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Abstract

Credal networks are models that extend Bayesian nets to deal with imprecision in proba-
bility, and can actually be regarded as sets of Bayesian nets. Evidence suggests that credal
nets are a powerful means to represent and deal with many important and challenging
problems in uncertain reasoning. We give examples to show that some of these problems
can only be modelled by credal nets called non-separately specified. These, however, are
still missing a graphical representation language and solution algorithms. The situation
is quite the opposite with separately specified credal nets, which have been the subject
of much study and algorithmic development. This paper gives two major contributions.
First, it delivers a new graphical language to formulate any type of credal network, both
separately and non-separately specified. Second, it shows that any non-separately speci-
fied net represented with the new language can be easily transformed into an equivalent
separately specified net, defined over a larger domain. This result opens up a number of
new perspectives and concrete outcomes: first of all, it immediately enables the existing
algorithms for separately specified credal nets to be applied to non-separately specified

ones.
1 Introduction

We focus on credal networks (Section 3) (Coz-
man, 2005), which are a generalization of
Bayesian nets. The generalization is achieved
by relaxing the requirement that the conditional
mass functions of the model be precise: with
credal nets each of them is only required to be-
long to a closed convex set. Closed convex sets
of mass functions are also known as credal sets
after Levi (Levi, 1980). Using credal sets in the
place of mass functions makes credal networks
an imprecise probability model (Walley, 1991).
It can be shown that a credal network is equiv-
alent to a set of Bayesian nets with the same
graph.

An important question is whether or not all
credal networks can be represented in a way
that emphasizes locality. The answer is positive
if we restrict the attention to the most popular
type of credal networks, those called separately
specified (Section 4). In this case, each con-

ditional mass function is allowed to vary in its
credal set independently of the others. The rep-
resentation is naturally local because there are
no relationships between different credal sets.
The question is more complicated with more
general specifications of credal networks, which
we call non-separately specified. The idea of
non-separately specified credal nets is in fact to
allow for relationships between conditional mass
functions in different credal sets, which can also
be far away in the net.

Although the idea of non-separately specified
credal nets is relatively intuitive, it should be
stressed that this kind of nets has been inves-
tigated very little: in fact, there has been no
attempt so far to develop a general graphical
language to describe them; and there is no al-
gorithm to compute with them.! This appears

! An exception is the classification algorithm devel-
oped for the naive credal classifier (Zaffalon, 2001), but
it is ad hoc for a very specific type of network. More
generally speaking, it is not unlikely that some of the



to be an unfortunate gap in the literature as
the non-separate specification seems to be the
key to model many important problems, as illus-
trated in Section 6. Separately specified credal
nets, on the other hand, have been the subject of
much algorithmic development (Cozman, 2005).

In this paper we give two major contributions.
First, we define a unified graphical language to
locally specify credal networks in the general
case (Section 5). The new representation is in-
spired, via the CCM transformation (Cano et
al., 1994), by the formalism of influence dia-
grams, and more generally of decision graphs
(Zhang et al., 1993). In this language the graph
of a credal net is augmented with control nodes
that express the relationships between different
credal sets. We give examples to show that the
new language provides one with a natural way
to define non-separately specified nets; and we
give a procedure to reformulate any separately
specified net in the new language.

Second, we make a very simple observation
(Section 7), which has surprisingly powerful im-
plications: we show that for any credal network
specified with the new language there is a sep-
arately specified credal network, defined over a
larger domain, which is equivalent. The pro-
cedure to transform the former into the latter
network is very simple, and takes only linear
time. The key point is that this procedure can
be used as a tool to “separate” the credal sets
of non-separately specified nets. This makes it
possible to model, by separately specified nets,
problems formerly modelled by non-separately
specified ones; and hence to use any (both exact
and approximate) existing algorithm for sepa-
rately specified nets to solve such problems.

Some comments on this result and perspec-
tives for future developments are discussed in
Section 8. The more technical parts of this pa-
per are collected in Appendix A. ——-

existing algorithms for separately specified nets can be
extended to special cases of non-separate specification,
but we are not aware of any published work dealing with
this issue.

