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Abstract 

Protecting confidential information is a major concern for organizations and individuals alike, who stand to suffer 
huge losses if private data falls into the wrong hands. One of the primary threats to confidentiality is malicious soft-
ware on personal computers, which is estimated to already reside on 100 to 150 million machines. Current security 
controls, such as firewalls, anti-virus software, and intrusion detection systems, are inadequate at preventing malware 
infection. This paper introduces Storages Capsules, a new approach for protecting confidential files on a personal 
computer. Storage Capsules are encrypted file containers that allow a compromised machine to securely view and 
edit sensitive files without malware being able to steal confidential data. The system achieves this goal by taking a 
checkpoint of the current system state and disabling device output before allowing access a Storage Capsule. Writes 
to the Storage Capsule are then sent to a trusted module. When the user is done editing files in the Storage Capsule, 
the system is restored to its original state and device output resumes normally. Finally, the trusted module declassi-
fies the Storage Capsule by re-encrypting its contents, and exports it for storage in a low-integrity environment. This 
work presents the design, implementation, and evaluation of Storage Capsules, with a focus on exploring covert 
channels. 

1. Introduction 

Traditional methods for protecting confidential informa-
tion rely on upholding system integrity. If a computer is 
safe from hackers and malicious software (malware), 
then so is its data. Ensuring integrity in today’s inter-
connected world, however, is exceedingly difficult. 
Trusted computing platforms such as Terra [8] and 
trusted boot [26] try to provide this integrity by verify-
ing software. Unfortunately, these platforms are rarely 
deployed in practice and most software continues to be 
unverified. More widely-applicable security tools, such 
as firewalls, intrusion detection systems, and anti-virus 
software, have been unable to combat malware, with 
100 to 150 million infected machines running on the 
Internet today according to a recent estimate [34]. Secu-
rity mechanisms for personal computers simply cannot 
rely on keeping high integrity. Storage Capsules address 
the need for access to confidential data from compro-
mised personal computers. 

There are some existing solutions for preserving confi-
dentiality that do not rely on high integrity. One exam-
ple is mandatory access control (MAC), which is used 
by Security-Enhanced Linux [23]. MAC can control the 
flow of sensitive data with policies that prevent entities 
that read confidential information from communicating 
over the network. This policy set achieves the goal of 
preventing leaks in the presence of malware. However, 
defining correct policies can be difficult, and they 
would prevent most useful applications from running 
properly. For example, documents saved by a word 

processor that has ever read secret data could not be 
sent as e-mail attachments. Another embodiment of the 
same principle can be seen in an “air gap” separated 
network where computers are physically disconnected 
from the outside world. Unplugging a compromised 
computer from the Internet will stop it from leaking 
information, but doing so greatly limits its utility. Both 
mandatory access control with strict outbound flow 
policies and air gap networks are rarely used outside of 
protecting classified information due to their severe 
impact on usability. 

This paper introduces Storage Capsules, a new mecha-
nism for protecting sensitive information on a local 
computer. The goal of Storage Capsules is to deliver the 
same level of security as a mandatory access control 
system for standard applications running on a commod-
ity operating system. Storage Capsules meet this re-
quirement by enforcing policies at a system-wide level 
using virtual machines. The user’s system can also 
downgrade from high-secrecy to low-secrecy by revert-
ing to a prior state using virtual machine snapshots. 
Finally, the system can obtain updated Storage Capsules 
from a declassification component after returning to low 
secrecy. 

Storage Capsules are analogous to encrypted file con-
tainers from the user’s perspective. When the user 
opens a Storage Capsule, a snapshot is taken of the cur-
rent system state and device output is disabled. At this 
point, the system is considered to be in secure mode. 
When the user is finished editing files in a Storage Cap-
sule, the system is reverted to its original state – dis-



carding all changes except those made to the Storage 
Capsule – and device output is re-enabled. The storage 
capsule is finally re-encrypted by a trusted component.  

Storage Capsules guarantee protection against a com-
promised operating system or applications. Sensitive 
files are safe when they are encrypted and when being 
accessed by the user in plain text. The Capsule system 
prevents the OS from leaking information by erasing its 
entire state after it sees sensitive data. It also stops cov-
ert communication by fixing the Storage Capsule size 
and completely re-encrypting the data every time it is 
accessed by the OS. Our threat model assumes that the 
primary operating system can do anything at all to un-
dermine the system. The threat model also assumes that 
the user, hardware, the virtual machine monitor 
(VMM), and an isolated secure virtual machine are 
trustworthy. The Capsule system protects against covert 
channels in the primary OS and Storage Capsules, as 
well as many (though not all) covert channels at lower 
layers (disk, CPU, etc.).  One of the contributions of 
this paper is identifying and suggesting mitigation 
strategies for numerous covert channels that could po-
tentially leak data from a high-secrecy VM to a low-
secrecy VM that runs after it has terminated. 

We evaluated the impact that Storage Capsules have on 
the user’s workflow by measuring the latency of secu-
rity level transitions and system performance during 
secure mode. We found that for a primary operating 
system with 512 MB of RAM, transitions to secure 
mode took about 4.5 seconds, while transitions out of 
secure mode took approximately 20 seconds. We also 
compared the performance of the Apache build bench-
mark in secure mode to that of a native machine, a plain 
virtual machine, and a virtual machine running an en-
cryption utility. Overall, Storage Capsules added 38% 
overhead compared to a native machine, and only 5% 
compared to a VM with encryption software. The com-
mon workload for a Storage Capsule is expected to be 
much lighter than an Apache build. In many cases, it 
will add only a negligible overhead. 

The main contribution of this work is a system that al-
lows safe access to sensitive files from a normal operat-
ing system with standard applications. The Capsule 
system is able to switch modes within one OS rather 
than requiring separate operating systems or processes 
for different modes. This paper also makes contribu-
tions in the understanding of covert channels in such a 
system. In particular, it looks at how virtualization tech-
nology can create new covert channels and how previ-
ously explored covert channels behave differently when 
the threat model is a low-security virtual machine run-
ning after a high-security virtual machine. 

It is important to keep in mind that Storage Capsules do 
not protect integrity. There are a number of attacks that 
they cannot prevent. If malicious software stops the user 
from ever entering secure mode by crashing, then the 
user might be coerced into accessing sensitive files 
without Storage Capsules. Furthermore, malware can 
manipulate data to present false information that tricks 
the user into doing something erroneously, such as plac-
ing a stock transaction. These attacks are beyond the 
scope of this paper. 

The remainder of this paper is laid out as follows. Sec-
tion 2 discusses related work. Section 3 gives an over-
view of the usage model, the threat model, and design 
alternatives. Section 4 outlines the system architecture. 
Section 5 describes the operation of Storage Capsules. 
Section 6 examines the effect of covert channels on 
Storage Capsules. Section 7 presents evaluation results. 
Finally, section 8 concludes and discusses future work. 

2. Related Work 

The Terra system [8] provides multiple security levels 
for virtual machines using trusted computing technol-
ogy. Terra verifies each system component at startup 
using a trusted platform model (TPM) [29], similar to 
trusted boot [26]. However, Terra allows unverified 
code to run in low-security virtual machines. One could 
imagine a configuration of Terra in which the user’s 
primary OS runs inside of a low-integrity machine, just 
like in the Capsule system. The user could have a sepa-
rate secure VM for decrypting, editing, and encrypting 
files. Assuming that the secure VM always has high 
integrity, this approach would provide comparable secu-
rity and usability benefits to Storage Capsules. How-
ever, Terra only ensures a secure VM’s integrity at 
startup; it does not protect running software from ex-
ploitation. If this secure VM ever loads an encrypted 
file from an untrusted location, it is exposed to attack. 
All sources of sensitive data (e-mail contacts, web serv-
ers, etc.) would have to be verified and added to the 
trusted computing base (TCB), bloating its size and 
impacting both management overhead and security. 
Furthermore, the user would be unable to safely include 
data from untrusted sources, such as the internet, in sen-
sitive files. The Capsule system imposes no such head-
aches; it can include low-integrity data in protected 
files, and only requires trust in local system components 
to guarantee confidentiality. 

