a generic rootkit detector: it focuses

on rootkits that hide executing binaries.

3 System Architecture

3.1 Overview

The architecture of Patagonix is illustrated in Figure 1.

The majority of Patagonix is implemented in the Pata-

gonix VM, while a small amount of functionality that

requires kernel mode privileges is implemented in the

hypervisor. The Monitored VM contains the Monitored

OS for which the administrator wants trustworthy binary

execution information and the hypervisor protects Pata-

gonix from tampering by the monitored VM. While im-

plementing Patagonix entirely within the hypervisor may

reduce performance overhead, splitting the functionality

of Patagonix into hypervisor and VM components has

the benefits of increased modularity, ease of portability

to a different hypervisor, and a reduction on the size of

the code being added to the security critical hypervisor.

As we shall see in Section 7, the boundary crossings be-

tween the hypervisor and VM components of Patagonix

have a minimal impact on overall performance.

The Patagonix VM contains three components. First,

several identity oracles, one for each type of binary in

the monitored VM, enable Patagonix to identify pages of

code that are executed in the monitored VM. The iden-

tity oracles use cryptographic hashes of binaries from the

trusted database to identify binaries executing in the Pa-

tagonix VM. Second, a management console implements

the interface between the user and Patagonix. Finally,

the control logic coordinates events between the manage-

ment console, the oracles and the hypervisor component

of Patagonix.

Only the identity oracles are OS-specific as one must

be written for every binary format used by the OS in the

monitored VM. All other components, which we collec-

tively refer to as the Patagonix Framework, are OS ag-

nostic.

3.2 Patagonix Framework

The Patagonix framework has three main responsibili-

ties. First, the framework must detect when code is be-

ing executed in the monitored VM. Second, when code

execution is detected, it invokes the identity oracles to

identify the code and maintain a list of executing code.

The identity oracles will either match the executing code

to an entry in the trusted database, or will indicate that

the identity of the code is not present in the database. Fi-

nally, the framework is responsible for conveying these

results to the user in a way that is free of tampering by

malware in the monitored VM.

Detecting code execution is performed by the Pata-

gonix hypervisor component using the non-executable

(NX) page table bit, which is available on all recent

AMD and Intel x86 processors. When set on a virtual

page, this bit causes the processor to trap into the hyper-

visor component whenever code is executed on that page.

The hypervisor component then informs the control logic

in the Patagonix VM by sending it a virtual interrupt.

Frequent traps into the hypervisor will hurt perfor-

mance so Patagonix uses the processor to only inform it

when either code is executed for the first time, or code it
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Figure 1: The Patagonix architecture.

has already identified changes and is executed. To iden-

tify code when it executes for the first time, the hypervi-

sor component initially sets the NX-bit on all pages in the

monitored VM so that it will receive a trap from the pro-

cessor when a code page is executed. When it receives

such a trap, the hypervisor component invokes the Pata-

gonix VM to identify the code and then clears the NX-

bit on the page, making it executable. At the same time,

to detect if the identified code is subsequently modified,

the hypervisor component makes the page read-only by

clearing the writable bit in the page table. As long as the

page remains unchanged, subsequent executions of code

on that page do not cause a trap. If the identified code

is modified, the processor will trap into the hypervisor,

at which time the hypervisor component will make the

page writable but non-executable again. If the modified

code is executed, the hypervisor component will again

receive a trap, at which point it will use the Patagonix

VM to re-identify the code. To eliminate the possibility

of a race where the rootkit alters the code page after it

is identified, but before it is made executable, the mon-

itored VM is paused while the Patagonix VM identifies

the executing code. Setting executable or writable priv-

ileges on entire pages at a time is fairly straightforward.

However, pages that contain mutable data and code re-

quire the ability to prevent writes to the code portions of

the page and execution for the data portions of the page.

While this can be implemented with additional hardware,

we have been able to emulate such support in software.

We defer the details of the solution to Section 5.2.

To identify code in memory, the identity oracles re-

quire the contents of the code page being executed, the

virtual address at which the page is located, and the pro-

cess the code comes from. The control logic retrieves

this information via new hypercalls, which are hypervi-

sor analogs of OS system calls we have added to Xen.

The control logic then passes this information to each of

the identity oracles, which either return the identity of the

binary from which the code originated, or indicate that

the identity of the originating binary is not in the trusted

database. We note that Patagonix does not use OS pro-

cess IDs to identify processes as these are controlled by

the OS and can be subverted by a rootkit. Instead, Pa-

tagonix identifies a process by its virtual address space,

which is an equivalent hardware proxy since by defini-

tion there is a one-to-one relationship between OS pro-

cesses and address spaces. A process’ address space is

denoted by the base address of its page table hierarchy,

which is maintained in a dedicated register on x86 pro-

cessors.

Because the hardware only reports when code is exe-

cuting, rather than when it is not going to be executed any

more, the control logic records the most recent time it ob-

served each binary execution and periodically instructs

the hypervisor to perform a refresh, i.e., set all pages as

non-executable. Code that is no longer executing will

not trigger any more traps. Patagonix does not infer pro-

cess termination by observing when a page table does not

contain any valid mappings like Antfarm [14] because

malware that controls the OS can toggle the page table

bits between valid and invalid without actually removing

the process from memory, thus circumventing this pro-

cess termination heuristic.

The control logic uses the management console to se-
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curely report the list of observed executing binaries and

times they were last observed executing. Because the hy-

pervisor has control over the hardware, it is able to pro-

vide the management console in the Patagonix VM with

an interface separate from that of the monitored VM, thus

ensuring that the monitored VM cannot tamper with the

output of the Patagonix VM.

