
Multiple Inheritance for C+
Bjarne Stroustrup AT&T Bell Laboratories

ABSTRACT: Multiple Inheritance is the ability of a
class to have more than one base class (super class).
In a language where multiple inheritance is sup-
ported a program can be structured as a set of
inheritance lattices instead of (just) as a set of
inheritance trees. This is widely believed to be an
important structuring tool. It is also widely
believed that multiple inheritance complicates a
programming language significantly, is hard to
implement, and is expensive to run. I will demon-
strate that none ofthese last three conjectures is
true.

An earlier version of this paper was presented to the European UNIX Users' Group
conference in Helsinki, May 1987. This paper has been revised to match the multi-
ple inheritance scheme that rvas arrived at afler further experimentation and
thought. For more information see Stroustrup [1978; 1989].

@ Computing Systems,Yol.2. No. 4 . Fall 1989 367

I. Introduction

This paper describes an implementation of a multiple inheritance
mechanism for Cr+ lstroustrup 1986; 1989]. It provides only the
most rudimentary explanation of what multiple inheritance is in
general and what it can be used for. The particular variation of
the general concept implemented here is primarily explained in
term of this implementation.

First a bit of background on multiple inheritance and C++
implementation technique is presented, then the multiple inheri-
tance scheme implemented for Cr+ is introduced in three stages:

l. The basic scheme for multiple inheritance, the basic strategy
for ambiguity resolution, and the way to implement virtual
functions.

2. Handling of classes included more than once in an inheri-
tance lattice; the programmer has the choice whether a
multiply-included base class will result in one or more sub-
objects being created.

3. Details of construction of objects, destruction of objects,
and access control.

Finally, some of the complexities and overheads introduced by
this multiple inheritance scheme are summarized.

2. Multiple Inheritance

Consider writing a simulation of a network of computers. Each
node in the network is represented by an object of class switch,
each user or computer by an object ofclass Terminat, and each

368 Bjarne Stroustrup

communication line by an object of class tine. One way to moni-
tor the simulation (or a real network of the same structure) would
be to display the state of objects of various classes on a screen.
Each object to be displayed is represented as an object of class
Displ.ayed. Objects of class Displ.ayed are under control of a
display manager that ensures regular update of a screen and/or
data base. The classes Terminal and switch are derived from a
class task that provides the basic facilities for co-routine style
behavior. Objects ofclass Task are under control ofa task
manager (scheduler) that manages the real processor(s).

Ideally task and Displ.ayed are classes from a standard
library. If you want to display a terminal class Terminal. must be

derived from class Displ.ayed. Class Terminat, however, is
already derived from class Task. In a single inheritance language,

such as the original version of C++ [Stroustrup 1986] or Simula67,
we have only two ways of solving this problem: deriving Task

from oisptayed or deriving Displ.ayed from task. Neither is
ideal since they both create a dependency between the library ver-
sions of two fundamental and independent concepts. Ideally one
would want to be able choose between saying that a Terminal. is a
task and a Displ.ayed; that â Line is a oispl.ayed but not a Task;

and that a sh,itch is a Task but not a Displ.ayed.
The ability to express this using a class hierarchy, that is, to

derive a class from more than one base class, is usually referred to
as multiple inheritance. Other examples involve the representa-
tion of various kinds of windows in a window system [Weinreb &
Moon l98l I and the representation of various kinds of processors

and compilers for a multi-machine, multi-environment debugger

[Cargill 1986].
In general, multiple inheritance allows a user to combine

independent (and not so independent) concepts represented as

classes into a composite concept represented as a derived class. A
common way of using multiple inheritance is for a designer to
provide sets of base classes with the intention that a user creates
new classes by choosing base classes from each ofthe relevant
sets. Thus a programmer creates new concepts using a recipe like
"pick an A and/or a 8." In the window example, a user might
specify a new kind of window by selecting a style of window
interaction (from the set of interaction base classes) and a style of

Multiple Inheritance lor C++ 369

appearance (from the set of base classes defining display options).
In the debugger example, a programmer would specify a debugger
by choosing a processor and a compiler.