There has been extensive research on controlling the 
flow of sensitive information inside of a computer. In-
tra-process flow control techniques aim to verify that 
individual applications do not inadvertently leak confi-
dential data [6, 22]. However, this does not stop mali-



cious software that has compromised a computer from 
stealing data at the operating system or file system 
level. Another approach for controlling information 
flow is at the process level with a mandatory access 
control (MAC) system like SELinux [23]. MAC in-
volves enforcing access control policies on high-level 
objects (typically files, processes, etc.). However, defin-
ing correct policies can be quite difficult [15] even for a 
fixed set of applications. MAC would have a hard time 
protecting personal computers that download and install 
programs from the internet. Very few computers use 
mandatory access control currently, and it is not sup-
ported by Microsoft Windows, a popular operating sys-
tem for personal computers. Storage Capsules employ a 
similar approach to MAC systems, but do so at a higher 
level of granularity (system-wide) using virtual machine 
technology. This allows Storage Capsules to provide 
more practical security for commodity operating sys-
tems without requiring modification. 

There are a number of security products available for 
encrypting and protecting files on a local computer, 
including compression utilities [25, 35] and full disk 
encryption software [1, 7, 20, 31]. The goal of file en-
cryption is to facilitate file transmission over an un-
trusted medium (e.g., an e-mail attachment), or protect 
against adversarial access to the storage device (e.g., a 
lost or stolen laptop). File encryption software does 
safeguard sensitive information while it is decrypted on 
the end host. Malicious software that has control of the 
end host can steal confidential data or encryption keys. 
Capsule also uses file encryption to allow storage in an 
untrusted location, but it maintains confidentiality while 
sensitive data is decrypted on the end host. 

Storage Capsules rely on the virtual machine monitor as 
part of the trusted computing base. VMMs are com-
monly accepted as less complex and more secure than 
standard operating systems, with the Xen VMM having 
under 50,000 lines of code [36], compared to 5.7 mil-
lion lines in the Linux 2.6 kernel [5]. These numbers are 
reinforced by actual vulnerability reports, with Xen 3.x 
only having 9 reports up to January 2009 [27], and the 
Linux 2.6.x kernel having 165 reports [28] in that same 
time period. VMMs are not invulnerable, but they have 
proven to be more robust than standard kernels.  

Virtualization technology has many useful properties 
and features that make it a well-suited platform for 
Storage Capsules. Despite these advantages, Garfinkel 
et al. warn that virtualization has some shortcomings, 
especially when it comes to security [9]. Most impor-
tantly, have many branches and saved states makes 
patching and configuration much more difficult. A user 
might load an old snapshot that is vulnerable to infec-

tion by an Internet worm. The Capsule system does not 
suffer from these limitations because it is designed to 
have one primary VM with a fairly straight execution 
path. Transitions too and from secure mode are short-
lived, and should have a minimal impact on patching 
and management tasks. 

3. Overview 

3.1 Storage Capsules from a User’s Per-
spective 

From the user’s perspective, Storage Capsules are 
analogous to encrypted file containers provided by a 
program like TrueCrypt [31]. Basing the Capsule sys-
tem off of an existing and popular program’s usage 
model makes it easier to gain acceptance. The primary 
difference between Storage Capsules and traditional 
encryption software is that the system enters a secure 
mode before opening the Storage Capsule’s contents. In 
this secure mode, network output is disabled and any 
changes that the user makes outside of the Storage Cap-
sule will be lost. The user may still edit the Storage 
Capsule contents with his or her standard applications. 
When the user closes the Storage Capsule and exits 
secure mode, the system reverts to the state it was in 
before accessing sensitive data. 

One motivating example for Storage Capsules is provid-
ing a secure journal. A person, call him Bob, may want 
to write a diary in which he expresses controversial po-
litical beliefs. Bob might regularly write in this journal, 
possibly pasting in news stories or contributions from 
others on the internet. Being a diligent user, Bob might 
store this document in an encrypted file container. Un-
fortunately, Bob is still completely vulnerable to spy-
ware when he enters the decryption password and edits 
the document. Storage Capsules support the same usage 
model as normal encrypted file containers, but also de-
liver protection against spyware while the user is ac-
cessing sensitive data. 

Storage Capsules have some limitations compared to 
encrypted file containers. These limitations are neces-
sary to gain additional security. First, changes that the 
user makes outside of the encrypted Storage Capsule 
while it is open will not persist. This benefits security 
and privacy by eliminating all traces of activity while 
the container was open. Storage Capsules guarantee that 
the OS does not inadvertently hold information about 
sensitive files as described by Czeskis et al. for the case 
of TrueCrypt [4]. Unfortunately, any work from compu-
tational or network processes that may be running in the 
background will be lost. One way to remove this limita-
tion would be to fork the primary virtual machine and 



allow a copy of it to run in the background. Allowing 
low- and high-secrecy VMs to run at the same time, 
however, reduces security by opening up the door for a 
variety of covert channels. 

3.2 Threat Model 

Storage Capsules are designed to allow a compromised 
operating system to safely edit confidential information. 
However, some trusted components are necessary to 
provide security. Figure 1 shows the architecture of the 
Capsule system, with trusted components having solid 
lines and untrusted components having dotted lines. The 
user’s primary operating system runs inside of a pri-
mary VM. Neither the applications, the drivers, nor the 
operating system are trusted in the primary VM; it can 
behave in any arbitrary manner. A virtual machine 
monitor (VMM) runs beneath the primary VM, and is 
responsible for mediating access to physical devices. 
The VMM is considered part of the trusted computing 
base (TCB). The Capsule system also relies on a Secure 
VM to save changes and re-encrypt Storage Capsules. 
This secure VM has only a minimal set of applications 
to service Storage Capsule requests, and has all other 
services blocked off with a firewall. The secure VM is 
also part of the TCB. 

The user is also considered trustworthy in his or her 
intent. Presumably, the user has a password to decrypt 
each Storage Capsule and could do so using rogue soft-
ware without going into secure mode and leak sensitive 
data. The user does not require full access to any trusted 
components, however. The main user interface is the 

primary VM, and the user should only interact with the 
Secure VM or VMM briefly using a limited UI. This 
prevents the user from inadvertently compromising a 
trusted component with bad input. 

The threat model assumes that malicious software may 
try to communicate covertly within the primary VM. 
Storage Capsules are designed to prevent a compro-
mised primary OS from saving data anywhere that will 
persist through a snapshot restoration. However, Stor-
age Capsules do not guarantee that a malicious primary 
VM cannot store data somewhere in a trusted compo-
nent, such as hardware or the VMM, in such a way that 
it can recover information after leaving secure mode. 
We discuss several of these covert channels in more 
depth later in the paper. 

3.3 Designs that do not Satisfy Storage 
Capsule Goals 

The first system design that would not meet the security 
goals laid out in our threat model is conventional file 
encryption software [1, 7, 20, 31]. Any information 
stored in an encrypted file would be safe from malicious 
software, or even a compromised operating system, 
while it is encrypted. However, as soon as the user de-
crypts a file, the operating system can do whatever it 
wants with the decrypted data. 