2 Basic notation and Bayesian nets

Let us first define some notation and the funda-
mental notion of Bayesian network. Let X =
(X1,...,Xy) be a collection of random vari-
ables, which take values in finite sets, and G
a directed acyclic graph (DAG), whose nodes
are associated to the variables in X. For each
Xi € X, Qy;, is the possibility space of X;, z; a
generic element of Qx,, P(X;) a mass function
for X; and P(x;) the probability that X; = x;.
The parents of X;, according to G, are denoted
by the joint variable I1;, whose possibility space
is Qp,. For each m; € Qp,, P(X;|m;) is the condi-
tional mass function for X; given the joint value
m; of the parents of X;. This formalism is suffi-
cient to properly introduce the following:

Definition 1. A Bayesian network (BN) over X
is a pair (G, P) such that P is a set of conditional
mass functions P(X;|m;), one for each X;€ X
and ; € Q.

We assume the Markov condition to make G
represent probabilistic independence relations
between the variables in X: every variable is
independent of its non-descendant non-parents
conditional on its parents. Thus, a BN deter-
mines a joint mass function P(X) according to
the following factorization:

n

P(x) = [ [ P(xilm), (1)

i=1

for each x € Qx, where for each i = 1,...,n the
values (z;, ;) are consistent with x.

3 Credal sets and credal networks

Credal networks extend Bayesian nets to deal
with imprecision in probability. This is ob-
tained by means of closed convex sets of prob-
ability mass functions, which are called credal
sets (Levi, 1980). We follow (Cozman, 2000) in
considering only finitely generated credal sets,
i.e., obtained as the convex hull of a finite num-
ber of mass functions. Geometrically, a credal
set is a polytope. A credal set contains an infi-
nite number of mass functions, but only a finite
number of extreme mass functions: those corre-
sponding to the vertices of the polytope, which



are, in general, a subset of the generating mass
functions. A credal set over X is denoted as
K(X). We similarly denote as K(X|y) a con-
ditional credal set over X given a value y of
another random variable Y, i.e., a credal set
of conditional mass functions P(X|y). Given
a joint credal set K(X,Y), the marginal credal
set for X is the credal set K(X) obtained by
the point-wise marginalization of Y from all the
joint mass function P(X,Y) € K(X,Y). Fi-
nally, given a subset Q% C Qx, a particularly
important credal set for our purposes is the vac-
uous credal set for 'y, i.e., the set of all mass
functions over X assigning probability one to
k. In the following we will use the well known
fact that the vertices of such a credal set are the
|| degenerate mass functions assigning prob-
ability one to the single elements of .

Definition 2. A credal network (CN) over X
is a pair (G, {P1,...,Py}) such that (G,P;) is a
Bayesian network over X for each j =1,...,m.

The BNs {(G,P;)}7., are said to be the com-
patible BNs of the CN considered in Defini-
tion 2.

The CN (G, {Py,...,P,,}) can be used to de-
termine the following credal set:

K(X) := CH{P,(X),...,Pn(X)}, (2)

where CH denotes the convex hull of a set
of functions, and the joint mass functions
{P;(X)}]L, are those determined by the com-
patible BNs of the CN. With an abuse of ter-
minology, we call the credal set in Equation (2)
the strong extension of the CN, by analogy with
the notion provided in the special case of sep-
arately specified CNs (see Section 4). Inference
over a CN is intended as the computation of up-
per and lower expectations for a given function
of X over the credal set K(X), or equivalently
over its vertices (Walley, 1991).

4 Separately specified credal nets

The main feature of probabilistic graphical
models, which is the specification of a global
model through a collection of sub-models local
to the nodes of the graph, contrasts with Def-

inition 2, which represents a CN as an explicit
enumeration of BNs.

Nevertheless, there are specific subclasses of
CNs that define a set of BNs as in Definition 2
through local specifications. This is for example
the case of CNs with separately specified credal
sets,? which are simply called separately spec-
ified CNs in the following. This specification
requires each conditional mass function to be-
long to a (conditional) credal set, according to
the following:

Definition 3. A separately specified CN over
X is a pair (G, K), where K is a set of conditional
credal sets K (X;|m;), one for each X; € X and
™ € Qni.