Given multiple inheritance and H concepts each of which
might somehow be combined with one of ü other concepts, we
need t'¡+m classes to represent all the combined concepts. Given
only single inheritance, we need to replicate information and pro-
vide ¡¡+l,l+H*¡t classes. Single inheritance handles cases where N==1

or M==1. The usefulness of multiple inheritance for avoiding repli-
cation hinges on the importance of examples where the values of
I and ¡t are both larger than t. It appears that examples with
N>=2 and il>=z are not uncommon; the window and debugger
examples described above will typically have both n and ¡l larger
than 2.

3. C* Implementation Strategy

Before discussing multiple inheritance and its implementation in
C++ I will first describe the main points in the traditional imple-
mentation of the Cr-+ single inheritance class concept.

An object of a Cr-+ class is represented by a contiguous region
of memory. A pointer to an object of a class points to the first
byte of that region of memory. The compiler turns a call of a
member function into an "ordinaryo'function call with an "extrao'
argument; that "extrao' argument is a pointer to the object for
which the member function is called.

Consider a simple class R:r

ctass A {
int a;
void f(int i);

l,

l. In most ofthis paper data hiding issues are ignored to simplify the discussion and
shorten the examples. This makes some examples illegal. Changing the word ct.ass
to struct would make the examples legal, as would adding pubt ic specifrers in the
appropriate places.

370 Bjarne Stroustrup

An object of class A will look like this

I inta; I

No information is placed in an n except the integer a specifred by
the user. No information relating to (non-virtual) member func-
tions is placed in the object.

A call of the member function R: : f :

A* Pa;
pa->f(2);

is transformed by the compiler to an "ordinary function call":

f --F1A(pa,2) ¡

Objects of derived classes are composed by concatenating the
members of the classes involved:

ctass A t int a; void f(int););
ctass B : A t int b; void g(int););
ctass C: B { int c; void h(int); };

Again, no "housekeeping" information is added, so an object of
class c looks like this:

int a;
int b;
int c;

The compiler n'knows" the position of all members in an object of
a derived class exactly as it does for an object of a simple class
and generates the same (optimal) code in both cases.

Implementing virtual functions involves a table of functions.
Consider:

ctass A {
int a;
virtuaI void f(int);
virtuaI void g(int);
virtuaI void h(int);

,i

Multiple Inheritance for C++ 37I

class B : A { int b; void g(int); };
class C : B { int c; void h(int); };

In this case, a table of virtual functions, the vtbt, contains the
appropriate functions for a given class and a pointer to it is placed

in every object. A class c object looks like this:

int a; I vtbl.:
vptr .

int b; I

int c; I

A::f
B::g
C::h

A call to a virtual function is transformed into an indirect call by
the compiler. For example,

c* pc;
Pc->g(2);

becomes something like:

(*(pc->vptr t I I)) (Pc,2) ;

A multiple inheritance mechanism for Cr+ must preserve the
efficiency and the key features of this implementation scheme.

4. Multiple Base Classes

Given two classes

ctass A { ... };
ctassBt...);

one can design a third using both as base classes:

ctassC:4,8t...);

This means that a c is an I and a B. One might equivalently2

define c like this:

classC:8,4t...];

2. Except for possible side effects in constructors and destructors (access to global vari-
ables, input operations, output operations, etc.).

372 Bjarne Stroustrup

4.1 Object Layout

An object of class c can be laid out as a contiguous object like
this:

A part

B part

C part

Accessing a member of classes A, B or c is handled exactly as
before: the compiler knows the location in the object of each
member and generates the appropriate code (without spurious
indirections or other overhead).

4.2 Member Function Call

Calling a member function of R or c is identical to what was done
in the single inheritance case. Calling a member function of a
given a c* is slightly more involved:

c* p";
pc->bf(2); // assume that bf is a member of B

I I and that C has no member named bf
l/ except the one inherited from B

Naturally, B::bf () expects u s* (to become its ttris pointer). To
provide it, a constant must be added to pc. This constant,
detta(B), is the relative position of the B part of c. This delta is
known to the compiler that transforms the call into:

bf --F IB((B*) ((char*)pc+deL ta(B)) ,2) ¡

The overhead is one addition of a constant per call of this kind.
During the execution of a member function of a the function's
this pointer points to the a part of c:

Multiple Inheritance for Ct+ 373

hê

lJe .¡

A part

B::bf's this

B part

C part

Note that there is no space penalty involved in using a second

base class and that the minimal time penalty is incurred only once
per call.