Another design that would not meet the goals of Storage 
Capsules is the NetTop architecture [19]. With NetTop, 
a user has virtual machines with multiple security levels. 
One is for accessing high-secrecy information, and an-
other for low-secrecy information, which may be con-
nected to the internet. Depending on how policies are 
defined, NetTop either suffers from usability limitations 
or would have security problems. First assume that the 
high-secrecy VM must be able to read data from the 
low-secrecy VM to load files from external locations 
that are not part of the trusted computing base. Now, if 
the high-secrecy VM is prevented from writing anything 
back to the low-secrecy VM, then confidentiality is 
maintained. However, this prevents the user from mak-
ing changes to a sensitive document, encrypting it, then 
sending it back out over a low-secrecy medium. This 
effectively makes everything read-only from the high-
secrecy VM to the low-secrecy VM. The other alterna-
tive – letting the high-secrecy VM encrypt and de-
classify data – opens up a major security hole. Data that 
comes from the low-secrecy VM also might be mali-
cious in nature. If the high-secrecy VM reads that in-
formation, its integrity – and the integrity of its encryp-
tion operations – may be compromised. 

Virtual Device 
Drivers

Primary OS

Physical Device Drivers

Hardware

Primary VM

VMM

Virtual Device 
Drivers

OS

Secure VM

 

Figure 1.  In the Storage Capsule architecture, the 
user’s primary operating system runs in a virtual ma-
chine. The secure VM handles encryption and declas-
sification. The dotted black line surrounding the pri-
mary VM indicates that it is not trusted. The other 

system components are trusted. 



4. System Architecture 

The Capsule system has two primary modes of opera-
tion: normal mode and secure mode. In normal mode, 
the computer behaves the same as it would without the 
Capsule system. The primary operating system has ac-
cess to all devices and can communicate freely over the 
network. In secure mode, the primary OS is blocked 
from sending output to the external network or to de-
vices that can store data. Furthermore, the primary op-
erating system’s state is saved prior to entering secure 
mode, and then restored when transitioning back to 
normal mode. This prevents malicious software running 
on the primary OS from leaking data from secure mode 
to normal mode. 

The Capsule system utilizes virtual machine technology 
to isolate the primary OS in secure mode. Virtual ma-
chines also make it easy to save and restore system state 
when transitioning to or from secure mode. Figure 1 
illustrates the architecture of the Capsule system. The 
first virtual machine, labeled Primary VM, contains the 
primary operating system. This VM is the equivalent of 
the user’s original computer. It contains all of the user’s 
applications, settings, and documents. This virtual ma-
chine may be infected with malicious software and is 
not considered trustworthy. The other virtual machine, 
labeled Secure VM, is responsible for managing access 
to Storage Capsules. The secure VM is trusted. The 
final component of the Capsule system shown in Figure 
1 is the Virtual Machine Monitor (VMM). The VMM is 
responsible for translating each virtual device I/O re-
quest into a physical device request, and for governing 
virtual networks. As such, it can also block device I/O 
from virtual machines. The VMM has the power to 
start, stop, save, and restore entire virtual machines. 
Because it has full control of the computer, the VMM is 
part of the trusted computing base. 

The Capsule system adds three components to the 
above architecture to facilitate secure access to Storage 
Capsules. The first is the Capsule VMM module, which 
runs as service inside of the VMM. The Capsule VMM 
module performs the following basic functions: 

• Saves and restores snapshots of the primary VM 
• Enables and disables device access by the primary 

VM 
• Catches key escape sequences from the user 
• Switches the UI between the primary VM and the 

secure VM 

The Capsule VMM module executes operations as re-
quested by the second component, the Capsule server, 
which runs inside of the secure VM. The Capsule server 
manages transitions between normal mode and secure 

mode. During secure mode, it also acts as a disk server, 
handling block-level read and write requests from the 
Capsule viewer, which runs in the primary VM. The 
Capsule server has dedicated interfaces for communi-
cating with the Capsule viewer and with the Capsule 
VMM module. These interfaces are attached to separate 
virtual networks so that the viewer and VMM module 
cannot impersonate or communicate directly with each 
other. 

The third component, the Capsule viewer, is an applica-
tion that accesses Storage Capsules on the primary VM. 
When the user first loads or creates a new Storage Cap-
sule, the viewer will import the file by sending it to the 
Capsule server. The user can subsequently open the 
Storage Capsule, at which point the viewer will ask the 
Capsule server to transition the system to secure mode. 
During secure mode, the viewer presents the contents of 
the Storage Capsule to the user as a new mounted parti-
tion. Block-level read and write requests made by the 
file system are forwarded by the viewer to the Capsule 
server, which encrypts and saves changes to the Storage 
Capsule. Finally, the Capsule viewer can retrieve the 
encrypted Storage Capsule by requesting an export from 
the Capsule server. The Capsule viewer is not trusted 
and may cause a denial-of-service at any time. How-
ever, the Capsule system is designed to prevent even a 
compromised viewer from leaking data from secure 
mode to normal mode. 

5. Storage Capsule Operation 

5.1 Storage Capsule File Format 

A Storage Capsule is actually an encrypted partition that 
is mounted during secure mode. The Storage Capsule 
model is based on TrueCrypt [31] – a popular encrypted 
storage program. Like TrueCrypt, each new Storage 
Capsule is created with a fixed size. Storage Capsules 
employ XTS-AES – the same encryption scheme as 
TrueCrypt – which is the IEEE standard for data en-
cryption [13]. In our implementation, the encryption 
key for each file is created by taking the SHA-512 hash 
of a user-supplied password. In a production system, it 
would be beneficial to employ other methods, such as 
hashing the password many times and adding a salt, to 
make attacks more difficult. The key could also come 
from a biometric reader (fingerprint reader, retina scan-
ner, etc.), or be stored on a key storage device like a 
smart card. Storage Capsules operation does not depend 
on a particular key source. 

With XTS-AES, a different tweak value is used during 
encryption for each data unit. A data unit can be one or 
more AES blocks. The Storage Capsule implementation 



uses a single AES block for each data unit. In accor-
dance with the IEEE 1619 standard [13], Storage Cap-
sules use a random 128-bit starting tweak value that is 
incremented for each data unit. This starting tweak 
value is needed for decryption, so it is stored at the be-
ginning of the file. Because knowledge of the tweak 
value does not weaken the encryption [18], it is stored 
in the clear. 

5.2 Creating and Importing a Storage 
Capsule 

The first step in securing data is creating a new Storage 
Capsule. The following tasks take place during the crea-
tion process: 

1. The Capsule viewer solicits a Storage Capsule file 
name and size from the user. 

2. The viewer makes a request to the Capsule server 
on the secure VM to create a new Storage Cap-
sule. 

3. The viewer asks the user to enter the secure key 
escape sequence that will be caught by a keyboard 
filter driver in the VMM. This deters spoofing by 
a compromised primary VM. 

4. After receiving the escape sequence, the VMM 
module will give the secure VM control of the 
user interface. 

a. If the escape sequence is received unexpect-
edly (i.e. when the VMM has not received a 
request to wait for an escape sequence from 
the Capsule server), then the VMM module 
will still give control of the UI to the secure 
VM, but the secure VM will display a warn-
ing message saying that the user is not at a 
secure password entry page. 

5. The Capsule server will ask the user to select a 
password, choose a random starting tweak value 
for encryption, and then format the encapsulated 
partition. 

6. The Capsule server asks the VMM module to 
switch UI focus back to the primary VM. 

After the creation process is complete, the Capsule 
server will send the viewer a file ID that it can store 
locally to link to the Storage Capsule on the server.  