The strong extension K(X) of a separately
specified CN is defined as the convex hull of
the joint mass functions P(X), with, for each
x € QOx:

n

P(x) = [ [ P(ailms),

=1

P(Xi|m) € K(X;[m),
for each X; € X, m; € 1I;.

3)
Here K(X;|m;) can be replaced by the set of
its vertices (see Proposition 1 in the appendix).
Separately specified CNs are the most popular
type of CN.

As a more general case, some authors con-
sidered so-called extensive specifications of CNs
(Ferreira da Rocha and Cozman, 2002), where
instead of a separate specification for each con-
ditional mass function as in Definition 3, the
generic probability table P(X;|II;), i.e., a func-
tion of both X; and II;, is defined to belong to
a finite set of tables. The strong extension of
an extensive CN is obtained as in Equation (3),
by simply replacing the separate requirements
for each single conditional mass function, with
extensive requirements about the tables which
take values in the corresponding finite sets.

In the next section, we provide an alternative
definition of CN, with the same generality of
Definition 2, but obtained through local speci-
fication as in Definition 3.

2Some authors use also the expression locally defined
CNs (Cozman, 2000).



5 Local specification of credal nets

In this section we provide an alternative and
yet equivalent definition for CNs with respect to
Definition 2, which is inspired by the formalism
of decision networks (Zhang et al., 1993) via the
CCM transformation (Cano et al., 1994).

Definition 4. A locally specified credal net-
work over X' is a triplet (G, (Xp,X’), (O, P))
such that: (i) G is a DAG over X = Xp U X/;
(ii) O is a collection of sets Q% C Qy;, one for
each X; € Xp and® 7; € II;; (iii) P is a set
of conditional mass functions P(X;|r;), one for
each X; € X' and m; € Q.

We intend to show that Definition 4 specifies
a CN over the variables in X'; the nodes cor-
responding to X’ are therefore called uncertain
and will be depicted by circles, while those cor-
responding to X p are said decision nodes and
will be depicted by squares. Let us associate
each decision node X; € Xp with a so-called
decision function fx, : Qn, — Clx, returning an
element of Qggl for each m; € Q. Call strategy
s an array of decision functions, one for each
X; € Xp. We denote as {2g the set of all the
possible strategies.

Each strategy s € Qg determines a BN over
X via Definition 4. A conditional mass function
P(X;|m;) for each uncertain node X; € X' and
m; € Qq, is already specified by IP. To determine
a BN we have then to simply represent deci-
sions functions by mass functions: for each de-
cision node X; € Xp and m; € Qr;, we consider
the conditional mass functions Ps(X;|7;) assign-
ing all the mass to the value fx,(m;), where
fx; is the decision function corresponding to
s. The BN obtained in this way will be de-
noted as (G,Ps), while for the corresponding
joint mass function, we clearly have, for each
x = (xp,x') € Ox:

Py(xp,x") = [ Pelwlm)- J] Plailm).

X;1€Xp X;eX! ( )
4

The next step is then obvious: we want to
define a CN by means of the set of BNs deter-

3If X; corresponds to a parentless node of G, a single
set equal to the whole Qx; is considered.

mined by all the possible strategies. But the
point is whether or not all these networks have
the same DAG, as required by Definition 2. To
show this we need the following:

Transformation 1. Given a locally specified
CN (G, (Xp,X"),(P,0)), obtain a DAG G' as-
sociated to the wvariables X' iterating, for each
Xy € Xp, the following operations over G: (i)
connect with an arc all the parents of X4 with
all the children of Xg4; (i1) remove the node cor-
responding to X .

Figure 1: The DAG ¢’ returned by Transforma-
tion 1 given a locally specified CN whose DAG
is that in Figure 2 (or also Figure 3 or Figure 4).

Figure 1, reports an example of Transforma-
tion 1. The DAG G’ returned by Transforma-
tion 1 is considered by the following:

Theorem 1. The marginal for X' relative to
(G,Ps), i.e. the mass function Ps(X') such that

Z Pi(xp,x), (5)

XpEQxX

for each x' € Qx:, factorizes as the joint mass
function of a BN (G',PL) over X', where G' is
the DAG obtained from G by Transformation 1.