4.3 Ambigaities

Consider potential ambiguities if both n and s have a public
member i i:

ctass A t int ii;);
ctass B { char* ii; };
ctass C: A, B { };

In this case c will have two members called i i, A:: i i and B:: i i.
Then

c* pc;
pc->ii; ll error: A::ii or B::ii ?

is illegal since it is ambiguous. Such ambiguities can be resolved
by explicit qualifrcation:

pc-)A::ii; ll Cts A's ii
pc-)B::ii; ll Cts Brs ii

A similar ambiguity arises if both R and s have a function f ():

class A (void f(););
class B { int f(); };
ctassC:ArB{};
c* pc;
pc->f()í ll error: A::f or B::f ?

37 4 Bjarne Stroustrup

pc->A::f(); ll Cts A's f
pc->B::f(); ll C.s B's f

As an alternative to specifying which base class in each call of an
f (), one might deñne an f o for c. c::f o might call the base
class functions. For example:

class C: A, B t
int f() { A::f(); return B::f(); }

);
c* pc;
pc->f()i ll C:zf is catted

This solution usually leads to cleaner programs; it localizes the
specification of the meaning of the name for objects of a derived
class to the declaration ofthe derived class.

4.4 Casting

Explicit and implicit casting may also involve modifying a pointer
value with a delta:

c* Pc;
B* pb;
pb = (B*)pc; ll pb = (B*)((char*)pc+del.ta(B))
pb = pc, l/ pb = (B*)((char*)pc+detta(B))
Pc = Pb; I I error: cast needed
pc = (C*)pb; ll pc = (C*)((char*)pb-del.ta(B))

Casting yields the pointer referring to the appropriate part of the
same object.

pc ..

A part

Pb ...¡

B part

C part

Multiple Inheritance þr C+ 37 5

Comparisons are interpreted in the same way:

pc == pb; ll that is, pc == (C*)pb
ll or equivalentty (B*)pc == pb

// that is, (B*)((char*)pc+del.ta(B)¡ == pb
I / or equivalentty
ll pc == (C*)((char*)pb-del.ta(B))

Note that in both C and Cr+ casting has always been an
operator that produced one value given another rather than an
operator that simply reinterpreted a bit pattern. For example, on
almost all machines (i nt) .2 causes code to be executed;
(f toat)(int).2 is not equal to .2. Introducing multiple inheri-
tance as described here will introduce cases where
(char*) (B*)v !=(char*)v for some pointer type B*. Note, how-
ever, that when s is a base class of c, {B*)v==(Ç*)v==v.

4.5 Zero Valued Pointers

Pointers with the value zero cause a separate problem in the con-
text of multiple base classes. Consider applying the rules
presented above to a zero-valued pointer:

C*pc=0;
B*pb=0;
if (pb =-- 0)
pb = pc; I/ pb = (B*)((char*)pc+de[ta(B))
if (pb == 0)

The second test would fail since pb would have the value
(B*) ((char*)0+deI ta(B)).

The solution is to elaborate the conversion (casting) operation
to test for the pointer-value 0:

C*pc=0;
B*pb=0;
if (pb == 0)
pb = pc, ll pb = (pc==O)?0:(B*)((char*)pc+del.ta(B))
if (pb == 0)

The added complexity and run-time overhead are a test and an
increment.

376 Bjarne Stroustrup

5. Virtual Functions

Naturally, member functions may be virtual:

ctass A { virtual void f();];
ctass B { virtuaI void f(); virtuaI void g();];
ctass C : A, B { void f(); };
A* pa = neÌú C;
B* pb = ne¡ú C;
C* pc = ne¡ú C;

pa->f () ;
pb->f () i
pc->f () i

All these calls will invoke c: : f (¡. This follows directly from the
definition of virtual. since class c is derived from class n and
from class e.