3.3 Identity Oracles

Executable binaries are mapped from disk into memory

by a binary loader, whose behavior is governed by the bi-

nary format that it loads. The task of the identity oracles

is to use the information provided to them to reverse the

transformations that the loader applies to binaries, and

identify which binary in the trusted database (if any) the

page of code being executed originates from.

Aside from the information provided to the oracles by

the hypervisor component, the oracles also require infor-

mation about the binaries in the database they are try-

ing to match against. For example, information such as

hashes of each individual code page in the file and in-

formation about relocations are required depending on

the particular format of the binary. While current binary

databases generally only contain hashes of binary files,

additional information can be extracted from files on

disk after they have been authenticated using the trusted

database. Each oracle initially collects such information

by searching the disk of the monitored VM for all exe-

cutable binaries. The authenticity of an executable file is

verified when its hash is found in the database, and the

oracle can then proceed to extract additional information

from the file. Patagonix needs to rescan the disk each

time binaries are added, or alternatively, a program in the

OS can be used to gather information about new binaries

as they are introduced into the system. If an executable

file is hidden from Patagonix by a rootkit, Patagonix will

not have the necessary information to identify executing

code from this binary and thus will not be able to match

code originating from these binaries against entries in the

database. As a result, such code will be identified as “not

present”, thereby indicating to the administrator that a

rootkit is likely on the system. In either case, access

to the trusted database itself must be free of tampering

by the rootkit. We implement our prototype database by

combining hashes from the NSRL database, hashes from

signed RPM packages and hashes computed from pris-

tine binaries directly into the Patagonix VM image. Had

the database been maintained remotely, it would need to

be accessed over a secure, authenticated channel such as

one offered by SSL.

Once the information about the binaries is acquired,

the main challenge for the oracles is to reverse the trans-

formations done by the loader without trusting informa-

tion from the OS. Formally, each binary loader can be

modeled as a function L(B, S) = (M,A), which maps

a particular binary B, and the state of the OS at the

binary load-time S, to a set of memory pages M and

a set of addresses A. M denotes the set of possible

executable pages that the loader may transform the bi-

nary into and A denotes the possible virtual addresses

at which the loader may place the transformed binary.

The oracle for a particular binary format is a function

OL(M, A, P ) = B, which given a page M detected as

executing by the hypervisor, the virtual address of the

executing code A, and the process it was executing in

P , produces a set of binaries B, from which the page

could have originated. Since M and A are produced

by the loader, they are elements of sets M and A re-

spectively. One cannot implement OL by only relying

on S, since a rootkit can subvert S. This inability to

safely infer S represents the semantic gap that the iden-

tity oracles bridge. Since we do not know S, OL’s task

can be generalized to searching the set MA
′ for the ob-

served code page and address (M, A), where MA
′ con-

tains all code page/address combinations that the loader

could have generated for all binaries and all legitimate

OS states.

MA
′ can be very large, making the performance cost

of a naı̈ve search impractical. For example, in Windows,

a code page can be mapped at 220 possible locations (for

a 32-bit address space when using 4KB pages) and its

contents will be different for each of those possible loca-

tions. If applied to code pages in all binaries in an aver-

age Windows installation, this would result in an MA
′

several terabytes in size, which would be overly expen-

sive to search. To reduce these costs, we exploit two

characteristics that every binary format we have exam-

ined exhibits. The first is that these formats specify that

code sections should be mapped to contiguous regions

of memory. As a result, once the binary that occupies

a memory region in a process is known, the oracle only

needs to check that other code executing in the same re-

gion is the appropriate page in the same binary, elim-

inating the need to search MA
′ in these instances (in

this case, binary can refer to a program binary or a dy-

namically linked library). Knowing the address where

a binary is mapped also enables the oracle to reverse

run-time modifications and derive the original code page,

eliminating the need to store all versions of the page. To

establish what binary occupies a region, the oracle ex-

ploits the second characteristic: binary executables have

only a few entry-points (usually only one), which are

executed before any other code in the binary. As a re-

sult, if code executes in a memory region where the or-

acle has not identified a binary before, the oracle only

has to check for code at pages containing entry-points

in MA
′. This reduces the search space, and also adds
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 

 




 











 


 











Figure 2: Identity Oracle framework. The functions and

databases that are loader specific have been underlined.

a desirable security check since the oracle will identify

code as “not present” if the malware tries to jump into

a binary at any point other than a legitimate entry-point.

We use these assumptions about binaries as hints to im-

prove the performance of Patagonix. However, Patago-

nix does not trust these hints, so its security guarantees

are not affected – tampering with the binaries that vio-

lates these assumptions will result in the tampered binary

being identified as “not present”.

Figure 2 illustrates our oracle construction framework.

Four components in the framework are binary loader spe-

cific. The first is an entry-point database, which contains

information on the entry-points of known binaries. This

database is searched using an entry-point search func-

tion. The other two components are the code database,

which contains information on the rest of the code sorted

by binary, and the code check function which checks

code against the code database. An oracle invocation

begins with the control logic forwarding the page con-

tents, faulting virtual address and process to the oracle.

The oracle first checks whether the virtual address and

process of the code are from a region where the binary

is known. If not, then the binary has just started exe-

cuting because no code has been observed executing at

this location before. The oracle searches the entry-point

database for a match to identify the binary. If a match is

found, it records the binary’s name and memory range it

should occupy and returns the name of the binary. Oth-

erwise, the oracle identifies the code as “not present” in

the database.

If the address is from a memory region whose binary

has been previously identified, then the oracle checks

that the executing page is from the associated binary. If

it is, the oracle returns the name of the binary. If it is not,

then the binary no longer occupies that memory range

in that process. The memory region record is removed

and the oracle searches for the page in the entry-point

database.

We have observed cases of related binaries containing

identical code pages. If there have not been enough pages

executed to uniquely identify the binary, the identity ora-

cles return a list of candidate binaries until a unique page

of code is executed. Should a page contain a mix of data

and code, the oracles also return the sub-page range of

the code.