Loading a Storage Capsule from an external location 
requires fewer steps than creating a new Storage Cap-
sule. If the viewer opens a Storage Capsule file that has 
been created elsewhere, it imports the file by sending it 
to the Capsule server. In exchange, the Capsule server 
sends the viewer a file ID that it can use as a link to the 
newly imported Storage Capsule. After a Storage Cap-
sule has been loaded, the link on the primary VM looks 

the same regardless of whether the Capsule was created 
locally or imported from an external location. 

5.3 Opening a Storage Capsule in Secure 
Mode 

At this point, one or more Storage Capsules reside on 
the Capsule server, and have links to them on the pri-
mary VM. When the user opens a link with the Capsule 
viewer, it will begin the transition to secure mode, 
which consists of the following steps: 

1. The Capsule viewer sends the Capsule server a 
message saying that the user wants to open a Stor-
age Capsule, which includes the file ID from the 
link in the primary VM. 

2. The Capsule viewer asks the user to enter the es-
cape sequence that will be caught by the VMM 
module. 

3. The VMM module receives the escape sequence 
and switches the UI focus to the secure VM. This 
prevents malware on the primary VM from spoof-
ing a transition and stealing the file password. 

a. If the escape sequence is received unexpect-
edly, the secure VM still receives UI focus, 
but displays a warning message stating the 
system is not in secure mode. 

4. The VMM module begins saving a snapshot of the 
primary VM in the background. Execution contin-
ues, but memory and disk data is copied to the 
snapshot on write. 

5. The VMM module disables network and other de-
vice output. 

6. The Capsule server asks the user to enter the file 
password. 

7. The VMM module returns UI focus to the primary 
VM. 

8. The Capsule server tells the viewer that the transi-
tion is complete and begins servicing disk I/O re-
quests to the Storage Capsule. 

9. The Capsule viewer mounts a local partition that 
uses the Capsule server for back-end disk block 
storage. 

The above process ensures that the primary VM gains 
access to the Storage Capsule contents only after its 
initial state has been saved and the VMM has blocked 
device output. The exact set of devices blocked during 
secure mode is discussed more in the section on covert 
channels.  

Depending on the source of the Storage Capsule en-
cryption key, step 6 could be eliminated entirely. If the 
key was obtained from a smart card or other device, 
then the primary VM would retain UI focus throughout 
the entire transition, except in the case of an unexpected 



escape sequence from the user. In this case, the secure 
VM must always take over the screen and warn the user 
that he or she is not in secure mode. 

5.4 Storage Capsule Access in Secure Mode 

When the Capsule system is running in secure mode, all 
reads and writes to the Storage Capsule are sent to the 
Capsule server. The server will encrypt and decrypt the 
data for each request as it is received, without perform-
ing any caching itself. The Capsule server instead relies 
on the caches within the primary VM and its own oper-
ating system to minimize unnecessary encryption and 
disk I/O. The disk cache in the primary VM sits above 
the driver that sends requests through to the Capsule 
server. On the secure VM, disk read and write requests 
from the Capsule server go through the local file system 
cache before they are sent to the disk. Later, we meas-
ure Storage Capsule disk performance during secure 
mode and demonstrate that is comparable to current 
encryption and virtualization software. 

During secure mode, the VMM stores all writes to the 
primary VM’s virtual disk in a file. This file contains 
differences with respect to the disk state at the time of 
the last snapshot operation (during the transition to se-
cure mode). In the Capsule system, this difference file is 
stored on a partition that resides in main memory, 
commonly referred to as a RAM disk. Our implementa-
tion uses the ImDisk Virtual Disk Driver [14]. Storing 
the files on a RAM disk prevents potentially sensitive 
data that the primary VM writes to its virtual disk from 
reaching the physical disk. Although malicious access 
to the physical disk is not the focus of this paper’s threat 
model, allowing confidential data to touch the disk in-
creases the overall risk of leakage and the cost of hard-
ware destruction. 

The main downside to storing virtual disk modifications 
in memory is that the system requires more memory in 
secure mode. However, the size of primary disk modifi-
cations in secure mode should be small under normal 
circumstances because they are all temporary. Under 
normal circumstances, the user has no reason to store 
big files in a location where they will soon be deleted. If 
the change buffer does fill up due to a denial-of-service 
by malware or non-standard usage, then writes to the 
main virtual disk will fail until the system reverts to 
normal mode. If there turns out to be a legitimate need 
for large amounts of temporary storage in secure mode, 
then the change buffer could be stored on the physical 
disk and the VMM could use an encrypted file system 
for added protection. 

5.5 Reverting to Normal Mode 

Transitioning the Capsule system from secure mode 
back to normal mode is the most security-sensitive op-
eration. Care must be taken to prevent leaks from secure 
mode back to normal mode insofar as practical for the 
desired level of security. A full discussion of the chan-
nels through which information might flow during this 
transition and countermeasures can be found in the next 
section. The Capsule system begins reverting to normal 
mode when the user enters a key escape sequence. Here, 
the escape sequence is not to prevent spoofing, but in-
stead to reduce the primary VM’s ability to leak data 
through a timing channel. After the user hits the escape 
sequence, the following steps take place: 

1. The VMM module notifies the Capsule server of 
the pending transition, which in turn notifies the 
Capsule viewer. 

2. The Capsule server waits up to 30 seconds for the 
primary VM to flush disk writes to the Storage 
Capsule. In our experiments, flushing always took 
less than one second, but uncommon workloads 
could make it take longer. We chose 30 seconds 
because it is the default maximum write-back de-
lay for linux. 

3. The secure VM reboots in order to flush any state 
that was affected by the primary VM. (This blocks 
some covert channels that are discussed in the 
next section.) 

4. The VMM module halts the primary VM, and 
then reverts its state to the snapshot taken before 
entering secure mode and resumes execution. 

5. The VMM module re-enables network and other 
device output for the primary VM. 

After the Capsule system has reverted to normal mode, 
all changes that were made in the primary VM during 
secure mode, except those to the Storage Capsule, are 
lost. Also, when the Capsule viewer resumes executing 
in normal mode, it queries the Capsule to see what 
mode it is in (if the connection fails due to the reboot, 
normal mode is assumed). This is a similar mechanism 
to the return value from a fork operation. Without it, the 
Capsule viewer cannot tell whether secure mode is just 
beginning or the system has just reverted to normal 
mode, because both modes start from the same state. 

5.6 Exporting Storage Capsules 

After modifying a storage capsule, the user will proba-
bly want to back it up or transfer it to another person or 
computer at some point. Storage Capsules support this 
use case by providing an export operation. The Capsule 
viewer may request an export from the Capsule server at 
any time during normal mode. When the Capsule server 



exports an encrypted Storage Capsule back to the pri-
mary VM, it is essential that malicious software can 
glean no information from the difference between the 
Storage Capsule at export compared to its contents at 
import. This should be the case even if malware has full 
control of the primary VM during secure mode and can 
manipulate the Storage Capsule contents in a chosen-
plaintext attack. 

For the Storage Capsule encryption scheme to be se-
cure, the difference between the exported cipher-text 
and the original imported cipher-text must appear com-
pletely random. If the primary VM can change specific 
parts of the exported Storage Capsule, then it could leak 
data from secure mode. To combat this attack, the Cap-
sule server re-encrypts the entire Storage Capsule using 
a new random 128-bit starting tweak value before each 
export. There is a small chance of two exports colliding. 
For any two Storage Capsules, each of size 2 GB (227 
encryption blocks), the chance of random 128-bit tweak 
values partially colliding would be approximately 1 in 2 
* 227 / 2128 or 1 in 2100. Because of the birthday paradox, 
however, there will be a reasonable chance of a colli-
sion between a pair of exports after only 250 exports. 
This number decreases further with the size of Storage 
Capsules. Running that many exports would still take an 
extremely long time (36 million years running 1 export / 
second). We believe that such an attack is unlikely to be 
an issue in reality, but could be mitigated if future 
tweaked encryption schemes support 256-bit tweak val-
ues.  