From which, considering the BNs (G',PL) for
each strategy s € Qg, it is possible to conclude:

Corollary 1. A locally specified CN as in Def-
inition 4 properly defines a CN over X', based
on the DAG G' returned by Transformation 1.

It is worthy to note that any CN defined as
in Definition 2 can be reformulated as in Defini-
tion 4, by simply adding a single decision node,
which is parent of all the other nodes (see Fig-
ure 2).

The conditional mass functions correspond-
ing to different values of the decision node are
assumed to be those specified by the compatible
BNs. This means that, if D denotes the decision



Figure 2: Local specification of a non-separately
specified CN over the DAG in Figure 1. Re-
member that circles denote uncertain nodes,
while the square is used for the decision node.

node, the states of D index the compatible BNs,
and P(X;|m;,d) = Py(X;|m;), where Py(X;|m;)
are the conditional mass functions specified by
the d-th compatible BN for each X; € X’ and
m; € Qn, and d € Qp. This formulation, which
is an example of the CCM transformation (Cano
et al., 1994), is only seemingly local, because of
the arcs connecting the decision node with all
the uncertain nodes. In the remaining part of
this section, we show how different CNs specifi-
cations can be reformulated as required by Def-
inition 4.

For example, we can represent extensive CNs
by introducing a decision parent for each node
of the original CN (Figure 3).

[T—
T
-

Figure 3: Local specification of an extensive CN
over the DAG in Figure 1.

The conditional mass functions of the uncer-
tain nodes corresponding to different values of
the related decision nodes are assumed to be
those specified by the different tables in the ex-
tensive specification of the uncertain node. This
means that, if X; in an uncertain node and
D; the corresponding decision node, the states
d; € Qp, index the tables Py, (X;|II;) of the ex-
tensive specification for X;, and P(X;|d;, m;) is
the joint mass function Py, (X;|m;) associated to
the d;-th table of the extensive specification.

More generally, constraints for the specifica-
tions of conditional mass functions relative to
different nodes are similarly represented by deci-
sion nodes which are the parents of these nodes.

Finally, to locally specify, as required by Def-
inition 4, a separately specified CN, it would
suffice to reformulate the separately specified
CN as an extensive CN whose tables are ob-
tained considering all the combinations of the
vertices of the separately specified conditional
credal sets of the same variable. Yet, this ap-
proach suffers an obvious exponential explosion
of the number of tables in the input size.

A more effective procedure consists in adding
a decision node in between each node and its
parents, regarding the nodes of the original
model as uncertain nodes (Figure 4). To com-
plete the local specification proceed as follows.
For each uncertain node X;, the states d; € {2p,
of the corresponding decision node D; are as-
sumed to index the vertices of all the condi-
tional credal sets K (X;|m;) € K with m; € Qp,.
In this way, for each uncertain node Xj;, it is
possible to set the conditional mass function
P(X;|d;) to be the vertex of the conditional
credal set K(X;|m;) associated to d;, for each
d; € Qp,. Regarding decision nodes, for each
decision node D; and the related value 7; of the
parents, we simply set the subset Q7. C Qp,
to be such that {P(Xi|di)}die(2g, are the ver-

tices of K (X;|m;). This approéch, which is
clearly linear in the input size, takes inspiration
from probability trees representations (Cano and
Moral, 2002).

A
Y
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O

Figure 4: Local specification of a separately
specified CN over the DAG in Figure 1.



Summarizing, we can obtain in efficient time
a local specification of a CN, by simply consider-
ing one of the transformations described in this
section.? Tt is worth noting that local specifica-
tions of CNs based on the DAGs respectively in
Figure 4, Figure 3 and Figure 2 correspond to
CNs based on the DAG in Figure 1 which are re-
spectively separately specified, extensively spec-
ified and non-separately (and non-extensively)
specified. Vice versa, it is easy to check that
Transformation 1 can be regarded as the inverse
of these three transformations.

6 Reasons for non-separately
specified credal nets

Let us illustrate by a few examples that the ne-
cessity of non-separately specified credal nets
arises naturally in a variety of problems.