4 Oracle Implementation

In this section, we describe the oracles we have con-

structed for various binary formats and their loaders. We

find that while binary formats may differ, the operations

performed by the loaders of these formats have similari-

ties, allowing common techniques to be used across the

oracles for different formats. We classify our oracles into

two categories based on the type of binaries they iden-

tify. The first category consists of oracles for application

code in Linux and Windows. We discuss support for the

two main methods for dynamic code loading: position

independent code and run-time code relocation, both of

which are represented in the ELF and PE formats used

by Linux and Windows respectively. The other category

consists of kernel code in Linux and Windows. This code

poses some extra challenges because both kernels con-

tain self-modifying code. However, our oracles are able

to verify that they are applied correctly. Finally, we fin-

ish this section with a discussion on the generality of our

identity oracles.

4.1 Application Binary Oracles

ELF Oracle. The Executable and Linkable Format

(ELF) [33] is used by Linux, as well as other OSs such as

Solaris, IRIX and OpenBSD. An ELF file is divided into

segments and contains a program header table that speci-

fies the address at which each segment should be mapped

into memory. ELF segments in the binary are identical to

the segments that will be loaded in memory and no run-

time modifications are required from the loader. Code

in executable segments can either be relocatable, mean-

ing it can be loaded at any address in memory, or non-

relocatable, meaning that it must be loaded at a particular

address. All references to absolute addresses in relocat-

able code go through indirection tables, which are filled

in by the run-time linker. ELF shared libraries are typi-

cally relocatable, while executable binaries are typically

non-relocatable.

Since ELF shared libraries use position independent

code, both ELF libraries and ELF applications are map-

ped from disk into memory without any modifications,

making this our simplest oracle. To populate the entry-

point database for the ELF oracle, pages containing
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entry-points are placed in the database – all shared ob-

jects have an init subroutine that is run when the

shared object is loaded and executables always begin

execution in start. To save space, the ELF oracle

does not store the entire page contents in the database,

but instead stores a cryptographic hash (SHA-256) of the

page instead. The hashes are stored in a sorted list and

the entry-point search function computes the hash of the

page where code execution was detected and searches the

entry-point database for a match.

The code database stores hashes of all pages for each

binary in a two dimensional array that is indexed first

by binary and second by page offset from the beginning

of the binary. The check function uses the binary name

attached to the memory region to compute the first index

in a look up and the offset of the executing page from

the start of the memory region to compute the second

index. A hash of the executing page is then compared to

the hash from the code database. Because SHA-256 is

collision-resistant and difficult to invert, any tampering

of the binary will result in the binary being identified as

not present.

PE Oracle. The Portable Executable (PE) format [19]

is used in all versions of Windows after Windows NT

3.1. Similar to ELF files, PE files have a header table

that describes how sections in the file should be mapped

in memory. However, code in PE files contains absolute

addresses, and thus is not position independent. All PE

files have an image base, which indicates the preferred

address for loading the file. If an application needs to

load two or more Dynamically Linked Libraries (DLL)

that occupy overlapping preferred address regions, the

OS must relocate one or more of the binaries. To do

this, the absolute addresses in the executable must be ad-

justed by adding the offset between the preferred address

and the actual address where the binary is loaded. This

relocation operation is performed by the OS using the

information stored in the binary header.

PE binaries pose two challenges. First, because the OS

may adjust the absolute addresses in a binary, one cannot

directly use page contents to identify code pages in the

entry-point database. Instead, the PE oracle exploits the

fact that the PE loader only relocates binaries by 4KB

page offsets, meaning that the offset of the entry-point

from the top of the page (i.e. the page-offset) is always

the same. Thus, the entry-point database is indexed by

the page-offset of the entry point and contains the loca-

tions of the absolute addresses in each candidate page, as

well as a hash of its contents. The search function then

searches the entry-point database for the page-offset of

the faulting address to determine the binary.

In some cases, several binaries may have the same

entry-point offset, so the search function must find the

matching page within a set of more than one candidate

pages. For each candidate, the search function undoes

the absolute address adjustments made by the OS during

relocation. This is accomplished by making a copy of

the executed page and subtracting the relocation offset

from each absolute address. This offset is the difference

between the entry-point address of the executed page and

the entry-point address of the candidate if it were mapped

at its preferred address. A hash of the copy can then be

compared against the hash of the candidate.

The second challenge is that some PE binaries have

memory pages that contain both code and mutable data.

For example, the Import Address Table (IAT), which is

used to dynamically link DLLs against an application, is

typically put in the code section by the Microsoft com-

piler. As a result, the search function only uses the por-

tions of these pages that contain code to identify them,

and will notify the control logic, which in turn will in-

struct the hypervisor to make only the identified por-

tions of the pages executable. Naturally, the entry-point

database entries for these pages must also contain infor-

mation listing what portions of the page contain code.

The rest of the PE oracle is straightforward. The

code database and check function are also similar to the

ELF oracle except that they must undo any relocations

before comparing the page contents and they must ac-

count for pages that only partially contain executable

code. Thus, the code database also stores the preferred

address with each binary, and the locations of all abso-

lute addresses and sub-page code ranges (if necessary)

with each page entry. To undo the relocations, the check

function uses the actual address the binary was mapped

in at, which is given by the start address of the memory

region record, and then uses the same technique as the

entry-point search function. In this way, the PE oracle

provides the same guarantees as the ELF oracle.

4.2 Kernel Binary Oracles

Linux Kernel Oracle. The Linux kernel’s code pages in

memory are not always identical to their on-disk repre-

sentation. Recent versions of the Linux kernel customize

their binaries at run-time depending on the availability of

more efficient instructions for the CPU the kernel is exe-

cuting on. For example, the kernel will implement mem-

ory barriers with LFENCE and MFENCE instructions if

running on newer x86 processors with SSE2 extensions.