5.7 Key Escape Sequences 

During all Capsule operations, the primary VM and the 
Capsule viewer are not trusted. Some steps in the Cap-
sule system’s operation involve the viewer asking the 
user to enter a key escape sequence. If the primary VM 
becomes compromised, however, it could just skip ask-
ing the user to enter escape sequences and display a 
spoofed UI that looks like what would show up if the 
user did hit the escape sequence. This attack would steal 
the file decryption password while the system is still in 
normal mode. The defense against this attack is that the 
user should be accustomed to entering the escape se-
quence and therefore hit it anyway or notice anomalous 
behavior. 

It is unclear how susceptible real users would be to 
spoofing attack that omits asking for an escape se-
quence. The success of such an attack is likely to de-
pend on user education. Formally evaluating the usabil-
ity of escape sequences in the Capsule system is future 
work. Another design alternative that may help if spoof-
ing attacks are found to be a problem is reserving a se-

cure area on the display. This area would always tell the 
user whether the system is in secure mode or the secure 
VM has control of the UI. 

6. Covert Channel Analysis 

The Storage Capsule system is designed to prevent any 
direct flow of information from secure mode to normal 
mode. However, there are a number of covert channels 
through which information may be able to persist during 
the transition from secure to normal mode. This section 
tries to answer the following questions about covert 
channels in the Capsule system as best as possible: 

• Where can the primary virtual machine store in-
formation that it can retrieve after reverting to 
normal mode? 

• What defenses might fully or partially mitigate 
these covert information channels? 

We do not claim to expose all covert channels here, but 
list many channels that we have uncovered during our 
research. Likewise, the proposed mitigation strategies 
are not necessarily optimal, but represent possible ap-
proaches for reducing the bandwidth of covert channels. 
Measuring the maximum bandwidth of each covert 
channel requires extensive analysis and is beyond the 
scope of this paper. There has been a great deal of re-
search on measuring the bandwidth of covert channels 
[2, 16, 21, 24, 30, 33], which could be applied to calcu-
late the severity of covert channels in the Capsule sys-
tem in future work.  

The covert channels discussed in this section can be 
divided into five categories: 

1. Primary OS and Capsule – Specific to Storage 
Capsule design  

2. External Devices – Includes floppy, CD-ROM, 
USB, SCSI, etc. 

3. External Network – Changes during secure mode 
that affect responsiveness to external connections 

4. VMM – Arising from virtual machine monitor 
implementation, includes memory mapping and 
virtual devices 

5. Core Hardware – Includes CPU and disk drives. 

The Capsule system prevents most covert channels in 
the first three categories. It can use the VMM to medi-
ate the primary virtual machine’s device access and 
completely erase the primary VM’s state when reverting 
to normal mode. The Capsule system also works to pre-
vent timing channels when switching between modes of 
operation, and does respond to external network traffic 
while in secure mode.  



Storage Capsules do not necessarily protect against 
covert channels in the last two categories. There has 
been a lot of work on identifying, measuring, and miti-
gating covert channels in core hardware for traditional 
MLS systems [16, 17, 21, 30]. Similar methods for 
measuring and mitigating those core channels could be 
applied to Storage Capsules. Covert channels arising 
from virtualization technology have not received much 
attention. This research hopes to highlight some of the 
key mechanisms in a VMM that can facilitate covert 
communication. The remainder of this section explores 
covert channels in each of these categories, including 
mitigation strategies and their required trade-offs. 

6.1 Primary OS and Storage Capsule 
Channels 

In addition to covert channels that one might find in 
other systems, the design of Storage Capsules creates 
opportunities for covert communication. This section 
focuses on the interactions between the primary VM 
and the secure VM. The primary VM should not be able 
to affect the secure VM’s state during secure mode in a 
way that it can detect during normal mode. Here we 
examine three attack vectors that a compromised pri-
mary VM might use to steal data, and corresponding 
counter-measures. 

Transition Timing 

When the VMM restores the primary virtual machine 
from a snapshot, the restored state contains the exact 
same information as prior to entering secure mode. Fol-
lowing the restoration, the primary VM can obtain addi-
tional information by fetching the system time, which 
tells it when the system returned to normal mode. If the 
primary VM can manipulate the transition timing from 
secure mode, then it can leak data. 

The Capsule system prevents direct leaks through tran-
sition timing by requiring a secure key escape sequence 
to switch back to normal mode. However, the primary 
VM may still be able to affect transition timing depend-
ing on how long the Capsule server waits for the pri-
mary VM to flush disk writes to the Storage Capsule 
upon leaving secure mode. One option that would pre-
clude manipulation of transition timing would be for the 
Capsule server to wait a fixed time-period for disk 
writes to complete. This would be the most secure ap-
proach. Unfortunately, this strategy would either impact 
usability or threaten correctness. If the server were to 
stall 30 seconds – the default write-back delay for Linux 
– then the transition time would be unnecessarily long 
in most cases. On the other hand, if it only waited a few 
seconds, then some delayed writes might fail and cor-
rupt the Storage Capsule. 

For our implementation of the Capsule system, we 
chose a transition timing policy that sacrifices a few bits 
of potential information leakage per transition, but is 
more usable. The Capsule server will wait for the pri-
mary VM to flush Storage Capsule writes for up to 30 
seconds. If the primary VM finishes the disk flush in 
less than 30 seconds, the server will immediately pro-
ceed with restoration. This opens up the possibility of 
the primary VM stalling a precise length of time after 
flushing writes so that it can read back timing informa-
tion after returning to normal mode. The maximum 
bandwidth of this timing channel is somewhat limited, 
however, because the snapshot restoration adds noise to 
the transition time. Depending on how much memory 
the primary VM has, the amount of time between exit-
ing secure mode and resuming in normal mode can vary 
by several seconds. By notifying the server at a specific 
offset from the most recent half-minute, the primary 
VM will only be able to communicate a few bits of data. 
One possible counter-measure to this type of timing 
channel would be to deliberately skew the clock during 
secure mode so the primary VM cannot accurately 
judge system time. 

Storage Capsule Contents 

The ideal place for a compromised primary VM to store 
data would be in the Storage Capsule itself. It is essen-
tial that the Capsule server cut off this channel. First, 
Storage Capsules must have a fixed size. This imposes a 
small usability limitation, which we believe is reason-
able given that other popular systems like TrueCrypt 
[31] fix the size of encrypted file containers. Enforcing 
the next constraint required to cut off storage channels 
is slightly more complicated. No matter what changes 
the primary VM makes to the Storage Capsule in secure 
mode, it must not be able to deduce what has been 
changed after the Capsule server exports the Storage 
Capsule. As discussed earlier, XTS-AES encryption 
with a different tweak value for each export satisfies 
this requirement. Whether the primary VM changes 
every single byte or does not touch anything, the result-
ing exported Storage Capsule will be random with re-
spect to its original contents. 