5.1 Implementation

On entry to c: : f , the th i s pointer must point to the beginning of
the c object (and not to the e part). However, it is not in general
known at compile time that the s pointed to by pb is part of a c

so the compiler cannot subtract the constant del.ta(B). Conse-
quently del.ta(B) must be stored so that it can be found at run
time. Since it is only used when calling a virtual function the
obvious place to store it is in the table of virtual functions (vtbt).
For reasons that will be explained below the delta is stored with
each function in the vtbl. so that a vtbl. entry will be of the
form:3

struct vtb[-entry {
void (*fct) ();
int delta;

);
An object of class c will look like this:

3. The AT&T Cl+ 2.0 implementation uses three frelds in this structure, but only the
two shown here are used by the virtual function call mechanism; see Lippman &
Stroustrup [1988].

Multipte Inheritance þr C++ 377

vPtr ...
A part

vtbl.:

I C::f | 0 |

vtbl.:

I C::f | -del,ta(B) I

I B::s | 0 I

vptr ...
B part

C part

pb->f()i ll call of C::f:
// register vtb[-entry* vt = &pb-)vtbttindex(f)t;
I I çvt.>fct) ((B*)((char*)pb+vt->detta))

Note that the object pointer may have to be adjusted to point to
the correct sub-object before looking for the member pointing to
the vtbl.. Note also that each combination of base class and
derived class has its own vtbl.. For example, the vtbt for s in c

is different from the vtbl. of a separately allocated a. This
implies that in general an object of a derived class needs a vtbl,
for each base class plus one for the derived class. However, as
with single inheritance, a derived class can share a vtbt with its
first base so that in the example above only two vtbl.s are used for
an object of type c (one for n in c combined with c's own plus
one for e in c).

Using an int as the type of a stored delta limits the size of a
single object; that might not be a bad thing.

5.2 Ambigaities

The following demonstrates a problem:

ctass A { virtual void f()i]i
ctass B { virtual void f();];
ctass C : A, B { void f()i }i
C* pc = new C;

pc->f () i

378 Bjarne Stroustrup

pc->A::f();
pc->B::f();

Explicit qualification "suppresses" virtuat so the last two
calls really invoke the base class functions. Is this a problem?

Usually, no. Either c has an f < > and there is no need to use

explicit qualification or c has no f <¡ and the explicit qualification
is necessary and correct. Trouble can occur when a function f < t
is added to c in a program that already contains explicitly
qualiûed names. In the latter case one could wonder why some-

one would want to both declare a function virtual and also call it
using explicit qualifrcation. If f () is virtual, adding an f () to the
derived class is clearly the correct way of resolving the ambiguity.

The case where no c: : t is declared cannot be handled by
resolving ambiguities at the point of call. Consider:

ctass A { virtual void f();];
ctass B { virtual void f();];
class C : A, B { }i ll error: C::f needed

C* pc = new C;
pc->f () i
A* pa = pc;
pa->f () i

// ambiguous

/l inpLicit conversion of C* to A*
l/ not ambiguous: caIts A::f();

The potential ambiguity in a call of t < I is detected at the point
where the virtual function tables for R and s in c are constructed.
In other words, the declaration of C above is illegal because it
would allow calls, such as pa->f < t, which are unambiguous only
because type information has been "lost" through an implicit
coercion; a call of t c I for an object of type c is ambiguous.

6. Multiple Inclusions

A class can have any number of base classes. For example,

ctass A:81,82,83,84,85, Bó { ... };

It illegal to specify the same class twice in a list of base classes.

For example,

ctass A : B, B { ... }; // error

Multiple Inheritance þr C++ 379

The reason for this restriction is that every access to a B member
would be ambiguous and therefore illegal; this restriction also
simplifres the compiler.

6.1 Multiple sub-objects

A class may be included more than once as a base class. For
example:

ctassLt...);
ctass A : L t ...);
class B : L { ... };
ctass C : A , B { ... };

In such cases multiple objects of the base class are part of an
object of the derived class. For example, an object of class c has
two L's: one for ¡ and one for g:

L part (of A)

A part

L part (of B)

B part

C part

This can even be useful. Think of I as a link class for a Simula-
style linked list. In this case a c can be on both the list of Es and
the list of ss.