Conservative Inference Rule The conser-
vatiwe inference rule (CIR) is a new rule for
updating beliefs with incomplete observations
(Zaffalon, 2005). CIR models the case of mixed
knowledge about the incompleteness process,
which is assumed to be nearly unknown for some
variables and unselective for the others. This
leads to an imprecise probability model, where
all the possible completions of the incomplete
observations of the first type of variables are
considered. In a recent work, updating beliefs
with CIR has been considered for BNs (An-
tonucci and Zaffalon, 2006). The problem is
proved to be equivalent to a traditional belief
updating problem in a CN: the equivalence is
made possible by non-separately specified credal
nets.

Qualitative networks Qualitative proba-
bilistic networks (Wellman, 1990) are an ab-
straction of BNs, where the probabilistic assess-
ments are replaced by qualitative relations of

4As a side note, it is important to be aware that
a credal set can have a very large number of vertices,
and this can still be a source of computational prob-
lems for algorithms (such as those based on the CCM
transformation) that explicitly enumerate the vertices of
a net’s credal sets. This is a well-know issue, which in
the present setup is related to the possibly large number
of states for the decision nodes in the locally specified
representation of a credal net.

the influences or the synergies between the vari-
ables. If we regard qualitative nets as credal
nets, we see that not all types of relations can
be represented by separate specifications of the
conditional credal sets. This is, for instance, the
case of (positive) qualitative influence, which re-
quires, for two boolean variables A and B, that

P(afb) > P(al-b). (6)

The qualitative influence between A and B can
therefore be modeled by requiring P(A|b) and
P(A|-b) to belong to credal sets, which cannot
be separately specified because of the constraint
in Equation (6). An extensive specification for
A should therefore be considered to model the
positive influence of B (Cozman et al., 2004).

Equivalent graphs for CNs Remember
that DAGs represent independencies between
variables according to the Markov condition.
Different DAGs describing the same indepen-
dencies are said to be equivalent (Verma and
Pearl, 1990). Thus, a BN can be reformulated
using an equivalent DAG. The same holds with
CNs, when (as implicitly done in this paper)
strong independence replaces standard proba-
bilistic independence in the Markov condition
(Moral and Cano, 2002).

Consider, for example, A — B and A < B,
which are clearly equivalent DAGs. One prob-
lem with separately specified CNs is that they
are not closed under this kind of (equivalent)
structure changes: if we define a separately
specified CN for A — B, and then reverse the
arc, the resulting net will not be separately
specified in general. Consider the following sep-
arate specifications of the conditional credal sets
for a CN over A — B:

K(Bla) :=
K(A) :=

[9,.1] K(B|-a):=[8,.2]
CH{|.7, .3],[.5, .5]},

where two-dimensional horizontal arrays are
used to denote mass functions for boolean vari-
ables. Such a separately specified CN has two
compatible BNs, one for each vertex of K(A).
From the joint mass functions corresponding to



these BNs, say P;(A, B) and P(A, B), we ob-
tain the conditional mass functions for the cor-
responding BNs over B — A:

P.(B) = [.87,.13]
Pi(Alb) = [.72,.28]
Py (A|-b) = [.54, .46]

Py(B) = [.85,.15]
Py(Ab) = [.52, AT]
Py (A|-b) = [.33,.67).

According to Definition 2, these two distinct
specifications define a CN over B — A, which
cannot be separately specified as in Definition 3.
To see this, note for example that the spec-
ification P(alb) = .52, P(a|-b) = .33 and
P(b) = .85, which is clearly a possible speci-
fication if the conditional credal sets were sepa-
rately specified, would lead to the unacceptable
mass function P(A) = [.49,.51] ¢ K(A).

It is useful to observe that general, non-
separately specified, CNs do not suffer for these
problems just because they are closed under
equivalent changes in the structure of the DAG.

Learning from incomplete data Given
three boolean random variables A, B and C,
let the DAG A — B — C express independen-
cies between them. We want to learn the model
probabilities for such a DAG from the incom-
plete data set in Table 1, assuming no informa-
tion about the process making the observation
of B missing in the last record of the data set.
The most conservative approach is therefore to
learn two distinct BNs from the two complete
data sets corresponding to the possible values
of the missing observation and consider indeed
the CN made of these compatible BNs.