Altering these instructions at run-time allows a single

kernel binary to be used on different CPUs. In addition,

the Linux kernel can dynamically load and unload kernel

modules at run-time.

The aspects of the Linux kernel that differentiate it

from application code are self-modifying code and the

ability to dynamically load modules. However, both of

these can be handled with the techniques used in the PE
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oracle. In the Linux kernel, the locations of customiz-

able instructions, the instructions they can be replaced

with, and the conditions to permit replacement are stored

in special sections of the kernel binary. Using this infor-

mation, the search and check functions make a copy of

the page, verify that the substitutions are legitimate, and

then undo them by replacing them with the default on-

disk instructions. The pages are then hashed and com-

pared against the entries in the databases.

Linux kernel modules can be loaded at any location

in memory and have both relocations and customizations

that are adjusted at load-time. They also contain an ini-

tialization function that can serve as an entry-point for

the module, making their loader very similar to that of

a PE DLL. As a result, much like in the PE oracle, the

Linux kernel oracle uses an entry-point database consist-

ing of entry-point offsets. Once a kernel module is iden-

tified, the memory range it occupies is recorded.

Windows Kernel Oracle The Windows kernel ex-

hibits behavior similar to the Linux kernel, where some

of its code pages are customized at run-time by patch-

ing the kernel code. In addition, Windows also permits

run-time loading of kernel modules and drivers.

Unlike the Linux kernel, the Windows kernel’s re-

placements are not specified in the kernel binary, but

are applied in an ad hoc fashion by various functions

throughout the kernel. However, since these customiza-

tions are deterministic for a given hardware platform and

occur early during boot, it is possible to record the cus-

tomizations from a pristine kernel and use these to verify

the customizations in the monitored VM. While this ap-

proach cannot guarantee completeness (for example, we

do not know what replacements will take place for other

hardware), we believe that a developer with more infor-

mation about the Windows kernel customizations would

be able to exhaustively enumerate the transformations

the kernel performs at run-time. The Windows kernel

oracle handles the run-time loading of drivers in exactly

the same way as the Linux kernel oracle.

Both the Linux kernel oracle and the Windows kernel

oracle provide the same guarantees as the ELF and PE

oracles. While the PE oracle validates relocations by us-

ing the difference between the actual address and the pre-

ferred address, the kernel oracles perform an equivalent

validation for run-time customizations by ensuring that

modified instructions are replaced with legitimate substi-

tutes.

Windows Interrupt Handler Oracle. To allow

drivers to register interrupt service routines, the Windows

kernel provides an interrupt object abstraction. To al-

low for driver portability, when such an interrupt object

is initialized by the driver, 106 bytes of kernel-specific

code is copied from an interrupt handling template into

the object, and will be executed whenever an interrupt

associated with the object occurs [28].

While this appears to be a form of dynamic code gen-

eration, it is actually very easy to write an oracle that

identifies the Windows Interrupt Handler. The code is

shorter than a page, so it can be efficiently identified and

validated in its entirety with one oracle invocation. As a

result, the Interrupt Handler oracle does not need a code

database or check function. Furthermore, the code is ex-

actly the same every time it is copied except for an 8

byte field that contains run-time parameters and absolute

addresses, which is customized for each driver. As a re-

sult, no entry-point database exists for this oracle, and the

search function simply performs a byte-by-byte compar-

ison of the code starting at the faulting address with the

106 byte template. If there is a match, the code is iden-

tified as a Windows Interrupt Handler and only the 106

byte region is made executable and non-writable.

Our prototype oracle currently does not perform fur-

ther checks on the 8 bytes that are modified dynamically

by the kernel. This means that an attacker can arbitrar-

ily modify these bytes. However, this is a small amount

of memory, and these bytes are not contiguous. A more

sophisticated oracle could also validate the contents of

these bytes.

4.3 Discussion

To better understand the generality of the approaches we

have employed for our prototype oracles, we examined

descriptions of other common binary formats and load-

ers. We found that for application code, the main reason

for run-time code modifications is to support the need

to be able to dynamically load libraries at any base ad-

dress. Nearly every binary format we examined, which

included common formats such as the Mac OS X Mach-

O format, the COFF format used by SysV, and a.out, uses

either position independent code or rebasing – both of

which we are able to handle.

Another interesting class of loaders are executable

packers. They incorporate code into a compressed bi-

nary to decompress the code just before execution. As a

result, the compressed binary needs to be unpacked first

before the oracle gathers information from it. This ex-

tra step is conducted when Patagonix adds a packed bi-

nary to the code database. Our prototype currently only

handles binaries that have been packed using the popular

UPX [21]. To support additional packers, Patagonix only

needs to be provided with an unpacker. For example, Pa-

tagonix could use PolyUnpack [26] to automatically sup-

port a large number of executable packers.

Finally, we observed two non-JIT binaries that dynam-

ically generate code: winlogon.exe, which authenti-

cates users, and the Windows Genuine Advantage appli-

cation, which checks the Windows OS for evidence of



252	 17th USENIX Security Symposium	 USENIX Association

piracy. No formal specification exists for the code gen-

erated by these applications and there is evidence that

the code is generated to obfuscate self-integrity-checking

operations. Without more information (like we had for

the Windows interrupt handlers) or reverse engineering

(which would violate the EULA), we cannot build an or-

acle that validates the legitimacy of the generated code.

Thus, these binaries are treated as JITs – we can identify

that they are executing, but do not examine other code

pages in their address space.