380 Bjarne Stroustrup

6.2 Naming

Assume that class I in the example above has a member m. How
could a function c: : f refer to t: : m? The obvious answer is "by
explicit qualifr cation" :

void C::f() { A::m = B::m; }

This will work nicely provided neither A nor e has a member m

(except the one they inherited from L). Ifnecessary, the
qualification syntax of C+r could be extended to allow the more
explicit:

void C::f() { A::L::m = B::L::m; }

6.3 Casting

Consider the example above again. The fact that there are two
copies of I makes casting (both explicit and implicit) between l-*

and c* ambiguous, and consequently illegal:

C* pc = new C;
L* p[= pc; ll error: ambiguous
pt = (L*)pc; I / error: sti l. I ambiguous
pt = (L*)(A*)pc; ll The L in Crs A

pc = pt; l/ error: ambiguous
pc = (L*)pt i ll error: stitI ambiguous
pc = (C*)(A*)pt i ll The C containing A's L

I don't expect this to be a problem. The place where this will
surface is in cases where ns (or as) are handled by functions
expecting an L; in these cases a c will not be acceptable despite a

c being an A:

extern f(L*); l/ some standard function

f(&aa);
f(&cc);
f((A*)&cc);

I I fine
I I error: ambiguous
I I fine

Casting is used for explicit disambiguation.

A aa;
C cc;

Multiple Inheritance for Ct+ 381

7. Virtual Base Classes

\ù/hen a class c has two base classes R and s these two base
classes give rise to separate sub-objects that do not relate to each
other in ways different from any other ¡ and e objects. I call this
independent multiple inheritance. However, many proposed uses
of multiple inheritance assume a dependence among base classes
(for example, the style of providing a selection of features for a
window described in $2). Such dependencies can be expressed in
terms of an object shared between the various derived classes. In
other words, there must be a way of specifying that a base class
must give rise to only one object in the final derived class even if
it is mentioned as a base class several times. To distinguish this
usage from independent multiple inheritance such base classes are
specified to be virtual:

ctass Atl : virtual h, t ...];
ctass Btl : virtuaI t., t ...];
ctass Ct, : Ahl , Bt, { ... };

A single object of class w is to be shared between nw and Bu,; that
is, only one t, object must be included in cw as the result of deriv-
ing cw from Rw and sr,,. Except for giving rise to a unique object
in a derived class, a virtuat. base class behaves exactly like a
non-virtual base class.

The "virtualness" of u is a property of the derivation specifred
by lw and sw and not a property of t.t itself. Every virtuat base
in an inheritance DAG refers to the same object.

A class may be both a normal and a virtual base in an inheri-
tance DAG:

cIassA:virtuatLt...
ctassB:virtuatLt...
ctassC:A,B{...};
ctassD:L,C{...};

A o object will have two sub-objects of class L, one virtual and
one "normal."

Virtual base classes provide a way of sharing information
within an inheritance DAG without pushing the shared informa-
tion to an ultimate base class. virtual bases can therefore be used
to improve locality of reference. Another way of viewing classes

382 Bjarne Stroustrup

);
);

derived from a common virtual base is as alternative and compos-
able interfaces to the virtual base.

7.1 Representation

The object representing a virtual base class u object cannot be
placed in a frxed position relative to both ¡w and st, in all objects.
Consequently, a pointer to ll must be stored in all objects directly
accessing the u object to allow access independently ofits relative
position. For example:

Ab'l* paul = new Alú;
g¡* pbw = new Bl'f;
Cl'l* pcw = new Clll

paH . ->
At', part I

lv

l<.......
tl part I

I

pbt{ ..>
BLJ part I

lv

l<.......
hl part I

I

Multipte Inheritance for C++ 383

pctJ ..>
All part

Bhrl part

Cll part

Ll part

A class can have an arbitrary number of virtual base classes.
One can cast from a derived class to a virtual base class, but

not from a virtual base class to a derived class. The former
involves following the virtual base pointer; the latter cannot be
done given the information available at run time. Storing a
"back-pointer" to the enclosing object(s) is non-trivial in general
and was considered unsuitable for Cr+ as was the alternative stra-
tegy of dynamically keeping track of the objects "for which" a
given member function invocation operates. The uses of such a
back-pointer mechanism did not seem to warrant the added
implementation complexity, the extra space required in objects,
and the added run-time cost of initialization.