A B C
a b c
—a —b c
a b —c
a * c

Table 1: A data set about three boolean vari-
ables, * denotes a missing observation.

To make things simple we compute the prob-
abilities for the joint states by means of the rel-
ative frequencies in the complete data sets. Let
Pi(A,B,C) and P,(A, B,C) be the joint mass

function obtained in this way, which define the
same conditional mass functions for:

Pi(A) = Py(4) = [.75,.25]
Pi(B|-a) = Py(B|-a) = [0,1]
Pi(C|=b) = P(C|=b) = [1,0];

and different conditional mass functions for:

Pi(Bla) =[1,0]
PL(C|b) = [.67,.33]

Py(B|a) = [.67,.33]
Py(Cb) = [.5,.5].

We have therefore obtained two BNs over A —
B — C, which can be regarded as the compat-
ible BNs of a CN. Such a CN is clearly non-
separately specified, because the two BNs spec-
ify different conditional mass functions for more
than a variable.

7 From locally to separately
specified credal nets

In this section, we prove that any locally spec-
ified CN over X’ can equivalently be regarded
as a separately specified CN over X. The trans-
formation is technically straightforward: it is
based on representing decision nodes by uncer-
tain nodes with vacuous conditional credal sets,
as formalized below.

Transformation 2. Given a locally specified
CN (G, (Xp,X"), (O,P)) over X', obtain a sep-
arately specified CN (G,K) over X, where the
conditional credal sets in K are for each X; € X

and m; € Qr;:

P(XZ|7TZ) if X; € X'
K(Xi|m;) := _ (7)
KQ;}: (Xz) if X; € Xp,
where P(X;|m;) is the mass function specified in
P and KQ;" (Xi) the vacuous credal set for Q..

Figure 5 reports an example of Transforma-
tion 2, which is clearly linear in the input size.

The (strong) relation between a locally spec-
ified CN (G, (Xp,X'), (0,P)) over X’ and the
separately specified CN (G,K) returned by
Transformation 2 is outlined by the following:



Figure 5: The DAG associated to the sepa-
rately specified CN returned by Transforma-
tion 2, from the locally specified CN based on
the DAG in Fig. 4. The conditional credal
sets of the white nodes (corresponding to the
original uncertain nodes) are precisely specified,
while the grey nodes (i.e., new uncertain nodes
corresponding to the former decision nodes) rep-
resent variables whose conditional credal sets
are vacuous.

Theorem 2. Let K(X') be the ‘marginal

for X' of the strong extension K(X) of
(G,K) and K(X') the strong extension of
<g7 (XDa XI)7 <©7 P)) Then:

K(X') = K(X'). (8)

From Theorem 2, it is straightforward to con-
clude the following:

Corollary 2. Any inference problem on a lo-
cally specified CN can be equivalently solved in
the separately specified CN returned by Trans-
formation 2.

Let us stress that Transformation 2 is very
simple, and it is surprising that it is presented
here for the first time, as it is really the key
to “separate” the credal sets of non-separately
specified nets: in fact, given a non-separately
specified CN, one can locally specify the CN, us-
ing the prescriptions of the second part of Sec-
tion 5, and apply Transformation 2 to obtain
a separately specified CN. According to Corol-
lary 2, then, any inference problem on the orig-
inal CN can equivalently be represented on this
new separately specified CN. To make an exam-
ple, this procedure can immediately solve the

CIR updating problem described in Section 6,
which is a notable and ready-to-use result.

8 Conclusions and outlooks

We have defined a new graphical language to
formulate any type of credal network, both sep-
arately and non-separately specified. We have
also showed that any net represented with the
new language can be easily transformed into an
equivalent separately specified credal net. This
implies, in particular, that non-separately speci-
fied nets have an equivalent separately specified
representation, for which solutions algorithms
are available in the literature.

The transformation proposed also shows that
a subclass of separately specified credal net-
works can be used to solve inference problems
for arbitrary specified credal nets: this is the
class of nets in which the credal sets are either
vacuous or precise. It is worth noting that a re-
cent development of the approximate L2U algo-
rithm (Antonucci et al., 2006) seems to be par-
ticularly suited just for such a class, and should
therefore be considered in future work.