5 Framework Implementation

We used the Xen 3.0.3 hypervisor as a basis for building

our Patagonix prototype. When used in Hardware Vir-

tual Machine (HVM) mode, Xen utilizes virtualization

support in x86 processors to run unmodified operating

systems, including both Linux and Windows. With the

exception of our emulated sub-page privileges support,

our implementation of Patagonix can run on both AMD

and Intel processors. In implementing Patagonix, we

found that while the MMU provides a way to efficiently

detect code execution, care needs to be taken to ensure

that all code execution in the monitored VM is detected.

Another shortcoming of the processor support was the

inability to allow or deny execution or write pages at a

sub-page granularity. Finally, we discuss a performance

optimization that reduces the number of Patagonix VM

invocations the hypervisor must make.

5.1 Detecting Code Execution

The non-executable permission bit was primarily imple-

mented to allow an OS to prevent unauthorized code ex-

ecution. When this mechanism is virtualized, there are

two issues that must be taken into account to ensure that

all instances of new code execution are detected by the

hypervisor.

The first issue arises from the fact that page permission

bits apply to a virtual page mapping and not to a physical

page. Since there can be more than one virtual mapping

for a physical page, our hypervisor modifications must

ensure that there cannot be writable and executable map-

pings of a physical page simultaneously. Otherwise, the

rootkit could use one mapping to modify the page and

the other to execute it. We accomplish this by leverag-

ing Xen’s frame map, which maintains a count of the

number of mappings of each physical page. Whenever a

page changes from writable to executable or vice versa,

Xen consults the count in the frame map to see if any

other virtual mappings need to be updated appropriately.

Xen’s frame map only maintains a count of the number

of mappings, and is not a reverse frame-map; as a result,

we must walk the page tables to find and change all other

mappings.

This issue could also be fixed by upcoming nested-

page table (NPT) support, which provides full hard-

ware virtualization support for page tables. NPTs add a

shadow page table, which allows the hypervisor to spec-

ify a second translation between the guest physical frame

numbers and the actual machine frame numbers. With

this, the hypervisor could simply control the permissions

for the machine frames, removing the need to track the

number of guest virtual mappings for each physical page.

To be notified when new code is executed, Patagonix

marks pages as non-executable in the shadow page ta-

ble, and then makes them executable after they have been

identified. We do note that in doing this, Patagonix will

negate one of the possible advantages of NPTs, which is

to allow superpage mapping of a contiguous set of guest

physical frames with a single NPT entry.

The second issue stems from the fact that the virtual

Direct Memory Access (DMA) unit in Xen runs in a sep-

arate protection domain (the privileged domain0) and

thus is not constrained by the page access restrictions

placed on the rest of the monitored VM. Malware that is

aware of this could abuse the virtualized DMA to mod-

ify memory pages that have been marked as executable

and read-only. To make sure that memory content was

always checked before being executed, we modified the

emulated DMA devices to inform the hypervisor when

they write to any pages. If any of these pages are marked

as executable, Xen makes these pages non-executable

again.

5.2 Sub-page support

Sub-page permissions are necessary when a memory

page contains a mix of identified code and mutable

data: the code must be made non-writable, and the data

must be made non-executable. Ideally, sub-page support

would be provided in hardware using a scheme such as

Mondrian memory [35] or Transmeta’s Crusoe proces-

sor [8]. However, because such support is not available

on x86 processors, we devised a method to emulate this

support based loosely on a technique that Van Oorschot

et al. used to circumvent code tampering detection [34].

The technique takes advantage of the separate Transla-

tion Lookaside Buffers (TLB) for instructions (ITLB)

and data (DTLB) present in x86 processors.

Our solution maps an execute-safe version of the page

to a virtual address for instructions, and the original to

the same virtual address for data. The execute-safe ver-

sion is a copy of the mixed page where the data sections

have been made non-executable by replacing them with

trap instructions. A mapping to this version is loaded

into the ITLB by temporarily setting the shadow page
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table entry to be executable, pointing it to the execute-

safe version and executing a single instruction from that

page. After that, the shadow page table entry is switched

back to the original page and made writable and non-

executable. This emulates the sub-page permission con-

trol we require since any attempt to execute at an address

from the data regions will go through the ITLB and re-

sult in a trap, and any modifications to the code region

will go through the DTLB and will not be applied to the

page that instructions are being fetched from. To ensure

that the execute-safe page is not accidentally loaded into

the DTLB by an unintended load or store while setting

up the TLBs, Patagonix disables interrupts for the moni-

tored VM during this operation.

The emulation has some drawbacks over native hard-

ware support. First, the emulation does not trap into

the hypervisor when a write is attempted to a code re-

gion. Such functionality would be needed to deal with

run-time modifications to a mixed page, but we have not

found this necessary in practice. Second, this TLB ma-

nipulation needs to be undertaken every time to correctly

load the ITLB mapping for this page, ITLB misses for

such pages are transformed into page faults that require

two traps into the hypervisor. Finally, this functionality

cannot be emulated on Intel processors because, at the

time of writing, Intel processors flush both TLBs on ev-

ery crossing between the hypervisor and the VM.

5.3 Performance Optimizations

The dominant source of overhead in Patagonix is the

page faults that occur when the monitored VM executes

pages marked non-executable by Patagonix and the sub-

sequent Patagonix VM invocation to identify the newly

executing code. Some of these page faults are unnec-

essary because the executing code is on a physical page

that has already been identified when it was executed in

another process. Thus, we added an optimization that

avoids the extra page fault and Patagonix VM invocation

for pages whose identities are already known. This is ac-

complished by maintaining a list of physical pages that

have been identified and whose virtual mappings are all

executable and non-writable. When the monitored VM

attempts to map such a page as executable in a new pro-

cess, Patagonix preemptively makes the new mapping

executable and non-writable.