The information necessary to cast from a virtual base class to
a derived class is part of what is needed to perform a virtual call
of a function declared in the virtual base and overridden by the
derived class. The absence of the back-pointer can thus be com-
pensated for by defining and calling appropriate virtual functions:

cIass B t virtuaI void f(); ...];
ctass D : virtual B { void f(); ... };
void g(B* p)

' ,, instead of casting ¡,t to a D* here cal. l. f()
)

Since explicit casting is often best avoided this technique actually
leads to better code in many cases.

384 Bjarne Stroustrup

v

l<
I

I

7.2 Virtual Functions

Consider:

ctass I'l {
virtuat void f();
virtuaI void g();
virtuaI void h()i
virtuat void k()i

);
ctass AUI : virtuat tl { void g(); ... };
ctass Bll : virtual H { void f(); ... };
ctass CLJ : Ahl , Bh, { void h(); ... };
GLj* pc¡¡ = new Clli

pcu-)f()i ll Bw:.zf('t
pcw->g(); ll Atl==g(,
pcw->h(); ll C\l=zh()
((Alt*)pcw)->f (); I / Bht::f ();

A cw object might look like this:

. I Al'l part
vl

Cl'l part
vtbt:

. I BL, part
vl

...>l vptr . de L ta (Bhl) -de t ta(ül)
-de L ta (l'l)
-de t ta (t'l)

0

I

I hl part
I

¡l BU::f
I AH::s
I Ct'l: : h

| ül::k

In general, the delta stored with a function pointer in a vtbl' is
the delta of the class defrning the function minus the delta of the
class for which the vtbl, is constructed.

Multiple Inheritance þr C++ 385

If w has a virtual function f that is re-defrned in both nw and
Bt, but not in cu, an ambiguity results. Such ambiguities are easily
detected at the point where cr.t's vtbt is constructed.

The rule for detecting ambiguities in a class lattice, or more
precisely a directed acyclic graph (DAG) of classes, is that there all
re-defrnitions of a virtual function from a virtual base class must
occur on a single path through the DAG. The example above can
be drawn as a DAG like this:

Br{tf}
I
I

Note that a call "up" through one path of the DAG to a virtual
function may result in the call of a function (re-defrned) in
another path (as happened in the call <(Aw*)pcw)->tcl in the
example above).

7.3 Using virtual bases

Programming with virtual bases is trickier than programming with
non-virtual bases. The problem is to avoid multiple calls of a
function in a virtual class when that is not desired. Here is a pos-
sible style:

ctass
' Í, .-.

protec ted:
-f() t my stuff)

publ.ic:
f() { -f(); }

);
Each class provides a protected function doing "its own stufl"
-f (), for use by derived classes and a public function f < I as the
interface for use by the "general public."

386 Bjarne Stroustrup

I

IAh,{s}
I

I

I

ctass A : pubtic virtuat I'l {u ...
protected:

-f() { mY stuff }u...
pubLic:

f() { -f(); }l::-f(); }u ...
);

A derived class f (I does its "own stuff' by calling -f () and its
base classes' "owr stuff' by calling their -f ()s.

cIass B : publ.ic virtuaI l'l {
il ...

protec ted:
-f() { my stuff }
ll "'

pubtic:
f() { -f(); w::-f(); }
t/ ...

);
In particular, this style enables a class that is (indirectly) derived
twice from a class w to call td: : f () once only:

class C : publ.ic A, public B, public virtuat]l {u ...
protected:

-f() t my stuff)u ...
pubt i c:

f() t -f(); A::-f(); B::-f(); U::-f();)u ,.-
);

Method combination schemes, such as the ones found in Lisp
systems with multiple inheritance, rryere considered as a rvay of
reducing the amount of code a programmer needed to write in
cases like the one above. However, none of these schemes

appeared to be sufficiently simple, general, and efficient enough to
warrant the complexity it would add to Cr+.