Social Engineering Attacks 

If the primary virtual machine cannot find a way to leak 
data directly, then it can resort to influencing user be-
havior. The most straightforward example of a social 
engineering attack would be for the primary VM to 
deny service to the user by crashing at a specific time, 
and then measuring transition time back to normal 
mode. There is a pretty good chance that the user would 
respond to a crash by switching back to normal mode 
immediately, especially if the system is prone to crash-



ing under normal circumstances. In this case, the user 
may not even realize that an attack is taking place. An-
other attack that is higher-bandwidth, but perhaps more 
suspicious, would be for the primary VM to display a 
message in secure mode that asks the user to perform a 
task that leaks information. For example, a message 
could read “Automatic update failed, please open the 
update dialog and enter last scan time ‘4:52 PM’ when 
internet connectivity is restored.” Users who do not 
understand covert channels could easily fall victim to 
this attack. In general, social engineering is difficult to 
prevent. The Capsule system currently does not include 
any counter-measures to social engineering. In a real 
deployment, the best method of fighting covert channels 
would be to properly educate the users. 

6.2 External Device Channels 

Any device that is connected to a computer could poten-
tially store information. Fortunately, most devices in a 
virtual machine are virtual devices, including the key-
board, mouse, network card, display, and disk. In a tra-
ditional system, two processes that have access to the 
keyboard could leak data through the caps-, num-, and 
scroll-lock state. The VMware VMM resets this device 
state when reverting to a snapshot, so a virtual machine 
cannot use it for leaking data. We did not test virtualiza-
tion software other than VMware to see how it resets 
virtual device state. 

Some optional devices may be available to virtual ma-
chines. These include floppy drives, CD-ROM drives, 
sound adapters, parallel ports, serial ports, SCSI de-
vices, and USB devices. In general, there is no way of 
stopping a VM that is allowed to access these devices 
from leaking data. Even devices that appear to be read-
only, such as a CD-ROM drive, may be able to store 
information. A VM could eject the drive or position the 
laser lens in a particular spot right before switching 
back to normal mode. While these channels would be 
easy to mitigate by adding noise, the problem worsens 
when considering a generic bus like USB. A USB de-
vice could store anything or be anything, including a 
disk drive. One could allow access to truly read-only 
devices, but each device would have to be examined on 
an individual basis to uncover covert channels. The 
Capsule system prevents these covert channels because 
the primary VM is not given access to external devices. 
If the primary VM needs access to external devices, 
then they would have to be disabled during secure 
mode. 

6.3 External Network Channels 

In addition to channels from the Primary VM in secure 
mode to normal mode, it is also important to consider 
channels between the Storage Capsule system and ex-
ternal machines during secure mode. If malware can 
utilize so many resources that it affects how responsive 
the VMM is to external queries (such as pings), then it 
can leak data to a colluding external computer. 

The best way to mitigate external network channels is 
for the VMM to immediately drop all incoming packets 
with a firewall, not even responding with reset packets 
for failed connections. If the VMM does not require any 
connections during secure mode, which it did not for 
our implementation, then this is the easiest and most 
effective approach. 

6.4 Virtual Machine Monitor Channels 

In a virtualization system, everything is governed by the 
virtual machine monitor, including memory mapping, 
device I/O, networking, and snapshot saving/restoration. 
The VMM’s behavior can potentially open up new cov-
ert channels that are not present in a standard operating 
system. These covert channels are implementation-
dependent and may or may not be present in different 
VMMs. This section serves as a starting point for think-
ing about covert channels in virtual machine monitors. 

Memory Paging 

Virtual machines are presented with a virtual view of 
their physical memory. From a VM’s perspective, it has 
access to a contiguous “physical” memory segment with 
a fixed size. When a VM references its memory, the 
VMM takes care of mapping that reference to a real 
physical page, which is commonly called a machine 
page. There are a few different ways that a VMM can 
implement this mapping. First, it could directly pin all 
of the virtual machine’s physical pages to machine 
pages. If the VMM uses this strategy, and it keeps the 
page mapping constant during secure mode and after 
restoration, then there is no way for a virtual machine to 
affect physical memory layout. However, this fixed 
mapping strategy is not always the most efficient way to 
manage memory.  

Prior research describes resource management strategies 
in which the VMM may over-commit memory to virtual 
machines and page some of the VM’s “physical” mem-
ory out to disk [11, 32]. If the VMM employs this strat-
egy, then a virtual machine can affect the VMM’s page 
table by touching different pages within its address 
space. The residual effects of page table manipulation 
may be visible to a VM after a snapshot restoration, 
unless the VMM first pages in all of the VM’s memory. 



A snapshot restoration should page in all of a VM’s 
memory in most cases. But, if it is a “background” res-
toration, then accessing a memory location that has not 
been loaded from the snapshot yet and is paged out to 
disk might incur two page faults instead of one, which 
can be measured and may leak information. 

VMware ESX server employs a number of tricks that 
allow it to over-commit memory to virtual machines 
[32]. Each of the mechanisms described by Wald-
spurger allow efficient server consolidation, but also 
create an opportunity for covert channels. The first 
mechanism he describes is ballooning. Guest virtual 
machines contain balloon drivers that allocate extra 
memory and then tell the VMM it can page out the cor-
responding “physical” pages. With ballooning, a misbe-
having guest OS can touch the balloon driver’s pages 
and cause the VMM to load them in from disk. When 
the VM is subsequently reverted to a snapshot, the 
compromised OS can again touch all of the balloon 
driver pages to see whether they have already been 
faulted in prior to the snapshot restoration. The VMM 
could mitigate this ballooning channel by restoring the 
state of its page table to match the original set of bal-
looned pages when restoring a snapshot. Of course, 
ballooning may be used as a covert channel between 
simultaneously executing VMs in systems other than 
Capsule. 

There has also been research on sharing memory pages 
with the same content in virtual machines [3, 32]. If the 
VMM maps multiple pages to one machine page and 
marks them as copy-on-write, then the virtual machine 
will encounter a page fault when writing to one of them. 
If a VM sets a large number of pages to have the same 
value during secure mode, then a much larger number 
of page faults will take place when restoring a snapshot. 
However, these page faults will only be noticeable to 
the VM if execution resumes in normal mode before all 
of the VM’s memory pages are loaded from the snap-
shot file. In this case, the VM can measure the total 
restoration time or write to pages before they have 
loaded and test for page faults to recover information. If 
the VM resumes execution after its memory has been 
fully restored and pages have been re-scanned for du-
plication, then this covert channel will not work. 

The Capsule system does not over-commit memory for 
virtual machines, so the memory saving techniques 
mentioned above do not take effect. Our implementa-
tion of the Capsule system does not employ any 
counter-measures to covert channels based on memory 
paging. 

Virtual Networks 

The Capsule system blocks external network access 
during secure mode, but it relies on a virtual network 
for communication between the secure VM and the 
primary VM. While the virtual network itself is stateless 
(to the best of our knowledge), anything connected to 
the network could potentially be a target for relaying 
information from secure mode to normal mode. The 
DHCP and NAT services in the VMM are of particular 
interest. A compromised virtual machine may send arbi-
trary packets to these services in an attempt to affect 
their state. For example, a VM might be able to claim 
several IP addresses with different spoofed MAC ad-
dresses. It could then send ARP requests to the DHCP 
service following snapshot restoration to retrieve the 
spoofed MAC addresses, which contain arbitrary data. 
The Capsule system restarts both the DHCP and NAT 
services when switching back to normal mode to avert 
this covert channel. 