The hypervisor must log each time this optimization is

applied for two reasons. One reason is because this in-

formation is required to maintain the consistency of the

memory region information for the oracles. The second

reason is that this information is required by the Patago-

nix VM to maintain an accurate record of when pages

from each binary were observed executing. To avoid ex-

tra domain crossings but keep the Patagonix VM’s view

of the monitored VM current, this log is read by the Pa-

tagonix VM whenever it is invoked by the hypervisor to

identify a page, whenever it requests the hypervisor to

perform a refresh and whenever the user requests a list of

executed binaries through the management console. As

a result, this optimization has no effect on how current

the Patagonix VM’s information on executing binaries

is, and thus has no impact on the security guarantees of

Patagonix.

6 Usage

Patagonix has two usage modes. In reporting mode, Pa-

tagonix provides trustworthy execution-reporting infor-

mation and is functionally similar to utilities such as ps,

lsmod and the task manager. This gives the sys-

tem administrator a trustworthy alternative information

source when evaluating if their system has processes hid-

den by a rootkit, or whether an attempted rootkit removal

has been successful. In lie detection mode, Patagonix

compares the list of executing binaries reported by the

monitored OS with what it detects is executing. Differ-

ences mean that the OS is lying and indicate that a rootkit

is present on the system.

When in reporting mode, Patagonix displays a list of

all executing binaries on the management console. This

is semantically similar to the list displayed by utilities

such as top or the task manager. Patagonix also

displays the times they were last observed executing. The

administrator can also use Patagonix to terminate or sus-

pend the execution of all instances of a binary by issuing

commands to the management console, creating a trust-

worthy version of the UNIX kill utility. To terminate

a binary, Patagonix sets all pages of that binary to non-

executable. When an execution fault occurs on one of

the code pages, Patagonix replaces the instruction at the

faulting address with an illegal instruction. This makes

it appear to the monitored OS that the binary tried to ex-

ecute an illegal instruction, causing the monitored OS to

terminate it. Suspending execution is achieved by replac-

ing the code with an empty loop instead of replacing it

with an illegal instruction. Thus, the binary is still ex-

ecuting from the OS’ point of view, yet no code from

the actual binary is being executed. A more efficient, but

OS-specific implementation could inject code that causes

the application to sleep.

In lie detection mode, Patagonix compares execution

information reported by the monitored OS with its own

list of executing binaries. Patagonix obtains execution

information from the monitored OS via an agent in the

monitored VM. The agent is a program that queries the

monitored OS via standard interfaces to obtain a list of

executing processes. Previous systems that performed

lie detection in this way can suffer from false positives
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Target OS Rootkits

Linux 2.4 Adore, Adore-ng, Knark, Synapsys

Linux 2.6 Adore-ng-2.6, Enyelkm

Windows XP Fu, Hacker Defender, Vanquish

Table 1: Rootkits detected by Patagonix. In reporting

mode, Patagonix is able to identify processes hidden by

these rootkits and/or detect tampering of processes by

these rootkits. In lie detection mode, Patagonix detects

that the OS is under reporting the binaries that are run-

ning.

due to asynchrony between the measurement of running

processes taken from within the monitored OS and the

measurement taken from the hypervisor – a new process

may begin executing and be detected by the hypervisor

before the OS has had a chance to update the information

it exports to the agent [10,13]. To avoid this, Patagonix’s

agent registers a function with the OS kernel that syn-

chronously informs Patagonix of process creation via a

hypercall. Both Linux and Windows provide facilities

for this.

Patagonix’s lie detection detects both OS under-

reporting (hiding executing binaries) and over-reporting

(reporting binaries that are not actually executing). Usu-

ally, rootkits under-report to hide the execution of mali-

cious binaries, but over-reporting could also be used ma-

liciously. For example, a rootkit may wish to lead the ad-

ministrator to believe that a critical program (such as an

anti-virus scanner) is still running when it is not. Over-

reporting requires the administrator to specify a thresh-

old which dictates how long Patagonix will allow a bi-

nary that is reported as executing by the OS to be not

observed running any code before declaring it as being

over-reported.

7 Evaluation

We evaluate two aspects of Patagonix: its effectiveness

at detecting and identifying hidden processes and rootk-

its and the performance overheads introduced by adding

Patagonix to the hypervisor.

All experiments were carried out on a machine with

an AMD Athlon 64 X2 Dual Core 3800+ processor run-

ning at 2GHz, with 2GB of RAM. We used the Xen 3.0.3

hypervisor and allocated 512MB of RAM to the mon-

itored VM and 1GB of RAM to the domain 0 VM,

which also doubles as the Patagonix VM. Unless stated

otherwise, the monitored VMs contain either Windows

XP SP2 or Fedora Core 5 with a 2.6.19 Linux kernel.

7.1 Effectiveness

To evaluate the effectiveness of Patagonix at identify-

ing covertly executing binaries, we used Patagonix to

monitor VMs containing the nine rootkits listed in Ta-

ble 1. These rootkits target the Windows kernel and

Linux kernel versions 2.4 and 2.6. For this experiment,

they were installed in VMs running Windows XP SP2,

version 2.4.35.4 of the Linux kernel, and version 2.6.14.7

of the Linux kernel (The rootkits that targeted Linux 2.6

kernels did not work with version 2.6.19 of the kernel).

We evaluated Patagonix in both reporting and lie detec-

tion mode.

First, we ran Patagonix on monitored VMs that have

been infected with the rootkits. Each rootkit (except Van-

quish) was configured to hide a process on the monitored

OS: an instance of Freecell on Windows and an in-

stance of top on Linux. We then verified that the hid-

den processes were not visible to the standard execution-

reporting utilities on the respective OSs. In reporting

mode, Patagonix was able to neutralize all the rootkits

and report the execution of the covert code to the ad-

ministrator, as illustrated in Figure 3. Likewise, in lie

detection mode Patagonix is able to detect the tamper-

ing performed by each of the rootkits without fail. The

Vanquish rootkit does not hide processes like the other

rootkits. Instead, it tampers with applications by inject-

ing code into the address space of executing processes.