Multiple Inheritance þr C++ 387

8. Constructors and Destructors

Constructors for base classes are called before the constructor for
their derived class. Destructors for base classes are called after
the destructor for their derived class. Destructors are called in the
reverse order of their declaration.

Arguments to base class constructors can be specifred like this:

ctassA{A(int);}i
ctassBtB(int);)i
ctass C: A, virtual B {

C(int a, int b) : A(a), B(b) t...)
);

Constructors are executed in the order they appear in the list
of bases except that a virtual base is always constructed before
classes derived from it.

A virtual base is always constructed (once only) by its "most
derived" class. For example:

ctass V { V(); V(int); ... };
ctass A: virtual V { A(); A(int); ... }i
cIass B: virtuaI V { B(); B(int), ... t,
ctass C : A, B { C(); C(int), ... t,

v v(1); ll use v(int)
A a(2); // use v(int)
B b(3)ì l/ use V()
c c(4) i l/ use v()

9. Access Control

The examples above ignore access control considerations. A base
class may be pubtic or private. In addition, it may be virtuat.
For example:

class D

: 81 ll private (by defautt),
/ I non-virtua[(by def aul.t)

, virtuaI 82 // private (by defaul.t), virtuaI
, pubtic 83 ll public, non-virtual

//(by defauLt)

388 Bjarne Stroustrup

, pubtic virtual. 84 {
il ...

);
Note that a access or virtual. specifrer applies to a single base

class only. For example,

ctass C : publ. ic A, B t ...);

declares a public base R and a private base s.

A virtual class that is accessible through a path is accessible
even if other paths to it use private derivation.

10. Overheads

The overhead in using this scheme is:

l. One subtraction of a constant for each use of a member in a
base class that is included as the second or subsequent base.

2. One word per function in each vtbt (to hold the delta).

3. One memory reference and one subtraction for each call of
a virtual function.

4. One memory reference and one subtraction for access of a
base class member of a virtual base class.

Note that overheads l. and 4. are only incurred where multiple
inheritance is actually used, but overheads 2. and 3. are incurred
for each class with virtual functions and for each virtual function
call even when multiple inheritance is not used. Overheads l. and
4. are only incurred when members of a second or subsequent
base are accessed "from the outside"; a member function of a vir-
tual base class does not incur special overheads when accessing
members of its class.

This implies that except for 2. and 3. you pay only for what
you actually use; 2. and 3. impose a minor overhead on the virtual
function mechanism even where only single inheritance is used.
This latter overhead could be avoided by using an alternative
implementation of multiple inheritance, but I don't know of such
an implementation that is also faster in the multiple inheritance
case and as portable as the scheme described here.

Multiple Inheritance þr C++ 389

Fortunately, these overheads are not significant. The time,
space, and complexity overheads imposed on the compiler to
implement multiple inheritance are not noticeable to the user.

11. But is it Simple to Use?

What makes a language facility hard to use?

l. Lots of rules.

2. Subtle differences between rules.

3. Inability to automatically detect common errors.

4. Lack of generality.

5. Defrciencies.

The first two cases lead to difficulty of learning and remembering,
causing bugs due to misuse and misunderstanding. The last two
cases cause bugs and confusion as the programmer tries to circum-
vent the rules and "simulateo'missing features. Case 3. causes

frustration as the programmer discovers mistakes the hard way.
The multiple inheritance scheme presented here provides two

ways of extending a class's name space:

l. A base class.

2. A virtual base class.

These are two ways of creating/specifying a new class rather than
ways of creating two different kinds of classes. The rules for using
the resulting classes do not depend on how the name space was

extended:

l. Ambiguities are illegal.

2. Rules for use of members are what they were for single
inheritance.

3. Visibility rules are what they were for single inheritance.

4. lnitialization rules are what they were for single inheritance.

Violations of these rules are detected by the compiler.

390 Bjarne Stroustrup

In other words, the multiple inheritance scheme is only more
complicated to use than the existing single inheritance scheme in
that

l. You can extend a class's name space more than once (with
more than one base class).

2. You can extend a class's name space in two ways rather
than in only one way.

In addition, care must be taken to take the sharing into
account when programming member functions of classes with vir-
tual base classes; see section 7 above.