Finally, the strong connection between the
language for credal networks introduced in this
paper and the formalism of decision networks
(including influence diagrams), seems to be par-
ticularly worth exploring for cross-fertilization
between the two fields.
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A Proofs

The obvious proofs of Corollary 1 and Corol-
lary 2 are omitted.

Proof of Theorem 1. Let us start the marginal-
ization in Equation (5) from a decision node
X; € Xp. According to Equation (4), for each
x € QOx:

DB =]

x]'Eij XjEQXj

1 Po(ilm) - [T Pailms)

X€EXp X;eX!
(9)



Thus, moving out of the sum the conditional
probabilities which do not refer to the states
of X; (which are briefly denoted by A), Equa-
tion (9) becomes:

A

Pu(zjlmy) - [ Plarlaj, )|,
XTeij

(10)
where I'x, denotes the children of X; and, for
each X, € I'y,, II, are the parents of X, de-
prived of X;. Therefore, considering that the
mass function Ps(X|m;) assigns all the mass to
the value fx; (m) € Qx;, where fx, is the de-
cision function associated to s, Equation (10)
rewrites as

A- H P($r|fXj(7rj)a7~rr)-

X'r EFXJ

(11)

It is therefore sufficient to set II := II; UII,,
and

Psl(Xr|7T1l~) = P(Xr|fXj(7Tj)a7~Tr)a (12)
to regard Equation (11) as the joint mass func-
tion of a BN over X \ {X;} based on the DAG
returned by Transformation 1 considered for the
single decision node X; € Xp. The thesis there-

fore follows from a simple iteration over all the
X j € Xp. |

The following well-known and (relatively) in-

tuitive proposition is required to obtain Theo-
rem 2, and will be proved here because of the
seemingly lack of its formal proof in the litera-
ture.
Proposition 1. The vertices { P;(X) 71 of the
strong extension K’(X) of a separately speci-
fied CN (G,K) are joint mass functions obtained
by the combination of vertices of the separately
specified conditional credal sets, i.e., for each
X € Qx:

n

Pj(x) = [ Pj(ilm), (13)
i=1
for each j = 1,...,m, where, for each © =

1,...,n and m; € Qn,;, Pj(X;|m) is a vertez of
K(Xi|m) € K.

Proof of Proposition 1. We prove the proposi-
tion by a reductio ad absurdum, assuming that
at least a vertex P(X) of K(X) is not obtained
by a local combination of vertices of the con-
ditional credal sets in K. This means that,
for each x € Qx, P(x) factorizes as in Equa-
tion (13), but at least a conditional probability
in this product comes from a conditional mass
function which is not a vertex of the relative
conditional credal set. This conditional mass
function, say P(X|m;), can be expressed as a
convex combination of vertices of K (X;|m), i.e.,
P(Xt|7rt> = Za CaPa(Xt|7Tt)7 with Za Co = 1
and, for each a, ¢, > 0 and P, (X;|m) is a ver-
tex of K (Xy|m). Thus, for each x € Qx,

P(x) = [Z caPa(xt|7rt)] I Pidm), (14)

i#t

which can be easily reformulated as a convex
combination. Thus, P(X) is a convex combina-
tion of elements of the strong extension K (X).
This violates the assumption that P(X) is a ver-
tex of K(X). O

Proof of Theorem 2. According to The-
orem 1, the strong extension K(X') of
(G,(Xp,X"),(0,P)) can be regarded as the
marginal for X’ of

K(X) = CH{P(X)}acns.  (15)
where for each s € Qg, Ps(X) is the joint mass
function associated to (G,Ps). For each X, €
X p, the conditional mass functions Ps(X4|7q),
specified for each 74 € Q, in Ps, assign all
the mass to the single state fx,(ms) € Q¥,,
where fj,r(‘fi are the decision functions associ-
ated to the strategy s € (g, and represent
therefore a vertex of the vacuous conditional
credal set Kg‘;d (X4) € K specified in Equa-
tion (7). Thus, Ps(X) is a vertex of K(X) be-
cause of Proposition 1. As s varies in g, all

the vertices of K (X) are obtained and therefore
K(X) = K(X), from which the thesis follows

marginalizing. O
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