Any system that allows both a high-security and low-
security VM to talk to a third trusted VM (the secure 
VM in Capsule) exposes itself another covert channel. 
Naturally, all bets are off if the primary VM can com-
promise the secure VM. Even assuming the secure VM 
is not vulnerable, the primary VM may still be able to 
convince it to relay data from secure mode to normal 
mode. Like the DHCP service on the host, the secure 
VM’s network stack stores information. For example, 
the primary VM could send out TCP SYN packets with 
specific source port numbers that contain several bits of 
data right before reverting to normal mode. When the 
primary VM resumes execution, it could see the source 
ports in SYN/ACK packets from the secure VM. 

It is unclear exactly how much data can be stashed in 
the network stack on an unsuspecting machine and how 
long that information will persist. The only way to guar-
antee that a machine will not inadvertently relay state 
over the network is to reboot it. This is the approach we 
take to flush the secure VM’s network stack state when 
switching back to normal mode in Capsule.  

Guest Additions 

The VMware VMM supports additional software that 
can run inside of virtual machines to enhance the virtu-
alization experience. The features of guest additions 
include drag-and-drop between VMs and a shared clip-
board. These additional features would undermine the 
security of any virtual machine system with multiple 
confidentiality levels and are disabled in the Capsule 
system. 



6.5 Core Hardware Channels 

Core hardware channels allow covert communication 
via one of the required primary devices: CPU or disk. 
Memory is a core device, but memory mapping is han-
dled by the VMM, and is discussed in the previous sec-
tion. Core hardware channels might exist in any multi-
level secure system and are not specific to Storage Cap-
sules or virtual machines. One difference between prior 
research and this work is that prior research focuses on 
a threat model of two processes that are executing si-
multaneously on the same hardware. In the Capsule 
system, the concern is not with simultaneous processes, 
but with a low-security process (normal-mode VM) 
executing on the same hardware after a high-security 
process (secure-mode VM) has terminated. This con-
straint rules out some traditional covert channels that 
rely on resource contention, such as a CPU utilization 
channel. 

CPU State 

Restoring a virtual machine’s state from a snapshot will 
overwrite all of the CPU register values. However, 
modern processors are complex and store information in 
a variety of persistent locations other than architecture 
registers. Many of these storage areas, such as branch 
prediction tables, are not well-documented or exposed 
directly to the operating system. The primary method 
for extracting this state is to execute instructions that 
take a variable number of clock cycles depending on the 
state and measure their execution time, or exploit specu-
lative execution feedback. Prior research describes how 
one can use these methods to leak information through 
cache misses [24, 33]. 

There are a number of counter-measures to covert 
communication through CPU state on modern proces-
sors. In general, the more instructions that execute in 
between secure mode and normal mode, the less state 
will persist. Because the internal state of a microproces-
sor is not completely documented, it is unclear exactly 
how much code would need to run to eliminate all CPU 
state. One guaranteed method of wiping out all CPU 
state is to power off the processor. However, recent 
research on cold boot attacks [12] shows that it may 
take several minutes for memory to fully discharge. 
This strategy would lead to an unreasonably long delay 
when switching from secure mode to normal mode. 

The ideal solution for eliminating covert CPU state 
channels in Capsule and other virtualization systems 
would be with hardware support. The latest CPUs al-
ready support hardware virtualization, which allows 
them to fully emulate instruction sets for virtual ma-
chines. An additional mechanism is needed when 

switching between virtual machines that not only re-
stores register and memory mappings, but also restores 
all state that could affect VM execution. This operation 
would load all of the cache data (L1, L2, and instruc-
tion), the branch prediction table, and any other inter-
mediate state. It would also be sufficient to provide an 
instruction that would erase all of this data. 

Although the Capsule system does not take counter-
measures to prevent CPU state covert channels, the 
VMM restores a significant portion of the primary 
VM’s original memory state before the VM can resume 
execution. This restoration will likely eliminate any 
residual cache lines from secure mode. It will also add a 
great deal of noise to any other CPU state, such as 
branch predictor tables, due to the number of instruc-
tions that execute during restoration. Computing the 
maximum bandwidth of CPU state channels in the Cap-
sule system is future work. 

Disk State 

The caching and layout of files on disk, and in the file 
system, can be used to transmit information. Another 
covert channel exists in the positioning of the disk arm 
[10]. If the primary VM can manipulate disk state in a 
way that is readable after transitioning back to normal 
mode, then it can leak data. There are a few aspects of 
the Capsule system’s design that make such an attack 
much more difficult. Any writes to the virtual disk dur-
ing secure mode actually go to flat difference file that 
stores changes since the last snapshot operation. The 
primary VM has no control over where the data goes on 
disk, only how much is written, which would make ex-
ploitation of such a channel difficult. The VMM deletes 
this file when transitioning back to normal mode. This 
frees up any blocks that were allocated for the differ-
ence file. Finally, the VMM reads in the primary VM’s 
original memory state from disk during snapshot resto-
ration. This moves the position of the disk arm and adds 
considerable noise to the cache. 

Despite the noise from transitioning back to normal 
mode, the disk cache is the most likely candidate for a 
covert channel. All writes are sent to a difference file 
and deleted, but reads touch the same virtual disk file 
during secure mode and normal mode. Consider the 
primary VM sequentially reading every block on its 
disk during secure mode to transmit a 1, or reading very 
little to transmit a 0. The primary VM might be able to 
tell what happened in secure mode by reading back disk 
blocks and measuring if they hit the disk cache. One 
would need to flush all of the disk caches to eliminate 
this channel. The Capsule system does not take any 
steps to mitigate disk state channels. 



6.6 Mitigating VMM and Core Hardware 
Covert Channels 

The design of Storage Capsules centers around improv-
ing local file encryption with a minimal impact on exist-
ing behavior. The user only has to take a few additional 
steps, and no new hardware is required. The current 
implementation is designed to guard against many cov-
ert channels, but does not stop leakage through all of 
them, such as the CPU state, through which data may 
leak from secure to normal mode. If the cost of small 
leaks outweighs usability and the cost of extra hard-
ware, then there is an alternative design that can provide 
additional security. 

One way of cutting off almost all covert channels would 
be to migrate the primary VM to a new isolated com-
puter upon entering secure mode. This way, the virtual 
machine would be running on different core hardware 
and a different VMM while in secure mode, thus cutting 
off covert channels at those layers. VMware ESX server 
already supports live migration, whereby a virtual ma-
chine can switch from one physical computer to another 
without stopping execution. The user would have two 
computers at his or her desk, and use one for running 
the primary VM in secure mode, and the other for nor-
mal mode. When the user is done accessing a Storage 
Capsule, the secure mode computer would reboot and 
then make the Storage Capsule available for export over 
the network. This extension of the Capsule system’s 
design would drastically reduce the overall threat of 
covert channels, but would requires additional hardware 
and could add usability impediments that would not be 
suitable in many environments. 

7. Performance Evaluation 

There are three aspects of performance that are impor-
tant for Storage Capsules: (1) transition time to secure 
mode, (2) system performance in secure mode, and (3) 
transition time to normal mode. It is important for tran-
sitions to impose only minimal wait time on the user 
and for performance during secure mode to be compa-
rable to that of a standard computer for common tasks. 
This section evaluates Storage Capsule performance for 
transitions and during secure mode. The experiments 
were conducted on a personal laptop with a 2 Ghz Intel 
T2500 processor, 2 GB of RAM, and a 5200 RPM hard 
drive. Both the host and guest operating systems (for the 
secure VM and primary VM) were Windows XP Ser-
vice Pack 3, and the VMM software was VMware 
Workstation ACE Edition 6.0.4. The secure VM and the 
primary VM were both configured with 512 MB of 
RAM and to utilize two processors, except where indi-
cated otherwise. 