This appears minimal and constitutes an attempt to provide a
formal and (comparatively) safe set of mechanisms for observed
practices and needs. I think that the scheme described here is "as
simple as possible, but no simpler."

A potential source of problems exists in the absence of o'sys-

tem provided back-pointers" from a virtual base class to its
enclosing object.

In some contexts, it might also be a problem that pointers to
sub-objects are used extensively. This will affect programs that
use explicit casting to non-object-pointer types (such as char*)
and "extra linguistic" tools (such as debuggers and garbage collec-
tors). Otherwise, and hopefully normally, all manipulation of
object pointers follows the consistent rules explained in $4, $7,
and $8 and is invisible to the user.

12. Conclusions

Multiple inheritance is reasonably simple to add to Cr+ in a way
that makes it easy to use. Multiple inheritance is not too hard to
implement, since it requires only very minor syntactic extensions,
and frts naturally into the (static) type structure. The implemen-
tation is very efficient in both time and space. Compatibility with
C is not affected. Portability is not afected.

Multipte Inheritance þr C++ 391

Acknowledgements

In 1984 I had a long discussion with Stein Krogdahl from the
University of Oslo, Norway. He had devised a scheme for imple-
menting multiple inheritance in Simula using pointer manipula-
tion based on addition and subtaction of constants. Krogdahl
[1984] describes this work. Tom Cargill, Jim Coplien, Brian Ker-
nighan, Andy Koenig, I-arry Mayka, Doug Mcllroy, and Jonathan
Shopiro supplied many valuable suggestions and questions.

392 Bjarne Stroustrup

Appendix

The original multiple inheritance desþ as presented to the EUUG
conference in Helsinki in May 1987 contained a notion of delega-
tion.a Briefly, a user was allowed to specify a pointer to some
class among the base classes in a class declaration and the object
thus designated would be used exactly as if it was an object
representing a base class. For example:

ctass B { int b; void f(); };
ctass C : *p t B* p; int c;);

The : *p meant that members of the object pointed to by p could
be accessed exactly as if they were members of class c:

void f(C* q)
{

q->f()i
)

l/ that is, q-)p-)f()

An object of class c looked something like this after c: : p has
been initialized:

B*
int

p;
ci I I intb; I

This concept looked very promising for representing structures
that require more flexibility than is provided by ordinary inheri-
tance. In particular, assignment to a delegation pointer could be
used to reconfigure an object at run-time. The implementation
was trivial and the run-time and space efficiency ideal. Unfor-
tunately, every user of this mechanism suffered serious bugs and
confusion. Because of this the delegation mechanism was not
included in Cr+.

I suspect the fundamental problem with this variant of the
notion of delegation was that functions of the delegating class
could not override functions of the class derived to. Allowing
such overriding would be at odds with the Cr+ strategy of static

4. Gul Agha, An Overview of Actor languages, SIGPLAN Notices, pp. 58-ó7, October
I 986.

Multiple Inheritance for C++ 393

type checking and ambiguity resolution (consider the case of an
object of a class with virtual functions delegated to by several
objects of different classes).

394 Bjarne Stroustrup

References

Tom Cargill, PI: A Case Study in Object-Oriented Programming,
OOPSIA'86 Proceedings, pages 350-360, September 1986.

Stein Krogdahl, An Efficient Implementation of Simula Classes with
Multiple Prefrxing, Research Report No. 83 June 1984, University
of Oslo, Institute of Informatics.

Stan Lippman and Bjarne Stroustrup, Pointers to Members in Ct+, Proc.
USENIX Ct+ Conference,Denver, October 1988.

Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley,
1986.

Bjarne Stroustrup, What is "Object-Oriented Programming!", Proc.
ECOOP, Springer Verlag Lecture Notes in Computer Science, Vol.
276, Jane 1987.

Bjarne Stroustrup, The Evolution of C++: 1985-1989, Computing Systems
Vol. 2 No. 3, Fall 1989.

Daniel Weinreb and David Moon, Lisp Machine Manual, Symbolics,
Inc.1981.

lsubmitted May 4, 1989; revised Aug. 28, 1989; accepted Sept. 2, 19891

Multipte Inheritance for C++ 395