In these cases, the executing code of the tampered bi-

naries is correctly identified as “not present” since it no

longer matches any binary in the database. This warn-

ing should be interpreted as a likely rootkit infection by

the administrator since the only other cause would be a

missing binary in the trusted database.

Second, we ran Patagonix on VMs that did not have

any rootkits installed to see if Patagonix reports any false

positives. We exercise the VMs using the various appli-

cation and microbenchmarks described in the following

sections. During these tests, all executing code was cor-

rectly identified. When run in lie detection mode on an

uninfected VM, Patagonix reported no discrepancies be-

tween the processes reported by the monitored OS and

that detected by Patagonix.

7.2 Microbenchmark

To understand the overheads introduced by Patagonix,

we devised chain, a microbenchmark that touches a new

page of code on every instruction by chaining together a

series of jumps, each targeting the beginning of the next

page. Chain represents the worst case scenario for Pa-

tagonix: every instruction requires Patagonix to identify

the new page of executable code. We instrumented our

prototype to break down the page identification process
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Figure 3: Output of both Patagonix and the Task Manager when the FU rootkit is used to hide freecell.exe.

Patagonix identifies all processes including freecell.exe, while the Task Manager does not display the hidden

process. Patagonix identifies “System” as ntkrnlpa.exe, the name of the Windows XP kernel binary.

Figure 4: Execution time for various components of the

identification operation. The total height of the bars rep-

resents the average time required to identify the origin of

an executing code page.

into its different components. Figure 4 details the over-

head incurred when identifying one page of code; the

values presented are the average of 10,000 Patagonix in-

vocations, and the standard deviations for each compo-

nent were consistently less than 5% of the average.

When reaching a new page of code, a page fault is

triggered by the MMU. This results in an unavoidable

hardware cost due to the VMexit and VMenter opera-

tions in and out of the hypervisor. After a VMexit, a

software page fault handling cost is incurred that is spe-

cific to Xen’s shadow page table implementation; we ex-

pect it to change with other hypervisor implementations.

The Patagonix’s hypervisor code is then executed; run-

ning this code is extremely brief (approximately 0.3µs),

attesting to its minimal impact on the hypervisor. This

code triggers a context switch into the Patagonix VM,

where a hypercall is executed to retrieve the executing

page information. These two operations cost a total of

40µs, but enable 2080 out of a total 3544 lines of code

to be implemented in the Patagonix VM instead of the

hypervisor. The hash computation necessary for all ora-

cles accounts for 73µs, nearly half of the page identifica-

tion time. As expected, the PE oracle logic takes slightly

more time than the ELF oracle logic. We note that the

case in which the PE search function has to match an

entry-point page against several candidates will be more

expensive, as each candidate binary requires a hash com-

putation; we have observed times as high as 538µs. For-

tunately, this only happens very rarely and the search is

only performed once per binary mapped in memory.



256	 17th USENIX Security Symposium	 USENIX Association

Benchmark Linux (%) WinXP (%) WinXP-hw (%)

Apache Build 1.68 2.62 1.99

Boot 2.05 30.39 10.63

SPECINT 2006 0.03 2.32 0.25

perlbench 2.06 23.01 1.42

gcc 13.75 12.43 3.48

Table 2: Application benchmark results. Results are the

average of ten runs and are given in percent overhead

over vanilla Xen. All standard deviations were less than

3% of the mean. WinXP-hw is estimated performance

with hardware support for sub-page permissions.

7.3 Application Benchmarks

Since Patagonix is only invoked when code is executed

for the first time, we expect this to coincide with page

faults that load code from the disk. Because disk oper-

ations are expensive to begin with, we expect Patagonix

overhead to be minimal in practice. To confirm this, we

ran several application benchmarks in both the Linux and

Windows VMs in our prototype. Computationally inten-

sive applications are represented by the benchmarks from

the SPECINT 2006 suite. For workloads with larger code

footprints, we also measured the time Patagonix takes to

boot Windows and Linux, as well as to build Apache. We

compare the execution time for each benchmark against

a vanilla Xen system running the same benchmark on the

same monitored VM and report the overheads in Table 2.

Since the PE oracle uses sub-page emulation, we also ran

benchmarks without the emulation and sub-page checks

(WinXP-hw column) to approximate what the perfor-

mance might be if hardware support were available.

We report the SPECINT benchmarks as an aggre-

gate because overheads for all benchmarks where less

than 3% for the three configurations except for gcc and

perlbench, whose performance we report separately.

The Windows boot and gcc have large code footprints

in comparison to their execution time: Windows initial-

izes several services, drivers and interrupt handlers dur-

ing boot, while SPEC drives gcc with a set of tests that

exercises a large number of code paths. perlbench

does not experience high overhead except in the WinXP

configuration because it spends a high portion of its time

running code on mixed code/data pages, motivating ar-

chitectural support for sub-pages in such cases. As ex-

pected, the overhead for all other benchmarks is low.

This is because their code footprint is small relative to

their execution time.

Finally, the Patagonix VM needs to request periodic

refreshes from the hypervisor. A shorter refresh interval

means more accurate information about when a process

was last observed executing, but also incurs more over-

head. Figure 5 plots the additional overhead the Apache
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Figure 5: Overhead and Invalidations vs. Refresh Pe-

riod. Apache Build on Linux. Averages of five runs with

standard deviations below 2% of the average.

build benchmark in Linux experiences for various refresh

periods, as well as the number of executable pages that

are invalidated (set non-executable) each time. More fre-

quent refreshes mean less time for the application to ex-

ecute various pages, resulting in fewer invalidations.