The actual size of the Storage Capsule does not affect 
any of the performance numbers in this section. It does, 
however, influence how long it takes to run an import or 
export. Both import and export operations are expected 
to be relatively rare in most cases – import only occurs 
when loading a Storage Capsule from an external 
location, and export is required only when sending a 
Storage Capsule to another user or machine. Importing 
and exporting consist of a disk read, encryption (for 
export only), a local network transfer, and a disk write. 
On our test system, the primary VM could import a 256 
MB Storage Capsule in approximately 45 seconds and 
export it in approximately 65 seconds. Storage Capsules 
that are imported and exported more often, such as e-
mail attachments, are likely to be much smaller and 
should take only a few seconds. 
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Figure 2. Transition times for different amounts of primary VM memory.  
(a) to secure mode with background snapshot, (b) to secure mode with full snapshot 

(c) to normal mode with background restore, and (d) to normal mode with full restore. 



7.1 Transitioning to and from Secure 
Mode 

The transitions to and from secure mode consist of sev-
eral tasks. These include disabling/enabling device out-
put, mounting/dismounting the Storage Capsule, sav-
ing/restoring snapshots, waiting for an escape sequence, 
and obtaining the encryption key. Fortunately, some 
operations can happen in parallel. During the transition 
to secure mode, the system can do other things while 
waiting for user input. The evaluation does not count 
this time, but it will reduce the delay experienced by the 
user in a real deployment. VMware also supports both 
background snapshots (copy-on-write) and background 
restores (copy-on-read). This means that execution may 
resume in the primary VM before memory has been 
fully saved or restored from the snapshot file. The sys-
tem will run slightly slower at first due to page faults, 
but will speed up as the snapshot or restore operation 
nears completion. A background snapshot or restore 
must complete before another snapshot or restore opera-
tion can begin. This means that even if the primary VM 
is immediately usable in secure mode, the system can-
not revert to normal mode until the snapshot is finished. 

Figure 2 shows the amount of time required for transi-
tioning to and from secure mode with different amounts 
of RAM in the primary VM. Background snapshots and 
restorations make a huge difference. Transitioning to 
secure mode takes 4 to 5 seconds with a background 
snapshot, and 60 to 230 seconds without. The time re-
quired for background snapshots, mounting the Storage 
Capsule, and disabling network output also stays fairly 
constant with respect to primary VM memory size. 
However, the full snapshot time scales linearly with the 
amount of memory. Note that the user must wait for the 
full snapshot time before reverting to normal mode.  

The experiments show that reverting to normal mode is 
a more costly operation than switching to secure mode, 
especially when comparing the background restore to 
the background snapshot operation. This is because 
VMware allows a virtual machine to resume immedi-
ately during a background snapshot, but waits until a 
certain percentage of memory has been loaded in a 
background restore. Presumably, memory reads are 
more common than memory writes, so copy-on-read for 
the restore has worse performance than copy-on-write 
for the snapshot. VMware also appears to employ a 
non-linear strategy for deciding what portion of a back-
ground restore must complete before the VM may re-
sume execution. It waited approximately the same 
amount of time when a VM had 256 MB or 512 MB of 
RAM, but delayed significantly longer for the 1 GB 
case. 

The total transition times to secure mode are all reason-
able. Many applications will take 4 or 5 seconds to load 
a document anyway, so this wait time imposes little 
burden on the user. The transition times back to normal 
mode for 256 MB and 512 MB are also reasonable. 
Waiting less than 20 seconds does not significantly dis-
rupt the flow of work. However, 60 seconds may be 
long wait time for some users. It may be possible to 
optimize snapshot restoration by using copy-on-write 
memory while the primary VM is in secure mode. This 
way, the original memory would stay in tact and the 
VMM would only need to discard changes when transi-
tioning to normal mode. Optimizing transition times in 
this manner is future work. 

7.2 Performance in Secure Mode 

Accessing a Storage Capsule imposes some overhead 
compared to a normal disk. A Storage Capsule read or 
write request traverses the file system in the primary 
VM, and is then sent to the secure VM over the virtual 
network. The request then travels through a layer of 
encryption on the secure VM, out to its virtual disk, and 
then to the physical drive. We compared the disk and 
processing performance of Storage Capsules to three 
other configurations. These configurations consisted of 
a native operating system, a virtual machine, and a vir-
tual machine with a TrueCrypt encrypted file container. 
For the evaluation, we ran an Apache build benchmark. 
This benchmark involves decompressing and extracting 
the Apache web server source code, building the code, 
and then removing all of the files. The Apache build 
benchmark probably represents the worst case scenario 
for Storage Capsule usage. We expect that the primary 
use of Storage Capsules will be for less disk-intensive 
activities like editing documents or images, for which 
the overhead should be unnoticeable. 
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Figure 3. Results from building Apache with a native 
OS, a virtual machine, a virtual machine running True-
Crypt, and Capsule. Storage Capsules add only a 5% 
overhead compared to a VM with TrueCrypt, 18% 

slower than a plain VM, and 38% overhead compared 
to a native OS. 



Figure 3 shows the results of the Apache build bench-
mark. Storage Capsules performed well overall, only 
running 38% slower than a native system. Compared to 
a single virtual machine running similar encryption 
software (TrueCrypt), Storage Capsules add an over-
head of only 5.1% in the overall benchmark and 31% in 
the unpack phase. This shows that transferring reads 
and writes over the virtual network to another VM has a 
reasonably small performance penalty. The most sig-
nificant difference can be seen in the remove phase of 
the benchmark. It executes in 1.9 seconds on a native 
system, while taking 5.5 seconds on a VM, 6.5 seconds 
on a VM with TrueCrypt, and 7.1 seconds with Storage 
Capsules. The results from the VM and VM with True-
Crypt tests show, however, that the slowdown during 
the remove phase is due primarily to disk performance 
limitations in virtual machines rather than the Capsule 
system itself.  

8. Conclusion and Future Work 

This paper introduced Storage Capsules, a new mecha-
nism for securing files on a personal computer. Storage 
Capsules are similar to existing encrypted file contain-
ers, but protect sensitive data from malicious software 
during decryption and editing. The Capsule system pro-
vides this protection by isolating the user’s primary 
operating system in a virtual machine. The Capsule sys-
tem turns off the primary OS’s device output while it is 
accessing confidential files, and reverts its state to a 
snapshot taken prior to editing when it is finished. One 
major benefit of Storage Capsules is that they work with 
current applications running on commodity operating 
systems. 

Covert channels are a serious concern for Storage Cap-
sules. This research explores covert channels at the 
hardware layer, at the VMM layer, in external devices, 
and in the Capsule system itself. It looks at both new 
and previously examined covert channels from a novel 
perspective, because Storage Capsules have different 
properties than side-by-side processes in a traditional 
multi-level secure system. The research also suggests 
ways of mitigating covert channels and highlights their 
usability and performance trade-offs. Finally, we evalu-
ated the overhead of Storage Capsules compared to 
both a native system and standard virtual machines. We 
found that transitions to and from secure mode were 
reasonably fast, taking 5 seconds and 20 seconds, re-
spectively. Storage Capsules also performed well in an 
Apache build benchmark, adding 38% overhead com-
pared to a native OS, but only a 5% penalty when com-
pared to running current encryption software inside of a 
virtual machine. 

In the future, we plan to further explore covert channels 
discussed in this work. This includes measuring their 
severity and quantifying the effectiveness of mitigation 
strategies. We also hope to conduct a study on usability 
of keyboard escape sequences for security applications. 
Storage Capsules rely on escape sequences to prevent 
spoofing attacks by malicious software, and it would be 
beneficial to know how many users of the Capsule sys-
tem would still be vulnerable to such attacks. 
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