8 Related Work

The problems associated with the semantic gap between

the hypervisor and guest VMs were first identified in

a seminal paper by Chen and Noble [6]. Since then,

there have been several attempts to bridge this gap us-

ing non-binding information derived from source code

and symbol information. For example, Livewire [10],

Copilot [23] and SBCFI [25] rely on symbol informa-

tion in kernel binary or System.map file, while As-

rigo et al. [3] and VMWatcher [13] rely on information

derived from kernel source code. Because they make as-

sumptions based on non-binding information, they are all

prone to evasion by a rootkit that breaks those assump-

tions. Patagonix does not rely on any non-binding infor-

mation.

The principle of lie detection – comparing two views

of the same data for discrepancies – has been used in the

literature. For example, Rootkit Revealer [7] and Strider

GhostBuster [5] compare high-level and low-level views

of the same system information. However, since both

views are still derived from within the infected system,

a thorough rootkit can make both high-level and low-

level views agree, thus eluding these systems. Like Pa-

tagonix, other systems compare views taken from both

within (i.e. in-the-box) the infected system, and outside

(out-of-the-box) the infected systems. For example, both

Livewire [10] and VMWatcher [13] compare views of

executing processes derived from the VMM with those

gathered from within the monitored system. However,

unlike Patagonix, these systems do not deal with asyn-
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chrony between the measurement times of the in-the-box

and out-of-the-box views and will thus suffer from false

positives. Lycosid [15] also does lie detection by count-

ing the number of address spaces in a VM. However, be-

cause Lycosid does not identify which binaries the pro-

cesses are executing and the hypervisor’s measurements

contain noise, it can only probabilistically detect when

the number of address spaces does not match the num-

ber of processes reported by the OS. Because Patago-

nix identifies processes and registers callbacks with the

OS, Patagonix is able to both precisely detect hidden pro-

cesses, as well as identify which process is being hidden.

Like Patagonix, remote attestation systems also must

identify and report executing binaries on a system. In ad-

dition, they may also report the integrity of the data in a

system, and are often used to report this information to a

remote party instead of the system administrator. How-

ever, these systems in general assume a weaker attack

model since they in general rely on the integrity of the

OS. For example, IMA [29], implements such function-

ality directly in the OS kernel, and thus depends on the

integrity of the OS kernel to report correct results. An al-

ternative is Terra [9] which performs attestation in a hy-

pervisor. Terra attests the identity of the virtual disk used

to initialize a “closed box” to a remote party. Closed

boxes are VMs that are fully managed by a third party

and usually cannot be extended in any significant way.

Since Patagonix allows the monitored OS to be arbitrar-

ily extended as long as the hashes of any new legitimate

code are in the trusted database. A combination of Pata-

gonix and Terra’s abilities could enable support for attes-

tation of open, extensible systems as well as individual

programs executing in these systems.

Hypervisors have long been used as a means for im-

plementing a secure trusted computing base, with which

untrusted OS images could be made secure [16, 31].

While our prototype was implemented in the Xen hyper-

visor [4], the functionality required from the hypervisor

is generic enough to allow Patagonix to be implemented

on any virtualization system. To explore this point, we

have obtained a source code license for VMware Work-

station and are currently working on a port of Patago-

nix. We have found that VMware-specific functionality,

such as its page table entry caching [2] and dynamic code

translation [1], have not impeded the necessary function-

ality from being added.

Finally, Patagonix uses or extends ideas presented in

other work. Patagonix is based on our earlier work called

Manitou, which also uses hashes to identify running ap-

plications from a hypervisor [18]. However, Manitou is

only able to identify applications for Linux guest OSs,

making its treatment of the problem overly simplistic. It

also does not perform synchronous lie detection. Inde-

pendent to our work and using a similar low-level mech-

anism to detect code execution, SecVisor [31] restricts

what code can be executed by a modified Linux kernel.

SecVisor focuses solely on code that is executed in ker-

nel mode. It uses a custom-made hypervisor, showing

that execution control can be achieved with a small TCB.

In contrast, Patagonix provides comprehensive guaran-

tees for unmodified Linux and Windows OSs as well

as the applications they execute, and demonstrates that

these guarantees can be obtained by small extensions to

a general-purpose hypervisor. Other projects have ma-

nipulated the page tables used by the X86 MMU. For ex-

ample, the PaX project [22] proposes manipulating these

page tables to emulate the NX bit on older CPU that

do no have hardware support for the feature. Finally,

computer forensics experts [30] have demonstrated that

PE binaries can be reconstructed by analyzing memory

dumps. The PE identity oracle described in this paper

uses similar techniques to identify binaries online.

9 Conclusions

Current OSs are vulnerable to subversion by rootkit and

thus cannot be relied upon to provide trustworthy infor-

mation about what code is executing on a system. Pata-

gonix solves this problem by using the processor MMU

to detect executing code from a hypervisor. It then uses

identity oracles, which leverage information from the bi-

nary format specifications and loaders to identify the ex-

ecuting code. In this way, Patagonix is able to bridge the

semantic gap between the hypervisor and the OS with-

out having to trust non-binding information, which is

vulnerable to subversion by the rootkit. We have found

that binary formats across different OSs have similari-

ties, enabling the creation of a universal oracle construc-

tion framework and the use of common techniques across

various binary formats. Aside from the binary-specific

formats, the Patagonix framework does not use any in-

formation about the OS, allowing the same framework to

be used on diverse OSs such as Windows XP, Linux 2.4

and Linux 2.6, without any modification. Through the

combined use of writable and non-executable page table

bits, Patagonix is only invoked when code is executed for

the first time, and as a result, has a modest performance

overhead of less than 3% on most applications.
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